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1 Introduction

This paper explores analogies between the Weil proof of the Riemann Hy-
pothesis for function fields and the geometry of the adeles class space, which
is the noncommutative space underlying the spectral realization of the zeros
of the Riemann zeta function constructed in [10]. Our purpose is to build a
dictionary between the algebro-geometric setting of algebraic curves, divisors,
the Riemann–Roch formula, and the Frobenius map, around which the Weil
proof is built, and the world of noncommutative spaces, cyclic cohomology
and KK-theory, index formulae, and the thermodynamical notions of quan-
tum statistical mechanics, which, as we already argued in [11], provide an
analog of the Frobenius in characteristic zero via the scaling action on the
dual system.
The present work builds upon several previous results. The first input is the
spectral realization of [10], where the adeles class space was first identified
as the natural geometric space underlying the Riemann zeta function, where
the Weil explicit formula acquires an interpretation as a trace formula. In [10]
the analytic setting is that of Hilbert spaces, which provide the required pos-
itivity, but the spectral realization only involves the critical zeros. In [11], we
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provided a cohomological interpretation of the trace formula, using cyclic ho-
mology. In the setting of [11], the analysis is as developed by Ralph Meyer in
[33] and uses spaces of rapidly decaying functions instead of Hilbert spaces. In
this case, all zeros contribute to the trace formula, and the Riemann Hypoth-
esis becomes equivalent to a positivity question. This mirrors more closely the
structure of the two main steps in the Weil proof, namely the explicit formula
and the positivity Tr(Z ∗Z ′) > 0 for correspondences (see below). The second
main building block we need to use is the theory of endomotives and their
quantum statistical mechanical properties we studied in [11]. Endomotives are
a pseudo-abelian category of noncommutative spaces that naturally general-
ize the category of Artin motives. They are built from semigroup actions on
projective limits of Artin motives. The morphisms in the category of endomo-
tives generalize the notion of correspondence given by algebraic cycles in the
product used in the theory of motives to the setting of étale groupoids, to ac-
count naturally for the presence of the semigroup actions. Endomotives carry
a Galois action inherited from Artin motives and they have both an algebraic
and an analytic manifestation. The latter provides the data for a quantum
statistical mechanical system, via the natural time evolution associated by
Tomita’s theory to a probability measure carried by the analytic endomotive.
The main example that is of relevance to the Riemann zeta function is the
endomotive underlying the Bost–Connes quantum statistical mechanical sys-
tem of [5]. One can pass from a quantum statistical mechanical system to
the “dual system” (in the sense of the duality of type III and type II factors
in [6], [37]), which comes endowed with a scaling action induced by the time
evolution. A general procedure described in [11] shows that there is a “restric-
tion map” (defined as a morphism in the abelian category of modules over
the cyclic category) from the dual system to a line bundle over the space of
low temperature KMS states of the quantum statistical mechanical system.
The cokernel of this map is not defined at the level of algebras, but it makes
sense in the abelian category and carries a corresponding scaling action. We
argued in [11] that the induced scaling action on the cyclic homology of this
cokernel may be thought of as an analog of the action of Frobenius on étale
cohomology. This claim is justified by the role that this scaling action of R∗

+,

combined with the action of Ẑ∗ carried by the Bost–Connes endomotive, has
in the trace formula, see [10], [11] and §4 of [13]. Further evidence for the role
of the scaling action as Frobenius is given in [20], where it is shown that, in the
case of function fields, for a natural quantum statistical mechanical system
that generalizes the Bost–Connes system to rank one Drinfeld modules, the
scaling action on the dual system can be described in terms of the Frobenius
and inertia groups.
In the present paper we continue along this line of thought. We begin by re-
viewing the main steps in the Weil proof for function fields, where we highlight
the main conceptual steps and the main notions that will need an analog in
the noncommutative geometry setting. We conclude this part by introducing
the main entries in our still tentative dictionary. The rest of the paper dis-
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cusses in detail some parts of the dictionary and provides evidence in support
of the proposed comparison. We begin this part by recalling briefly the prop-
erties of the Bost–Connes endomotive from [11] followed by the description of
the “restriction map” corresponding to the inclusion of the ideles class group
CK = A∗

K/K
∗ in the noncommutative adeles class space XK = AK/K

∗. We
discuss its relation to the exact sequence of Hilbert spaces of [10] that plays a
crucial role in obtaining the spectral realization as an “absorption spectrum”.
We then concentrate on the geometry of the adeles class space over an arbi-
trary global field and the restriction map in this general setting, viewed as a
map of cyclic modules. We introduce the actions ϑa and ϑm (with a and m
respectively for additive and multiplicative) of A∗

K on suitable function spaces
on AK and on CK and the induced action on the cokernel of the restriction map
in the category of cyclic modules. We prove the corresponding general form
of the associated Lefschetz trace formula, as a cohomological reformulation of
the trace formula of [10] using the analytical setting of [33].
The form of the trace formula and the positivity property that is equivalent,
in this setting, to the Riemann Hypothesis for the corresponding L-functions
with Grössencharakter, suggest by comparison with the analogous notions in
the Weil proof a natural candidate for the analog of the Frobenius correspon-
dence on the curve. This is given by the graph of the scaling action. We can
also identify the analog of the degree and co-degree of a correspondence, and
the analog of the self intersection of the diagonal on the curve, by looking at
the explicit form of our Lefschetz trace formula. We also have a clear analog
of the first step in the Weil proof of positivity, which consists of adjusting the
degree by multiples of the trivial correspondences. This step is possible, with
our notion of correspondences, due to a subtle failure of Fubini’s theorem that
allows us to modify the degree by adding elements in the range of the “re-
striction map”, which play in this way the role of the trivial correspondences.
This leaves open the more difficult question of identifying the correct analog
of the principal divisors, which is needed in order to continue the dictionary.
We then describe how to obtain a good analog of the algebraic points of the
curve in the number field case (in particular in the case of K = Q), in terms
of the thermodynamical properties of the system. This refines the general
procedure described in [11]. In fact, after passing to the dual system, one can
consider the periodic orbits. We explain how, by the result of [10], these are
the noncommutative spaces where the geometric side of the Lefschetz trace
formula concentrates. We show that, in turn, these periodic orbits carry a
time evolution and give rise to quantum statistical mechanical systems, of
which one can consider the low temperature KMS states. To each periodic
orbit one can associate a set of “classical points” and we show that these arise
as extremal low temperature KMS states of the corresponding system. We
show that, in the function field case, the space obtained in this way indeed
can be identified, compatibly with the Frobenius action, with the algebraic
points of the curve, albeit by a non-canonical identification. Passing to the
dual system is the analog in characteristic zero of the transition from Fq to
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its algebraic closure F̄q. Thus, the procedure of considering periodic orbits in
the dual system and classical points of these periodic orbits can be seen as an
analog, for our noncommutative space, of considering points defined over the
extensions Fqn of Fq in the case of varieties defined over finite fields (cf. [11]
and §4 of [13]).
We analyze the behavior of the adeles class space under field extensions and
the functoriality question. We then finish the paper by sketching an analogy
between some aspects of the geometry of the adeles class spaces and the theory
of singularities, which may be useful in adapting to this context some of the
techniques of vanishing and nearby cycles.

2 A look at the Weil proof

In this preliminary section, we briefly review some aspects of the Weil proof
of the Riemann Hypothesis for function fields, with an eye on extending some
of the basic steps and concept to a noncommutative framework, which is what
we will be doing in the rest of the paper.

In this section we let K be a global field of positive characteristic p > 0. One
knows that, in this case, there exists a smooth projective curve over a finite
field Fq, with q = pr for some r ∈ N, such that

K = Fq(C) (1)

is the field of functions of C. For this reason, a global field of positive charac-
teristic is called a function field.

We denote by ΣK the set of places of K. A place v ∈ ΣK is a Galois orbit of
points of C(F̄q). The degree nv = deg(v) is its cardinality, namely the number
of points in the orbit of the Frobenius acting on the fiber of the natural map
from points to places

C(F̄q) → ΣK. (2)

This means that the fiber over v consists of nv conjugate points defined over
Fqnv , the residue field of the local field Kv.

The curve C over Fq has a zeta function of the form

ZC(T ) = exp

(
∞∑

n=1

#C(Fqn)

n
T n

)
, (3)

with logZC(T ) the generating function for the number of points of C over the
fields Fqn . It is customary to use the notation

ζK(s) = ζC(s) = ZC(q−s). (4)

It converges for ℜ(s) > 1. In terms of Euler product expansions one writes
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ζK(s) =
∏

v∈ΣK

(1 − q−nvs)−1. (5)

In terms of divisors of C, one has equivalently

ζK(s) = ζC(s) =
∑

D≥0

N(D)−s, (6)

where the norm of the divisor D is N(D) = qdeg(D).

The Riemann–Roch formula for the curve C states that

ℓ(D) − ℓ(κC −D) = deg(D) − g + 1, (7)

where κC is the canonical divisor on C, with degree deg(κC) = 2g − 2 and
h0(κC) = g, and ℓ(D) the dimension of H0(D). Both deg(D) and N(D) are
well defined on the equivalence classes obtained by adding principal divisors,
that is,

D ∼ D′ ⇐⇒ D −D′ = (f), (8)

for some f ∈ K∗. The Riemann–Roch formula (7) also implies that the zeta
function ζK(s) satisfies the functional equation

ζK(1 − s) = q(1−g)(1−2s)ζK(s). (9)

The zeta function ζK(s) can also be written as a rational function

ZC(T ) =
P (T )

(1 − T )(1 − qT )
, T = q−s , (10)

where P (T ) is a polynomial of degree 2g and integer coefficients

P (T ) =

2g∏

j=1

(1 − λjT ). (11)

In particular, one has

#C(Fqn) = qn + 1 −
2g∑

j=1

λj . (12)

Another important reformulation of the zeta function can be given in terms
of étale cohomology. Namely, the coefficients #C(Fqn) that appear in the zeta
function can be rewritten as

#C(Fqn) = #Fix(Frn : C̄ → C̄) (13)

with C̄ = C ⊗Fq
F̄q. The Lefschetz fixed point formula for étale cohomology

then shows that
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#C(Fqn) =

2∑

i=0

(−1)iTr
(
Frn|Hi

et(C̄,Qℓ)
)
. (14)

Thus, the zeta function can be written in the form

ζK(s) =

2∏

i=0

(
exp

(
∞∑

n=1

Tr(Frn|Hi
et(C̄,Qℓ))

q−sn

n

))(−1)i

. (15)

The analog of the Riemann hypothesis for the zeta functions ζK(s) of function
fields was stated in 1924 by E. Artin as the property that the zeros lie on the
line ℜ(s) = 1/2. Equivalently, it states that the complex numbers λj of (11),
which are the eigenvalues of the Frobenius acting on H1

et(C̄,Qℓ), are algebraic
numbers satisfying

|λj | =
√
q. (16)

The Weil proof can be formulated either using étale cohomology, or purely in
terms of the Jacobian of the curve, or again (equivalently) in terms of divisors
on C × C. We follow this last viewpoint and we recall in detail some of the
main steps in the proof.

