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Summary. Coble defined in his 1929 treatise invariants for cubic surfaces and quar-
tic curves. We reinterpret these in terms of the root systems of type E6 and E7 that
are naturally associated to these varieties, thereby giving some of his results a more
intrinsic treatment. Our discussion is uniform for all Del Pezzo surfaces of degree
2,3,4 and 5.

Introduction

A Del Pezzo surface of degree d is a smooth projective surface with semi-
ample anticanonical bundle whose class has self-intersection d. The degree is
always between 1 and 9 and the surface is either a quadric (d = 8 in that
case) or is obtained from blowing up 9 − d points in the projective plane
that satisfy a mild genericity condition. So moduli only occur for 1 ≤ d ≤ 4.
The anticanonical system is d-dimensional and when d 6= 1, it is also base
point free. For d = 4, the resulting morphism is birational onto a complete
intersection of two quadrics in P4, for d = 3 it is birational onto a cubic surface
in P3 and for d = 2 we get a degree two map onto P2 whose discriminant curve
is a quartic (we will ignore the case d = 1 here). This image surface (resp.
discriminant) is smooth in case the anticanonical bundle is ample; we then
call the Del Pezzo surface a Fano surface. Otherwise it might have simple
singularities in the sense of Arnol’d (that have a root system label A, D
or E). Conversely, every complete intersection of two quadrics in P4, cubic
surface in P2 or quartic curve in P2 with such singularities thus arises.

We mentioned that a degree d Del Pezzo surface, d 6= 8, is obtained from
blowing up 9−d points in P2 in general position. A more precise statement is
that if we are given as many disjoint exceptional curves E1, . . . , E9−d on the
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Del Pezzo surface S, then these can be simultaneously contracted to produce
a projective plane. So the images of these curves yield 9− d numbered points
p1, . . . , p9−d in P2 given up to projective equivalence. Hence every polynomial
expression in terms of the projective coordinates of these points that is in-
variant under SL(3, C) is a ‘covariant’ for the tuple (S;E1, . . . , E9−d). Coble
exhibited such covariants for the important cases d = 2 and d = 3. These are
in general not covariants of S itself, since the surface may have many excep-
tional systems (E1, . . . , E9−d). Indeed, if we assume that S is Fano, then, as
Manin observed, these systems are simply transitively permuted by a Weyl
group W , which acts here as a group of Cremona transformations. Therefore,
this group will act on the space of such covariants. Coble’s covariants span
a W -invariant subspace and Coble was able to identify the W -action as a
Cremona group (although the Weyl group interpretation was not available to
him). For d = 3 he found an irreducible representation of degree 10 of a E6-
Weyl group and for d = 2 he obtained an irreducible representation of degree
15 of a E7-Weyl group.

The present paper purports to couch Coble’s results in terms of a moduli
space of tuples (S;E1, . . . , E9−d) as above, for which S is semistable in the
sense of Geometric Invariant Theory. This moduli space comes with an action
of the Weyl group W . It also carries a natural line bundle, called the deter-
minant bundle, to which the W -action lifts: this line bundle assigns to a Del
Pezzo surface the line that is the dual of the top exterior power of the space
of sections of its anticanonical bundle. In turns out that this bundle is pro-
portional to the one that we use to do geometric invariant theory with (and
from which our notion of semistability originates). We show that the Coble
covariants can be quite naturally understood as sections of this bundle and we
reprove the fact known to Coble that these sections span an irreducible rep-
resentation of W . We also show that these sections separate the points of the
above moduli space so that one might say that Coble’s covariants of a stable
tuple (S;E1, . . . , E9−d) make up a complete set of invariants. This approach
not only covers the cases Coble considered (degree 2 and 3), but also the de-
gree 4 case and, somewhat amusingly, even the degree 5 case, for which there
are no moduli at all. For the case of degree 3 we also make the connection with
earlier work of Naruki and Yoshida. This allows us to conclude that the Coble
covariants define a complete linear system and define a closed immersion of
the GIT-compactification of the moduli space of marked cubic surfaces in a
9-dimensional projective space. Our results are less complete when the degree
is 2; for instance, we did not manage to establish that the Coble covariants
define a complete linear system.

We end up with a description of the GIT moduli space that is entirely
in terms of the corresponding root system. Our results lead to us to some
remarkable integrability properties of the module of W -invariant vector fields
on the vector space that underlies the defining (reflection) representation of
W and we raise the question of whether this is a special case of a general
phenomenon.
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Since the appearance of Coble’s book a great deal of work on Del Pezzo
moduli has seen the day. As its sheer volume makes it impossible to give our
predecessors their fair due, any singling out of contributions will be biased.
While keeping that in mind we nevertheless wish to mention the influen-
tial book by Manin [18], the Astérisque volume by Dolgachev-Ortland [10],
Naruki’s construction of a smooth compactification of the moduli space of
marked cubic surfaces [16], the determination of its Chow groups in [5], the
Lecture Note by Hunt [15] and Yoshida’s revisit of the Coble covariants [19].
The ball quotient description of the moduli space of cubic surfaces by Allcock,
Carlson and Toledo [2], combined with Borcherds’ theory of modular forms,
led Allcock and Freitag [1] to construct an embedding of the moduli space
of marked cubic surfaces, which coincides with the map given by the Coble
invariants [13], [14].
We now briefly review the organization of the paper. The first section intro-
duces a moduli space for marked Fano surfaces of degree d ≥ 2 as well as
the line bundle over that space that is central to this paper, the determinant
line bundle. This assigns to a Fano surface the determinant line of the dual
of the space of sections of its anticanonical sheaf (this is also the determinant
of the cohomology of its structure sheaf). We show that this line bundle can
be used to obtain in a uniform manner a compactification (by means of GIT)
so the determinant bundle extends over this compactification as an ample
bundle. In Section 2 we introduce the Coble covariants and show that they
can be identified with sections of the determinant bundle. The next section
expresses these covariants purely in terms of the associated root system. In
Section 4 we identify (and discuss) the Weyl group representation spanned by
the Coble covariants. The final section investigates the separating properties
of the Coble covariants, where the emphasis is on the degree 3 case.

As we indicated, Manin’s work on Del Pezzo surfaces has steered this
beautiful subject in a new direction. Although this represents only a small
part of his many influential contributions to mathematics, we find it therefore
quite appropriate to dedicate this paper to him on the occasion of his 70th
birthday.

1 Moduli spaces for marked Del Pezzo surfaces

We call a smooth complete surface S a Del Pezzo surface of degree d if its
anticanonical bundle ω−1

S is semi-ample and ωS · ωS = d. It is known that
then 1 ≤ d ≤ 9 and that S is isomorphic either to a smooth quadric or to
a surface obtained from successively blowing up 9 − d points of P2. In order
that a successive blowing up of 9−d points of P2 yields a Del Pezzo surface it
is necessary and sufficient that we blow up on (i.e., over the strict transform
of) a smooth cubic curve (which is an anticanonical divisor of P2). This is
equivalent to the apparently weaker condition that we blow up at most 3
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times on a line and at most 6 times on a conic. It is also equivalent to the
apparently stronger condition that the anticanonical system on this surface is
nonempty and has dimension d.

Let S be a Del Pezzo surface of degree d. The vector space V (S) :=
H0(ω−1

S )∗ (which we will usually abbreviate by V ) has dimension d + 1. The
anticanonical system defines the (rational) anticanonical map S 99K P(V ).
When d ≥ 2, it has no base points, so that the anticanonical map is a mor-
phism. For d = 1, it has a single base point; if we blow up this point, then
the anticanonical map lifts to a morphism S̃ → P(V ) which makes S̃ a ra-
tional elliptic surface (with a section defined by the exceptional curve of the
blowup).

Let S → S̄ contract the (−2)-curves on S (we recall that a curve on a
smooth surface is called a (−2)-curve if it is a smooth rational curve with
self-intersection −2.) Then S̄ has rational double point singularities only and
its dualizing sheaf ωS̄ is invertible and anti-ample. We shall call such a surface
an anticanonical surface. If d ≥ 2, then the anticanonical morphism morphism
factors through S̄. For d ≥ 3 the second factor is an embedding of S̄ in a
projective space of dimension d; for d = 3 this yields a cubic surface and for
d = 4 a complete intersection of two quadrics. When d = 2, the second factor
realizes S̄ as a double cover of a projective plane ramified along a quartic
curve with only simple singularities in the sense of Arnol’d (accounting for
the rational double points on S̄).

Adopting the terminology in [11], we say that S is a Fano surface of degree
d if ω−1

S is ample (but beware that other authors call this a Del Pezzo surface).
If S is given as a projective plane blown up in 9 − d points, then it is Fano
precisely when the points in question are distinct, no three lie on a line, no
six lie on a conic and no eight lie on a cubic which has a singular point at one
of them. This is equivalent to requiring that S contains no (−2)-curves.

From now on we assume that S is not isomorphic to a smooth quadric. We
denote the canonical class of S by k ∈ Pic(S) and its orthogonal complement
in Pic(S) by Pic0(S). An element e ∈ Pic(S) is called an exceptional class of
S if e · e = e · k = −1. Every exceptional class is representable by a unique
effective divisor. A marking of S is an ordered (9 − d)-tuple of exceptional
classes (e1, . . . , e9−d) on Pic(S) with ei · ej = −δij . Given a marking, there
is a unique class ` ∈ Pic(S) characterized by the property that 3` = −k +
e1 + · · · + e9−d and (`, e1, . . . , e9−d) will be basis of Pic(S). The marking is
said to be geometric if S can be obtained by (9− d)- successive blowups of a
projective plane in such a manner that ei is the class of the total transform
Ei of the exceptional curve of the ith blowup. An `-marking of S consists of
merely giving the class `. So if L is a representative line bundle, then L is base
point free and defines a birational morphism from S to a projective plane and
the anticanonical system on S projects onto a d-dimensional linear system of
cubic curves on this plane.

Since we are interested here in the moduli of Fano surfaces, we usually
restrict to the case d ≤ 4: if S is given as a blown up projective plane then
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four of the 9−d points to be blown up can be used to fix a coordinate system,
from which it follows that we have a fine moduli space M◦

m,d of marked Fano
surfaces of degree d that is isomorphic to an affine open subset of (P2)5−d.

From now on we assume that d ≤ 6. With Manin we observe that then the
classes ei−ei+1, i = 1, . . . , 8−d and `−e1−e2−e3 make up a basis of Pic0(S)
and can be thought of as a system of simple roots of a root system R9−d. This
root system is of type E8, E7, E6, D5, A4 and A2 +A1 respectively. The roots
that have fixed inner product with ` make up a single S9−d-orbit and we label
them accordingly:

(0) hij := ei − ej , (i 6= j),
(1) hijk := `− ei − ej − ek with i, j, k pairwise distinct,
(2) (2` − e1 − e2 − e3 − e4 − e5 − e6 − e7) + ei, denoted hi when d = 2, For

d = 3, this is only makes sense for i = 7 and we then may write h instead.
(3) −k − ei (d = 1 only).

Notice that hij = −hji, but that in hijk the order of the subscripts is irrele-
vant. c c c c c c

c
h12 h23 h34 h45

h123

h8−d,9−d

The marking defined by (e1, . . . , e9−d) is geometric if and only if for every
(−2)-curve C its intersection product with each of the simple roots is not
positive.

The Weyl group W (R9−d) is precisely the group of orthogonal transfor-
mations of Pic(S) that fix k. It acts simply transitively of the markings. In
particular it acts on M◦

m,d and the quotient variety M◦
d := W (R9−d)\M◦

m,d

can be interpreted as the coarse moduli space of Fano surfaces of degree d.
The orbit space of M◦

m,d relative to the permutation group of the e1, . . . , e9−d

(a Weyl subgroup of type A8−d) is the moduli space M◦
`,d of `-marked Fano

surfaces of degree d.

Completion of the moduli spaces by means of GIT

Fix a 3-dimensional complex vector space A and a generator α ∈ det(A).
We think of α as a translation invariant 3-vector field on A. If f ∈ Sym3A∗

is a cubic form on A, then the contraction of α with df , ιdfα, is a 2-vector
field on A that is invariant under scalar multiplication and hence defines a
2-vector field on P(A). We thus obtain an isomorphism between Sym3A∗ and
H0(ω−1

P(A)).
Let d ∈ {2, 3, 4}. A (d+1)-dimensional linear quotient V of Sym3A defines

a linear subspace V ∗ ⊂ Sym3A∗, i.e., a linear system of cubics on P(A) of di-
mension d. If we suppose that this system does not have a fixed component
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and that its base locus consists of 9 − d points (multiplicities counted), then
blowing up this base locus produces an `-marked Del Pezzo surface S with
the property that H0(ω−1

S )∗ can be identified with V (we excluded d = 1
here because then the base locus has 9 points and we get a rational elliptic
surface). If we specify an order for the blowing up, then S is even geometri-
cally marked. The quotient surface S̄ obtained from contracting (−2)-curves
is more canonically defined as it can be described in terms of the rational map
P(A) 99K P(V ): for d = 3, 4 it is the image of this map and for d = 2 the Stein
factorization realizes S̄ as a double cover P(V ) ramified over a quartic curve.

The condition that the linear system has no fixed component and has
9 − d base points defines a subset Ωd ⊂ Gd+1(Sym3A∗). Over Ωd we have
a well-defined `-marked family S̄d/Ωd to which the SL(A)-action lifts. Any
`-marked anticanonical surface is thus obtained so that we have a bijection
between the set of isomorphism classes of `-marked Del Pezzo surfaces and
the set of SL(A)-orbits in Ωd. It is unlikely that this can be lifted to the level
of varieties and we therefore we invoke geometric invariant theory. We begin
with defining the line bundle that is central to this paper.

Definition 1.1. If f : S → B is a family of anticanonical surfaces of degree
d, then its determinant bundle Det(S/B) is the line bundle over B that is
the dual of the determinant of the rank 9−d vector bundle R1f∗ω

−1
S/B (so this

assigns to a Del Pezzo surface S, the line det H0(ω−1
S )∗).

Thus we have a line bundle Det(Sd/Ωd). Its fiber over the (d + 1)-
dimensional subspace V ∗ ⊂ Sym3A∗ is the line det(V ) and hence the fiber
of the ample bundle OGd+1(Sym3A∗)(1). A section of OGd+1(Sym3A∗)(k) deter-
mines a section of Det⊗k(Sd/Ωd). Since the action of SL(A) on Sym3A∗ is
via PGL(A) (the center µ3 of SL(A) acts trivially), we shall regard this as a
representation of the latter. Consider the subalgebra of PGL(A)-invariants in
the homogeneous coordinate ring of Ωd,

R•
d :=

(
⊕∞k=0H

0(OΩd
(k))

)PGL(A)
,

The affine cone Spec(R•
d) has the interpretation as the categorical PGL(A)-

quotient of the (affine) cone over Ωd. It may be thought of as the affine hull of
the moduli space of triples (S, `, δ) with (S, `) an `-marked Del Pezzo surface
of degree d and δ a generator of detH0(ω−1

S ). Since we shall find that the base
of this cone, Proj(R•

d), defines a projective completion of M◦
`,d, we denote it

by M∗
`,d. The asserted interpretation of M∗

`,d of course requires that we verify
that the orbits defined by Fano surfaces are stable. We will do that in a case
by case discussion that relates this to GIT completions that are obtained in
a different manner. In fact, for each of the three cases d = 2, 3, 4 we shall
construct a GIT completion M∗

d of M◦
d in such a way that the forgetful

morphism M◦
`,d → M◦

d extends to a finite morphism of GIT completions
M∗

`,d →M∗
d. This description will also help us to identify (and interpret) the

boundary strata.
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We recall that the proj construction endows M∗
`,d for every k ≥ 0 with a

coherent sheaf OM∗
`,d

(k) of rank one whose space of sections is Rk
d. We call

OM∗
`,d

(1) the determinant sheaf ; it is a line bundle in the orbifold setting.
In what follows, Vd+1 is a fixed complex vector space of dimension d + 1

endowed with a generator µ of det(Vd+1). We often regard µ as a translation
invariant (d + 1)-polyvector field on Vd+1.

