\relax \immediate\closeout\minitoc \let \MiniTOC =N \citation{Co-zeta} \citation{CCM} \citation{Co-zeta} \citation{Co-zeta} \citation{CCM} \citation{CCM} \citation{Meyer} \citation{CCM} \citation{BC} \citation{Co-th} \citation{Tak} \citation{CCM} \citation{CCM} \citation{Co-zeta} \citation{CCM} \citation{CMbook} \citation{ConsMar-ff} \@writefile{toc}{\contentsline {title}{The Weil proof and the geometry of the adeles class space}{331}} \@writefile{toc}{\contentsline {author}{Alain Connes\unskip {} \and Caterina Consani\unskip {} \and Matilde Marcolli\unskip {}}{331}} \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{331}} \citation{CCM} \citation{Co-zeta} \citation{Co-zeta} \citation{Meyer} \citation{CCM} \citation{Co-zeta} \citation{CCM} \citation{CMbook} \@writefile{toc}{\contentsline {section}{\numberline {2}A look at the Weil proof}{334}} \newlabel{WeilproofSect}{{2}{334}} \newlabel{functionfieldK}{{1}{334}} \newlabel{ptstoplaces}{{2}{334}} \newlabel{zetaCT}{{3}{334}} \newlabel{zetaCs}{{4}{334}} \newlabel{zetaKEuler}{{5}{335}} \newlabel{sumNDs}{{6}{335}} \newlabel{CRRthm}{{7}{335}} \newlabel{modprincdiv}{{8}{335}} \newlabel{zetaKfuncteq}{{9}{335}} \newlabel{prodzeta3}{{10}{335}} \newlabel{PTzeta}{{11}{335}} \newlabel{countptsPT}{{12}{335}} \newlabel{fixFrobn}{{13}{335}} \newlabel{fixFrobnLef}{{14}{336}} \newlabel{zetadetFrob}{{15}{336}} \newlabel{RHff}{{16}{336}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Correspondences and divisors}{336}} \newlabel{CorrdivSect}{{2.1}{336}} \newlabel{Z1circZ2}{{17}{336}} \newlabel{adjZcorr}{{18}{336}} \newlabel{2degs}{{19}{336}} \newlabel{degstarcorr}{{20}{336}} \citation{SD} \citation{Weil-lett} \citation{CMbook} \newlabel{corrmodtriv}{{21}{337}} \newlabel{deg0}{{22}{337}} \newlabel{Z12equivf}{{23}{337}} \newlabel{multivmapZ}{{24}{337}} \newlabel{TraceCorr}{{25}{337}} \citation{weilexplicit} \citation{weilexplicit} \citation{Co-zeta} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2}The explicit formula}{338}} \newlabel{expformulaSect}{{2.2}{338}} \newlabel{alphacharv}{{26}{338}} \newlabel{bicharpair}{{27}{338}} \newlabel{Nbot}{{28}{338}} \newlabel{spectralside}{{29}{338}} \newlabel{rhoFourier}{{30}{338}} \newlabel{ffNbot}{{31}{338}} \newlabel{Weilexpl}{{32}{338}} \citation{Riemann} \newlabel{Fourierbeta}{{33}{339}} \newlabel{princvalrhobeta}{{34}{339}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Riemann--Roch and positivity}{339}} \newlabel{PositSect}{{2.3}{339}} \newlabel{posTrZZ}{{35}{339}} \newlabel{Zmultifunct}{{36}{340}} \newlabel{DeltaYprod}{{37}{340}} \newlabel{ZstarZprime}{{38}{340}} \newlabel{degprimeQij}{{39}{340}} \newlabel{g1caseZZ}{{40}{340}} \newlabel{matrfQ}{{41}{341}} \newlabel{detfQ}{{42}{341}} \newlabel{YintDelta}{{43}{341}} \newlabel{gDeltaDelta}{{44}{341}} \newlabel{ZZdd}{{45}{341}} \newlabel{positZZ}{{46}{341}} \newlabel{FrDeltaCorr}{{47}{341}} \newlabel{TrnmFr}{{48}{341}} \citation{Co-zeta} \citation{Meyer} \citation{CCM} \@writefile{toc}{\contentsline {subsection}{\numberline {2.4}A