2.1 Correspondences and divisors

Correspondences Z, given by (non-vertical) divisors on C × C, form a ring
under composition

Z1 ⋆ Z2 = (p13)∗(p
∗
12Z1 • p∗23Z2), (17)

with pij : C×C×C → C×C the projections, and • the intersection product.
The ring has an involution

Z ′ = σ(Z) (18)

where σ is the involution that exchanges the two copies of C in the product
C × C.

The degree d(Z) and the codegree d′(Z) are defined as the intersection num-
bers

d(Z) = Z • (P × C) and d′(Z) = Z • (C × P ), ∀P ∈ C. (19)

They satisfy the relations

d(Z ′) = d′(Z), and d(Z1 ⋆ Z2) = d(Z1)d(Z2). (20)

The correspondences P × C and C × P are called trivial correspondences.
One can consider the abelian group Divtr(C × C) generated by these trivial
correspondence and take the quotient
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C(C) := Div(C × C)/Divtr(C × C). (21)

It is always possible to change the degree and codegree of a correspondence
Z by adding a multiple of the trivial correspondences P × C and C × P , so
that, for any element in C we find a representative Z ∈ Corr with

d(Z) = d′(Z) = 0. (22)

One also wants to consider correspondences up to linear equivalence,

Z1 ∼ Z2 ⇐⇒ Z1 − Z2 = (f), (23)

where (f) is a principal divisor on C × C. Thus, one can consider

Pic(C × C) = Div(C × C)/ ∼

and its quotient P(C) modulo the classes of the trivial correspondences.

A correspondence Z is effective if it is given by an effective divisor on C ×
C, namely if it is a combination Z =

∑
i niZi of curves Zi ⊂ C × C with

coefficients ni ≥ 0. We write Z ≥ 0 to mean its effectiveness. An effective
correspondence Z ≥ 0 that is nonempty can be viewed as a multivalued map

Z : C → C, P 7→ Z(P ), (24)

with Z(P ) = projC(Z • (P × C)), of which the divisor is the graph and with
the product (17) given by the composition.

The trace of a correspondence Z on C × C is the expression

Tr(Z) = d(Z) + d′(Z) − Z •∆, (25)

with ∆ the diagonal (identity correspondence) and • the intersection product.
This is well defined on P(C) since Tr(Z) = 0 for principal divisors and trivial
correspondences.

Consider a correspondence of degree g of the form Z =
∑
anFrn, given by

a combination of powers of the Frobenius. Then Z can be made effective
by adding a principal correspondence which is defined over Fq and which
commutes with Fr.

This can be seen as follows. The Riemann–Roch theorem ensures that one can
make Z effective by adding a principal correspondence, over the field k(P ),
where k is the common field of definition of the correspondence Z and of
the curve (cf. [35]) and P is a generic point. A correspondence of the form
Z =

∑
anFrn is in fact defined over Fq hence the principal correspondence is

also defined over Fq. As such it automatically commutes with Fr (cf. [38], p.
287).

Notice however that, in general, it is not possible to modify a divisor D of
degree one on C to an effective divisor in such a way that the added pricipal
divisor has support on the same Frobenius orbit. An illustrative example is
given in Chapter 4 of [13].
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2.2 The explicit formula

The main steps in the Weil proof of RH for function fields are

1. The explicit formula
2. Positivity

Let K be a global field and let AK denote its ring of adeles. Let ΣK denote
the set of places of K. Let α be a non-trivial character of AK which is trivial
on K ⊂ AK. We write

α =
∏

v∈ΣK

αv, (26)

for the decomposition of α as a product of its restrictions to the local fields
αv = α|Kv

.
Consider the bicharacter

〈z, λ〉 := λz , for (z, λ) ∈ C × R∗
+. (27)

Let N denote the range of the norm | · | : CK → R∗
+. Then N⊥ ⊂ C denotes

the subgroup
N⊥ := {z ∈ C|λz = 1, ∀λ ∈ N}. (28)

Consider then the expression

∑

ρ∈C/N⊥|L(χ̃,ρ)=0

f̂(χ̃, ρ), (29)

with L(χ̃, ρ) the L-function with Grössencharakter χ, where χ̃ denotes the

extension to CK of the character χ ∈ ĈK,1, the Pontrjagin dual of CK,1. Here

f̂(χ̃, ρ) denotes the Fourier transform

f̂(χ̃, ρ) =

∫

CK

f(u)χ̃(u) |u|ρ d∗u (30)

of a test function f in the Schwartz space S(CK).
In the case where N = qZ (function fields), the subgroup N⊥ is nontrivial and
given by

N⊥ =
2πi

log q
Z. (31)

Since in the function field case the L-fuctions are functions of q−s, there is a
periodicity by N⊥, hence we need to consider only ρ ∈ C/N⊥. In the number
field case this does not matter, since N = R∗

+ and N⊥ is trivial.
The Weil explicit formula is the remarkable identity [43]

ĥ(0) + ĥ(1) −
∑

ρ∈C/N⊥|L(χ̃,ρ)=0

ĥ(χ̃, ρ) =
∑

v∈ΣK

∫ ′

(K∗
v,αv)

h(u−1)

|1 − u| d
∗u. (32)
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Here the Fourier transform ĥ is as in (30). The test function h has compact
support and belongs to the Schwartz space S(CK). As soon as h(1) 6= 0 the
integrals in the right hand side are singular so that one needs to specify how
to take their principal value. This was done in [43] and it was shown in [10]
that the same principal value can in fact be defined in the following unified
way.

Definition 2.1. For a local field K and a given (non-trivial) additive charac-
ter β of K, one lets ̺β denote the unique distribution extending d∗u at u = 0,
whose Fourier transform

ˆ̺(y) =

∫

K

̺(x)β(xy) dx (33)

satisfies the vanishing condition ˆ̺(1) = 0.

Then by definition the principal value
∫ ′

is given by

∫ ′

(K,β)

f(u−1)

|1 − u| d
∗u = 〈̺β , g〉, with g(λ) =

f((λ+ 1)−1)

|λ+ 1| , (34)

where 〈̺β , g〉 denotes the pairing of the distribution ̺β and the function g(λ).
This makes sense provided the support of f is compact which implies that
g(λ) vanishes identically in a neighborhood of λ = −1.
The Weil explicit formula is a far reaching generalization of the relation be-
tween primes and zeros of the Riemann zeta function, originally due to Rie-
mann [34].

2.3 Riemann–Roch and positivity

Weil positivity is the statement that, if Z is a nontrivial correspondence in
P(C) (i.e. as above a correspondence on C × C modulo trivial ones and up
to linear equivalence), then

Tr(Z ⋆ Z ′) > 0. (35)

This is proved using the Riemann–Roch formula on C to show that one can
achieve effectivity. In fact, using trivial correspondences to adjust the degree
one can assume that d(Z) = g. Then the Riemann–Roch formula (7) shows
that if D is a divisor on C of degree deg(D) = g then there are effective
representatives in the linear equivalence class of D. The intersection of Z ⊂
C × C with P × C defines a divisor Z(P ) on C with

deg(Z(P )) = d(Z) = g.

Thus, the argument above shows that there exists fP ∈ K∗ such that Z(P ) +
(fP ) is effective. This determines an effective divisor Z + (f) on C × C.
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Thus, we can assume that Z is effective, hence we can write it as a multivalued
function

P 7→ Z(P ) = Q1 + · · · +Qg. (36)

The product Z ⋆ Z ′ is of the form

Z ⋆ Z ′ = d′(Z)∆+ Y, (37)

where ∆ is the diagonal in C ×C and Y is the effective correspondence such
that Y (P ) is the divisor on C given by the sum of points in

{Q ∈ C|Q = Qi(P ) = Qj(P ), i 6= j}.

One sees this from the description in terms of intersection product that it is
given by the multivalued function

(Z ⋆ Z ′)(Q) =
∑

i,j

∑

P∈Uij(Q)

P, (38)

where
Uij(Q) = {P ∈ C|Qi(P ) = Qj(P ) = Q}.

One can separate this out in the contribution of the locus where Qi = Qj for
i 6= j and the part where i = j,

(Z ⋆ Z ′)(Q) = U(Q) + Y (Q).

Notice that

#{P ∈ C|Q = Qi(P ), for some i = 1, . . . , g} = d′(Z). (39)

Thus, for i = j we obtain that the divisor U(Q) =
∑

i

∑
P∈Uii(Q) P is just

d′(Z)∆(Q), while for i 6= j one obtains the remaining term Y of (37).

In the case g = 1, the effective correspondence Z(P ) = Q(P ) is single valued
and the divisor (Z ⋆ Z ′)(P ) of (38) reduces to the sum of points in

U(Q) = {P ∈ C|Q(P ) = Q}.

There are d′(Z) such points so one obtains

Z ⋆ Z ′ = d′(Z)∆, with Tr(Z ⋆ Z ′) = 2d′(Z) ≥ 0, (40)

since for g = 1 one has ∆ •∆ = 0 and d′(Z) ≥ 0 since Z is effective.

In the case of genus g > 1, the Weil proof proceeds as follows. Let κC be a
choice of an effective canonical divisor for C without multiple points, and let
{f1, . . . , fg} be a basis of the space H0(κC). One then considers the function
C →Mg×g(Fq) to g × g matrices
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P 7→M(P ), with Mij(P ) = fi(Qj(P )). (41)

and the function K : C → Fq given by

K(P ) = det(M(P ))2. (42)

The function P 7→ K(P ) of (42) is a rational function with (2g − 2)d′(Z)
double poles. In fact, K(P ) is a symmetric function of the Qj(P ), because of
the squaring of the determinant. The composition P 7→ (Qj(P )) 7→ K(P ) is
then a rational function of P ∈ C. The poles occur (as double poles) at those
points P ∈ C for which some Qi(P ) is a component of κC . The canonical
divisor κC has degree 2g − 2. This means that there are (2g − 2)d′(Z) such
double poles.

For Z ⋆ Z ′ = d′(Z)∆ + Y as above, the intersection number Y • ∆ satisfies
the estimate

Y •∆ ≤ (4g − 4) d′(Z). (43)

In fact, the rational function K(P ) of (42) has a number of zeros equal to
(4g − 4) d′(Z). On the other hand, Y • ∆ counts the number of times that
Qi = Qj for i 6= j. Since each point P with Qi(P ) = Qj(P ) for i 6= j produces
a zero of K(P ), one sees that Y •∆ satisfies the estimate (43). Notice that,
for genus g > 1 the self intersection of the diagonal is the Euler characteristic

∆ •∆ = 2 − 2g = χ(C). (44)

Moreover, we have

d(Z ⋆ Z ′) = d(Z)d′(Z) = g d′(Z) = d′(Z ⋆ Z ′). (45)

Thus, using again the decomposition (37) and the definition of the trace of a
correspondence (25), together with (44) and (45) one obtains

Tr(Z ⋆ Z ′) = 2g d′(Z) + (2g − 2) d′(Z) − Y •∆

≥ (4g − 2) d′(Z) − (4g − 4) d′(Z) = 2d′(Z) ≥ 0.
(46)

This gives the positivity (35).