Degree 4 surfaces in projective 4-space

If a pencil of quadrics in P(V5) contains a smooth quadric, then the number
of singular members of this pencil (counted with multiplicity) is 5. Accord-
ing to Wall [20] the geometric invariant theory for intersections of quadrics
is as follows: for a plane P ⊂ Sym2V ∗

5 , [∧2P ] ∈ P(∧2(Sym2V ∗
5 )) is SL(V5)-

stable (resp. SL(V5)-semistable) if and only if the divisor on P(P ) parame-
terizing singular members is reduced (resp. has all its multiplicities ≤ 2). A
semistable pencil belongs to minimal orbit if and only if its members can
be simultaneously diagonalized. So a stable pencil is represented by a pair
〈Z2

0 +Z2
1 +Z2

2 +Z2
3 +Z2

4 , a0Z
2
0 +a1Z

2
1 +a2Z

2
2 +a3Z

2
3 +a4Z

2
4 〉 with a0, . . . , a4

distinct. This is equivalent to the corresponding surface SP in P(V5) being
smooth. The minimal strictly semistable orbits allow at most two pairs of
coefficients to be equal. In case we have only one pair of equal coefficients, SP

has two A1-singularities and in case we have two such pairs, four. The fact that
these singularities come in pairs can be ‘explained’ in terms of the D5-root
system in the Picard group of a Del Pezzo surface of degree 4: a A1-singularity
is resolved by a single blowup with a (−2)-curve as exceptional curve whose
class is a root in the Picard root system. The roots perpendicular to this
root make up a root system of type D4 + A1 and the class of the companion
(−2)-curve will sit in the A1-summand. Besides, a minimal strictly semistable
orbit with 2 resp. 4 A1-singularities is adjacent to a semistable orbit without
such A1-pairs and represented by a pair of quadrics one of which is defined by
Z2

0 +Z2
1 +Z2

2 +Z2
3 +Z2

4 and the other by Z0Z1 +a1Z
2
1 +a2Z

2
2 +a3Z

2
3 +a4Z

2
4

resp. Z0Z1 + Z2Z3 + a3Z
2
3 + a4Z

2
4 .

The center µ5 of SL(V5) acts acts faithfully by scalars on ∧2(Sym2V ∗
5 ) and

for that reason the SL(V5)-invariant part of the homogeneous coordinate ring
of Gr2(Sym2V ∗

5 ) lives in degrees that are multiples of 5:

S•4 := ⊕∞k=0S
k
4 , Sk

4 := H0(OGr2(Sym2V ∗
5 ))(5k))SL(V5).

We obtain a projective completionM∗
4 := ProjS•4 ofM◦

4 with twisting sheaves
OM∗

4
(k) such that Sk

4 = H0(OM∗
4
(k)). The singular complete intersections are

parameterized by a hypersurface in Gr2(Sym2V ∗
5 ). Since the Picard group of

this Grassmannian is generated by OGr2(Sym2V ∗
5 ))(1), this discriminant is de-

fined by a section of some OGr2(Sym2V ∗
5 ))(20) and so B4 := M∗

4−M◦
4 is defined

by a section of OM∗
4
(4).
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Suppose we are given a surface S ⊂ P(V5) defined by a pencil of quadrics.
So S determines a line ΦS in ∧2(Sym2V ∗

5 . Any generator F1 ∧ F2 ∈ ΦS and
u ∈ V ∗

5 determine a 2-vector field on V by ιdu∧dF1∧dF2µ. This 2-vector field is
invariant under scalar multiplication and tangent to the cone over S. Hence
it defines a 2-vector field on S, or equivalently, an element of H0(ω−1

S ). The
map thus defined is an isomorphism

V ∗
5 ⊗ ΦS

∼= H0(ω−1
S ).

By taking determinants we get an identification of Φ5
S
∼= det H0(ω−1

S ). We may
think of Φ5

S as the quotient of the line ΦS by the center µ5 of SL(V5). Thus
Spec(S•4 ) may be regarded as the affine hull of the moduli space of pairs (S, δ)
with S a Del Pezzo surface of degree 4 and δ a generator of det(H0(ω−1

S )).
We conclude:

Proposition 1.2. We have a natural finite embedding S•4 ⊂ R•
4 of graded

C-algebras so that the forgetful morphism M◦
`,4 → M◦

4 extends to a finite
morphism of GIT completions M∗

`,4 →M∗
4 (and the notions of semistability

coincide in the two cases) and OM∗
4
(1) is the determinant sheaf.

Cubic surfaces

Following Hilbert the cubic surfaces in P(V4) that are stable (resp. semistable)
relative to the SL(V4)-action are those that have an A1-singularity (resp. A2-
singularity) at worst. There is only one strictly semistable minimal orbit and
that is the one that has three A2-singularities.

The center µ4 of SL(V4) acts faithfully by scalars on Sym3V ∗
4 and so the

SL(V4)-invariant part of the homogeneous coordinate ring of Sym3V ∗
4 lives in

degrees that are multiples of 4:

S•3 := ⊕∞k=0S
k
3 , Sk

3 := H0(OP(Sym3V ∗
4 )(4k))SL(V4).

We thus find the projective completion M∗
3 := ProjS•3 of M◦

3 with twist-
ing sheaves OM∗

3
(k) such that Sk

3 = H0(OM∗
3
(k)). The discriminant hy-

persurface in the linear system of degree d hypersurfaces in Pn has degree
(n + 1)(d− 1)n. So the singular cubic surfaces are parameterized by a hyper-
surface in P(Sym3V ∗

4 ) of degree 32. The stable locus M◦
3 ⊂M3 ⊂M∗

3 is the
complement of a single point. Furthermore, B3 := M∗

3 −M◦
3 is defined by a

section of OM∗
3
(8).

Let S ⊂ P(V4) be a cubic surface defined by a line ΦS in Sym3V ∗
4 . Pro-

ceeding as in the degree 4 case we find for that a generator F ∈ ΦS and an
u ∈ V ∗ the expression ιdu∧dF µ defines a 2-vector field on S and that we thus
get an isomorphism

V ∗
4 ⊗ ΦS

∼= H0(ω−1
S ).
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By taking determinants we get an identification of Φ4
S
∼= det H0(ω−1

S ). We
think of Φ4

S as the quotient of the line ΦS by the center µ4 of SL(V4) and
conclude as before:

Proposition 1.3. We have a natural finite embedding S•3 ⊂ R•
3 of graded

C-algebras so that the forgetful morphism M◦
`,3 → M◦

3 extends to a finite
morphism of GIT completions M∗

`,3 →M∗
3 (and the notions of semistability

coincide in the two cases) and OM∗
3
(1) is the determinant sheaf.

Quartic curves

The case of degree 2 is a bit special because W (E7) has a nontrivial center
(of order two). The center leaves invariant the (isomorphism type of the)
surface: it acts as an involution and only changes the marking. The latter
even disappears if we only remember the fixed point set of this involution, the
quartic curve. Van Geemen [10] observed that the marking of the Del Pezzo
surface then amounts to a principal level two structure on the quartic curve
(this is based on the fact that W (E7) modulo its center is isomorphic to the
symplectic group Sp(6, Z/2)). Since a smooth quartic curve is a canonically
embedded genus three curve, M◦

2 can also be interpreted as the moduli space
of nonhyperelliptic genus three curves with principal level two structure (here
we ignore the orbifold structure).

The projective space P(Sym4V ∗
3 ) parameterizes the quartic curves in the

projective plane P(V3). The geometric invariant theory relative its SL(V3)-
action is as follows: a quartic curve is stable if and only if it has singularities
no worse than of type A2. A quartic is unstable if and only if it has a point
of multiplicity ≥ 3 (or equivalently, a D4-singularity or worse) or consists of a
cubic plus an inflectional tangent. The latter gives generically a A5-singularity,
but such a singularity may also appear on a semistable quartic, for instance
on the union of two conics having a point in common where they intersect
with multiplicity 3. Let us, in order to understand the incidence relations,
review (and redo) the classification of nonstable quartics.

A plane quartic curve C that is not stable has a singularity of type A3 or
worse. So it has an equation of the form cy2z2 + yzf2(x, y) + f4(x, y) with
f2 and f4 homogeneous. Consider its orbit under the C×-copy in SL(V3) for
which t ∈ C× sends (x, y, z) to (x, ty, t−1z). If we let t → 0, then the equation
tends to cy2z2 + ax2yz + bx4, where f2(x, 0) = ax2 and f4(x, 0) = bx4. We go
through the possibilities.

If c = 0, then C has a triple point and the equation ax2yz + bx4 is easily
seen to be unstable. We therefore assume that c = 1 and we denote the limit
curve by C0.

If a2−4b 6= 0 6= b, then C0 is made up of two nonsingular conics meeting in
two distinct points with a common tangent (having therefore a A3-singularity
at each) and the original singularity was of type A3.
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If a 6= 0 = b, then we have the same situation except that one of the conics
has now degenerated into a union of two lines.

The most interesting case is when a2 − 4b = 0 6= b. Then C0 is a double
nonsingular conic and in case C 6= C0, C has a singularity of type Ak for
some 4 ≤ k ≤ 7. The case of an A7-singularity occurs for the curve C1 given
by (yz + x2)(yz + x2 + y2): it consist of two nonsingular conics meeting in
a single point with multiplicity 4. This is also the most degenerate case next
after C0: any SL(V3)-orbit that has C0 is in its closure is either the orbit of
C0 or has C1 in its closure. So although a double conic does not yield a Del
Pezzo surface, the corresponding point of M∗

2 is uniquely represented by a
geometrically marked Del Pezzo surface with a A7-singularity.

On the other hand, the condition a = b = 0 (which means that f2 and
f4 are divisible by y so that we have a cubic plus an inflectional tangent or
worse), gives the limiting curve defined by y2z2 = 0, which is clearly unstable.

We shall later find that the ambiguous behaviour of a A5-singularity re-
flects a feature of the E7-root system: this system contains two Weyl group
equivalence classes of subsystems of type A5: one type is always contained in
a A7-subsystem (the semistable case) and the other is not (the unstable case).
Since the center µ3 of SL(V3) acts faithfully by scalars on Sym4V ∗

3 we have
as algebra of invariants

S•2 := ⊕∞k=0S
k
2 , Sk

2 := H0(OP(Sym4V ∗
3 )(3k))SL(V3).

Thus M∗
2 := ProjC[Sym4V ∗

3 ]SL(V3) is a projective completion of M◦
2. It comes

with twisting sheaves OM∗
2
(k) such that Sk

2 = H0(OM∗
2
(k)). Let us write

M◦
2 ⊂ M2 ⊂ M∗

2 for the stable locus; this can be interpreted as the moduli
space of marked Del Pezzo surfaces of degree 2 with A2-singularities at worst.
Its complement in M∗

2 is of dimension one. Since the singular quartics make
up a hypersurface of degree 27 in P(Sym4V ∗

3 ), B2 := M∗
2 −M◦

2 is defined by
a section of OM∗

2
(9). In particular, B2 is a Cartier divisor.

Let C be a quartic curve in P(V3) defined by the line ΦC ⊂ Sym4V ∗
3 . If

F ∈ ΦC is a generator, then a double cover S of P(V3) totally ramified along C
is defined by w2 = F in V3×C (more precisely, it is Proj of the graded algebra
obtained from C[V3] by adjoining to it a root of F ). Then for every u ∈ V ∗

3 ,
the 2-vector field w−1ιdu∧dF µ defines a section of ω−1

S . We thus get an iso-
morphism V ∗

3 ⊗w−1dF ∼= H0(ω−1
S ). If we take the determinants of both sides,

we find that (w−1dF )3 determines a generator of det H0(ω−1
S ). So F−3(dF )6

gives one of (detH0(ω−1
S ))2, in other words, we have a natural isomorphism

Φ3
C
∼= (detH0(ω−1

S ))2. That the square of the determinant appears here re-
flects the fact that the central element −1 of W (E7) induces an involution in
S which acts as the scalar −1 on det H0(ω−1

S ). We obtain:

Proposition 1.4. We have a natural finite embedding S•2 ⊂ R•
2 of graded

C-algebras so that the forgetful morphism M◦
`,2 → M◦

2 extends to a finite
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morphism of GIT completions M∗
`,2 →M∗

2 (and the notions of semistability
coincide in the two cases) and OM∗

2
(1) is the square of the determinant sheaf.

Completion of the moduli space of marked Fano surfaces

We have produced for d = 4, 3, 2, a GIT completion M∗
d of M◦

d that we
were able to identify with a finite quotient of M∗

`,d. This implies that M∗
`,d

contains M◦
`,d as an open dense subset and proves that every point of M∗

`,d

can be represented by an `-marked Fano surface.
We define a completion M∗

m,d of the moduli space M◦
m,d of marked Fano

surfaces of degree d simply as the normalization of M∗
d in M◦

m,d. This comes
with an action of W (R9−d) and the preceding discussion shows that M∗

`,d can
be identified with the orbit space of M◦

m,d by the permutation group of the
e1, . . . , e9−d (a Weyl subgroup of type A8−d).

2 Coble’s covariants

In this section we assume that the degree d of a Del Pezzo surface is at most
6 (we later make further restrictions).

Let (S; e1, . . . , e9−d) be a geometrically marked Del Pezzo surface. Recall
that we have a class ` ∈ Pic(S) characterized by the property that −3`+ e1 +
· · · + e9−d equals the canonical class k. Let us choose a line bundle L on S
which represents `: H0(L) is then of dimension 3 and if we denote its dual by
A, then the associated linear system defines a birational morphism S → P(A)
which has E = E1 + · · ·+E9−d as its exceptional divisor. The direct image of
L on P(A) is still a line bundle (namely OP(A)(1), but we continue to denote
this bundle by L).

We claim that there is a natural identification

ω−1
S

∼= L3(−E)⊗ det A.

To see this, we note that if p ∈ P(A) and λ ⊂ A is the line defined by p, then
the tangent space of P(A) at p appears in the familiar exact sequence

0 → C → Hom(λ, A) → TpP(A) → 0,

from which it follows that det TpP(A) = λ−3 det(A) (we often omit the ⊗-
symbol when lines or line bundles are involved). So the anticanonical bundle
ω−1

P(A) of P(A) is naturally identified with L3 ⊗ det(A). Since S → P(A) is the
blowup with exceptional divisor E, we see that the above identification makes
ω−1

S correspond to L3(−E)⊗ det(A).
The following simple lemma will help us to understand Coble’s covariants.
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Lemma 2.1. For a Del Pezzo surface S, the determinant lines of the vec-
tor spaces H0(OE ⊗ L3) ⊗ det(A) and V (S) := H0(ω−1

S )∗ are canonically
isomorphic.

Proof. The identification ω−1
S

∼= L3(−E)⊗det A above gives rise to the short
exact sequence

0 → ω−1
S → L3 ⊗ det A → OE ⊗ L3 ⊗ det A → 0.

This yields an exact sequence on H0 because H1(ω−1
S ) = 0. If we take into

account that H0(L3) = Sym3H0(L) = Sym3A∗, then we find the exact se-
quence

0 → V ∗ → Sym3A∗ ⊗ det A → H0(OE ⊗ L3)⊗ det A → 0.