tentative dictionary}{342}} \citation{BC} \citation{CM} \citation{CMR} \citation{CMR2} \citation{CCM} \citation{ConsMar-ff} \citation{HaPau} \citation{Jacob} \citation{Man1} \citation{Man2} \citation{CMbook} \citation{Mar} \citation{Man-mot} \citation{CCM} \@writefile{toc}{\contentsline {section}{\numberline {3}Quantum statistical mechanics and arithmetic}{343}} \newlabel{QSMsect}{{3}{343}} \citation{CCM} \citation{Laca} \citation{CMbook} \citation{CCM} \newlabel{algdef}{{1}{344}} \newlabel{algrulesS}{{2}{344}} \newlabel{andef}{{3}{344}} \newlabel{CalgScrossnorm}{{4}{344}} \citation{CCM} \citation{tt} \citation{CMbook} \citation{CMbook} \citation{CCM} \citation{CCM} \newlabel{dualaction}{{5}{345}} \newlabel{cool}{{6}{345}} \newlabel{cyclcool}{{7}{345}} \citation{BC} \citation{CCM} \citation{CMbook} \citation{CM} \citation{CM} \citation{CCM} \citation{CCM} \citation{CCM} \citation{Co-zeta} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}The Bost--Connes endomotive}{346}} \newlabel{rhoBC}{{8}{346}} \newlabel{BCstateKMS1}{{9}{346}} \newlabel{iotamap}{{10}{346}} \citation{Co-zeta} \citation{CCM} \citation{Meyer} \citation{CCM} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Scaling as Frobenius in characteristic zero}{347}} \newlabel{Frob0sect}{{3.2}{347}} \newlabel{seqL2spaces}{{11}{347}} \newlabel{mapfEagain}{{12}{347}} \newlabel{mapfEagain2}{{13}{347}} \newlabel{CQact}{{14}{347}} \newlabel{OmegaCQ}{{15}{347}} \newlabel{deltaBC}{{16}{348}} \newlabel{parit}{{17}{348}} \newlabel{estimate1}{{18}{348}} \@writefile{toc}{\contentsline {section}{\numberline {4}The adeles class space}{348}} \newlabel{adclspSect}{{4}{348}} \newlabel{adeleclassdef}{{4.1}{348}} \newlabel{crossKCAK}{{1}{348}} \newlabel{gpdAK}{{2}{348}} \newlabel{groupoidAK}{{4.2}{348}} \citation{CCM} \citation{CMbook} \newlabel{convolGKalg}{{3}{349}} \newlabel{crossgrpd}{{4}{349}} \newlabel{UkfUk}{{6}{349}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Cyclic module}{349}} \newlabel{XKcyclSect}{{4.1}{349}} \newlabel{varepsilonj}{{7}{349}} \newlabel{varepsjdeg0}{{8}{349}} \newlabel{varepsjdeg}{{9}{349}} \newlabel{cyclA0mod}{{10}{349}} \citation{Co-zeta} \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}The restriction map}{350}} \newlabel{XKCKressect}{{4.2}{350}} \newlabel{gginvmap}{{11}{350}} \newlabel{idelesubgrpd}{{4.3}{350}} \newlabel{rho0restr}{{12}{350}} \newlabel{restrAKCK}{{4.4}{350}} \newlabel{rhoAKCKrestr}{{13}{350}} \newlabel{akbykstar}{{14}{350}} \newlabel{hilbfiber}{{15}{350}} \newlabel{restrAKCK1}{{4.5}{351}} \newlabel{rhoAKCKrestrtr}{{16}{351}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.3}The Morita equivalence and cokernel for ${\@mathbb K}={\@mathbb Q}$}{351}} \newlabel{XKCKsect}{{4.3}{351}} \newlabel{equivgrpdsCK}{{4.6}{351}} \newlabel{eqgrpds}{{17}{351}} \newlabel{eqgrpds2}{{18}{351}} \newlabel{rhoMinftymap}{{4.7}{352}} \newlabel{Mbmap}{{19}{352}} \newlabel{SCK}{{20}{352}} \newlabel{Trrhocyclmap}{{4.8}{352}} \newlabel{fU0n}{{21}{352}} \newlabel{MbfU0n}{{22}{352}} \newlabel{cyclicmapL1}{{23}{352}} \citation{Co-zeta} \newlabel{TrMbfj}{{24}{353}} \newlabel{TrMbf0}{{25}{353}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.4}The