In the Weil proof of RH for function fields, one concentrates on a particular
type of correspondences, namely those that are of the form

Zn,m = m∆+ nFr, (47)

for n,m ∈ Z, with Fr the Frobenius correspondence.

Notice that, while the correspondence depends linearly on n,m ∈ Z, the
expression for the trace gives

Tr(Zn,m ⋆ Z ′
n,m) = 2gm2 + 2(1 + q −N)mn+ 2gqn2, (48)
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where N = #C(Fq). In particular, (48) depends quadratically on (n,m).
In the process of passing from a correspondence of degree g to an effective
correspondence, this quadratic dependence on (n,m) is contained in the mul-
tiplicity d′(Z). Notice, moreover, that the argument does not depend on the
torsion part of the ring of correspondences.

2.4 A tentative dictionary

In the rest of the paper we illustrate some steps towards the creation of a
dictionary relating the main steps in the Weil proof described above to the
noncommutative geometry of the adeles class space of a global field. The
noncommutative geometry approach has the advantage that it provides (see
[10], [33], [11]) a Lefschetz trace formula interpretation for the Weil explicit
formula and that it gives a parallel formulation for both function fields and
number fields. Parts of the dictionary sketched below are very tentative at
this stage, so we mostly concentrate, in the rest of the paper, on illustrating
what we put in the first few lines of the dictionary, on the role of the scaling
correspondence as Frobenius and its relation to the explicit formula.
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Frobenius correspondence Z(f) =
∫

CK
f(g)Zg d

∗g

Trivial correspondences Elements of the range V

Adjusting the degree Fubini step
by trivial correspondences on the test functions

Correspondences Bivariant elements Z(f) ⇒ Γ (f)

Degree of a correspondence Pointwise index

Riemann–Roch Index theorem

Effective correspondences Epimorphism of C∗-modules

degZ(P ) ≥ g ⇒ Z + (f) effective d(Γ ) > 0 ⇒ Γ +K onto

Lefschetz formula Bivariant Chern of Γ (f)
(by localization on the graph Z(f))

3 Quantum statistical mechanics and arithmetic

The work of Bost–Connes [5] first revealed the presence of an interesting inter-
play between quantum statistical mechanics and Galois theory. More recently,
several generalizations [12], [14], [15], [11], [20], [25], [26] have confirmed and
expanded this viewpoint. The general framework of interactions between non-
commutative geometry and number theory described in [30], [31], [13], [32]
recast these phenomena into a broader picture, of which we explore in this
paper but one of many facets.
The basic framework that combines quantum statistical mechanics and Galois
theory can be seen as an extension, involving noncommutative spaces, of the
category of Artin motives. In the setting of pure motives (see [28]), Artin
motives correspond to the subcategory generated by zero dimensional objects,
with morphisms given by algebraic cycles in the product (in this case without
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the need to specify with respect to which equivalence relation). Endomotives
were introduced in [11] as noncommutative spaces of the form

AK = A⋊ S, (1)

where A is an inductive limit of reduced finite dimensional commutative alge-
bras over the field K, i.e. a projective limit of Artin motives, and S is a unital
abelian semigroup of algebra endomorphisms ρ : A → A. The crossed prod-
uct (1) is obtained by adjoining to A new generators Uρ and U∗

ρ , for ρ ∈ S,
satisfying the relations

U∗
ρUρ = 1, UρU

∗
ρ = ρ(1), ∀ρ ∈ S

Uρ1 ρ2 = Uρ1 Uρ2 , U
∗
ρ2 ρ1

= U∗
ρ1
U∗

ρ2
, ∀ρ1, ρ2 ∈ S

Uρ a = ρ(a)Uρ, a U∗
ρ = U∗

ρ ρ(a), ∀ρ ∈ S, ∀a ∈ A.

(2)

The algebras (1) have the following properties: the algebra A is unital; the
image e = ρ(1) ∈ A is an idempotent, for all ρ ∈ S; each ρ ∈ S is an isomor-
phism of A with the compressed algebra eAe. A general construction given in
[11] based on self maps of algebraic varieties provides a large class of examples
over different fields K. We are mostly interested here in the case where K is
a number field and for part of our discussion below we will concentrate on a
special case (the Bost–Connes endomotive) over the field K = Q.
Endomotives form a pseudo-abelian category where morphisms are correspon-
dences given by AK–BK-bimodules that are finite and projective as right mod-
ules. These define morphisms in the additive KK-category and in the abelian
category of cyclic modules. In fact, in addition to the algebraic form described
above, endomotives also have an analytic structure given by considering, in-
stead of the K-algebra (1) the C∗-algebra

C(X) ⋊ S, (3)

where X denotes the totally disconnected Hausdorff space X = X(K̄) of al-
gebraic points of the projective limit of Artin motives. This follows by first
showing that the semigroup S acts by endomorphisms of the C∗-algebra of
continuous functions C(X) and then passing to the norm completion of the
algebraic crossed product as in the general theory of semi-groups crossed prod-
uct C∗-algebras (see [27]; see also [13], Chapter 4, §2.2). The C∗-completion
is taken with respect to the norm

‖f‖ = sup
x∈X

‖πx(f)‖, (4)

where, for each x ∈ X , one lets πx be the representation by left convolution
on the Hilbert space ℓ2(Gx) of the countable fiber Gx over x ∈ X of the source
map of the groupoid G associated to the action of S on X .
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There is a canonical action of the Galois group G = Gal(K̄/K) by auto-
morphisms of the C∗-algebra (3) globally preserving C(X), coming from the
action by composition of G on X(K̄) = Hom(A, K̄). We refer the reader to
[11] for a more detailed discussion of algebraic and analytic endomotives and
the properties of morphisms in the corresponding categories.
If the endomotive is “uniform” in the sense specified in [11], the space X
comes endowed with a probability measure µ that induces a state ϕ on the
C∗-algebra (3). The general Tomita theory of modular automorphism groups
in the context of von Neumann algebras [36] shows that there is a natural
time evolution for which the state ϕ is KMS1. We refer the reader to Chapter
4 §4.1 of [13] for a more detailed discussion of this step and the necessary von
Neumann algebra background. Here theKMS1 condition means the following.
Given a system of an algebra of observable with a time evolution, there is a
good notion of thermodynamic equilibrium states given by the KMS condition.
A state on a unital C∗-algebra is a continuous linear functional ϕ : A → C

with ϕ(1) = 1 and ϕ(a∗a) ≥ 0 for all a ∈ A. The KMS condition at inverse
temperature β for a state ϕ is the property that, for all a, b ∈ A there exists
a function Fa,b(z), which is holomorphic on the strip Iβ = {z ∈ C | 0 <
ℑ(z) < β} ⊂ C and continuous on Iβ ∪ ∂Iβ , satisfying Fa,b(t) = ϕ(aσt(b))
and Fa,b(t+ iβ) = ϕ(σt(b)a), for all t ∈ R. For a more detailed account of the
quantum statistical mechanical formalism, the notion of KMS state and the
properties of such states, we refer the reader to Chaper 3 of [13], §2.
One can then consider the set Ωβ of low temperature (large β) KMS states
for the same quantum statistical mechanical system obtained from a uniform
endomotive in the way described above.
One also associates to the system (A, σ) of the C∗-algebra with the time
evolution its dual system (Â, θ), where the algebra Â = A⋊σ R is obtained by
taking the crossed product with the time evolution and θ is the scaling action
of R∗

+

θλ(

∫
x(t)Ut dt) =

∫
λit x(t)Ut dt. (5)

One then constructs an R∗
+ equivariant map

π : Âβ → C(Ω̃β ,L1), (6)

from a suitable subalgebra Âβ ⊂ Â of the dual system to functions on a

principal R∗
+-bundle Ω̃β over the low temperature KMS states of the system,

with values in trace class operators. Since traces define morphisms in the cyclic
category, the map (6) can be used to construct a morphism δ = (Tr ◦ π)♮ at
the level of cyclic modules

Â♮
β

(Tr◦π)♮

−→ C(Ω̃β)♮. (7)

This map can be loosely thought of as a “restriction map” corresponding
to the inclusion of the “classical points” in the noncommutative space. One
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can then consider the cokernel of this map in the abelian category of cyclic
modules. In [11] we denoted the procedure described above “cooling and dis-
tillation” of endomotives. We refer the reader to [11] for the precise technical
hypotheses under which this procedure can be performed. Here we only gave
an impressionistic sketch aimed at recalling briefly the main steps involved.

3.1 The Bost–Connes endomotive

The main example of endomotive we will consider here in relation to the
geometry of the adeles class space is the Bost–Connes system. This can be
constructed as an endomotive over K = Q, starting from the projective system
Xn = Spec(An), with An = Q[Z/nZ] the group ring of Z/nZ. The inductive
limit is the group ring A = Q[Q/Z] of Q/Z. The endomorphism ρn associated
to an element n ∈ S of the (multiplicative) semigroup S = N = Z>0 is given
on the canonical basis er ∈ Q[Q/Z], r ∈ Q/Z, by

ρn(er) =
1

n

∑

ns=r

es (8)

The corresponding analytic endomotive is the crossed product C∗-algebra

A = C∗(Q/Z) ⋊ N.

The Galois action is given by composing a character χ : An → Q̄ with an
element g of the Galois group G = Gal(Q̄/Q). Since χ is determined by the
n-th root of unity χ(e1/n), one obtains the cyclotomic action.
In the case of the Bost–Connes endomotive, the state ϕ on A induced by the
measure µ on X = Ẑ is of the form

ϕ(f) =

∫

Ẑ

f(1, ρ) dµ(ρ), (9)

and the modular automorphism group restricts to the C∗-algebra as the time
evolution of the BC system, cf. [5], [11] and §4 of [13].
The dual system of the Bost–Connes system is best described in terms of com-
mensurability classes of Q-lattices. In [12] the Bost–Connes system is reinter-
preted as the noncommutative space describing the relation of commensura-
bility for 1-dimensional Q-lattices up to scaling. One can also consider the
same equivalence relation without dividing out by the scaling action. If we let
G1 denote the groupoid of the commensurability relation on 1-dimensional Q-
lattices and G1/R

∗
+ the one obtained after moding out by scaling, we identify

the C∗-algebra of the Bost–Connes system with C∗(G1/R
∗
+) (cf. [12]). The

algebra Â of the dual system is then obtained in the following way (cf. [11]).
There is a C∗-algebra isomorphism ι : Â → C∗(G1) of the form

ι(X)(k, ρ, λ) =

∫

R

x(t)(k, ρ)λit dt (10)

for (k, ρ, λ) ∈ G1 and X =
∫
x(t)Ut dt ∈ Â.
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3.2 Scaling as Frobenius in characteristic zero

In the general setting described in [11] one denotes by D(A, ϕ) the cokernel
of the morphism (7), viewed as a module in the cyclic category. The notation
is meant to recall the dependence of the construction on the initial data of
an analytic endomotive A and a state ϕ. The cyclic module D(A, ϕ) inherits
a scaling action of R∗

+ and one can consider the induced action on the cyclic
homology HC0(D(A, ϕ)). We argued in [11] that this cyclic homology with
the induced scaling action plays a role analogous to the role played by the
Frobenius action on étale cohomology in the algebro-geometric context. Our
main supporting evidence is the Lefschetz trace formula for this action that
gives a cohomological interpretation of the spectral realization of the zeros of
the Riemann zeta function of [10]. We return to discuss the Lefschetz trace
formula for the more general case of global fields in §6 below.