Since dim(Sym3A∗) = 10 and det(Sym3A∗) = (det A)−10, the determinant of
the middle term has a canonical generator. This identifies the determinant of
V with the one of the right hand side. ut

It will be convenient to have a notation for the one dimensional vector
space appearing in the preceding lemma: we denote

L(S, E) := det(H0(OE ⊗ L3 ⊗ det A)) = det(H0(OE ⊗ L3))⊗ (detA)9−d,

so that the lemma asserts that L(S, E) may be identified with det V (S).
We continue with (S; e1, . . . , e9−d) and L. If pi denotes the image point

of Ei, then the geometric fiber of L over pi is λi := H0(L ⊗ OEi)
∗ (a one

dimensional vector space). So L(S, E) = (λ1 · · ·λ9−d)−3 ⊗ det(A)9−d. For
ei, ej , ek distinct, the map defined by componentwise inclusion

λi ⊕ λj ⊕ λk → A

is a linear map between 3-dimensional vector spaces. It is an isomorphism if
pi, pj , pk are not collinear. Hence the corresponding map on the third exterior
powers, yields an element

|ijk| ∈ λ−1
i λ−1

j λ−1
k det A

that is nonzero in the Fano case (recall that we usually omit the ⊗-sign when
lines are involved). Notice that the line λ−1

i λ−1
j λ−1

k det A attached to L only
depends on the marked surface (S; e1, . . . , e9−d) and not on the choice of the L:
as said above L is unique up to isomorphism and the only possible ambiguity
therefore originates from the action of C× in the fibers of L. But it is clear
that this C×-action is trivial on this line. For ei1 , . . . , ei6 distinct, we also have
a linear map between 6-dimensional vector spaces

λ2
i1 ⊕ · · · ⊕ λ2

i6 → Sym2A.

Since det(Sym2A) = (det A)4, this defines a determinant
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|i1 · · · i6| ∈ λ−2
i1
· · ·λ−2

i6
(detA)4.

It is nonzero if and only if p1, . . . , p6 do not lie on a conic, which is the
case when S is Fano. The elements |ijk| and |i1 · · · i6| just introduced will be
referred to as Coble factors.

Action of the Weyl group on the Coble factors

We now assume that S is a Fano surface of degree ≤ 6. Another marking
of S yields another `′ and hence another line L(S, E′). Nevertheless they are
canonically isomorphic to each other since both have been identified with
det V . For what follows it is important to make this isomorphism concrete.
We will do this for the case that the new marking is the image of the former
under the reflection in h123. So `′ = 2` − e1 − e2 − e3, e′1 = ` − e2 − e3 (E′

1

is the strict transform of p2p3), e′2 and e′3 are expressed in a likewise manner
and e′i = ei for i > 3. We represent `′ by

L′ := L2(−E1 − E2 − E3)

so that A′ = H0(L′)∗. Before proceeding, let us see what happens if we do
this twice, that is, if we apply h123 once more:

L′′ = L′2(−E′
1 − E′

2 − E′
3) = L4(−2E1 − 2E2 − 2E3 − E′

1 − E′
2 − E′

3).

The line bundle L3(−2E1 − 2E2 − 2E3 − E′
1 − E′

2 − E′
3) is trivial (a gen-

erator is given by a section of L3 whose divisor is the triangle spanned by
p1, p2, p3) and so if I denotes its (one dimensional) space of sections, then
L′′ is identified with L ⊗ I. We note that for i > 3, the restriction map
I → λ−3

i is an isomorphism of lines and that we also have a natural isomor-
phism I → (λ1λ2λ3)−1, which, after composition with the inverse of |123|
yields an isomorphism I → det(A)−1.

The space of sections of L′ is the space of quadratic forms on A that are
zero on λ1, λ2 and λ3. This leads to an exact sequence

0 → λ2
1 ⊕ λ2

2 ⊕ λ2
3 → Sym2A → A′ → 0.

The exactness implies that

det A′ = (det A)4(λ1λ2λ3)−2.

We have (λ′i)
−1 = H0(L2(−E1−E2−E3)⊗OE′

i
) by definition. For i > 3, this

is just the space of quadratic forms on the line λi, i.e., λ−2
i and so λ′i = λ2

i in
that case. For i = 1,

(λ′1)
−1 = H0(L2(−E1 − E2 − E3)⊗OE′

1
) = H0(L2 ⊗Op2p3)(−(p2)− (p3)))

is the space of quadratic forms on λ2 + λ3 that vanish on each summand, i.e.,
λ−1

2 λ−1
3 . Thus λ′1 = λ2λ3 and likewise λ′2 = λ3λ1, λ′3 = λ1λ3. Notice that λ′′i

is naturally identified with λi ⊗ I−1. Thus



296 Elisabetta Colombo, Bert van Geemen, and Eduard Looijenga

L(S, E′) = (λ′1 · · ·λ′9−d)
−3(detA′)9−d

= (λ1 · · ·λ9−d)−6(λ1λ2λ3)−2(9−d)(detA)4(9−d)

= L(S, E)(λ−1
1 λ−1

2 λ−1
3 det A)21−2d

∏9−d
i=4 (λ−3

i det A).

The identifications above of λ1λ2λ3, λ3
i (i > 3) and det(A) with I−1 show

that the twisting line (λ−1
1 λ−1

2 λ−1
3 det A)21−2d

∏9−d
i=4 (λ−3

i det A) has a canoni-
cal generator δ. This generator can be expressed in terms of our Coble factors
as

δ := |123|9
9−d∏
i=4

(|12i||23i||31i|)

(which indeed lies in (λ−1
1 λ−1

2 λ−1
3 det A)21−2d

∏9−d
i=4 (λ−3

i det A)).

Proposition 2.2. The isomorphism L(S;E) ∼= L(S′, E′) defined above coin-
cides with the isomorphism that we obtain from the identification of domain
and range with det V .

Proof. Choose generators ai ∈ λi and write x1, x2, x3 for the basis of A∗ dual
to a1, a2, a3. The basis (a1, a2, a3) of A defines a generator a1∧a2∧a3 of det A.
This determines an isomorphism φ : ω−1

S
∼= L3(−E). That isomorphism fits

in the exact sequence

0 → V ∗ → Sym3A∗ → ⊕9−d
i=1 λ−3

i → 0.

The middle space has the cubic monomials in x1, x2, x3 as a basis. The triple
(x3

1, x
3
2, x

3
3) defines a basis dual to (a3

1, a
3
2, a

3
3) ∈ λ3

1 ⊕ λ3
2 ⊕ λ3

3. It follows that
we have an exact subsequence

0 → V ∗ → K → ⊕9−d
i=4 λ−3

i → 0, (1)

where K ⊂ Sym3A∗ is the span of the cubic monomials that are not a third
power. This yields an identification

(λ4 · · ·λ9−d)−3 ∼= det V det(〈x2
1x2, . . . , x2x

2
3, x1x2x3〉).

We now do the same for L′ = L2(−E1 − E2 − E3). The space A′ comes
with a basis (a′1 = a2a3, a

′
2 = a3a1, a

′
3 = a1a2) which is dual to the basis

(x2x3, x3x1, x1x2) of H0(L2(−E1 − E2 − E3)). The monomial x1x2x3 is the
obvious generator of I = H0(L3(−E′

1 −E′
2 −E′

3 − 2E1 − 2E2 − 2E3) so that
have an associated isomorphism

φ′ := φ⊗ x1x2x3 : ω−1
S → (L′)3(−E′).

We fit this in the exact sequence

0 → H0(ω−1
S ) → H0((L′)3) → ⊕9−d

i=1 λ′−3
i → 0.
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The vector space of sections of the middle term has the cubic monomials in
x2x3, x3x1, x1x2 as a basis. The lines λ′1, λ

′
2, λ

′
3 are spanned by a2a3, a3a1 and

a1a2 respectively and λ′i is for i = 4, 5, . . . , 9 − d spanned by a2
i . So (x2x3)3

spans λ′−3
1 and similarly for λ′−3

2 and λ′−3
3 . The space spanned by cubic mono-

mials in x2x3, x3x1, x1x2 that are not pure powers is just K ′ := x1x2x3K. It
follows that we get an exact subsequence analogous to the sequence (1):

0 → V ∗ → K ′ → ⊕9−d
i=4 λ′−3

i → 0, (2)

where the embedding V ∗ → K ′ is the composite of V ∗ → K and the isomor-
phism K ∼= K ′ given by multiplication by x1x2x3. This identifies (a′i)

−3 ∈
λ′−3

i with (x1x2x3)(ai).a−3
i ∈ λ−3

i . From this we deduce that the genera-
tor (a′1 · · · a′9−d)

−3(a′1 ∧ a′2 ∧ a′3)
9−d of (λ′1 · · ·λ′9−d)

−3(detA′)9−d corresponds
to

∏9−d
i=4 (x1x2x3)(ai) times the generator (a1 · · · a9−d)−3(a1 ∧ a2 ∧ a3)9−d of

(λ1 · · ·λ9−d)−3(detA)9−d. Since δ =
∏9−d

i=4 (x1x2x3)(ai), this proves that the
isomorphism L(S;E) ∼= det V ∼= L(S, E′) sends the generator of the former
to δ times the generator of the latter. ut

We next determine how the Coble factors for `′ are expressed in terms
of those of `. We retain our 0 6= ai ∈ λi and write x1, x2, x3 for the basis
of A∗ dual to a1, a2, a3 as before. We identify |ijk| resp. |i1 · · · i6| with the
a1∧a2∧a3-coefficient of ai∧aj ∧ak resp. the a2

1∧a2
2∧a2

3∧a2a3∧a3a1∧a1a2-
coefficient of a2

i1
∧ · · · ∧ a2

i6
. Here are some typical cases, where it is assumed

that the free indices are distinct and > 3:

|123| = 1,
|12k| = 〈x3 | ak〉,
|1jk| = 〈x2 ∧ x3 | aj ∧ ak〉,
|ijk| = 〈x1 ∧ x2 ∧ x3 | ai ∧ aj ∧ ak〉,

|123ijk| = 〈x2x3 ∧ x3x1 ∧ x1x2 | a2
i ∧ a2

j ∧ a2
k〉,

|12ijkl| = 〈x2
3 ∧ x2x3 ∧ x3x1 ∧ x1x2 | a2

i ∧ a2
j ∧ a2

k ∧ a2
l 〉,

|1ijklm| = 〈x2
2 ∧ x2

3 ∧ x2x3 ∧ x3x1 ∧ x1x2 | a2
i ∧ a2

j ∧ a2
k ∧ a2

l ∧ a2
m〉.

The corresponding expressions for the new marking are converted into the
old marking by the substitutions

a′i =


a2a3 when i = 1,
a3a1 when i = 2,
a1a2 when i = 3,
a2

i when i > 3,

x′i =


x2x3 when i = 1,
x3x1 when i = 2,
x1x2 when i = 3,
x2

i when i > 3.

We thus find:

|123|′ = 1 = |123|,
|12k|′ = x1x2(ak) = |23k||31k|,
|1jk|′ = −x1(aj)x1(ak)|1jk|,
|ijk|′ = |123ijk|,

|123ijk|′ = x1x2x3(ai).x1x2x3(aj).x1x2x3(ak).|ijk|.
|12ijkl|′ = x1x2(ai).x1x2(aj).x1x2(ak).x1x2(al).|12ijkl|,
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The expression for |1ijklm|′ does not appear to have a pleasant form: we find
that

|1ijklm|′ = x1(ai)x1(aj)x1(ak)x1(al)x1(am)·
·〈x2

3x1 ∧ x1x
2
3 ∧ x1x2x3 ∧ x2

2x3 ∧ x2x
2
3 | a3

i ∧ a3
j ∧ a3

k ∧ a3
l ∧ a3

m〉.

The covariants

Here is the definition.

Definition 2.3. Let (S; e1, . . . , e9−d) be a marked Fano surface of degree d ≤
6. A Coble covariant is an element of L(S, E) that is a product of Coble
factors |ijk| and |i1 · · · i6| in such a manner that every unordered pair in
{1, 2, . . . , 9− d} appears in one of these factors.

This notion also makes sense for a marked Del Pezzo surface, and indeed,
in case the E1, . . . , E9−d are irreducible (or equivalently, p1, . . . , p9−d are dis-
tinct), then we adopt this as a definition. But when this is not the case, this
is not the ‘right’ definition (see Remark 2.5).

It is easily verified that Coble covariants exist only when 2 ≤ d ≤ 5. In
these cases they are as follows:

• (d = 5) There is only one Coble covariant, namely |123||234||341||412|.
It is nonzero if and only if no three points are collinear, that is, if S is a
Fano surface.

• (d = 4) A typical Coble covariant is |123||234||345||451||512|. It depends
on a cyclic ordering of {1, 2, . . . , 5}, with the opposite cycle giving the same
element. So the number of Coble covariants up to sign is equal to 4!/2 = 12.
A Coble covariant can be nonzero even if S has (−2)-curves. For instance,
if (p1, p2, p4) and (p2, p3, p5) are collinear but are otherwise generic then
the given Coble covariant is nonzero and S has a 2A1-configuration (i.e.,
two disjoint (−2)-curves).

• (d = 3) We have two typical cases: one is |134||234||356||456||512||612|
and another is |123||456||123456|. The former type amounts to dividing
the 6-element set {e1, . . . , e6} in three equal parts (of two) and cyclically
order the three parts (there are 30 such) and the latter to splitting of
{e1, . . . , e6} into two equal parts (there are 10 of these). So there are 40
Coble covariants up to sign.

• (d = 2) We have two typical cases: |351||461||342||562||547||217||367| (of
which there are 30) and |123456||127||347||567| (105 in number). So up to
sign we find 135 cases.

Proposition 2.4. If S is Fano, then the collection of Coble covariants, when
considered as elements of det V (S), is independent of the marking.

Proof. It is enough to show that the collection is invariant under the reflection
in h123. So in view of Proposition 2.2 we need to verify that if we make the
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above substitutions for a Coble covariant relative to (e′1, . . . , e
′
9−d), then we get

δ times a Coble covariant relative to (e1, . . . , e9−d). This is a straightforward
check. We do a few examples. For d = 3, we find

|134|′|234|′|356|′|456|′|512|′|612|′ =
= −x1x3(a4).x2x3(a4).x3(a5)x3(a6)|356|.|123456|.x1x2(a5).x1x2(a6) =
= −δ|124||356||123456|,

which is indeed the image of |124||356||123456|. Similarly,

|123|′|456|′|123456|′ = |123|.|123456|.δ|456|,

which is the image of |123||456||123456|.
The other cases are similar and are left to the reader to verify. ut

Remark 2.5. The notion of a Coble covariant extends to the case of a geo-
metrically marked Del Pezzo surface. There is not much of an issue here as
long as the points p1, . . . , p9−d remain distinct, but when two coalesce the
situation becomes a bit delicate, since we wish to land in det V (S). It is clear
that if p2 approaches p1, then any Coble covariant involving these points such
as |123| ∈ λ−1

1 λ−1
2 λ−1

3 det A tends to 0. But we should regard |123| as an ele-
ment of det(H0(OE1+E2+E3 ⊗L3))⊗ det A and when p2 tends to p1, then E1

becomes decomposable and of the form F +E2. The component F is the strict
transform of the exceptional curve of the first blowup and hence a (−2)-curve.
Let q be the point where F and E2 meet. This corresponds to tangent direc-
tion at p1, or equivalently, to a plane Pq ⊂ A that contains λ1. If λ2 moves in
W towards λ1, then H0(OE1+E2) becomes H0(OF+2E2). The exact sequence

0 → IF+E2/IF+2E2 → OF+2E2 → OF+E2 → 0

induces an exact sequence on sections. Notice that the first term is a constant
sheaf on E2. Its fiber over q is T ∗q F ⊗ T ∗q E2. This fiber is apparently also
the determinant of H0(OF+2E2). Since TqF = Hom(λ, Wq/λ) and TqE2 =
Hom(Wq/λ, A/Wq), we have T ∗q F ⊗ T ∗q E2 = (detA)−1 det Pq ⊗ λ1. It follows
that

det(H0(OF+2E2+E3 ⊗ L3))⊗ det A = λ−1
1 λ−1

3 det Pq.

It is in this line where |123| should take its value. (This also explains why in
the next section we need to divide by a discriminant ∆(tq, . . . , t9−d).)