cokernel of $\rho $ for general global fields}{353}} \newlabel{H1motAKSect}{{4.4}{353}} \newlabel{strongS}{{4.9}{353}} \newlabel{Trnatural}{{26}{353}} \newlabel{motH1AKCK}{{4.10}{353}} \citation{CoExt} \citation{CCM} \newlabel{HCnTorC}{{27}{354}} \newlabel{TorH1mot}{{28}{354}} \newlabel{CKactionH1}{{4.11}{354}} \newlabel{actCKAKbis}{{29}{354}} \newlabel{actCKAK}{{30}{354}} \newlabel{actCKAKout}{{31}{354}} \citation{CCM} \citation{Co-zeta} \citation{Meyer} \citation{Co-zeta} \citation{Meyer} \citation{Co-zeta} \newlabel{actAKltwo}{{32}{355}} \newlabel{actCKCK}{{33}{355}} \newlabel{psigactH1}{{34}{355}} \newlabel{normrangeCK1}{{35}{355}} \newlabel{charCK1sum}{{4.12}{355}} \newlabel{H1sumchi}{{36}{355}} \newlabel{specrealH1mot}{{4.13}{355}} \citation{Co-zeta} \newlabel{rangeTrpi}{{4.14}{356}} \newlabel{rangecVdef}{{37}{356}} \newlabel{varthetafH1}{{38}{356}} \newlabel{varthetaH1V}{{4.15}{356}} \newlabel{varthetafconvol}{{39}{356}} \citation{Co-zeta} \citation{Co-zeta} \citation{Meyer} \newlabel{varthetagTrH1}{{4.16}{357}} \newlabel{Trvarthetaf}{{40}{357}} \newlabel{Wvarthetag}{{41}{357}} \newlabel{varthetaWf}{{42}{357}} \newlabel{hfrelg}{{43}{357}} \newlabel{TrWf}{{44}{357}} \newlabel{hathchirho}{{45}{357}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.5}Trace pairing and vanishing}{357}} \newlabel{vanishV}{{4.17}{357}} \newlabel{restrH1Vzero}{{46}{357}} \newlabel{tracepairTrH1}{{4.18}{358}} \newlabel{tracepairing}{{47}{358}} \@writefile{toc}{\contentsline {section}{\numberline {5}Primitive cohomology}{358}} \newlabel{motivicSect}{{5}{358}} \citation{De} \citation{GM} \citation{BEK} \citation{Weil} \newlabel{mainiso}{{1}{360}} \@writefile{toc}{\contentsline {section}{\numberline {6}A cohomological Lefschetz trace formula}{360}} \newlabel{cohTrSect}{{6}{360}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Weil's explicit formula as a trace formula}{360}} \newlabel{diffidele}{{1}{360}} \citation{CCM} \citation{Co-zeta} \citation{Meyer} \citation{Co-zeta} \citation{CCM} \citation{Co-zeta} \citation{Meyer} \newlabel{eulerdiffidele}{{2}{361}} \newlabel{TraceformulaThm}{{6.1}{361}} \newlabel{TraceformulaH1}{{3}{361}} \newlabel{Geomtrace1}{{4}{361}} \newlabel{intalphae}{{5}{361}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.2}Weil Positivity and the Riemann Hypothesis}{361}} \newlabel{posTrH1motSect}{{6.2}{361}} \newlabel{fstarg}{{6}{361}} \newlabel{Deltazfg}{{7}{361}} \citation{weilpos} \newlabel{Deltazfstarh}{{8}{362}} \newlabel{fsharpinv}{{9}{362}} \newlabel{RHpositTr}{{6.2}{362}} \newlabel{TrpositivityDelta}{{10}{362}} \newlabel{TrWfstarf}{{11}{362}} \newlabel{RHpositTrsharp}{{6.3}{362}} \citation{Co-zeta} \newlabel{pairTrvanishV}{{6.4}{363}} \newlabel{Vepsilonfstarf}{{12}{363}} \@writefile{toc}{\contentsline {section}{\numberline {7}Correspondences}{363}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.1}The