The main results of [10] show that we have the following setup. There is an
exact sequence of Hilbert spaces

0 → L2
δ(AQ/Q

∗)0 → L2
δ(AQ/Q

∗) → C2 → 0, (11)

which defines the subspace L2
δ(AQ/Q

∗)0 by imposing the conditions f(0) = 0

and f̂(0) = 0 and a suitable decay condition imposed by the weight δ. The
space L2

δ(AQ/Q
∗)0 fits into another exact sequence of Hilbert spaces of the

form
0 → L2

δ(AQ/Q
∗)0

E→ L2
δ(CQ) → H → 0 (12)

where the map E is defined by

E(f)(g) = |g|1/2
∑

q∈Q∗

f(qg), ∀g ∈ CQ = A∗
Q/Q

∗. (13)

The map is equivariant with respect to the actions of CQ i.e.

E ◦ ϑa(γ) = |γ|1/2ϑm(γ) ◦ E (14)

where (ϑa(γ)ξ)(x) = ξ(γ−1x) for ξ ∈ L2
δ(AQ/Q

∗)0 and similarly ϑm(γ) is the
regular representation of CK.

We showed in [11] that the map E, translated from the context of Hilbert
spaces to that of nuclear spaces as in [33], has a natural interpretation in
terms of the “cooling and distillation process” for the BC endomotive. In fact,
we showed in [11] that, if (A, σ) denotes the BC system, then the following
properties hold.

1. For β > 1 there is a canonical isomorphism

Ω̃β ≃ Ẑ∗ × R∗
+ ≃ CQ (15)

of Ω̃β with the space of invertible 1-dimensional Q-lattices.
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2. For X ∈ Â and f = ι(X) ∈ C∗(G1), the cooling map (7) takes the form

δ(X)(u, λ) =
∑

n∈N=Z>0

f(1, nu, nλ), ∀(u, λ) ∈ CQ ≃ Ω̃β . (16)

One can compare directly the right hand side of (16) with the map E (up
to the normalization by |j|1/2) written as in (13) by considering a function
f(ρ, v) = f(1, ρ, v) and its unique extension f̃ to adeles where f is extended

by 0 outside Ẑ × R∗ and one requires the parity

f̃(−u,−λ) = f(u, λ) . (17)

This gives then

∑

n∈N

f(1, nu, nλ) =
1

2

∑

q∈Q∗

f̃(q j), where j = (u, λ) ∈ CQ. (18)

4 The adeles class space

Let K be a global field, with AK its ring of adeles.

Definition 4.1. The adeles class space of a global field K is the quotient
AK/K

∗.

When viewed from the classical standpoint this is a “bad quotient” due to the
ergodic nature of the action which makes the quotient ill behaved topolog-
ically. Thus, following the general philosophy of noncommutative geometry,
we describe it by a noncommutative algebra of coordinates, which allows one
to continue to treat the quotient as a “nice quotient” in the context of non-
commutative geometry.
A natural choice of the algebra is the cross product

C0(AK) ⋊ K∗ with the smooth subalgebra S(AK) ⋊ K∗. (1)

A better description can be given in terms of groupoids.
Consider the groupoid law GK = K∗ ⋉ AK given by

(k, x) ◦ (k′, y) = (kk′, y), ∀k, k′ ∈ K∗, and ∀x, y ∈ AK with x = k′y, (2)

with the composition (2) defined whenever the source s(k, x) = x agrees with
the range r(k′, y) = k′y.

Lemma 4.2. The algebras (1) are, respectively, the groupoid C∗-algebra C∗(GK)
and its dense subalgebra S(GK).
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Proof. The product in the groupoid algebra is given by the associative con-
volution product

(f1 ∗ f2) (k, x) =
∑

s∈K∗

f1(k s
−1, s x)f2(s, x), (3)

and the adjoint is given by f∗(k, x) = f(k−1, k x).
The functions (on the groupoid) associated to f ∈ S(AK) and Uk are given,
respectively, by

f(1, x) = f(x) and f(k, x) = 0 ∀k 6= 1

Uk(k, x) = 1 and Ug(k, x) = 0 ∀g 6= k.
(4)

The product f Uk is then the convolution product of the groupoid.

The algebra S(GK) is obtained by considering finite sums of the form
∑

k∈K∗

fk Uk, for fk ∈ S(AK). (5)

The product is given by the convolution product

(Uk f U
∗
k )(x) = f(k−1x), (6)

for f ∈ S(AK), k ∈ K∗, and x ∈ AK.

4.1 Cyclic module

We can associate to the algebra S(GK) of the adeles class space an object in
the category of Λ-modules. This means that we consider the cyclic module
S(GK)♮ and the two cyclic morphisms

εj : S(GK)♮ → C (7)

given by

ε0(
∑

fk Uk) = f1(0) and ε1(
∑

fk Uk) =

∫

AK

f1(x) dx (8)

and in higher degree by

ε♮
j(a

0 ⊗ · · · ⊗ an) = εj(a
0 · · · an). (9)

The morphism ε1 is given by integration on AK with respect to the additive
Haar measure. This is K∗ invariant, hence it defines a trace on S(GK). In the
case of K = Q, this corresponds to the dual trace τϕ for the KMS1-state ϕ
associated to the time evolution of the BC system. The morphism ε0 here
takes into account the fact that we are imposing a vanishing condition at
0 ∈ AK (cf. [11] and [13] Chapter 4). In fact, the Λ-module we associate to
S(GK) is given by

S(GK)♮
0 := Ker ε♮

0 ∩ Ker ε♮
1. (10)

Note that since S(GK) is non-unital, the cyclic module S(GK)♮ is obtained
using the adjunction of a unit to S(GK).
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4.2 The restriction map

Consider the ideles A∗
K = GL1(AK) of K with their natural locally compact

topology induced by the map

A∗
K ∋ g 7→ (g, g−1). (11)

We can see the ideles class group CK = A∗
K/K

∗ as a subspace of the adeles
class space XK = AK/K

∗ in the following way.

Lemma 4.3. The pairs ((k, x), (k′, y)) ∈ GK such that both x and y are in A∗
K

form a full subgroupoid of GK which is isomorphic to K∗ ⋉ A∗
K.

Proof. Elements of AK whose orbit under the K∗ action contains an idele are
also ideles. Thus, we obtain a groupoid that is a full subcategory of GK.

This implies the existence of a restriction map. Consider the map

ρ : S(AK) ∋ f 7→ f |A∗

K
. (12)

We denote by Cρ(A
∗
K) ⊂ C(A∗

K) the range of ρ.

Corollary 4.4. The restriction map ρ of (12) extends to an algebra homo-
morphism

ρ : S(GK) → Cρ(A
∗
K) ⋊ K∗. (13)

Proof. The map (12) induced by the inclusion A∗
K ⊂ AK is continuous and K∗

equivariant hence the map

ρ(
∑

k∈K∗

fk Uk) =
∑

k∈K∗

ρ(fk)Uk

is an algebra homomorphism.

The action of K∗ on A∗
K is free and proper so that we have an equivalence of

the locally compact groupoids K∗ ⋉ A∗
K and A∗

K/K
∗ = CK. We use the exact

sequence of locally compact groups

1 → K∗ → A∗
K

p→ CK → 1 (14)

to parameterize the orbits of K∗ as the fibers p−1(x) for x ∈ CK. By construc-
tion the Hilbert spaces

Hx = ℓ2(p−1(x)) , ∀x ∈ CK (15)

form a continuous field of Hilbert spaces over CK. We let L1(Hx) be the
Banach algebra of trace class operators in Hx, these form a continuous field
over CK.
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Proposition 4.5. The restriction map ρ of (12) extends to an algebra homo-
morphism

ρ : S(GK) → C(CK,L1(Hx)) . (16)

Proof. Each p−1(x) is globally invariant under the action of K∗ so the crossed
product rules in Cρ(A

∗
K) ⋊ K∗ are just multiplication of operators in Hx. To

show that the obtained operators are in L1 we just need to consider monomials
fk Uk. In that case the only non-zero matrix elements correspond to k = xy−1.
It is enough to show that, for any f ∈ S(AK), the function k 7→ f(k b) is
summable. This follows from the discreteness of bK ⊂ AK and the construction
of the Bruhat–Schwartz space S(AK), cf. [10]. In fact the associated operator
is of finite rank when f has compact support. In general what happens is
that the sum will look like the sum over Z of the values f(nb) of a Schwartz
function f on R.

In general the exact sequence (14) does not split and one does not have
a natural CK-equivariant trivialization of the continuous field Hx. Thus it
is important in the general case to keep the nuance between the algebras
C(CK,L1(Hx)) and C(CK). We shall first deal with the special case K = Q in
which this issue does not arise.

4.3 The Morita equivalence and cokernel for K = Q

The exact sequence (14) splits for K = Q and admits a natural continuous
section which corresponds to the open and closed fundamental domain ∆Q =

Ẑ∗ × R∗
+ ⊂ A∗

Q for the action of Q∗ on ideles. This allows us to construct
a cyclic morphism between the cyclic module associated, respectively, to the
algebra Cρ(A

∗
Q) ⋊ Q∗ and to a suitable algebra Cρ(CQ) of functions on CQ.

Lemma 4.6. The composition dQ ◦ eQ of the maps

eQ : (k, hb) 7→ (b, (k, h)), and dQ(k, h) = (kh, h) (17)

with b ∈ ∆Q and k, h ∈ Q∗, gives an isomorphism of the locally compact
groupoids

Q∗ ⋉ A∗
Q ≃ ∆Q × Q∗ × Q∗. (18)

Proof. The map eQ realizes an isomorphism between the locally compact
groupoids

Q∗ ⋉ A∗
Q ≃ ∆Q × (Q∗ ⋉ Q∗),

where Q∗ ⋉ Q∗ is the groupoid of the action of Q∗ on itself by multiplication.
The latter is isomorphic to the trivial groupoid Q∗ × Q∗ via the map dQ.

We then have the following result.
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Proposition 4.7. The map

∑

k∈Q∗

fk Uk 7→Mb(x, y) = fxy−1(x b), (19)

for x, y ∈ Q∗ with k = xy−1 and b ∈ ∆Q, defines an algebra homomorphism

Cρ(A
∗
Q) ⋊ Q∗ → C(∆Q,M∞(C))

to the algebra of matrix valued functions on ∆Q. For any f ∈ S(GQ) the
element Mb obtained in this way is of trace class.

Proof. We use the groupoid isomorphism (17) to write k = xy−1 and khb =
xb, for x = kh and y = h. The second statement follows from Proposition 4.5.