Since every point of M∗
m,d is representable by a marked Del Pezzo sur-

face, a Coble covariant can be regarded as a section of the determinant sheaf
OM∗

m,d
(1). It follows from Section 2 that W (R9−d) permutes these sections

transitively.

Definition 2.6. The Coble space Cd is the subspace of H0(OM∗
m,d

(1)) spanned
by the Coble covariants.
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We shall prove that for d = 3, 4, Cd is complete, i.e., all of H0(OM∗
m,d

(1)),
but we do not know whether that is true when d = 2.

Remark 2.7. We shall see that Cd is an irreducible representation of W (R9−d)
of dimension 6, 10, 15 for resp. d = 4, 3, 2. It follows from the discussion in Sec-
tion 1 that any W (R9−d)-invariant polynomial of degree k in the Coble co-
variants has an interpretation in terms of classical invariant theory: for d = 4
we get a SL(5)-invariant of degree 5k for pencils of quadrics, for d = 3, a
SL(4)-invariant of degree 4k for cubic forms and for d = 2, a SL(3)-invariant
of degree 3k/2 for quartic forms.

Here is an example that illustrate this. There is only one irreducible repre-
sentation of W (E6) of degree 10. This representation is real and has therefore
a nonzero W (E6)-invariant quadratic form. According to the preceding this
produces a SL(4)-invariant of degree 8 for cubic forms. This is indeed the
lowest degree of a such an invariant.

3 Anticanonical divisors with a cusp

Anticanonical cuspidal cubics on Del Pezzo surfaces

Let S be a Del Pezzo surface of degree d that is not isomorphic to a smooth
quadric. Assume that is also given a reduced anticanonical curve K on S
isomorphic to a cuspidal cubic (notice that if d = 1 such a curve will not always
exist). The curve K is given by a hyperplane VK ⊂ V = H0(ω−1

S )∗. We write
lK for the line V/VK so that l∗K is a line in V ∗ = H0(ω−1

S ) = Hom(ωS ,OS).
The image of l∗K is Hom(ωS ,OS(−K)) ⊂ Hom(ωS ,OS) and hence lK may
be identified with H0(ωS(K)). So a nonzero κ ∈ lK can be understood as a
rational 2-form κ on S whose divisor is K. The residue ResK(κ) of κ on the
smooth part of K identifies Pico(K) with C as an algebraic group: we may
represent an element of Pico(K) by a difference (q) − (p) and then ResK(κ)
assigns to this element the integral of ResK(κ) along any arc in K from p to
q. This identifies lK with Hom(Pico(K), C) or equivalently, Pico(K) with l∗K .

Recall that Pic0(S) ⊂ Pic(S) denotes the orthogonal complement of the
class of ω−1

S . It is then clear that restriction defines a homomorphism r :
Pic0(S) → Pico(K) → l∗K(⊂ V ∗). We extend r to an algebra homomorphism

r : Sym•Pic0(S) → Sym•l∗K(⊂ Sym•V ∗).

For κ ∈ lK , we compose this map with the evaluation in κ and obtain an
algebra homomorphism

rκ : Sym•Pic0(S) → C.

Suppose now S geometrically marked by (e1, . . . , e9−d) as before. With the
notation of the previous section, we have a line bundle L on S and an associ-
ated contraction morphism S → P(A), where A = H0(L)∗, with Ei mapping
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to a singleton. The cuspidal curve K meets Ei in a single point pi (with
intersection number one). It is mapped isomorphically to its image in P(A).

The Zariski tangent space of K at its cusp is a line (with multiplicity two,
but that will be irrelevant here). Let u ∈ A∗ be such that u = 0 defines the
corresponding line in P(A). We may then extend u to a coordinate system
(u, v, w) for A such that K is given by the equation u2w − v3 (this makes
[1 : 0 : 0] the unique flex point of K and w = 0 its tangent line). This
coordinate system is for a given u almost unique: if (u, v′, w′) is any other
such coordinate system, then v′ = cv and w′ = c3w for some c ∈ C×.

However, a choice of a generator κ ∈ lK singles out a natural choice (v, w)
by requiring that the residue of κ on K is the restriction of d(v/u). We put
t := v/u (we should write vκ, wκ, tκ, but we do not want to overburden the
notation, let us just remember that v, w, t are homogeneous of degree 1, 3, 1 in
κ). The dependence of v and w on u is clearly homogeneous of degree 1. The
smooth part K is then parameterized by t ∈ C 7→ p(t) := [1 : t : t3] such that
dt corresponds to ResKκ and rκ sends (p(t))− (p(t′)) ∈ Pico(K) to t− t′ ∈ C.

Assume for the moment that the pi’s are distinct (so that the Ei’s are
irreducible and the λi’s are distinct). Let us denote the restriction of u ∈ A∗

to λi by ui. This is clearly a coordinate for λi and hence a generator of λ−1
i .

We thus obtain the generator

ε′κ := (u1 · · ·u9−d)3(du ∧ dv ∧ dw)−(9−d)

∈ λ−3
1 · · ·λ−3

9−d(detA)9−d = L(S, E).

Since v and w are homogeneous of degree one in u, it follows that ε′κ is in-
dependent of the choice of u. But they are homogeneous of degree 1 and 3
respectively in κ, and so ε′κ is homogeneous of degree −4(9− d) in κ.

Let us now see which linear forms we get on λ3
1⊕ · · · ⊕λ3

9−d by restriction
of cubic monomials in u, v, w. They will be of the form (tk1u3

1, · · · , tk9−du
3
9−d)

for some k ≥ 0: for the monomial uavbwc we have k = b + 3c. We thus get all
integers 0 ≤ k ≤ 9 except 8 (and 3 occurs twice since u2v and w3 yield the
same restriction):

u3 7→ 1 u2v 7→ t uv2 7→ t2 u2w, v3 7→ t3 uvw 7→ t4

v2w 7→ t5 uw2 7→ t6 vw2 7→ t7 w3 7→ t9.

If we select 9 − d such monomials and compute the determinant of their
restrictions to λ3

1 ⊕ · · · ⊕ λ3
9−d, we see that that it is either zero or equal to

(u1 · · ·u9−d)3 det((ti)kj )1≤i,j≤9−d for some 0 ≤ k1 < · · · < k9−d. The latter
expression lies in Z[t1, . . . , t9−d] and is divisible by the discriminant that we
get by taking 9− d monomials corresponding to 1, t, . . . , t8−d, namely

∆(t1, . . . , t9−d) :=
∏

1≤i<j≤9−d

(ti − tj).

In other words, if we regard t1, . . . , t9−d as variables, then the (9−d)th exterior
power over Z[t1, . . . , t9−d] of the homomorphism
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Z[t1, . . . , t9−d]⊗ Sym3A∗ → ⊕9−d
i=1 Z[t1, . . . , t9−d]u3

i

has its image generated by ∆(t1, . . . , t9−d)u3
1 · · ·u3

9−d. That a division by
∆(t1, . . . , t9−d) is appropriate is suggested by Remark 2.5 and so we use

εκ := ∆(t1, . . . , t9−d)ε′κ

as a generator of λ−3
1 · · ·λ−3

9−d(detA)9−d instead. We may rephrase this more
sensibly in terms of our exact sequence

0 → V ∗ → Sym3(A∗)(detA)10 → H0(L3 ⊗OE ⊗ det A) → 0.

We see that our coordinates define a basis of the middle term in such a man-
ner that they make the sequence split: 9 − d cubic monomials that yield
1, t, . . . , t8−d define a partial basis of Sym3(A∗)(detA)10 whose (9 − d)th
exterior power maps onto εκ. Notice that this remains true if some of the
points pi coalesce, that is, if S is just a geometrically marked Del Pezzo
surface—this is in contrast to ε′κ. Since εκ is homogeneous in κ of degree
−4(9− d) + (9−d

2 ) = 1
2d(9− d), we have constructed an isomorphism

ε : l
d(9−d)/2
K

∼= L(S, E).

Anticanonical cuspidal cubics on Fano surfaces

Let us return to the Fano case. If pi = p(ti) = [1 : ti : t3i ], then the generator
of λi dual to ui is clearly p̃i = (1, ti, t

3
i ). It is not hard to verify that for i, j, k

distinct in {1, . . . , 9− d}, we have the following identity in (λiλjλk)−1 det A:

p̃i ∧ p̃j ∧ p̃k = ∆(ti, tj , tk)(−ti − tj − tk)(du ∧ dv ∧ dw)−1

= ∆(ti, tj , tk)rκ(hijk)(du ∧ dv ∧ dw)−1.

Similarly we find for i1, . . . , i6 distinct in {1, . . . , 9− d} the following identity
in the line λ−2

i1
· · ·λ−2

i6
det(Sym2A):

p̃2
i1
∧ · · · ∧ p̃2

i6
= ∓(ti1 + · · ·+ ti6)∆(ti1 , . . . , ti6)(du ∧ dv ∧ dw)−4

= ±∆(ti1 , . . . , ti6)rκ(2`− ei1 − · · · − ei6)(du ∧ dv ∧ dw)−4.

In this manner we get for example when d = 3:

±|123456||123||456| = ∆(t1, . . . , t6)rκ(∆(R′))u3
1 · · ·u3

6(du ∧ dv ∧ dw)−6

= rκ(∆′)εκ,

where ∆′ is the discriminant of the root subsystem of type 3A2 given by
〈h12, h23, h45, h56, h123, h〉, and similarly

±|134||234||356||456||512||612| = rκ(∆′′)εκ,
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where ∆′′ is the 3A2-discriminant of 〈h12, h134, h34, h356, h56, h125〉. In this
manner to each Coble covariant there is associated the discriminant of a A3

2-
subsystem of the E6 root system and vice versa (there are indeed 40 such
subsystems). In similar fashion we find that for d = 2 a Coble covariant is the
discriminant of a A7

1-subsystem of the E7 root system and vice versa (there
are 135 such); the two typical cases yield

±|135||146||234||256||457||127||367| = rκ(h135h146h234h256h457h127h367)εκ,
±|123456||127||347||567| = rκ(h12h34h56h127h347h567h7)εκ.

For d = 4, we do not get the discriminant of a root subsystem. The best way
to describe this case is perhaps by just giving a typical case in terms of the
standard representation of D5 in R5 as in Bourbaki ([3]), where the roots are
±εi ± εj with 1 ≤ i < j ≤ 5. One such case is∏

i∈Z/5

(εi − εi+1)(εi + εi+1) =
∏

i∈Z/5

(ε2i − ε2i+1).

There are indeed 12 such elements up to sign.
Finally, we observe that for d = 5, we get

±|123||234||341||412| = rκ(∆)εκ,

where ∆ is the discriminant of the full A4-system 〈h12, h23, h34, h123〉.
This makes it clear that in all these cases ε : l

d(9−d)/2
K

∼= L(S, E) is in-
dependent of the marking once we identify L(S, E) with det V . Notice that
the polynomials defining Coble covariants indeed have the predicted degree
1
2d(9− d).

We can restate this as follows. Consider the Lobatschevki lattice Λ1,9−d

whose basis elements are denoted (`, e1, . . . , e9−d) (the inner product matrix
is in diagonal form with (+1,−1, . . . ,−1) on the diagonal). Put k := −3` +
e1 + · · ·+ e9−d and let (h123 = 3`− e1− e2− e3, h12 = e1− e2, . . . , h8−d,9−d =
e8−d − e9−d). This is a basis of k⊥ that is at the same time a root basis of a
root system R9−d.

If R is a root system, then let us denote its root lattice Q(R), by W (R)
its Weyl group, by h(R) := Hom(Q(R), C) the Cartan algebra on which R
is defined. Let h(R)◦ ⊂ h(R) stand for the reflection hyperplane complement
(which, in the parlance of Lie theory, is the set of its regular elements). We
abbreviate the projectivizations of these last two spaces by P(R) and P(R)◦.
In the presence of a nondegenerate W (R)-invariant symmetric bilinear form
on Q(R) we tacitly identify h(R) with its dual.

So Q(R9−d) = k⊥. It is clear that a marking of a Del Pezzo surface amounts
to an isomorphism Pic(S) ∼= Λ1,9−d which sends the canonical class to k
(and hence Pic0(S) to Q(R9−d)). These isomorphisms are simply transitively
permuted by the Weyl group W (R9−d). If we are given a marked Fano surface
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(S; e1, . . . , e9−d) of degree d and a rational 2-form κ on S whose divisor a
cuspidal curve K, then we can associate to these data an element of h(R9−d)
by

Q(R9−d) ∼= Pic0(S) → Pico(K) rκ−→C.

It is known that we land in h(R9−d)◦ and that we thus obtain a bijection
between the set of isomorphism classes of systems (S; e1, . . . , e9−d;κ) and the
points of h(R9−d)◦. This isomorphism is evidently homogeneous of degree one:
replacing κ by cκ multiplies the image by a factor c. In other words, the set of
isomorphism classes of systems (S; e1, . . . , e9−d;K), where (S; e1, . . . , e9−d)
is a marked Fano surface of degree d and K is a cuspidal anticanonical
curve on K can be identified with P(h9−d)◦ (where we have abbreviated
h(R9−d) by h9−d) in a such a manner that if l is a line in h9−d associated
to (S; e1, . . . , e9−d;K), then l gets identified with the line H0(ωS(K)).

We sum up the preceding in terms of the forgetful morphism P(h9−d)◦ →
M◦

m,d:

Theorem 3.1. Assume that d ∈ {2, 3, 4, 5}. Then the forgetful morphism
from P(h9−d)◦ to M◦

m,d is surjective and flat. It is covered by a natural isomor-
phism between the pull-back of the determinant bundle and OP(h9−d)◦( 1

2d(9−
d)) and under this isomorphism the Coble covariants form a single W (R9−d)-
orbit, which up to a constant common scalar factor is as follows:

• (d=5) the discriminant of the A4-system (a polynomial of degree 10),
• (d=4) the W (D5)-orbit of the degree 10 polynomial

∏
i∈Z/5(ε

2
i − ε2i+1),

• (d=3) the discriminants of subsystems of type 3A2 (a W (E6)-orbit of
polynomials of degree 9),

• (d=2) the discriminants of subsystems of type 7A1 (a W (E7)-orbit of
polynomials of degree 7).

In particular, the Coble space Cd can be identified with the linear span of the
above orbit of polynomials.

The Weyl group representation Cd was, at least for d = 2 and d = 3, al-
ready considered by Coble [4], although the notion of a Coxeter group was not
available to him. We shall consider these representations in more detail in Sec-
tion 4. In that section we also investigate the rational map P(h9−d) 99K M∗

m,d

defined by the morphism P(h9−d)◦ →M◦
m,d.

Theorem 3.1 presents (for d = 2, 3, 4, 5) the moduli space M◦
m,d as a flat

W (R9−d)-equivariant quotient of P(R9−d)◦ with (d − 2)-dimensional fibers.
Admittedly that description is somewhat indirect from a geometric point of
view. We will here offer in the next two subsections a somewhat more concrete
characterisation when fiber and base are positive dimensional (so for d = 3
and d = 4). A fiber is then irreducible and we show that the (d−1) W (R9−d)-
invariant vector fields of lowest degree span in P(R9−d)◦ a (d−2)-dimensional
foliation whose leaves are the fibers of P(R9−d)◦ → M◦

m,d. We first do the
case d = 3.
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The universal parabolic curve of a cubic surface

We begin with recalling a classical definition.

Definition 3.2. Let S be a Fano surface of degree 3. A point of S is said to
be parabolic if there is a cuspidal anticanonical curve on S that has its cusp
singularity at that point.