scaling correspondence as Frobenius}{363}} \newlabel{ScaleCorrSect}{{7.1}{363}} \newlabel{Zfcorr}{{1}{363}} \citation{Co-zeta} \citation{GS} \citation{AB} \citation{EB} \newlabel{degcodegZf}{{7.1}{364}} \newlabel{degcorrZf}{{2}{364}} \newlabel{codegcorrZf}{{3}{364}} \newlabel{degcodegZg}{{4}{364}} \newlabel{intKvalphav2}{{5}{364}} \newlabel{PosTrRHint}{{7.2}{364}} \newlabel{ZfbulletZf}{{6}{365}} \newlabel{ZfZftransv}{{7}{365}} \newlabel{terms01Tr}{{8}{365}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.2}Fubini's theorem and the trivial correspondences}{365}} \newlabel{fubini1}{{9}{366}} \newlabel{fubini2}{{10}{366}} \newlabel{fubini3}{{11}{366}} \newlabel{fubini4}{{12}{366}} \newlabel{nothappen}{{13}{366}} \citation{Co-zeta} \citation{AB} \citation{GS} \citation{AB} \citation{Co-zeta} \newlabel{degmodifyV}{{7.3}{367}} \newlabel{xi0}{{14}{367}} \@writefile{toc}{\contentsline {section}{\numberline {8}Thermodynamics and geometry of the primes}{367}} \newlabel{globalper}{{1}{367}} \newlabel{preorbitckak}{{8.1}{367}} \newlabel{globalper1}{{2}{367}} \newlabel{globalper2}{{3}{367}} \newlabel{AKvdefn}{{8.2}{368}} \newlabel{cRKv}{{5}{368}} \newlabel{rhovrestr}{{6}{368}} \newlabel{classXiadeles}{{8.3}{368}} \newlabel{avwadele}{{7}{368}} \newlabel{Xiorbits}{{8}{368}} \@writefile{toc}{\contentsline {subsection}{\numberline {8.1}The global Morita equivalence}{368}} \newlabel{globMor}{{8.1}{368}} \newlabel{neighb0ideles}{{8.4}{368}} \newlabel{glMorgrpd}{{8.5}{369}} \newlabel{cWQneighbglob}{{9}{369}} \citation{CMR2} \citation{CM} \citation{CMbook} \citation{CMR} \newlabel{globMorita}{{8.6}{370}} \newlabel{thetagauto}{{10}{370}} \newlabel{Fthetagauto}{{11}{370}} \newlabel{globMoritabis}{{8.7}{370}} \@writefile{toc}{\contentsline {subsection}{\numberline {8.2}The valuation systems}{370}} \newlabel{valsystSect}{{8.2}{370}} \newlabel{resgroupoid}{{12}{370}} \newlabel{resgroupoidstate}{{13}{371}} \newlabel{sectperorbmodular}{{8.8}{371}} \newlabel{sigmavevolmod}{{14}{371}} \newlabel{muscalehaar}{{15}{371}} \newlabel{sigmavlem}{{8.9}{371}} \newlabel{dvkxmap}{{16}{371}} \newlabel{sigmavevol}{{17}{371}} \newlabel{dvcocycle}{{8.10}{372}} \newlabel{multiplhv}{{18}{372}} \newlabel{1cocyclecoboundhv}{{19}{372}} \newlabel{cGpiybis}{{20}{372}} \newlabel{classpointsperorb}{{8.11}{372}} \newlabel{hamilthy}{{21}{372}} \citation{CMR2} \citation{CM} \citation{CMbook} \citation{CMR} \citation{Man-zetas} \citation{CCM} \newlabel{Hysigmatbis}{{22}{373}} \newlabel{takingpoints}{{23}{373}} \newlabel{kmsbeware}{{8.12}{373}} \citation{Co-zeta} \citation{CCM} \citation{BC} \@writefile{toc}{\contentsline {subsection}{\numberline {8.3}The curve inside the adeles class space}{374}} \newlabel{curveinSect}{{8.3}{374}} \newlabel{XiKalgpts}{{8.13}{374}} \newlabel{XiKCbarFq}{{24}{374}} \newlabel{NNvqZ}{{25}{374}} \newlabel{equivembedCXi}{{26}{374}} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces The classical points $\Xi _{\@mathbb Q}/C_{{\@mathbb Q},1}$ of the adeles class space ${\@mathbb A}_{\@mathbb Q}/{\@mathbb Q}^*$. }}{375}} \newlabel{Figpoints}{{1}{375}} \@writefile{toc}{\contentsline {subsection}{\numberline {8.4}The valuation systems for ${\@mathbb K}={\@mathbb Q}$}{376}} \newlabel{kqvalSect}{{8.4}{376}} \newlabel{Dpdomaindef}{{8.14}{376}} \newlabel{Dpstardomain}{{27}{376}} \newlabel{GQpreduction}{{28}{376}} \newlabel{ZpbetaDef}{{29}{376}} \newlabel{coeffceiling}{{30}{376}} \newlabel{ZpbetaDefbone}{{31}{376}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Graphs of the functions $f_p(\lambda ,\beta )$ as functions of $\beta $ for $p=3$, $\lambda =n/27$. The gray regions are the gaps in the range of $f_p$. }}{377}} \newlabel{Zpfunct}{{2}{377}} \newlabel{DQprepsHam}{{8.15}{378}} \newlabel{Trzp}{{32}{378}} \newlabel{kmszp}{{33}{378}} \newlabel{posener0Qp}{{34}{378}} \newlabel{posener1Qp}{{35}{378}} \newlabel{posener2Qp}{{36}{378}} \newlabel{SpHyQp}{{37}{378}} \newlabel{ZbetaDQp}{{38}{378}} \newlabel{Trceiling}{{39}{379}} \newlabel{Trceiling1}{{40}{379}} \newlabel{Trceiling2}{{41}{379}} \newlabel{kmszpfun}{{42}{379}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Graph of the function $Z_p(\lambda ,\beta )$ as a function of $\lambda $ for $p=3$, $\beta =1.2$. }}{380}} \newlabel{Zpfunct2}{{3}{380}} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Graphs of the functions $Z_p(\lambda ,\beta )$ as functions of $\beta $ for $p=3$, $\lambda =n/27$. The gray regions are the gaps in the range. All these functions have a pole at $\beta =1$.}}{382}} \newlabel{Zpfunct1}{{4}{382}} \newlabel{fplambdabeta}{{43}{383}} \newlabel{zetap}{{44}{383}} \newlabel{zetap1}{{45}{383}} \newlabel{vacuumQp}{{8.19}{383}} \newlabel{sectionp}{{46}{383}} \citation{BC} \citation{CM} \citation{CMR} \citation{CCM} \@writefile{toc}{\contentsline {subsection}{\numberline {8.5}The cyclic covering $\mathaccentV {tilde}07E\Xi _{{\@mathbb Q}}$ of $\Xi _{{\@mathbb Q}}$}{384}} \newlabel{curvecoverSect}{{8.5}{384}} \newlabel{cqtilde}{{47}{384}} \newlabel{cqtildeinf}{{48}{384}} \newlabel{Xitildecover}{{8.20}{384}} \newlabel{XitildeQ}{{49}{384}} \newlabel{XitildeQT}{{50}{384}} \citation{CM} \citation{CM} \citation{CM} \citation{CM} \@writefile{toc}{\contentsline {subsection}{\numberline {8.6}Arithmetic subalgebra, Frobenius and monodromy}{385}} \newlabel{arithsubalg}{{8.6}{385}} \newlabel{iota}{{51}{385}} \newlabel{epsilonk}{{52}{385}} \newlabel{phia}{{53}{385}} \newlabel{psia}{{54}{385}} \citation{BC} \citation{CM} \citation{CMbook} \newlabel{Balgphipsi}{{8.22}{386}} \newlabel{monoN}{{55}{386}} \newlabel{mono}{{56}{386}} \newlabel{intertwin}{{57}{386}} \newlabel{Yop}{{58}{386}} \newlabel{frobend}{{59}{386}} \citation{Cons} \citation{ConsMar} \citation{ConsMar} \newlabel{Frfq}{{60}{387}} \@writefile{toc}{\contentsline {section}{\numberline {9}Functoriality of the adeles class space}{387}} \newlabel{Normmap}{{1}{387}} \citation{Weil} \citation{Weil} \citation{Weil} \@writefile{toc}{\contentsline {subsection}{\numberline {9.1}The norm