Let π = M ◦ρ : S(GK) → C(∆Q,M∞(C)) be the composition of the restriction
map ρ of (13) with the algebra morphism (19). Since the trace Tr on M∞(C)
gives a cyclic morphism one can use this to obtain a morphism of cyclic
modules (Tr ◦ π)♮, which we now describe explicitly. We let, in the number
field case,

S (CK) = ∩β∈R µ
βS(CK), (20)

where µ ∈ C(CK) is the module morphism from CK to R∗
+. In the function

field case one can simply use for S (CK) the Schwartz functions with compact
support.

Proposition 4.8. The map Tr◦π defines a morphism (Tr◦π)♮ of cyclic mod-

ules from S(GQ)♮
0 to the cyclic submodule S ♮(CQ) ⊂ C(CQ)♮ whose elements

are continuous functions whose restriction to the main diagonal belongs to
S (CQ).

Proof. By Proposition 4.7 the map π is an algebra homomorphism from S(GQ)
to C(∆Q,L1) ∼ C(CQ,L1). We need to show that the corresponding cyclic
morphism using Tr♮ lands in the cyclic submodule S♮(CQ).
For simplicity we can just restrict to the case of monomials, where we consider
elements of the form

Z = fk0 Uk0 ⊗ fk1 Uk1 ⊗ · · · ⊗ fkn
Ukn

. (21)

The matrix valued functions associated to the monomials fkj
Ukj

as in Propo-
sition 4.7 have matrix elements at a point b ∈ ∆Q that are non zero only for
xj+1 = xjk

−1
j and are of the form

fkj
Ukj

7→ Mb(xj , xj+1) = fkj
(xjb). (22)

Composing with the cyclic morphism Tr♮ gives

(Tr ◦ π)♮(Z)(b0, b1, . . . , bn) =
∑∏

Mbj
(xj , xj+1) (23)
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where the xj ∈ K∗ and xn+1 = x0. Let γ0 = 1 and γj+1 = kjγj . Then we find
that (Tr ◦ π)♮(Z) = 0, unless

∏
j kj = 1, i.e. γn+1 = 1. In this case we obtain

Tr ◦ π(Z)(b0, b1, · · · , bn) =
∑

k∈Q∗

n∏

j=0

fkj
(γ−1

j kbj), ∀bj ∈ ∆Q. (24)

For n = 0 the formula (24) reduces to

Tr ◦ π(f)(b) =
∑

k∈Q∗

f(kb), ∀b ∈ ∆Q, ∀f ∈ S(AQ)0, (25)

where S(AQ)0 = Kerε0 ∩ Kerε1 ⊂ S(AQ). This gives an element of S (CQ),
by Lemma 2 Appendix 1 of [10]. In general, (24) gives a continuous function
of n + 1 variables on CQ, and its restriction to the main diagonal belongs to
S (CQ).

Since the category of cyclic modules is an abelian category, we can consider
the cokernel in the category of Λ-modules of the cyclic morphism (Tr ◦ π)♮,
with π the composite of (13) and (19). This works nicely for K = Q but makes
use of the splitting of the exact sequence (14).

4.4 The cokernel of ρ for general global fields

To handle the general case in a canonical manner one just needs to work
directly with C(CK,L1(Hx)) instead of C(CK) and express at that level the
decay condition of the restrictions to the diagonal in the cyclic submodule
S ♮(CQ) of Proposition 4.8.

Definition 4.9. We define S ♮(CK,L1(Hx)) to be the cyclic submodule of the
cyclic module C(CK,L1(Hx))♮, whose elements are continuous functions such
that the trace of the restriction to the main diagonal belongs to S (CK).

Note that for T ∈ C(CK,L1(Hx))♮ of degree n, T (x0, . . . , xn) is an operator in
Hx0⊗. . .⊗Hxn

. On the diagonal, xj = x for all j, the trace map corresponding

to Tr♮ is given by

Tr♮(T0 ⊗ T1 ⊗ . . .⊗ Tn) = Tr(T0 T1 . . . Tn) . (26)

This makes sense since on the diagonal all the Hilbert spaces Hxj
are the

same.

The argument of Proposition 4.8 extends to the general case and shows that
the cyclic morphism ρ♮ of the restriction map ρ lands in S ♮(CK,L1(Hx)).

Definition 4.10. We define H1(AK/K
∗, CK) to be the cokernel of the cyclic

morphism
ρ♮ : S(GK)♮

0 → S ♮(CK,L1(Hx))
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Moreover, an important issue arises, since the ranges of continuous linear maps
are not necessarily closed subspaces. In order to preserve the duality between
cyclic homology and cyclic cohomology we shall define the cokernel of a cyclic
map T : A♮ → B♮ as the quotient of B♮ by the closure of the range of T . In a
dual manner, the kernel of the transposed map T t : B♯ → A♯ is automatically
closed and is the dual of the above.
The choice of the notation H1(AK/K

∗, CK) is explained by the fact that we
consider this a first cohomology group, in the sense that it is a cokernel in a
sequence of cyclic homology groups for the inclusion of the ideles class group
in the adeles class space (dually for the restriction map of algebras), hence we
can think of it as giving rise to an H1 in the relative cohomology sequence
of an inclusion of CK in the noncommutative space AK/K

∗. We can use the
result of [7], describing the cyclic (co)homology in terms of derived functors
in the category of cyclic modules, to write the cyclic homology as

HCn(A) = Torn(C♮,A♮). (27)

Thus, we obtain a cohomological realization of the cyclic module H1(AK/K
∗, CK)

by setting
H1(AK/K

∗, CK) := Tor(C♮,H1(AK/K
∗, CK)). (28)

We think of this as anH1 because of its role as a relative term in a cohomology
exact sequence of the pair (AK/K

∗, CK).
We now show that H1(AK/K

∗, CK) carries an action of CK, which we can view
as the abelianization W ab

K ∼ CK of the Weil group. This action is induced by
the multiplicative action of CK on AK/K

∗ and on itself. This generalizes to

global fields the action of CQ = Ẑ∗ × R∗
+ on HC0(D(A, ϕ)) for the Bost–

Connes endomotive (cf. [11]).

Proposition 4.11. The cyclic modules S(GK)♮
0 and S ♮(CK,L1(Hx)) are en-

dowed with an action of A∗
K and the morphism ρ♮ is A∗

K-equivariant. This
induces an action of CK on H1(AK/K

∗, CK).

Proof. For γ ∈ A∗
K one defines an action by automorphisms of the algebra

A = S(GK) by setting

ϑa(γ)(f)(x) := f(γ−1x), for f ∈ S(AK), (29)

ϑa(γ)(
∑

k∈K∗

fk Uk) :=
∑

k∈K∗

ϑa(γ)(fk)Uk . (30)

This action is inner for γ ∈ K∗ and induces an outer action

CK → Out(S(GK)) . (31)

Similarly, the continuous field Hx = ℓ2(p−1(x)) over CK is A∗
K-equivariant for

the action of A∗
K on CK by translations, and the equality
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(V (γ)ξ)(y) := ξ(γ−1 y) , ∀y ∈ p−1(γx) , ξ ∈ ℓ2(p−1(x)) , (32)

defines an isomorphism Hx
V (γ)−→ Hγx. One obtains then an action of A∗

K on
C(CK,L1(Hx)) by setting

ϑm(γ)(f)(x) := V (γ) f(γ−1 x)V (γ−1), ∀f ∈ C(CK,L1(Hx)) . (33)

The morphism ρ is A∗
K-equivariant, so that one obtains an induced action on

the cokernel H1(AK/K
∗, CK). This action is inner for γ ∈ K∗ and thus induces

an action of CK on H1(AK/K
∗, CK).

We denote by
CK ∋ γ 7→ ϑm(γ) (34)

the induced action on H1(AK/K
∗, CK).

We have a non-canonical isomorphism

CK ≃ CK,1 ×N, (35)

where N ⊂ R∗
+ is the range of the norm | · | : CK → R∗

+. For number fields this
is N = R∗

+, while for function fields in positive characteristic N ≃ Z is the
subgroup qZ ⊂ R∗

+ with q = pℓ the cardinality of the field of constants. We

denote by ĈK,1 the group of characters of the compact subgroup CK,1 ⊂ CK,
i.e. the Pontrjagin dual of CK,1. Given a character χ of CK,1, we let χ̃ denote
the unique extension of χ to CK which is equal to one on N .
One obtains a decomposition of H1(AK/K

∗, CK) according to projectors as-
sociated to characters of CK,1.

Proposition 4.12. Characters χ ∈ ĈK,1 determine a canonical direct sum
decomposition

H1(AK/K
∗, CK) =

⊕
χ∈ dCK,1

H1
χ(AK/K

∗, CK)

H1
χ(AK/K

∗, CK) = {ξ|ϑm(γ) ξ = χ(γ) ξ, ∀γ ∈ CK,1}.
(36)

where ϑm(γ) denotes the induced action (34) on H1(AK/K
∗, CK).

Proof. The action of A∗
K on H1(AK/K

∗, CK) induces a corresponding action
of CK on H1(AK/K

∗, CK).

We can then reformulate the result of [11] based on the trace formula of [10]
in the formulation of [33] in terms of the cohomology H1(AK/K

∗, CK) in the
following way.

Proposition 4.13. The induced representation of CK on H1
χ(AK/K

∗, CK)
gives the spectral realization of the zeros of the L-function with Grössencharakter
χ.
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This result is a variant of Corollary 2 of [10], the proof is similar and essentially
reduces to the result of [33]. There is a crucial difference with [10] in that all
zeros (including those not located on the critical line) now appear due to the
choice of the function spaces. To see what happens it is simpler to deal with
the dual spaces i.e. to compute the cyclic cohomology HC0. Its elements are
cyclic morphisms T from H1(AK/K

∗, CK) to C♮ and they are determined by
the map T 0 in degree 0. The cyclic morphism property then shows that T 0

defines a trace on S ♮(CK,L1(Hx)) which vanishes on the range of ρ♮. The
freeness of the action of K∗ on A∗

K then ensures that these traces are given by
continuous linear forms on S (CK) which vanish on the following subspace of
S (CK) which is the range of the restriction map, defined as follows.

Definition 4.14. Let V ⊂ S (CK) denote the range of the map Tr ◦ ρ, that is,

V = {h ∈ S (CK)|h(x) =
∑

k∈K∗

ξ(kx), with ξ ∈ S(AK)0}, (37)

where S(AK)0 = Kerε0 ∩ Kerε1 ⊂ S(AK).

We have seen above in the case K = Q (cf. [10]) that the range of Tr ◦ ρ is
indeed contained in S (CK).
Moreover, we have the following results about the action ϑm(γ), for γ ∈ CK,
on H1(AK/K

∗, CK). Suppose given f ∈ S (CK). We define a corresponding
operator

ϑm(f) =

∫

CK

f(γ)ϑm(γ) d∗γ, (38)

acting on the complex vector space H1(AK/K
∗, CK). Here d∗γ is the multi-

plicative Haar measure on CK. We have the following description of the action
of ϑm(f).