We may think of the surface S as anticanonically embedded in P3 as a
smooth cubic surface. If F (Z0, Z1, Z2, Z3) is a defining equation, then the
locus of parabolic points is precisely the part of S where S meets its Hessian
surface (defined by det(∂2F/∂Zi∂Zj)) transversally. So this is a nonsingular
curve on S that need not be closed (in fact, it isn’t: a point of S where its
tangent plane intersects S in a union of a conic and a line tangent lies in the
Zariski boundary of the parabolic curve). If we fix a marking for S, so that is
determined a point of p ∈ M◦

m,3, then the parabolic locus can be identified
with the fiber of P(R9−d)◦ over p.

We now return to the situation of the beginning of this section, where we
essentially have a fixed cuspidal cubic curve K in the projective plane P2 whose
smooth part has in terms of affine coordinates has the parameter form (v, w) =
(t, t3) (this puts the cusp at infinity and the unique flex point at the origin).
The points p1, . . . , p6 ∈ P2

` that we blow up in order to produce S lie on Kreg;
we denote their t(= v)-coordinates t1, . . . , t6. The system (S; e1, . . . , e6;K)
defines a point p̃ ∈ P(E6)◦ and (t1, . . . , t6) describes a point of h(E6)◦ that
lies over p̃. The vector fields X on P2 with the property that X be tangent to K
at the points p1, . . . , p6 make up a vector space of dimension two. It contains
the field XE = v∂/∂v + 3w∂/∂w, which is tangent to Kreg everywhere (it
generates a C×-action on P2 that preserves K). If X is in this vector space,
then

X̂ :=
∑

i

X(pi)
∂

∂ti

is a tangent vector of h(E6) at (t1, . . . , t6) ∈ h(E6)◦. For XE this yields X̂E =∑6
i=1 ti

∂
∂ti

, in other words, we get the Euler field of h(E6) at (t1, . . . , t6).

Lemma 3.3. If X is not proportional to XE, then the line in P(E6) through
p̃ that is defined by X̂ is tangent to the fiber of P(E6)◦ →M◦

m,3 at p̃.

Proof. This is mostly a matter of geometric interpretation. If we view X̂ =
(X(p1), . . . , X(p6)) as an infinitesimal displacement of the point configuration
(p1, . . . , p6) in P2, then X̂ does not effectively deform the corresponding Fano
surface, because X is an infinitesimal automorphism of P2. But if we view X̂ as
an infinitesimal displacement (p1, . . . , p6) then it will induce a nontrivial line
field (a priori with singularities) unless X is tangent to K. This last condition
is equivalent to X being proportional to XE . ut
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We now calculate the resulting field on P(E6)◦. A vector field X on P2 has
in our affine coordinates (v, w) the form

X = (a0 + a1v + a2w + c1v
2 + c2vw)

∂

∂v
+ (b0 + b1v + b2w + c1vw + c2w

2)
∂

∂w

Since we may calculate modulo XE we assume b2 = 0. The condition that X
be tangent to C at pi amounts to:

3t2(a0 + a1t + a2t
3 + c1t

2 + c2t
4) = b0 + b1t + c1t

4 + c2t
6

for t = ti, or equivalently, that 2c2t
6 + 3a2t

5 + 2c1t
4 + 3a1t

3 + 3a0t
2− b1t− b0

has (the distinct) zeroes t = ti for i = 1, . . . , 6. This means that

a2

c2
= − 2

3σ1,
c1

c2
= σ2,

a1

c2
= − 2

3σ3,
a0

c2
= 2

3σ4,
b1

c2
= 2σ5,

b0

c2
= −2σ6,

where σi stands for the ith symmetric function of t1, . . . , t6. So we may nor-
malize X by taking c2 = 1. The value of X in pi is in terms of the t-coodinate
its x-component and hence equal to

(a0 + a1ti + c1t
2
i + a2t

3
i + c2t

4
i )

∂

∂t
= (2

3σ4 − 2
3σ3ti + σ2t

2
i − 2

3σ1t
3
i + t4i )

∂

∂t
.

It follows that

X̂ =
6∑

i=1

( 2
3σ4 − 2

3σ3ti + σ2t
2
i − 2

3σ1t
3
i + t4i )

∂

∂ti
. (∗)

We see in particular that if regard X̂ as a vector field ((t1, . . . , t6) varies),
then it is homogeneous of degree 3. The space of homogenenous vector
fields of degree 3 on h(E6) is as a W6-representation space isomorphic to
Sym4(h∗(E6)) ⊗ h(E6); this has a one-dimensional space of invariants and
contains no other W (E6)-invariant one-dimensional subspace. It follows that
X̂ is W (E6)-invariant and is characterized by this property up to a constant
factor.

Corollary 3.4. The fibration P(E6)◦ →M◦
m,3 integrates the one dimensional

foliation defined by a W (E6)-invariant vector field that is homogeneous of
degree three.

A natural way to produce such an invariant vector field is to take the
nonzero W (E6) invariants polynomials f2, f5 on h(E6) of degree 2 and 5 (these
are unique up to a constant factor); since f2 is nondegenerate we can choose
coordinates z1, . . . , z6 such that f2 =

∑
i z2

i . The gradient vector field relative
to f2,

∇f5 =
6∑

i=1

∂f5

∂zi

∂

∂zi

is a W (E6)-invariant homogeneous vector field of degree 3. So we can restate
the preceding corollary as
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Theorem 3.5. Let h denote the natural representation space of a Coxeter
group W of type E6. The natural W -invariant rational dimension-one folia-
tion on P(h)◦ of degree 3 (i.e., the one defined by the gradient of a nonzero
invariant quintic form with respect a nonzero (hence nondegenerate) invariant
quadratic form on h) is algebraically integrable and has a leaf space that is in
a W -equivariant manner isomorphic to the moduli space of marked smooth
cubic surfaces.

Moduli of degree 4 Del Pezzo surfaces

This is a slight modification of the argument for the degree 3 case. We have
one point less and so by letting t6 move over the affine line we may regard
formula (∗) as defining a one parameter family of vector fields on h(D5). For
i ≥ 1, we have σi(t1, . . . , t6) = σi(t1, . . . , t5) + t6σi−1(t1, . . . , t5) and so we
immediately see that we this is a linear family spanned by the two vector
fields

X̂3 =
∑5

i=1(
2
3σ4 − 2

3σ3ti + σ2t
2
i − 2

3σ1t
3
i + t4i )

∂
∂ti

,

X̂2 =
∑5

i=1(
2
3σ3 − 2

3σ2ti + σ1t
2
i − 2

3 t3i )
∂

∂ti
.

The subscript indicated of course the degree. Since X̂ is W (E6)-invariant, X̂3

and X̂2 will be invariant under the W (E6)-stabilizer of e6, that is, W (D5). The
W (D5)-invariant vector fields on h(D5) form a free module on the polynomial
algebra of W (D5)-invariant functions. The latter algebra has its generators
f2, f4, f5, f6, f8 in degrees indicated by the subscript. The generator f2 is a
nondegenerate quadratic form and the module of invariant vector fields is
freely generated by the gradients of the fi relative to f2, Xi−2 := ∇fi (these
have the degree indicated by the subscript; X0 is the Euler field). We conclude
that the plane distribution on P(D5)◦ spanned by the vector fields X2 and X3

is also defined by X̂2 and X̂3. We conclude :

Theorem 3.6. Let h denote the natural representation space of a Coxeter
group W of type D5. The natural W -invariant rational dimension-two folia-
tion on P(h)◦ defined by the gradients of a nonzero invariant forms of degree 4
and 5 with respect a nonzero (hence nondegenerate) invariant quadratic form
on h is algebraically integrable and has a leaf space that is in a W -equivariant
manner isomorphic to the moduli space of marked Fano surfaces of degree 4.

Remark 3.7. The Frobenius integrability is remarkable, because it tells us
that the degree four vector field [X2, X3] does not involve the degree four
generator X4. It is of course even more remarkable that it is algebraically
so (in the sense that its leaves are the fibers of a morphism). It makes one
wonder how often this happens. For instance one can ask: given a Coxeter
arrangement complement h◦ and a positive integer k, when is the distribution
on h◦ spanned by the subset of homogeneous invariant generating vector fields
whose degree is ≤ k algebraically integrable?
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4 Coble’s representations

This section discusses the main properties of the representations of a Weyl
group of type D5, E6 or E7 that we encountered in Theorem 3.1.

Macdonald’s irreducibility theorem

We will use the following beautiful (and easily proved!) theorem of MacDon-
ald [17] which states that the type of representation under consideration is
irreducible.

Proposition 4.1 (Macdonald). Let R be a root system, h the complex vec-
tor space it spans and S ⊂ R a reduced root subsystem. Then the W (R)-
subrepresentation of Sym|S|/2h generated by the discriminant of S is irre-
ducible. In particular, the Coble representations of type E6 and E7 are irre-
ducible. ut

Proof. Since the proof is short, we reproduce it here. If L ⊂ Sym|S|/2h denotes
the line spanned by the discriminant of S, then W (S) acts on L with the sign
character. In fact, L is the entire eigensubspace of Sym|S|/2h defined by that
character is, for if G ∈ Sym|S|/2h is such that s(G) = −G for every reflection
s in W (S), then G is zero on each reflection hyperplane of W (S) and hence
divisible by the discriminant of S. Since G and the discriminant have the same
degree, G must be proportional to it.

Let V = C[W (R)]L be the W (R)-subrepresentation of Sym|S|/2h gener-
ated by L. We must prove that every W -equivariant map φ : V → V is given
by a scalar. From the preceding it follows that φ preserves L and so is given
on L as multiplication by a scalar, λ say. Then φ−λ1V is zero on L and hence
zero on V . ut

Unfortunately Macdonald’s theorem does not come with an effective way
to compute the degree of such representations and that is one of several good
reasons to have a closer look at them. (The Coble representations had in-
deed been considered by Coble and presumably by others before him. Their
irreducibility and their degrees were known at the time.)

It will be convenient (and of course quite relevant for the application we
have in mind) to work for d = 2, 3, 4 with the Manin model of the R9−d root
system as sitting in the Lobatchevski lattice Λ1,9−d so that h9−d := h(R9−d)
is the orthogonal element of k = −3`+ e1 + · · ·+ e9−d. For d = 2, 3, 4 we have
a corresponding (Coble) representation Cd = C(R9−d), which in case d = 3
resp. d = 2 is spanned by the discriminants subsystems of type 3A2 resp. 7A1.
We may regard Cd as a linear system of hypersurfaces of degree 10 (d = 4), 9
(d = 3) or 7 (d = 2) in P(h9−d). Among our goals is to compute the dimension
of this system and to investigate its separating properties.

The Manin basis recognizes one particular weight, namely the orthogonal
projection of ` in h9−d. Its W (R9−d)-stabilizer is the symmetric group S9−d
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of e1, . . . , e9−d (a Weyl subgroup of type A8−d). We shall denote by π9−d :
C⊗ Λ1,9−d → h9−d the orthogonal projection. So π9−d(ei) = ei + 1

3k.

The Coble representation of a Weyl group of type E6

Here R = R6 and the representation of W (E6) in question is the subspace
C3 ⊂ Sym9h6 spanned by the discriminants of subsystems of type 3A2 of R.
Following Proposition 4.1, this representation is irreducible. We shall prove
that dim C3 = 10 and that quotients of elements of C3 separate the isomor-
phism types of cubic surfaces.

Lemma 4.2. The Weyl group W (R) acts transitively on the collection of or-
dered triples of mutually orthogonal roots. If (α1, α2, α3) is such a triple, then

(i) there is a root α ∈ R perpendicular to each αi and this root is unique up
to sign,

(ii) the roots α1, α2, α3, α belong to (unique) subsystem of type D4,
(iii) there are precisely two subsystems of type 3A2 containing {α1, α2, α3} and

these two subsystems are interchanged by sα.

Proof. The transitivity assertion and the properties (i) and (ii) are known
and a proof goes like this: the orthogonal complement of a root α1 ∈ R is a
subsystem R′ ⊂ R of type A5, the orthogonal complement of a root α2 ∈ R′

in R′ is a subsystem R′′ ⊂ R′ of type A3 and the orthogonal complement of a
root α3 ∈ R′′ is a subsystem R′′′ ⊂ R′′ of type A1. Since all the root systems
encountered have the property that their Weyl group acts transitively on the
roots, the first assertion follows. Notice that we proved (i) at the same time.
The remaining properties now only need to be verified for a particular choice
of (α1, α2, α3).

We take this triple to be (h12, h34, h56). Then we may take α = h and
we see that these are roots of the D4-system spanned by h12, h34, h56, h135.
The two 3A2-subsystems containing {h12, h34, h56} are then easily seen to
be 〈h12, h134〉 ⊥ 〈h34, h356〉 ⊥ 〈h56, h125〉 and 〈h12, h156〉 ⊥ 〈h34, h123〉 ⊥
〈h56, h345〉. We observe that sh interchanges them. ut

The following notion is the root system analogue of its namesake intro-
duced by Allcock and Freitag [1].

Lemma-Definition 4.3. Let R be a root system of type E6 and S ⊂ R a
subsystem of type 3A2. If α ∈ R is not orthogonal to any summand of S,
then the roots in S orthogonal to α make up a subsystem of type 3A1 (which
then must meet every summand of S). This sets up a bijection between the
antipodal pairs {±α} that are not orthogonal to any summand of S and 3A1-
subsystems of S.

For (S, α) as above and S+ a set of positive roots for S, the degree nine
polynomial (1− sα)∆(S+) is called a cross of R.
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Proof. If we are given a A2-subsystem of R, then any root not in that sub-
system is orthogonal to some root in that subsystem. This implies that in the
above definition we can find in each of the three A2-summands a root that
is orthogonal to α. Since α is not orthogonal to any summand, this root is
unique up to sign and so the roots in S fixed by s form a 3A1-subsystem as
asserted.

Conversely, if R′ ⊂ S is a subsystem of type 3A1, and α ∈ R−R′ is as in
Lemma 4.2, then s = sα has the desired property. ut

Lemma 4.4. Let S+ ⊂ R and α ∈ R−S be as in Lemma 4.3. If α1, α2, α3 are
the roots in S+ perpendicular to α, then the cross (1− sα)∆(S+) is divisible
by α1α2α3α:

(1− sα)∆(S+) = α1α2α3αF1,

and the quotient F1 ∈ Sym5h6 is invariant under the Weyl group of the D4-
subsystem that contains α1, α2, α3, α.

Proof. It is clear that both ∆(S+) and sα∆(S+) = ∆(sαS+) are divisible by
α1α2α3. It is also clear that (1− sα)∆(S+) is divisible by α. So F1 is defined
as an element of Sym5h.

We will now prove that there exists a g ∈ GL(Q⊗ Λ1,6) which centralizes
the Weyl group in question and is such that the transform of F1 under g−1 is
a W (R)-invariant in Sym5h. This will clearly suffice.

We may, in view of Lemma 4.2, assume without loss of generality that
(α1, α2, α3, α) = (h12, h34, h56, h) so that the D4-subsystem containing these
roots is 〈h12, h34, h56, h135〉. Denote by h′ the subspace of h spanned by these
roots.

We first recall a remarkable result due to Naruki. The set of exceptional
classes that have inner product 1 with α is {e1, . . . , e6} (this set and its sα-
transform make up what is classically known as a double six ). Consider the
element (1 − sα)

∏6
i=1 π∗(ei) ∈ Sym6h. It is clearly divisible by α and the

quotient F ∈ Sym5h will evidently be invariant under a Weyl subgroup of
W (R) of type A5 + A1. But according to Naruki ([15], p. 235) F is even
invariant under all of W (R).

The orthogonal complement of h′ in C⊗ Λ1,6 is spanned by the members
of the ‘anticanonical triangle’

(ε0 := `− e1 − e2, ε1 := `− e3 − e4, ε2 := `− e5 − e6)

and the intersection h ∩ h′⊥ is spanned by the differences ε0 − ε1 and ε1 − ε2.
Let g ∈ GL(Q ⊗ Λ1,6) be the transformation that is the identity on h′ and
takes εi to εi + 2εi+1 for i ∈ Z/3. This transformation preserves h′⊥ and
hence commutes with all the transformations that preserve h′ and act as the
identity on h′⊥. We also note that g(k) = 3k, that g preserves the orthogonal
complement of k and hence g commutes with π.