map}{388}} \newlabel{AKGemb}{{2}{388}} \newlabel{explnorm}{{3}{388}} \citation{Weil-cc} \@writefile{toc}{\contentsline {subsection}{\numberline {9.2}The Weil group and the transfer map}{389}} \newlabel{nmap}{{9.2}{389}} \newlabel{CWGext}{{4}{389}} \newlabel{rulesW}{{6}{389}} \newlabel{transferhom}{{8}{389}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.3}The covering}{389}} \newlabel{acover}{{9.3}{389}} \newlabel{tautransf}{{9.1}{389}} \newlabel{tXmap}{{10}{389}} \newlabel{taumap}{{11}{390}} \newlabel{xg}{{12}{390}} \newlabel{WtauLem}{{9.2}{390}} \newlabel{leftrightact}{{13}{390}} \newlabel{tauequiv}{{14}{390}} \newlabel{rulesW2}{{15}{390}} \newlabel{Xitau}{{16}{390}} \newlabel{tauXiC1}{{17}{390}} \newlabel{awapiw}{{18}{391}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.4}The function field case}{391}} \newlabel{ff}{{9.4}{391}} \newlabel{basicext}{{19}{391}} \citation{Weil-cc} \newlabel{inclusions}{{20}{392}} \@writefile{toc}{\contentsline {section}{\numberline {10}Vanishing cycles: an analogy}{392}} \@writefile{toc}{\contentsline {subsection}{\numberline {10.1}Two real places}{393}} \newlabel{incl1}{{1}{393}} \newlabel{Sxy}{{2}{393}} \newlabel{R2Uquot}{{3}{393}} \newlabel{fxyinv}{{4}{393}} \newlabel{fxyquot}{{5}{393}} \newlabel{ftorus}{{6}{393}} \newlabel{singpieces}{{7}{393}} \newlabel{Acstar}{{8}{394}} \newlabel{Aj}{{9}{394}} \newlabel{quottoplem}{{10.1}{394}} \@writefile{toc}{\contentsline {subsection}{\numberline {10.2}A real and a non-archimedean place}{395}} \newlabel{Ainftyp}{{10}{395}} \newlabel{incl2}{{11}{395}} \newlabel{Ugr2}{{12}{395}} \newlabel{Sxy2}{{13}{395}} \newlabel{Xinftyp}{{14}{395}} \newlabel{fxyinv2}{{15}{395}} \newlabel{fxyquot2}{{16}{395}} \citation{CCM} \newlabel{singpieces2}{{17}{396}} \newlabel{gxymap}{{18}{396}} \newlabel{gxyfxy}{{19}{396}} \newlabel{Frtlog}{{20}{396}} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces The limit cycle of a foliation. }}{397}} \newlabel{hol}{{5}{397}} \bibcite{Andre}{1} \bibcite{AB}{2} \bibcite{BEK}{3} \bibcite{EB}{4} \bibcite{BC}{5} \bibcite{Co-th}{6} \bibcite{CoExt}{7} \bibcite{CoIHES}{8} \bibcite{Co94}{9} \bibcite{Co-zeta}{10} \bibcite{CCM}{11} \@writefile{toc}{\contentsline {subsection}{\numberline {10.3}Singularities of maps}{398}} \@writefile{toc}{\contentsline {section}{References}{398}} \@mtwritefile{\contentsline {mtchap}{References}{398}} \bibcite{CM}{12} \bibcite{CMbook}{13} \bibcite{CMR}{14} \bibcite{CMR2}{15} \bibcite{CoSka}{16} \bibcite{ct}{17} \bibcite{Cons}{18} \bibcite{ConsMar}{19} \bibcite{ConsMar-ff}{20} \bibcite{De}{21} \bibcite{GM}{22} \bibcite{GS}{23} \bibcite{gui}{24} \bibcite{HaPau}{25} \bibcite{Jacob}{26} \bibcite{Laca}{27} \bibcite{Man-mot}{28} \bibcite{Man-zetas}{29} \bibcite{Man1}{30} \bibcite{Man2}{31} \bibcite{Mar}{32} \bibcite{Meyer}{33} \bibcite{Riemann}{34} \bibcite{SD}{35} \bibcite{tt}{36} \bibcite{Tak}{37} \bibcite{Weil-lett}{38} \bibcite{Weil-RH}{39} \bibcite{Weil-cc}{40} \bibcite{Weil-distr}{41} \bibcite{weilpos}{42} \bibcite{weilexplicit}{43} \bibcite{Weil}{44} \immediate\closeout\minitoc