Lemma 4.15. For f ∈ S (CK), the action of the operator ϑm(f) of (38) on
H1(AK/K

∗, CK) is the action induced on the quotient of S (CK) by V ⊂ S (CK)
of the action of ϑm(f) on S (CK) by convolution product

ϑm(f)ξ(u) =

∫

CK

ξ(g−1u)f(g) d∗g = (f ⋆ ξ)(u). (39)

Proof. One first shows that one can lift f to a function f̃ on A∗
K such that

∑

k∈K∗

f̃(kx) = f(x)

and that convolution by f̃ i.e.
∫
f̃(γ)ϑa(γ)d∗γ

leaves S(GK) globally invariant. This means showing that that S(AK)0 is stable
under convolution by the lift of S (CK). Then (39) follows directly from the
definition of the actions (33), (30), (34) and the operator (38).
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For f ∈ S (CK) and χ̃ the extension of a character χ ∈ ĈK,1 to CK and f̂(χ̃, ρ)
the Fourier transform (30), the operators ϑm(f) of (38) satisfy the spectral
side of the trace formula. Namely, we have the following result.

Theorem 4.16. For any f ∈ S (CK), the operator ϑm(f) defined in (38)
acting on H1(AK/K

∗, CK) is of trace class. The trace is given by

Tr(ϑm(f)|H1(AK/K
∗, CK)) =

∑

ρ∈C/N⊥|L(χ̃,ρ)=0

f̂(χ̃, ρ), (40)

with f̂(χ̃, ρ) the Fourier transform (30).

Proof. Due to the different normalization of the summation map, the repre-
sentation ϑm(γ) considered here differs from the action W (γ) considered in
[10] by

ϑm(γ) = |γ|1/2W (γ). (41)

This means that we have

ϑm(f) =

∫

CK

f(γ)ϑm(γ) d∗γ =

∫

CK

h(γ)W (γ) d∗γ, (42)

where
h(γ) = |γ|1/2 f(γ). (43)

We then have, for W (h) =
∫

CK
h(γ)W (γ) d∗γ,

TrW (h) =
∑

ρ∈C/N⊥|L(χ̃, 12 +ρ)=0

ĥ(χ̃, ρ). (44)

Note that unlike in [10] all zeros contribute, including those that might fail
to be on the critical line, and they do with their natural multiplicity. This
follows from the choice of function space as in [33]. The Fourier transform

ĥ(χ̃, ρ) satisfies

ĥ(χ̃, ρ) =

∫

CK

h(u)χ̃(u) |u|ρ d∗u =

∫

CK

f(u)χ̃(u) |u|ρ+1/2 d∗u = f̂(χ̃, ρ+ 1/2),

(45)
where h and f are related as in (43). Thus, the shift by 1/2 in (44) is absorbed
in (45) and this gives the required formula (40).

4.5 Trace pairing and vanishing

The commutativity of the convolution product implies the following vanishing
result.

Lemma 4.17. Suppose given an element f ∈ V ⊂ S (CK), where V is the
range of the reduction map as in Definition 4.14. Then one has

ϑm(f)|H1(AK/K∗,CK) = 0. (46)
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Proof. The result follows by showing that, for f ∈ V , the operator ϑm(f)
maps any element ξ ∈ S (CK) to an element in V , hence the induced map on
the quotient of S (CK) by V is trivial. Since V is a submodule of S (CK) for
the action of S (CK) by convolution we obtain

ϑm(f)ξ = f ⋆ ξ = ξ ⋆ f ∈ V ,

where ⋆ is the convolution product of (39).

This makes it possible to define a trace pairing as follows.

Remark 4.18. The pairing

f1 ⊗ f2 7→ 〈f1, f2〉H1 := Tr(ϑm(f1 ⋆ f2)|H1(AK/K
∗, CK)) (47)

descends to a well defined pairing on H1(AK/K
∗, CK) ⊗H1(AK/K

∗, CK).

5 Primitive cohomology

The aim of this section is to interpret the motivic construction described in the
previous paragraph as the noncommutative version of a classical construction
in algebraic geometry. In motive theory, realizations of (mixed) motives appear
frequently in the form of kernels/cokernels of relevant homomorphisms. The
primitive cohomology is the example we shall review hereafter.

If Y is a compact Kähler variety, a Kähler cocycle class [ω] ∈ H2(Y,R) deter-
mines the Lefschetz operator (i ∈ Z≥0):

L : Hi(Y,R) → Hi+2(Y,R), L(a) := [ω] ∪ a.

Let n = dimY . Then, the primitive cohomology is defined as the kernel of
iterated powers of the Lefschetz operator

Hi(Y,R)prim := Ker(Ln−i+1 : Hi(Y,R) → H2n−i+2(Y,R)).

In particular, for i = n we have

Hn(Y,R)prim := Ker(L : Hn(Y,R) → Hn+2(Y,R)).

Let assume, from now on, that j : Y →֒ X is a smooth hyperplane section of a
smooth, projective complex algebraic variety X . Then, it is a classical result
of geometric topology that L = j∗ ◦ j∗, where

j∗ : Hi(Y,R) → Hi+2(X,R)



Weil’s proof and adeles classes 359

is the Gysin homomorphism: the Poincaré dual of the restriction homomor-
phism

j∗ : H2n−i(X,R) → H2n−i(Y,R).

In fact, because the class of L comes from an integral class, the equality L =
j∗ ◦ j∗ holds already in integral cohomology. For i = n, the above description
of the Lefschetz operator together with the Lefschetz theorem of hyperplane
sections imply that

Hn(Y,R)prim
∼= Ker(j∗ : Hn(Y,R) → Hn+2(X,R)) =: Hn(Y,R)van

where by Hi(Y,R)van we denote the vanishing cohomology

Hi(Y,R)van := Ker(j∗ : Hi(Y,R) → Hi+2(X,R)).

Now, we introduce the theory of mixed Hodge structures in this set-up.
Let U := XrY be the open space which is the complement of Y in X and let
denote by k : U →֒ X the corresponding open immersion. Then, one knows
that Rij∗Z = 0 unless i = 0, 1 so that the Leray spectral sequence for j:

Ep,q
2 = Hq(X,Rpk∗Z) ⇒ Hp+q(U,Z)

coincides with the long exact sequence (of mixed Hodge structures)

. . .
∂→ Hi−2(Y,Z)(−1)

j∗→ Hi(X,Z) → Hi(U,Z)
∂→ . . .

The boundary homomorphism ∂ in this sequence is known to coincide ([21],
§ 9.2) with the residue homomorphism

Res : Hi+1(U,Z) → Hi(Y,Z)(−1)

whose description, with complex coefficients, is derived from a corresponding
morphism of filtered complexes (Poincaré residue map). This morphism fits
in the following exact sequence of filtered complexes of Hodge modules

0 → Ω·
X → Ω·

X(logY )
res→ j∗Ω

·
Y [−1] → 0

res(α ∧ dt

t
) = α|Y .

One knows that Res is a homomorphism of Hodge structures, hence the Hodge
filtration on Hn+1(U,C) ∼= Hn+1(X,Ω·

X(logY )) determines a corresponding
filtration on the (twisted) vanishing cohomology

Hn(Y,C)(n)van = Ker(j∗ : Hn(Y,C)(n) → Hn+2(X,C)(n+1)) ∼= Hn+1(U)(n+1).

In degree i = n, one also knows that the excision exact sequence (of Hodge
structures) becomes the short exact sequence
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0 → Hn(X,C)
j∗→ Hn(Y,C) → Hn+1

c (U,C) → 0.

Therefore, it follows by the Poincaré duality isomorphism

Hn+1
c (U,C)∗ ∼= Hn+1(U,C)(n+ 1)

that

(Coker(j∗ : Hn(X,C) → Hn(Y,C)))∗ ∼= Hn+1
c (U,C)∗ ∼= Hn(Y,C)(n)van.

(1)

When j : Y →֒ X is a singular hypersurface or a divisor in X with (local)
normal crossings (i.e.: Y =

⋃
i Yi, dimYi = n = dimX−1, Y locally described

by an equation xi1 · · ·xir
= 0, {i1, . . . ir} ⊆ {1, . . . n + 1}, {x1, . . . xn+1} =

system of local coordinates in X), the notion of the Gysin homomorphism is
lost. One then replaces the vanishing cohomology by the primitive cohomology,
whose definition extends to this general set-up and is given, in analogy to (1),
as

Hn(Y,C)prim := Coker(j∗ : Hn(X,C) → Hn(Y,C)) ⊆ Hn+1
c (U,C).

One also knows that the primitive cohomology is motivic (cf. [22] and [3]
for interesting examples). Following the classical construction that we have
just reviewed, we like to argue now that the definition of the cyclic module
H1(AK/K

∗, CK) (as in Definition 4.10), which is based on a noncommutative
version of a restriction map “from adeles to ideles” defined in the category
of Λ-modules, should be interpreted as the noncommutative analogue of a
primitive motive (a cyclic primitive module). The cohomological realization of
such motive (i.e. its cyclic homology) is given by the group H1(AK/K

∗, CK) =
Tor(C♮,H1(AK/K

∗, CK)) (cf. (28)) which therefore can be interpreted as a
noncommutative version of a primitive cohomology.

6 A cohomological Lefschetz trace formula

6.1 Weil’s explicit formula as a trace formula

As in §2.2 above, let α be a non-trivial character of AK which is trivial on
K ⊂ AK. It is well known ([44] VII-2) that for such a character α there exists
a differental idele a = (av) ∈ A∗

K such that

αv(x) = eKv
(av x), ∀x ∈ Kv, (1)

where, for a local field K, the additive character eK is chosen in the following
way.

• If K = R then eR(x) = e−2πix, for all x ∈ R.
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• If K = C then eC(z) = e−2πi(z+z̄), for all z ∈ C.
• If K is a non-archimedean local field with maximal compact subring O,

then the character eK satisfies Ker eK = O.

The notion of differental idele can be thought of as an extension of the canon-
ical class of the algebraic curve C, from the setting of function fields Fq(C)
to arbitrary global fields K. For instance, one has

|a| = q2−2g or |a| = D−1, (2)

respectively, for the case of a function field Fq(C) and of a number field. In
the number field case D denotes the discriminant.

In [11] we gave a cohomological formulation of the Lefschetz trace formula of
[10], using the version of the Riemann–Weil explicit formula as a trace formula
given in [33] in the context of nuclear spaces, rather than the semi-local Hilbert
space version of [10].