We claim that gπ(e1) = −h134 ∈ R. One easily checks that 2e1+ε0+k ∈ h′

and so
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g(e1) = g( 1
2 (2e1 + ε0 + k))− 1

2g(ε0)− 1
2g(k)

= 1
2 (2e1 + ε0 + k)− 1

2 (ε0 + 2ε1)− 3
2k

= e1 − ε1 − k
= −` + e1 + e3 + e4 − k
= −h134 + k.

Applying π to this identity yields gπ(e1) = −h134.
We get similar formulas for the gπ(ei) and thus find that

gπ{e1, . . . , e6} = 〈−h134,−h234〉 ⊥ 〈−h356,−h456〉 ⊥ 〈−h125,−h126〉.

Notice that the union of this set with {h12, h34, h56} is a system of positive
roots of a 3A2-system. This union will be our S+. So g∗ takes the polynomial
h12h34h56

∏6
i=1 π(ei) to ∆(S+). Since sα commutes with g we have

(1− sα)∆(S+) = h12h34h56g
(
(1− sα)

∏6
i=1 π(ei)

)
= h12h34h56g(αF )
= h12h34h56αg(F )

so that F1 = g(F ). This proves the lemma. ut

Corollary 4.5. For any three pairwise perpendicular roots in R there exists
a cross that is divisible by their product. This cross is unique up to sign and
is also divisible by a root perpendicular to these three. This yields a bijection
between 4A1-subsystems of R and antipodal pairs of crosses. ut

Corollary 4.6. Let R′ ⊂ R be a subsystem of type D4. The 4A1-subsystems
of R′ define three crosses up to sign whose sum (up to sign) is zero. These
crosses span a W (R′)-invariant plane in C3. A quotient of the discriminants
of two 4A1-subsystems of R′ is a quotient of two crosses. ut

We now fix a D5-subsystem Ro ⊂ R. It has precisely 5 subsystems of
type D4. As we just observed, each of these defines a plane in C3. Therefore,
the crosses associated to the 4A1-subsystems of Ro span a subspace of C3 of
dimension at most 10.

Lemma 4.7. For every subsystem S ⊂ R of type 3A2, S ∩ Ro is of type
2A1 + A2 and hence contains three subsystems of type 3A1; for every such
3A1-subsystem the associated 4A1-subsystem of R is in fact contained in Ro.
Moreover S 7→ S ∩ Ro defines a bijection between the 3A2-subsystems of R
and the 2A1 + A2-subsystems of Ro and W (Ro) acts transitively on both sets.

Proof. It is easy (and left to the reader) to find one subsystem S ⊂ R of type
3A2 such that Ro ∩ S has the stated properties. It therefore suffices to prove
the transitivity property. This involves a simple count: The W (Ro)-stabilizer
of Ro ∩ S of Ro contains W (Ro ∩ S) as a subgroup of index two (there is an
element in the stabilizer that interchanges the A1-summands and is minus the
identity on the A2-summand) and so the number of systems W (R)-equivalent
to Ro ∩S is |W (D5)|/2|W (A2 +2A1)| = 40. That is just as many as there are
3A2-subsystems of R. ut
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We continue with the D5-subsystem Ro ⊂ R that we fixed above. Let
S ⊂ R be any subsystem of type 3A2. By Lemma 4.7 Ro ∩ S is of type
2A1 + A2. Let be s1, s2, s3 be the three reflections in the Weyl group of the
A2-summand. The two A1-summands and the antipodal root pair attached
to si make up a 3A1-subsystem R

(i)
1 of Ro ∩ S. Each of these subsystems is

contained in a unique 4A1-subsystem. Let s(i) denote the reflection in the extra
A1-summand. According to Lemma 4.7, s(i) ∈ W (Ro), so that R

(i)
2 := s(i)S

has the property that R(i) ∩Ro = R ∩Ro.

Lemma 4.8. The discriminant ∆(S+) is fixed under s′ + s′′ + s′′′, in other
words,

2∆(S+) = (1− s′)∆(S+) + (1− s′′)∆(S+) + (1− s′′′)∆(S+),

where we note that the right hand side is a sum of three crosses attached to
subsystems of Ro of type 4A1. In particular, C3 is generated by the crosses.

Proof. It is clear that si∆(S+) = −∆(S+). Since s3 = s1s2s
−1
1 , we have

R′′′
1 = s1(R′′

1 ). This implies that s′′′ = s1s
′′s1 and so

(s′′+s′′′)∆(S+) = (s′′+s1s
′′s1)∆(S+) = (1−s1)s′′∆(S+) = (1−s1)∆(s′′S+).

Since s1 /∈ W (s′′S), the right hand side is a cross. We claim that this cross
equals the cross (1−s′)∆(S+) up to sign. For this it suffices to show that there
exist four perpendicular roots such that each is divisible by three of them. It
is clear that (1− s1)s′′∆(S+) is divisible by a root attached to s1 and by the
roots in the two A1-summands of S+ (for these are unaffected by s′′ and s1).
On the other hand, (1 − s′)∆(S+) is divisible by a root attached to s′ and
the roots in the two A1-summands of S. It remains to observe that the roots
attached to s1 and s′ are perpendicular.

Thus (s′′ + s′′′)∆(S+) = ±(1 − s′)∆(S+). Suppose the minus sign holds,
so that 1− s′ + s′′ + s′′′ kills ∆(S+). The cyclic permutation 1 + s′ + s′′ − s′′′

then also kills ∆(S+) and hence so will 1 + s′′. In other words, ∆(S+) will be
anti-invariant under s′′. Since s′′ /∈ W (S), this is a contradiction. Hence the
plus sign holds and the lemma follows. ut

Theorem 4.9. The planes defined by the five subsystems of Ro of type D4

make up a direct sum decomposition of C3. In particular C3 is the irreducible
representation of the E6-Weyl group of degree 10.

Proof. Lemma 4.8 shows that C3 is spanned by the crosses attached to 4A1-
subsystems of Ro. So the five planes in question span C3 and dim C3 ≤ 10. The
irreducible representations of W (R) of degree < 10 are the trivial represen-
tation, the sign representation (which are both of degree 1) and the defining
representation (of degree 6) and C3 is clearly neither of these. The theorem
follows. ut
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We now determine the common zero set of the Coble covariants. We first
make some general remarks that also apply to the D5 and the E7-case. The
zero set of a Coble invariant is a union of reflection hyperplanes and hence
each irreducible component of their common intersection, Zr ⊂ hr, is an
intersection of reflection hyperplanes. As Zr is invariant under the Weyl group,
so is the collection of its irreducible components. So an irreducible component
is always the translate of common zero set of a subset of the given root basis
of Rr. (This subset need not be unique.)

Proposition 4.10. The common zero set Z6 ⊂ h of the members of C3 is the
union of the linear subspaces that are pointwise fixed by a Weyl subgroup of
type A3.

Proof. We first verify that for any A3-subsystem of R, the subspace of h
perpendicular to it is in the common zero set of the members of C3. Since
an A3-subsystem is contained in a D5-subsystem, it is in view of Lemma 4.7
enough to show that a A2+2A1-subsystem and a A3-subsystem in a D5-system
always meet. This is easily verified.

We next show that Z6 is not larger. Any subsystem generated by funda-
mental roots that does not contain a A3-system is contained in a subsystem
of type 2A2 + A1. There is a single Weyl group equivalence class of such
subsystems and so it suffices to give two subsystems of R, of type 3A2 and
of type 2A2 + A1 that are disjoint. We take 〈h12, h23, h45, h56, h123, h〉 and
〈h16, h125, h34, h136, h25〉. ut

Question 4.11. Is C3 the space of degree 9 polynomials on h that vanish on
Z6? This is probably equivalent to the completeness of C3 as a linear system
on M∗

m,3 (which is known, though in a rather indirect manner, see Remark
5.10).

The Coble representation of a Weyl group of type E7

The Weyl group W (E7) decomposes as W+(E7) × {1, c}, where W+(E7) ⊂
W (E7) is the subgroup of elements that have determinant one in the Coxeter
representation and c ∈ W (E7) is minus the identity in the Coxeter representa-
tion. This implies that every irreducible representation of W (E7) is obtained
as an irreducible representation of W+(E7) plus a decree as to whether c acts
as 1 or as −1.

We know that the representation of W (E7) defined by C2 (which we recall,
is spanned by products of seven pairwise perpendicular roots of the E7 root
system) is irreducible and we want to prove:

Proposition 4.12. The representation C2 of W (E7) is of degree 15 and the
nontrivial central element of W (E7) acts as −1.
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It is known that there is just one isomorphism types of irreducible rep-
resentations of W+(E7) in degree 15 and so Proposition 4.12 identifies the
isomorphism type of the representation.

In what follows R stands for the root system R7 of type E7.

Lemma 4.13. The Weyl group W (R) acts transitively on the collection of
7A1-subsystems of R. If we are given a subsystem R′ of type 2A1, then the
roots perpendicular to R′ make up a subsystem of type A1 +D4. In particular,
there is a unique subsystem of type 3A1 that contains R′ and is orthogonal
to a subsystem of type D4. Conversely, the roots perpendicular to a given
subsystem of R of type D4 make up a system of type 3A1.

Proof. This lemma is known and the proof is standard. The first assertion
follows from the fact that the roots orthogonal to a given root of R form a
subsystem of type D6 and the roots orthogonal to a root of a root system of
type D6 form a subsystem of type D4 + A1.

Any root subsystem of R of type D4 is saturated and so a root basis of this
subsystem extends to a root basis of R. As the group W (R) acts transitively
on the set of root bases, it also acts transitively on the set of subsystems of
type D4. ut

So if we have a subsystem R1 ⊂ R of type 7A1, then any two summands of
R1 (making up a subsystem R′ ⊂ R1 of type 2A1) determine a third summand
and the remaining 4 summands will lie in a D4-subsystem. In this way we can
construct a 2-dimensional simplicial complex with 7 vertices indexed by the
summands of R1: three vertices span a 2-simplex if and only if the orthogonal
complement of the sum of their associated A1-summands is of type D4. The
preceding lemma tells us that every edge is in exactly one 2-simplex. Proba-
bly the W (E7)-stabilizer of R1 is the full automorphism group of this complex.

The subsystems of type 7A1 make up two S7-orbits, represented by

(A) 〈h7, h12, h34, h56, h127, h347, h567〉, 105 in number and
(B) 〈h123, h145, h167, h256, h247, h357, h346〉, of which there are 30.

We designate by the same letters (A) and (B) the type of the corresponding
product of roots.

Lemma 4.14. Let F be a product of roots of type (B). Then the S7-stabilizer
of F acts transitively on its factors and has order 7.3.23. The subgroup that
stabilizes a given factor is isomorphic to S4.

Proof. Let F be of type (B) and let α be a factor of F . Write α = habc.
Then the other factors are of the form haxy, hazw, hbxz, hbyw, hcxw, hcyz,
where x, y, z, w are the distinct elements of {1, 2, . . . , 7} − {a, b, c}. So these
factors are given by an indexing by a, b, c of the three ways we can split
{1, 2, . . . , 7}− {a, b, c} into two pairs. This description proves that S7 is tran-
sitive of the collection of pairs (F, α) with stabilizer mapping isomorphically
onto the permutation group of {x, y, z, w}. The lemma follows. ut
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Lemma 4.15. The space C2 is spanned by the 30 root products of type (B)
and is annihilated by

∑
w∈S(i,j,k) sign(w)w for any 3-element subset {i, j, k}

of {1, . . . , 7}.

For the proof we need:

Lemma 4.16. A root system S of type D4 contains exactly 3 subsystems of
type 4A1 and the discriminants of these three subsystems (relative some choice
of positive roots) are such that a signed sum is zero. More precisely, if So ⊂ S
is a subsystem of type 4A1, then the (8) reflections in W (S)−W (So) decom-
pose into two equivalence classes with the property that two reflections s, s′

belong to different classes if and only if they do not commute. In that case
So), sSo, s′So are the distinct 4A1-subsystems of S and if f is the product of
4 pairwise perpendicular roots in So, then f = s(f) + s′(f). The plane in the
fourth symmetric power of the complex span of the root system generated by
these discriminants affords an irreducible representation of the Weyl group of
the root system.

Proof. In terms of the standard model for the D4-system, the set of vectors
±εi ± εj , 1 ≤ i < j ≤ 4 in Euclidean 4-space, the 4A1-subsystems correspond
to the three ways of partitioning {1, 2, 3, 4} into parts of size 2. For instance,
the partition {{1, 2}, {3, 4}} yields {±ε1 ± ε2,±ε3 ± ε4}, whose discriminant
is (up to sign) equal to ε21ε

2
3 + ε22ε

2
4 − ε21ε

2
4 + ε22ε

2
3. We can verify the lemma for

s = sε1−ε3 , s′ = sε1−ε4 and deduce the general case from that.
The last clause is easily verified. ut

Proof (of Lemma 4.15). Consider F = h7h12h34h56h127h347h567 (a typi-
cal root product of type (A)). The four factors that are not of type (1),
h7, h12, h34, h56, lie in a subsystem of type D4. If we let s resp. s′ be the
reflection in h135 resp. h246, then

s(h7h12h34h56) = h246h235h145h136

s′(h7h12h34h56) = h135(−h146)(−h236)(−h245) = −h135h146h236h245.

Notice that the second product is obtained from the first by applying minus
the transposition (34). According to Lemma 4.16 we then have

h7h12h34h56 = (1− (34))h246h235h145h136. (3)

After multiplying both sides with h127h347h567, we see that F has been written
as a difference of two products of type (B): f = (1− (34))G with

G := h127h347h567h246h235h145h136.

In particular, the type (B)-products generate C2. It follows from Lemma 4.14
that the S7-stabilizer of G has two orbits in the collection of 3-element subsets
{i, j, k} ⊂ {1, . . . , 7}: those for which hijk is a factor of G and those for which
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there exist a factor habc of G with {a, b, c} ∩ {i, j, k} = ∅. So there are only
two cases to verify.

We first do the case I = {3, 4, 5}. We are then in the second case because
I ∩ {1, 2, 7} = ∅ and h127 is a factor of G. To this purpose we look at the
D4-system defined by the pair h7, h127: it is the system that contains the four
roots h34, h56, h347, h567. The reflections s resp. s′ perpendicular to h367 resp.
h467 lie in this D4 summand and do not commute. We have

s(h34h56h347h567) = h467(−h357)h64h35

s′(h34h56h347h567) = (−h367)(−h457)h63h45

so that

h34h56h347h567 − h467h357h46h35 + h367h457h36h45 = 0.

The second resp. third term are obtained from the first by applying to it minus
the transposition (45) resp. minus the transposition (35), so that

(1− (45)− (35))h7h12h127h34h56h347h567 = 0.

If we combine this with equation (3), and observe that

(1− (45)− (35)) (1− (34)) =
∑

w∈S(3,4,5)

sign(w)w,

then we find that the latter kills G = h127h347h567h246h235h145h136.
An instance of the first case, namely the assertion that G is also killed by∑

w∈S(1,2,7) sign(w)wG, follows by exploiting the symmetry properties of G:
the transpositions (34) and (35) have the same effect on G as resp. (12) and
(17). This implies that∑

w∈S(1,2,7)

sign(w)wG =
∑

w∈S(3,4,5)

sign(w)wG = 0.

ut

Corollary 4.17. We have dim C2 ≤ 15.