Theorem 6.1. For f ∈ S (CK) let ϑm(f) be the operator (38) acting on the
space H1 = H1(AK/K

∗, CK). Then the trace is given by

Tr(ϑm(f)|H1) = f̂(0) + f̂(1)− (log |a|) f(1)−
∑

v∈ΣK

∫ ′

(K∗
v ,eKv )

f(u−1)

|1 − u| d
∗u. (3)

The formula (3) is obtained in [11] first by showing that the Lefschetz trace
formula of [10] in the version of [33] can be formulated equivalently in the
form

Tr(ϑm(f)|H1) = f̂(0) + f̂(1) −
∑

v∈Kv

∫ ′

K∗
v

f(u−1)

|1 − u| d
∗u, (4)

where one uses the global character α to fix the local normalizations of the
principal values in the last term of the formula. We then compute this principal
value using the differental idele in the form

∫ ′

(K∗
v ,αv)

f(u−1)

|1 − u| d
∗u = (log |av|) f(1) +

∫ ′

(K∗
v ,eKv )

f(u−1)

|1 − u| d
∗u. (5)

6.2 Weil Positivity and the Riemann Hypothesis

We introduce an involution for elements f ∈ S (CK) by setting

f∗(g) = f(g−1). (6)

We also consider a one parameter group z 7→ ∆z of automorphisms of the
convolution algebra S (CK), with the convolution product (39) by setting

∆z(f)(g) = |g|z f(g), (7)
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for f ∈ S (CK) and z ∈ C. Since (7) is given by multiplication by a character,
it satisfies

∆z(f ⋆ h) = ∆z(f) ⋆ ∆z(f), ∀f, h ∈ S (CK). (8)

We consider also the involution

f 7→ f ♯ = ∆−1 f∗, with f ♯(g) = |g|−1f(g−1). (9)

The reformulation, originally due to A. Weil, of the Riemann Hypothesis in
our setting is given by the following statement.

Proposition 6.2. The following two conditions are equivalent:

• All L-functions with Grössencharakter on K satisfy the Riemann Hypoth-
esis.

• The trace pairing (47) satisfies the positivity condition

〈∆−1/2 f,∆−1/2 f∗〉 ≥ 0, ∀f ∈ S (CK). (10)

Proof. Let W (γ) = |γ|−1/2 ϑm(γ). Then, by [42] the RH for L-functions with
Grössencharakter on K is equivalent to the positivity

Tr(W (f ⋆ f∗)) ≥ 0, ∀f ∈ S (CK). (11)

Thus, in terms of the representation ϑm we are considering here, we have

W (f) = ϑm(∆−1/2 f).

Using the multiplicative property (8) of ∆z we rewrite (11) in the equivalent
form (10).

In terms of the involution (9) we can reformulate Proposition 6.2 in the fol-
lowing equivalent way.

Corollary 6.3. The following conditions are equivalent

• All L-functions with Grössencharakter on K satisfy the Riemann Hypoth-
esis.

• The trace pairing (47) satisfies 〈f, f ♯〉 ≥ 0, for all f ∈ S (CK).

Proof. In (10) we write ∆−1/2f = h. This gives

∆−1/2f∗ = ∆−1/2(∆1/2h)∗ = ∆−1h∗ = h♯

and the result follows, since ∆−1/2 is an automorphism of S (CK).

The vanishing result of Lemma 4.17, for elements in the range V ⊂ S (CK) of
the reduction map Tr ◦ ρ from adeles, gives then the following result.
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Proposition 6.4. The elements f ⋆f ♯ considered in Corollary 6.3 above have
the following properties.

1. The trace pairing 〈f, f ♯〉 vanishes for all f ∈ V, i.e. when f is the restric-
tion Tr ◦ ρ of an element of S(GK).

2. By adding elements of V one can make the values

f ⋆ f ♯(1) =

∫

CK

|f(g)|2 |g| d∗g < ǫ (12)

for arbitrarily small ǫ > 0.

Proof. (1) The vanishing result of Lemma 4.17 shows that ϑm(f)|H1(AK/K∗,CK) =
0 for all f ∈ V . Thus, the trace pairing satisfies 〈f, h〉 = 0, for f ∈ V and for
all h ∈ S (CK). In particular this applies to the case h = f ♯.

(2) This follows from the surjectivity of the map E for the weight δ = 0 (cf.
Appendix 1 of [10]).

Proposition 6.4 shows that the trace pairing admits a large radical given by
all functions that extend to adeles. Thus, one can divide out this radical and
work with the cohomology H1(AK/K

∗, CK) described above.

7 Correspondences

To start building the dictionary between the Weil proof and the noncommu-
tative geometry of the adeles class space, we begin by reformulating the trace
formula discussed above in more intersection theoretic language, so as to be
able to compare it with the setup of §2.1 above. We also discuss in this section
the analog of moding out by trivial correspondence.

7.1 The scaling correspondence as Frobenius

To the scaling action

ϑa(γ)(ξ)(x) = ξ(γ−1x), for γ ∈ CK and ξ ∈ S(AK),

one associates the graph Zγ given by the pairs (x, γ−1x). These should be
considered as points in the product AK/K

∗ × AK/K
∗ of two copies of the

adeles class space. Thus, the analog in our context of the correspondences
Z =

∑
n anFrn on C × C is given by elements of the form

Z(f) =

∫

CK

f(g)Zg d
∗g, (1)

for some f ∈ S (CK).

With this interpretation of correspondences, we can then make sense of the
terms in the trace formula in the following way.
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Definition 7.1. For a correspondence of the form (1) we define degree and
codegree by the following prescription

d(Z(f)) := f̂(1) =

∫

CK

f(u) |u| d∗u, (2)

d′(Z(f)) := d(Z(f ♯)) =

∫

CK

f(u) d∗u = f̂(0). (3)

Here the Fourier transform f̂ is as in (30), with the trivial character χ = 1.
Notice that, with this definition of degree and codegree we find

d(Zg) = |g|, and d′(Zg) = 1. (4)

Thus, the term f̂(1) + f̂(0) in the trace formula of Theorem 6.1 match the
term d(Z) + d′(Z) in Weil’s formula for the trace of a correspondence as in
(25). The term

−
∫ ′

(K∗
v,αv)

f(u−1)

|1 − u| d
∗u (5)

of (4) in turn can be seen as the remaining term −Z • ∆ in (25). In fact,
the formula (5) describes, using distributions, the local contributions to the
trace of the intersections between the graph Z(f) and the diagonal ∆. This
was proved in [10], Section VI and Appendix III. It generalizes the analogous
formula for flows on manifolds of [23], which in turn can be seen as a gener-
alization of the usual Atiyah–Bott Lefschetz formula for a diffeomorphism of
a smooth compact manifold [2].

When we separate out the contribution log |a|h(1), as in passing from (4) to
(3), and we rewrite the trace formula as in Theorem 6.1. This corresponds to
separating the intersection Z •∆ into a term that is proportional to the self
intersection ∆ •∆ and a remaning terms where the intersection is transverse.
To see this, we notice that the term log |a|, for a = (av) a differental idele, is
of the form (2). Indeed one sees that, in the function field case the term

− log |a| = − log q2−2g = (2g − 2) log q = −∆ •∆ log q

is proportional to the self intersection of the diagonal, which brings us to
consider the value log |a| = − logD with the discriminant of a number field
as the analog in characteristic zero of the self intersection of the diagonal.

In these intersection theoretic terms we can reformulate the positivity condi-
tion (cf. [4]) equivalent to the Riemann Hypothesis in the following way.

Proposition 7.2. The following two conditions are equivalent

• All L-functions with Grössencharakter on K satisfy the Riemann Hypoth-
esis.
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• The estimate

Z(f) •trans Z(f) ≤ 2d(Z(f))d′(Z(f)) −∆ •∆f ⋆ f ♯(1) (6)

holds for all f ∈ S (CK).

Proof. As in the Weil proof one separates the terms Z ⋆ Z ′ = d′(Z)∆ + Y ,
where Y has transverse intersection with the diagonal, here we can write an
identity

Tr(ϑm(f ⋆ f ♯)|H1) =: Z(f) • Z(f) = ∆ •∆f ⋆ f ♯(1) + Z(f) •trans Z(f) (7)

where the remaning term Z(f) •trans Z(f) which represents the transverse
intersection is given by the local contributions given by the principal values
over (K∗

v, eKv
) in the formula (3) for Tr(ϑm(f ⋆ f ♯)|H1).

The formula (3) for Tr(ϑm(f ⋆ f ♯)|H1) gives a term of the form − log |a| f ⋆
f ♯(1), with

f ⋆ f ♯(1) =

∫

CK

|f(g)|2 |g| d∗g.

We rewrite this term as −∆ • ∆f ⋆ f ♯(1) according to our interpretation of
log |a| as self-intersection of the diagonal. This matches the term (2g−2)d′(Z)
in the estimate for Tr(Z ⋆ Z ′) in the Weil proof.

The first two terms in the formula (3) for Tr(ϑm(f ⋆ f ♯)|H1) are of the form

f̂ ⋆ f ♯(0) + f̂ ⋆ f ♯(1) = 2f̂(0)f̂(1) = 2d′(Z(f))d(Z(f)). (8)

This matches the term 2gd′(Z) = 2d(Z)d′(Z) in the expression for Tr(Z ⋆Z ′)
in the Weil proof.

With this notation understood, we see that the positivity Tr(ϑm(f ⋆f ♯)|H1) ≥
0 corresponds indeed to the estimate (6).

7.2 Fubini’s theorem and the trivial correspondences

As we have seen in recalling the main steps in the Weil proof, a first step in
dealing with correspondences is to use the freedom to add multiples of the
trivial correspondences in order to adjust the degree. We describe an analog,
in our noncommutative geometry setting, of the trivial correspondences and
of this operation of modifying the degree.

In view of the result of Proposition 6.4 above, it is natural to regard the
elements f ∈ V ⊂ S (CK) as those that give rise to the trivial correspondences
Z(f). Here, as above, V is the range of the reduction map from adeles.

The fact that it is possible to arbitrarily modify the degree d(Z(f)) = f̂(1) of
a correspondence by adding to f an element in V depends on the subtle fact
that we deal with a case where the Fubini theorem does not apply.
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In fact, consider an element ξ ∈ S(AK)0. We know that it satisfies the vanish-
ing condition ∫

AK

ξ(x) dx = 0.

Thus, at first sight it would appear that, for the function on CK defined by
f(x) =

∑
k∈K∗ ξ(kx),

f̂(1) =

∫

CK

f(g)|g|d∗g (9)

should also vanish, since we have f(x) =
∑

k∈K∗ ξ(kx) and for local fields (but
not in the global case) the relation between the additive and multiplicative
Haar measures is of the form dg = |g|d∗g. This, however, is in general not the
case. To see more clearly what happens, let us just restrict to the case K = Q

and assume that the function ξ(x) is of the form

ξ = 1
Ẑ
⊗ η,

with 1
Ẑ

the characteristic function of Ẑ and with η ∈ S(R)0. We then have

CQ = Ẑ∗ × R∗
+ and the function f is of the form

f(u, λ) =
∑

n∈Z,n6=0

η(nλ), ∀λ ∈ R∗
+ , u ∈ Ẑ∗ . (10)

We can thus write (9) in this case as

f̂(1) =

∫

Ẑ∗×R∗

+

f(u, λ)du dλ =

∫

R

∑

n∈N

η(nλ) dλ (11)

Moreover since η ∈ S(R)0 we have for all n,

∫

R

η(nλ)dλ = 0 . (12)

It is however not necessarily the case that we can apply Fubini’s theorem and
write ∫

R

∑

n∈N

η(nλ) dλ =
∑

n

∫

R

η(nλ)dλ = 0 (13)

since as soon as η 6= 0 one has

∞∑

n=1

∫

R

|η(nλ)|dλ = (

∫

R

|η(λ)|dλ)
∞∑

n=1

1

n
= ∞

so that Fubini’s theorem does not apply and one cannot interchange the inte-
gral and the sum in (13). Thus, one can in general have f̂(1) 6= 0, even though∑

n

∫
R
η(nλ)dλ = 0. In fact, we have the following result.
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Lemma 7.3. Given f ∈ S (CK), it is possible to change arbitrarily the value

of the degree d(Z(f)) = f̂(1) by adding elements of V.