Proof. Let f ∈ C2. Since a monomial of type (B) has a unique factor of
the form (12a), a ∈ {3, . . . , 7}, we can write f accordingly: f = (124)f3 +
· · · + (127)f7. For every a, we have 6 type (B) monomials corresponding to
the ways we index the splittings of the complement of a in {3, 4, 5, 6, 7} by
{1, 2, a}. The symmetric group S(1, 2, a) permutes these six root products
simply transitively. These root products satisfy the corresponding alternating
sum relation and so we can arrange that each fa is a linear combination of
6 monomials whose alternating sum of coefficients is zero. If we take as our
guiding idea to make a as small as possible, then it turns out that in half of
the cases we can do better.
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Let us first assume a ∈ {5, 6, 7}. We then invoke the relation defined by
{3, 4, a}: ∑

w∈S(3,4,a)

sign(w)wfa = 0.

Four of the six terms have a factor (123) or (124), whereas the other two
have a factor (12a) and combine to (1− (34))fa. So this relation allows us to
arrange that fa and (34)fa have the same coefficient. We thus make fa vary
in a space of dimension ≤ 3. If a ∈ {6, 7}, then we can repeat this game with
{4, 5, a}. This allows us to assume in addition that fa and (45)fa have the
same coefficient. But then fa must have all its coefficients equal. So fa varies
in a space of dimension ≤ 1 for a = 6, 7, of dimension ≤ 3 for a = 5, and of
dimension ≤ 5 for a = 3, 4. This proves that dim C2 ≤ 15. ut

Proof (of Proposition 4.12). If we combine Proposition 4.1 and Corollary 4.17,
we see that C2 is an irreducible representation of W (R) of dimension ≤ 15.
Since W (R) = W (R)+ × {1, c}, it will then also be an irreducible represen-
tation of W (R)+. The symmetric bilinear form on the root lattice induces a
nondegenerate form on the root lattice modulo two times the weight lattice
(this is a F2-vector space of dimension 6). This identifies W (R)+ with the
symplectic group Sp(6, Z/2) and it is well-known (see for instance [7], where
this group is denoted S6(2)) that the irreducible representations of dimension
< 15 are the trivial representation, the sign representation and the standard
representation of degree 7. It is easy to see that C2 is neither of these. Since c
acts as −1 in C2, the proposition follows. ut

The roots orthogonal to an A5-subsystem of an E6-system make up a
system of type A1 or A2. In terms of our root basis, they are represented
by 〈h23, h34, h45, h56, h67〉 (with 〈h1〉 as the perpendicular system) and the
system 〈h123, h34, h45, h56, h67〉 (with 〈h1, h12〉 as perpendicular system). We
shall call an A5-subsystem of the second type special. Conversely, the roots
perpendicular to a A2-subsystem form a special A5-system. Since the A2-
subsystems make up a single Weyl group equivalence class, the same is true
for the special A5-subsystems.

Proposition 4.18. If we regard C2 as a vector space of degree 7 polynomials
on h7, then their common zero set Z7 is the union of the linear subspaces
perpendicular to a system of type D4 or to a special system of type A5.

Proof. The D4-subsystems constitute a single Weyl group equivalence class
and so we may take as our system the one spanned by the fundamental roots
〈h23, h34, h45, h123〉. We must show that every 7A1-subsystem of R meets
this D4-system. The positive roots of the D4-system are {hij}2≤i<j≤5 and
{h1ij}2≤i<j≤5. It is easy to see from our description that every 7A1-system of
type (A) contains a root hij with 2 ≤ i < j ≤ 5. Similarly, we see that every
7A1-system of type (B) contains a root h1ij with 2 ≤ i < j ≤ 5.
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We argue for the special A5-system 〈h123, h34, h45, h56, h67〉 in a simi-
lar fashion. Its positive roots are {hij}3≤i<j≤7 and {h12i}3≤i≤7. Every 7A1-
system of type (A) contains a root hij with 3 ≤ i < j ≤ 7 and every 7A1-
system of type (B) contains a root h12i with 3 ≤ i ≤ 7.

It remains to show that this exhausts Z7. Every subsystem of R that
does not contain a D4-subsystem has only components of type A. If in ad-
dition it does not contain a special A5-system, then any such a subsystem is
Weyl group-equivalent to a proper subsystem in the (nonsaturated) A7-system
spanned by the fundamental roots h12, h34, · · · , h67 and the highest root h1.
The latter has as its positive roots {hij}1≤i<j≤7 ∪ {hi}7i=1 and is therefore
disjoint with the 7A1-subsystem 〈h123, h145, h167, h256, h247, h357, h346〉. This
implies that Z7 is as asserted. ut

Question 4.19. Is C2 the space of degree 7 polynomials on h7 that vanish on
Z7? We expect this to be equivalent to the question whether C2 is complete
as a linear system on M∗

m,2.

5 The Coble linear system

Let A be a vector space of dimension three so that P(A) is a projective plane.
Given a numbered set (p1, . . . , pN ) of N ≥ 5 points in P(A) that are in generic
position, then for any 5-tuple (i0, . . . , i4) with i0, . . . , i4 pairwise distinct and
taken from {1, . . . , N}, the four ordered lines pi0pi1 , pi0pi2 , pi0pi3 , pi0pi4

through pi0 have a cross ratio. The collection of cross ratio’s thus obtained
make up a complete projective invariant of (p1, . . . , pN ): we may choose coor-
dinates such that p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1], p4 = [1 : 1 : 1]
and the coordinates [z0 : z1 : z2] for pi, i > 4, are then given by cross ratio’s.
For instance, z1 : z2 = (p1p2 : p1p3 : p1p4 : p1pi). If ai ∈ A represents pi, then
we can write the this as a cross ratio of 4 lines in the plane a1 ∧ A ⊂ ∧2A:
(a1 ∧ a2 : a1 ∧ a3 : a1 ∧ a4 : a1 ∧ ai).

Now let us observe that if (v1, v2, v3, v4) is a generic ordered 4-tuple in a
vector space T of dimension two, then the corresponding points in P(T ) have
a cross ratio that can be written as a ratio of two elements of det(T )2, namely
(v1 ∧ v4)(v2 ∧ v3) : (v2 ∧ v4)(v1 ∧ v3). If we apply this to to the present case,
then we get

z1 : z2 = (p1p2 : p1p3 : p1p4 : p1pi) = |12i||134| : |13i||124|,

where we used the Coble notation. Thus the cross ratio’s formed in this man-
ner allow us to reconstruct (p1, . . . , p5) up to projective equivalence. We can
express this in terms of roots as follows.

Lemma 5.1. Let (S; e1, . . . , e9−d) be a marked Del Pezzo surface of degree
d ≤ 4, S → P̌2(H0(S, `)) the contraction morphism defined by the linear
system |`| (as usual) and pi the image of Ei. Then p1, . . . , p4 are in general
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position if and only if none of the roots in the A4-subsystem generated by
(h123, h12, h23, h34) is effective in Pic(S).

If that is the case and K is a cuspidal anticanonical curve on S, then
for i > 4 the cross ratio (p1p2 : p1p3 : p1p4 : p1pi) equals the ratio
of the two elements of the line Pic(K)o given by rK(h2ih12ih34h134) and
rK(h3ih13ih24h124).

Proof. The first part is left to the reader as an exercise. As to the second
part, choose affine coordinates (x, y) in P̌2(H0(S, `)) such that the K is given
by y3 = x2. So pi = (ti, t3i ) for some ti. For i 6= 1, the line p1pi has tangent
[ti− t1 : t3i − t31] = [1 : t2i + tit1 + t21]. So the cross ratio of the lines p1pi involves
factors of the form

(t2j + tjt1 + t21)− (t2i + tit1 + t21) = (tj − ti)(tj + ti + t1), 2 ≤ i < j ≤ 5.

If we use the x-coordinate to identify Pic0(K) with C, then such a factor can
be written rK(hijh1ij). The last assertion follows. ut

Remark 5.2. Notice that the roots that appear in the numerator resp. the
denominator of h25h12ih34h134 : h3ih13ih24h124 are four pairwise perpendicu-
lar roots which all lie in a single D4-subsystem.

The Coble system in the degree four case

We first consider a Fano surface of degree 5. We recall that such a surface S can
be obtained by blowing up 4 points of a projective plane in general position,
and so is unique up to isomorphism. Any automorphism of this surface that
acts trivially on its Picard group preserves every exceptional curve (= line)
and hence is the identity. It follows that the automorphism group of S is the
Weyl group W (A4). There are 10 lines on S. If five of them make up pentagon,
then their sum is an anticanonical divisor. There are 12 such pentagons and
they generate the anticanonical system. Let us now fix a marking (e1, e2, e3, e4)
for S. To every p ∈ S we associate a marked Del Pezzo surface (Sp; e1, . . . , e5)
of degree 4 by letting Sp be the blowup of S in p and letting e5 be the class
of the exceptional divisor. This defines a rational map S 99K M∗

m,4. We will
see that this is in fact an isomorphism.

Proposition 5.3. The 12 Coble covariants for D5 span a complete linear
system of dimension 6 and define an embedding of M∗

m,4 in a projective space
of dimension 5. The image is ‘the’ anticanonically embedded Fano surface
of degree 5 (so that the Coble system is anticanonical) with M∗

m,4 −M◦
m,4

mapping onto the union of its ten lines. The divisor of every Coble covariant
is a pentagon on this Fano surface and every pentagon thus occurs.

Proof. Let A be a complex vector space of dimension 3 and let p1, . . . , p5 ∈
P(A). We first assume that p1, . . . , p4 are in general position (i.e., no three
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collinear). We then adapt our coordinate system accordingly: pi = [ai], with
a1 = (1, 0, 0), a2 = (0, 1, 0), a3 = (0, 0, 1) and a4 = (1, 1, 1). If a5 = (z0, z1, z2),
then typical determinants involving a5 are:

|125| = z2, |145| = z2 − z1.

So for instance

|415||152||523||234||341| = (z1 − z2).(−z2).z0.1.− 1 = z0z1z2 − z2
1z2.

We obtain in this manner the 6 polynomials z0z1z2−z2
i zj , i 6= j, and it is easily

verified that any other Coble covariant is a linear combination of these. They
are visibly linearly independent and hence form a basis for C5. It is precisely
the linear system of cubic curves that pass through p1, . . . , p4. So the Coble
system is anticanonical and defines an embedding of the blowup S of P(A)
in p1, . . . , p4 to P5. The remaining assertions are verified in a straightforward
manner. ut

Remark 5.4. This proposition and its proof show that the moduli space
M∗

m,4 is as a variety simply obtained from P2 by blowing up the vertices
p1, . . . , p4 of the coordinate simplex. This argument then also shows that there
is universal semistable marked Del Pezzo surface of degree 4, Sm,4 →M∗

m,4:
over p5 ∈ M∗

m,4 we put the blowup of the surface M∗
m,4 in p5 so that

Sm,4 is simply M∗
m,4 ×M∗

m,4 blown up along the diagonal with one of the
projections serving as the structural morphism.

The Coble system in the degree three case

Our discussion starts off with the following lemma.

Lemma 5.5. The Coble system C3 has no base points.

Proof. The Coble linear system pulled back to P(h6) has according to Propo-
sition 4.10 as its base point locus the projective arrangement P(Z6), the union
of the fixed point hyperplanes of Weyl subgroups of type A3. Since M∗

3 is a
quotient of P(h6) − P(Z6) it follows that C3 has no base points and hence
defines a morphism to a P9. ut

We use what we shall call the Naruki model of M∗
m,3. This is based on

a particular way of getting a degree 3 Fano surface as a blown-up projective
plane: we suppose the points in question to be labelled pi, qi with i ∈ Z/3 and
to lie on the coordinate lines of P2 as follows:

p0 = [0 : 1 : a0], p1 = [a1 : 0 : 1], p2 = [1 : a2 : 0],
q0 = [0 : 1 : b0], q1 = [b1 : 0 : 1], q2 = [1 : b2 : 0].

For the moment we assume that blowing up these points gives rise to a Fano
surface S so that in particular none of the ai, bi is zero and ai 6= bi. If we
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blow up these points, the strict transform of the coordinate triangle is an
anticanonical curve K (it is a tritangent of the corresponding cubic surface).
This ‘partial rigidification’ reduces the projective linear group PGL(3, C) to its
maximal subtorus that leaves the coordinate triangle invariant. The following
expressions are invariant under that torus

αi := ai/bi (i ∈ Z/3), δ := −b0b1b2,

and together they form a complete projective invariant of the configuration.
Notice the formulas

a0b1b2 = −α0δ, a0a1b2 = −α0α1δ, a0a1a2 = −α0α1α2δ.

As explained in the Appendix of [16], αi and δ have a simple interpretation
in terms of the of pair (S, K): if we denote the exceptional curves Ai, Bi,
and E is the strict transform of the line through q1 and q2, then the cycles
Ai − Bi, i ∈ Z/3 and B0 − E span in Pic(S) the orthogonal complement to
the components of K and the numbers in question can be interpreted as their
images in Pic0(K) ∼= C×. The classes themselves make up the basis of a D4

root system with the last one representing the central node. We denote the
4-torus for which α0, α1, α2, δ is a basis of characters by T . This torus comes
with an action of W (D4) and this makes it an adjoint torus of type D4. We
denote by T ◦ the open set of its regular elements. This is the complement of
the union of reflection hypertori, i.e., the locus where none of the D4-roots is
1. It has the interpretation as the moduli space of marked nonsingular cubic
surfaces with the property that a particular tritangent (which is entirely given
by the marking) has not its three lines collinear. If we want to include that case
too, we must first blow up the identity element of T , Bl1(T ) → T , and then
remove the strict transforms of the reflection hypertori. This open subset,
Bl1(T )◦ ⊂ Bl1(T ), is a model for the moduli space of marked nonsingular
cubic surfaces, in other words, it can be identified with M◦

m,3. The modular
interpretation implies that this variety has a W (E6)-action, although only
the action of a Weyl subgroup of type D4 is manifest. The action of the two
missing fundamental reflections was written down by Naruki and Sekiguchi:
the one that in the Dynkin diagram is attached to αi is given by

αi 7→ −α0α1α2δ
2 1−αi

1−α0α1α2δ2

αi±1 7→ (1−α0αi±1δ)(1−α0α1α2δ)
(1−α0δ)(αi±1−α0α1α2δ)

δ 7→ δ−1 (1−αiδ)(1−α0α1α2δ2)
(1−αi)(1−α0α1α2δ) .

(We give this formula because of its remarkable form only—we shall not use it.)
Subsequently Naruki [16] found a nice W (E6)-equivariant smooth projective
completion of this space with a normal crossing divisor as boundary. What
is more relevant here is a (projective) blow-down of his completion that was
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also introduced by him. We shall take Naruki’s construction of the latter as
our guide and reprove some of his results in the process.

We identify the complexification of Hom(C×, T ) with the Lie algebra t of
T , so that the latter has a natural Q-structure. The decomposition Σ of t(R)
into its W (D4)-chambers has its rays spanned by the coweights that lie in the
W (D4)-orbit of a fundamental coweight. One of these is the orbit of coroots
and has 24 elements; the other three consist of minuscule weights and are a
single orbit under the full automorphism group of the D4-system; it has also
24 elements. If we remove the faces that contain a coroot we obtain a coarser
decomposition of t(R) that we denote by Σ′; a maximal face of Σ′ is now an
orbit of a Weyl chamber under the stabilizer of a coroot (a type 3A1-Weyl
group).

Let T ⊂ TΣ be the associated torus embedding. It is a smooth with nor-
mal crossing boundary. The boundary divisors are in bijective correspondence
with the above coweights. We shall refer to those that correspond to coroots
resp. minuscule weights as toric coroot divisors resp. toric minuscule weight
divisors. So there are 24 of each.

Now blow up successively in TΣ : the identity element (in other words the
fixed point set of W (D4)), the fixed point sets of the Weyl subgroups of type
A3, the fixed point sets of the Weyl subgroups of type A2. We denote the
resulting blowup T̂Σ . In this blowup the exceptional divisors of type A3 have
been separated and each is naturally a product. To be precise, a W (A3)-
Weyl subgroup G ⊂ W (D4) has as its fixed point locus in T̂Σ a copy of a
P1 whose tangent line at the identity is the G-fixed point set in t and the
divisor associated to G is then naturally the product of the projective line T̂G

Σ

and the projective plane P(t/tG) blown up in the fixed points of the A2-Weyl
subgroups of G (there are four such and they are in general position).

The Coble system on Naruki’s completion, together with the W (E6)-action
on it, was identified in [14] (5.9 and 4.5). It is the pull-back of

H0(TΣ ,O(DS + 2DR)⊗m3
e)

to T̂Σ , here DS , DR are the sum of the 24 divisors corresponding to the rays
spanned by the minuscule weight and the coroots respectively, and me is the
ideal sheaf of the identify element e ∈ TΣ .

We now give an explicit description of the Coble covariants in terms of
(α0, α1, α2, δ). For this we begin with observing the following simple identities:

|p0p1p2| = a0a1a2 + 1, |piqipi+1| = (bi − ai)ai+1, |piqipi−1| = bi − ai.

A straightforward computation yields

|p0p1p2q0q1q2| = ±(b0 − a0)(b1 − a1)(b2 − a2)(1− a0a1a2b0b1b2).

We substitute these values in the formulae for the Coble covariants, but for
reasons similar as in Section 3 we divide these by (b0 − a0)(b1 − a1)(b2 − a2).
For example,
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|p0p1p2q0q1q2|.|p0q0p1|.|q1p2q2| =
= ±(1− a0a1a2b0b1b2).(b0 − a0)a1.(b2 − a2)
= ±α1δ(1− α0α1α2δ)(1− α0)(1− α2)

and

|p0q0p1|.|p0q0q2|.|p1q1q2|.|p1p2q2|.|p0q1p2|.|q0q1p2| =

= ± (b0 − a0)a1.(b0 − a0).(b1 − a1)b2.(b2 − a2)(a0b1a2 + 1)(b0b1a2 + 1)
(b0 − a0)(b1 − a1)(b2 − a2)

= ±α0α1δ(1− α0)(1− α0α2δ)(1− α2δ).

We thus find for the Coble covariants (40 up to sign) the following expressions:

1 δ(1− α0)(1− α1)(1− α2)
2 α0α1α2δ

2(1− α0)(1− α1)(1− α2)
3 (1− α0δ)(1− α1δ)(1− α2δ)
4 α0α1α2δ(1− α0δ)(1− α1δ)(1− α2δ)
5 (1− α0α1δ)(1− α1α2δ)(1− α2α0δ)
6 δ(1− α0α1δ)(1− α1α2δ)(1− α2α0δ)
7i (1− αi−1δ)(1− αi+1δ)(1− α0α1α2δ)
8i αiδ(1− αi−1)(1− αi+1)(1− α0α1α2δ

2)
9i δ(1− αi−1)(1− αi+1)(1− α0α1α2δ

2)
10i αi−1αi+1δ(1− δ)(1− αiαi−1δ)(1− αiαi+1δ)
11i (1− δ)(1− αiαi+1δ)(1− αiαi−1δ)
12i αiδ(1− αi+1δ)(1− αi−1δ)(1− α0α1α2δ)
13 (1− δ)(1− α0α1α2δ)(1− α0α1α2δ

2)
14i αi−1αi+1δ(1− δ)(1− αi)(1− αiδ)
15i (1− αiδ)(1− αi−1αi+1δ)(1− α0α1α2δ

2)
16i δ(1− αi)(1− αi−1αi+1δ)(1− α0α1α2δ)

17ijk αiδ(1− αj)(1− αkδ)(1− αjαkδ)

Notice that the zero sets in T of any of these expressions is the union of the
reflection hypertori of a subsystem of type 3A1 (in the first 12 cases) or the
A2 (for the last 5). We now quote from [16] (Proposition 11.3):

Theorem 5.6 (Naruki). There is a projective contraction

T̂Σ → ŤΣ

which contracts each A3-divisor along the projection on its 2-dimensional fac-
tor. The contracted variety ŤΣ is nonsingular and the action of W (E6) on
(BleT )◦ extends regularly to it. This action is transitive on the collection of
40 divisors that are of toric coroot type or of A2-type.

The 40 divisors in question are easily seen to be pairwise disjoint. Naruki
also shows (Section 12 of op. cit.) that each of these can be contracted to
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a point. We can see that quickly using the theory of torus embeddings: the
24 toric coroot divisors get contracted if we replace in the above discussion
the decomposition Σ of t(R) by the coarser one, Σ′, that we obtain by re-
moving the faces that contain a coroot. The W (E6)-action and the theo-
rem above imply that this contraction is then also possible for the remaining
16 divisors. The singularities thus created, for instance the one defined by
the ray spanned by the coroot δ∨, can be understood as follows: the natu-
ral affine T -invariant neighborhood of the point of TΣ′ defined by the ray
spanned by the coroot δ∨ is Spec of the algebra generated by the elements
of the orbit of δ under the Weyl group of the 3A1-subsystem 〈α0, α1, α2〉:
SpecC[δ, α0δ, , α1δ, . . . , α0α1α2δ]. This is a cone over the Veronese embedding
of (P1)3.

The following more precise result is in [14] (Theorem 5.7) and follows also
from [19].

Theorem 5.7. The Coble covariants generate on ŤΣ a linear system without
base points that has the property that its restriction each of the 40 divisors of
toric coroot type or of A2-type is trivial. The resulting morphism to a nine
dimensional projective space realizes Naruki’s contraction.

Proof (Outline of proof). We have a natural decomposition of TΣ into strata
by type: D4 (yielding the identity element), A3, A2 and {1} (being open
in TΣ). There is a corresponding decomposition of T̂Σ (and of ŤΣ , but we
find it more convenient to work on the former), albeit that strata are then
indexed by chains of strata in TΣ that are totally ordered for incidence. We
first check that along every stratum the Coble covariants define, modulo the
stated contractions property, an embedding. For this, the W (D4)-equivariance
allows us to concentrate on the open subset U = Spec(C[α0, α1, α2, δ]) of TΣ

and its preimage Û in T̂Σ .
It is clear from the expressions we found that the Coble covariants generate

C[δ, α0δ, . . . , α0α1α2δ] after we localize away from the kernels of the roots
(that is, we make each expression root−1 invertible). So we have an embedding
on the corresponding open subset of ŤΣ (this contains the singular point
defined the coroot δ∨). A closer look at the equations shows that this is in fact
even true if we allow some of the roots to be 1, provided that they are mutually
perpendicular. In other words, the linear system defines an embedding on the
intersection of the open stratum with U .

Now let Z be the A3-stratum that is open in α0 = α1 = δ = 1. All Coble
covariants vanish on Z and we readily verify that Coble covariants generate
the ideal defining Z. Thus the system has no base points on the blowup of Z
and the system contracts this exceptional divisor along the Z-direction.

Now let us look at an A2-stratum Z ′, say the one that is open in α0 =
δ = 1. We observe that the restriction of every covariant to Z ′ is proportional
with (1 − α1)(1 − α2)(1 − α1α2) (and can be nonzero). So the linear system
will define the constant map on Z ′ (or the exceptional divisor over Z ′).
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We turn to the situation at the identity of T . Every covariant vanishes
there with order three and has for initial part a product of three roots, viewed
as linear forms on t. Up to sign, the roots in such a product are the positive
roots of a 3A1-subsystem (in the first 12 cases) or of a A2-system (the last
5 cases). The preceding implies that the linear system restricted to a A2-line
in P(t) is constant. With some work we find that the Coble linear system is
without base points and generates the ideal defining the identity away from
the union of the A2-loci.

The remaining strata on T̂Σ are defined by ‘flags’: chains of strata above
totally ordered by incidence, with {1} < Z ′ < Z as a typical degenerate case.
In that situation, one checks that the covariants generate on that stratum
the ideal I{e}IZ′IZ . We thus see that we have a local embedding along this
stratum. The other strata are dealt with in the same way.

This shows that the linear system defines local embeddings modulo the
contraction property. So ŤΣ is defined as a projective quotient of T̂Σ and the
linear system maps it as local embedding to a nine dimensional projective
space. It remains to see that the images of the strata are disjoint. This is left
to the reader. ut

Remark 5.8. The construction of the Naruki quotient comes with a strat-
ification and as one may expect, each of its members has a modular inter-
pretation. We here give that interpretation without proof. As mentioned,
the open stratum T ◦ is the moduli space of systems (S; e1, . . . , e6;K) with
(S; e1, . . . , e6) a marked Fano surface of degree 3 (equivalently, a cubic surface)
and K an anticanonical divisor made up of three nonconcurrent exceptional
curves (so that the isomorphism S → S̄ maps K onto a tritangent K̄ ⊂ S̄).
Suppose now that S is merely a Del Pezzo surface whose configuration of
(−2)-curves is nonempty, but disjoint with K. Then that configuration is of
type rA1 and we are on a stratum contained in T of type rA1 (1 ≤ r ≤ 4) or
it is of type rA1 + sA1 with r ≥ 1 and we are on one of the 24 points that
are images of toric coroot divisors (these are the punctual strata of TΣ′). In
these cases K̄ is a genuine tritangent of S̄ (that lies in the smooth part of S̄).
The other strata are loci for which K̄ is no longer a tritangent: if K̄ defines
an Eckardt point (so that K consists of three distinct concurrent exceptional
curves), then we find ourselves in the stratum that is open in the preimage
of the unit element of T . If K̄ becomes a union of a double line and another
line, then it contains two distinct A1-singularities of S̄ and K is of the form
2E+E′+C+C ′, where E,E′ are exceptional curves and C,C ′ are (−2)-curves
with E′, C, C ′ pairwise disjoint and meeting E normally. We are then on a
stratum that is open in the image of an A3-locus in Ť . If K̄ becomes a triple
line, then it contains two distinct A2-singularities of S̄ and K is of the form
3E+C+C ′, where E is exceptional curve and and C,C ′ are disjoint A2-curves
meeting E normally. We are then representing one of the 16 punctual strata
that are images of an A2-locus in T .



326 Elisabetta Colombo, Bert van Geemen, and Eduard Looijenga

Corollary 5.9. The GIT completion of the moduli space of marked cubic sur-
faces, M∗

m,3, is W (E6)-equivariantly isomorphic to the Naruki contraction of
T̂Σ. The Coble linear system embeds M∗

m,3 in projective nine space.

Proof. The Coble linear system on T̂Σ is without base points and so the
resulting morphism f : T̂Σ → P9 realizes the Naruki contraction. Recall that
we have an identification of M◦

m,3 with (BleT )◦. This isomorphism clearly
extends to a morphism M∗

m,3 → f(T̂Σ). This morphism is birational and
since f(T̂Σ) is normal, it must be a contraction. ut

Remark 5.10. It is known [2] that the moduli space of stable cubic surfaces
is Galois covered by the complex 4-ball with an arithmetic group Γ as Galois
group. The group Γ has a single cusp and this cusp represents the minimal
strictly stable orbit of cubic surfaces (i.e., those having three A2-singularities).
This gives M3 the structure of an arithmetic ball quotient for which M∗

3 is
its Baily-Borel compactification. Allcock and Freitag [1] have used Γ -modular
forms to construct an embedding of this Baily-Borel compactification in a
9-dimensional projective space. This is precisely the embedding that appears
here (see also Freitag [13] and van Geemen [14]). Via this interpretation it
also follows that the Coble system is complete [12].

Remark 5.11. The linear system C3 can be also studied by restricting it,
as was done in [6], to the exceptional divisor P(h5) of the blowup of the e6-
point in P(h6). The generic point of P(h5) has a modular interpretation: it
parameterizes marked cubic surfaces with a point where the tangent space
meets the surface in the union of a conic and a line tangent to that conic. The
marking determines the line, but not the conic, for the system of conics on a
cubic surface that lie in plane that contains a given line on that surface has
two members that are tangent to the line. So we have a natural involution ι
on that space. The projective space P(h5) can be seen as the projective span
of the D5-subsystem R5, spanned by the roots not involving e6.

In order to be explicit we also use the standard model for the D5 root
system, i.e., the model for which εi− εi+1 = hi,i+1 (i = 1, . . . , 4) and ε4 + ε5 =
h123. This makes W (R5) the semidirect product of the group of permutations
of the basis elements ε1, . . . , ε5 and the group of sign changes in the basis
elements (ε1, . . . , ε5) 7→ (±ε1, . . . ,±ε5) with an even number of minus signs.
We denote the basis dual to (ε1, . . . , ε5) by (x1, . . . , x5). The Coble covariant
we attached to the 3A2-system 〈hij , hjk, hlm, hm6, hijk, h〉 gives, after dividing
by a common degree 4 factor, the quintic form on h5 defined by

hijhjkhikhlmhijk = (xi − xj)(xj − xk)(xi − xk)(x2
l − x2

m),

whereas the Coble covariant attached to 〈hij , hilm, hlm, hkm6, hk6, hijk〉 gives

hijhjlmhilmhlmhijk = (xi − xj)(xj + xk)(xi + xk)(x2
l − x2

m).
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These all lie in a single W (R5)-orbit as predicted by Lemma 4.7. It can be
easily checked that the base locus of the system on P(h5) is the set of points
fixed by a Weyl subgroup of type A3. There are two orbits of subroot systems
of type A3: one has 40 elements and is represented by 〈ε1− ε2, ε2− ε3, ε3− ε4〉
and the other has 10 elements and is represented by 〈ε1−ε2, ε2−ε3, ε2+ε3〉. So
the base locus is a union of 50 lines. The locus where two such lines meet are
the (16) fixed points of a Weyl subgroup of type A4 and the (5) fixed points
of a Weyl subgroup of type D4. Blowing up first the 21 points and then the
strict transforms of the 50 lines we obtain a smooth fourfold P̃(h5) in which
the strict transforms of the planes defined by the (40) root subsystems of type
A2 have become disjoint. The Coble system defines a morphism

Ψ : P̃(h5) −→ P9

which is generically two to one: it identifies the orbits of the involution ι which
on P(h5) is given as the rational map

[x1 : ... : x5] 7−→ [x−1
1 : ... : x−1

5 ].

The morphism Ψ is ramified along the exceptional divisors over the A4-points
and contracts the exceptional divisors over the A3-lines to planes and the 40
planes of type A2. to points.

The Coble system in the degree two case

An analogue of Lemma 5.5 holds:

Proposition 5.12. The linear system C2 is without base points on M∗
m,2. Its

restriction to M◦
m,2 is an embedding.

Proof. The proof of the first assertion only differs from the one of Lemma
5.12 essentially by replacing the reference to Proposition 4.10 by a reference
to Proposition 4.18: the pull-back of C2 to P(h7) has according to Proposition
4.18 as base locus P(Z7) the projective arrangement defined by the subsystems
of type D4 and the special subsystems of type A5. Since the map from P(h7)−
P(Z7) to M∗

2 is a surjective morphism, C2 is without base points.
The second assertion follows from Lemma 4.13: if we are given a D4-

subsystem of a root system of type E6, then orthogonal to it we have a 3A1-
system. Thus two disjoint 4A1-subsystems of the given D4-system have a
discriminants whose quotient is a quotient of Coble covariants. According to
Lemma 5.1 the quotient of two such 4A1-subsystems is a cross ratio. Hence
all (generalized) cross ratio’s are recovered from the Coble covariants. If the
seven points are in general position, then these cross ratio’s determine the
points up to projective equivalence. ut

Recall from Proposition 1.4 that we identified C2 with a space of sections
of a square root of OM∗

2
(1).
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Conjecture 5.13. The linear system C2 is without base points and hence de-
fines an injective morphism from the moduli space M∗

2 of semistable quartic
curves with level two structure to a 14-dimensional projective space.

We also expect that there is an analogue of the results of Naruki and
Yoshida with the role of D4 taken by E6.
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