Proof. It suffices to exhibit an element f ∈ V such that f̂(1) 6= 0, as then by
linearity one can obtain the result. We only treat the case K = Q. We take
η ∈ S(R)0 given by

η(x) = πx2(πx2 − 3

2
) e−πx2

One finds that, up to normalization, the Fourier transform f̂ is given by

f̂(is) =

∫

R∗

+

∑

n∈N

η(nλ)λisd∗λ = s(s+ i)ζ∗(is)

where ζ∗ is the complete zeta function,

ζ∗(z) = π−z/2 Γ
(z

2

)
ζ(z). (14)

This function has a simple pole at z = 1 thus one gets that f̂(1) 6= 0.

An important question, in order to proceed and build a dictionary that par-
allels the main steps in the Weil proof, is to identify the correct notion of
principal divisors. To this purpose, we show that we have at least a good ana-
log for the points of the curve, in terms of states of some thermodynamical
systems, that extend from the function field setting to the number field case.

8 Thermodynamics and geometry of the primes

Let K be a global field, with AK the ring of adeles and CK the ideles classes,
as above. We denote by CK,1 ⊂ CK the kernel of the norm | · | : CK → R∗

+.
The origin (cf. [10]) of the terms in the geometric side of the trace formula
(Theorem 6.1) comes from the Lefschetz formula by Atiyah-Bott [2] and its
adaptation by Guillemin-Sternberg (cf. [23]) to the distribution theoretic trace
for flows on manifolds, which is a variation on the theme of [2]. For the action
of CK on the adele class space XK the relevant periodic points are

P = {(x, u) ∈ XK × CK |u x = x} (1)

and one has (cf. [10])

Proposition 8.1. Let (x, u) ∈ P , with u 6= 1. There exists a place v ∈ ΣK

such that
x ∈ XK,v = {x ∈ XK |xv = 0} (2)

The isotropy subgroup of any x ∈ XK,v contains the cocompact subgroup

K∗
v ⊂ CK , K∗

v = {(kw) | kw = 1 ∀w 6= v} (3)
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The spaces XK,v are noncommutative spaces, as such they are described by
the following noncommutative algebras:

Definition 8.2. Let AK,v ⊂ AK denote the closed K∗-invariant subset of ade-
les

AK,v = {a = (aw)w∈ΣK
| av = 0}. (4)

Let GK,v denote the closed subgroupoid of GK given by

GK,v = {(k, x) ∈ GK |xv = 0}, (5)

and let Av = S(GK,v) be the corresponding groupoid algebra.

Since the inclusion AK,v ⊂ AK is K∗-equivariant and proper, it extends to an
algebra homomorphism

ρv : S(GK) → S(GK,v) (6)

which plays the role of the restriction map to the periodic orbit XK,v. We shall
now determine the classical points of each of the XK,v. Taken together these
will form the following locus inside the adeles class space, which we refer to
as the “periodic classical points” of XK = AK/K

∗.

Definition 8.3. Let K be a global field. For a place v ∈ ΣK consider the adele

a(v) = (a(v)
w ), with a(v)

w =

{
1 w 6= v

0 w = v.
(7)

The set of periodic classical points of the adeles class space AK/K
∗ is defined

as the union of orbits

ΞK :=
⋃

v∈ΣK

CKa
(v). (8)

8.1 The global Morita equivalence

In order to deal with states rather than weights, we perform a global Morita
equivalence, obtained by reducing the groupoid GK by a suitable open set.

The set A
(1)
K of (9) that we use to reduce the groupoid GK will only capture

part of the classical subspace CK, but since our main focus is on the geometry
of the complement of this subspace (the cokernel of the reduction map), this
will not be a problem.

Lemma 8.4. Let K be a global field. Let W ⊂ AK be a neighborhood of 0 ∈ AK.
Then for x ∈ AK one has K∗x∩W 6= ∅, unless x ∈ A∗

K is an idele. For x ∈ A∗
K,

the orbit K∗x is discrete in AK.
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Proof. One can assume that W is of the form

W = {a = (aw)| |aw| < ε ∀w ∈ S and |aw| ≤ 1 ∀w /∈ S},

for S a finite set of places and for some ε > 0. Multiplying by a suitable idele
one can in fact assume that S = ∅, so that we have

W = {a = (aw)| |aw| ≤ 1 ∀w ∈ ΣK}.

One has |xv| ≤ 1 except on a finite set F ⊂ ΣK of places. Moreover, if x is
not an idele, one can also assume that

∏

v∈F

|xv| < δ

for any fixed δ. Thus, − log |xv| is as large as one wants and there exists
k ∈ K∗ such that k x ∈ W . This is clear in the function field case because of
the Riemann Roch formula (7). In the case of Q one can first multiply x by
an integer to get |xv| ≤ 1 for all finite places, then since this does not alter
the product of all |xv| one gets |x∞| < 1 and x ∈W . The case of more general
number fields is analogous. In the case of ideles, one can assume that x = 1
and then the second statement follows from the discreteness of K in AK.

We consider the following choice of a neighborhood of zero.

Definition 8.5. Consider the open neighborhood of 0 ∈ AK defined by

A
(1)
K =

∏

w∈ΣK

K(1)
w ⊂ AK (9)

where for any place we let K
(1)
w be the interior of {x ∈ Kw ; |x| ≤ 1}. Let G(1)

K

denote the reduction of the groupoid GK by the open subset A
(1)
K ⊂ AK of the

units and let S(G(1)
K ) denote the corresponding (smooth) groupoid algebra.

The algebra S(G(1)
K ) is a subalgebra of S(GK) where one simply extends the

function f(k, x) by zero outside of the open subgroupoid G(1)
K ⊂ GK. With

this convention, the convolution product of S(G(1)
K ) is simply given by the

convolution product of S(GK) of the form

(f1 ⋆ f2)(k, x) =
∑

h∈K∗

f1(kh
−1, hx)f2(h, x).

We see from Lemma 8.4 above that the only effect of the reduction to G(1)
K

is to remove from the noncommutative space AK/K
∗ all the elements of CK

whose class modulo K∗ does not intersect G(1)
K (i.e. in particular those whose

norm is greater than or equal to one). We then have the following symmetries

for the algebra S(G(1)
K ).
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Proposition 8.6. Let J + denote the semi-group of ideles j ∈ A∗
K such that

jA
(1)
K ⊂ A

(1)
K . The semigroup J+ acts on the algebra S(G(1)

K ) by endomor-
phisms obtained as restrictions of the automorphisms of S(GK) of the form

ϑa(j)(f)(k, x) = f(k, j−1x), ∀(k, x) ∈ GK , j ∈ J +. (10)

Let K = Q and C+
Q ⊂ CQ be the semigroup C+

Q = {g ∈ CQ| |g| < 1}. The

semi-group C+
Q acts on S(G(1)

Q ) by the endomorphisms

F (g) = ϑa(ḡ) (11)

with ḡ the natural lift of g ∈ C+
Q to Ẑ∗ × R∗

+.

Proof. By construction ϑa(j) is an automorphism of S(GK). For a function f

with support B in the open set G(1)
K the support of the function ϑa(j)(f) is

jB = {(k, jx)|(k, x) ∈ B} ⊂ G(1)
K so that ϑa(j)(f) still has support in G(1)

K .

For K = Q let ḡ ∈ Ẑ∗×R∗
+ be the natural lift of an element g ∈ C+

Q . Then the

archimedean component ḡ∞ is of absolute value less than 1 so that ḡ ∈ J+.

The action of ϑa(ḡ) by endomorphisms of S(G(1)
Q ) induces a corresponding

action of C+
Q .

Remark 8.7. For m a positive integer, consider the element g = (1,m−1) ∈
C+

Q . Both g = (1,m−1) and m̃ = (m, 1) are in J+ and have the same class
in the idele class group CQ, since mg = m̃. Thus the automorphisms ϑa(g)

and ϑa(m̃) of S(GK) are inner conjugate. Since the open set A
(1)
K ⊂ AK is

not closed its characteristic function is not continuous and does not define a
multiplier of S(GK). It follows that the endomorphism F (g) is inner conjugate
to the endomorphism ϑa(m̃) only in the following weaker sense. There exists a

sequence of elements un of S(G(1)
K ) such that for any f ∈ S(G(1)

K ) with compact
support

F (g)(f) = un ϑa(m̃)(f)u∗n,

holds for all n large enough.

8.2 The valuation systems

We now explain why the orbits CKa
(v) appear indeed as the set of classical

points, in the sense of the low temperature KMS states, of the noncommutative
spaces XK,v. The notion of classical points obtained from low temperature
KMS states is discussed at length in [15] (cf. also [12], [13], [14]).

The noncommutative space XK,v is described by the the restricted groupoid

G(v) = K∗ ⋉ A
(1)
K,v = {(g, a) ∈ K∗ ⋉ AK,v | a and ga ∈ A

(1)
K,v} . (12)

We denote by ϕ the positive functional on C∗(K∗ ⋉ A
(1)
K,v) given by
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ϕ(f) =

∫

A
(1)
K,v

f(1, a) da (13)

Proposition 8.8. The modular automorphism group of the functional ϕ on
the crossed product C∗(G(v)) is given by the time evolution

σv
t (f)(k, x) = |k|itv f(k, x), ∀t ∈ R, ∀f ∈ C∗(K∗ ⋉ A

(1)
K,v) . (14)

Proof. We identify elements of Cc(K
∗ ⋉ A

(1)
K,v) with functions f(g, a) of ele-

ments g ∈ K∗ and a ∈ A
(1)
K,v. The product is simply of the form

f1 ∗ f2(g, a) =
∑

r

f1(g r
−1, ga)f2(r, a).

The additive Haar measure da on AK,v satisfies the scaling property

d(ka) = |k|−1
v da , ∀k ∈ K∗ , (15)

since the product measure da× dav on AK = AK,v ×Kv is invariant under the
scaling by k ∈ K∗, while the additive Haar measure dav on Kv gets multiplied
by |k|v, namely d(kav) = |k|vdav. We then check the KMS1 condition, for ϕ
associated to the additive Haar measure, as follows,

ϕ(f1 ∗ f2) =
∑

r

∫

A
(1)
K,v

f1(r
−1, r a)f2(r, a) da

=
∑

r

∫

A
(1)
K,v

f2(k
−1, k b)f1(k, b) |k|−1

v db = ϕ(f2 ∗ σi(f1)) ,

using the change of variables k = r−1, a = kb and da = |k|−1
v db.

It is worthwhile to observe that these automorphisms extend to the global

algebra. Let G(1)
K be the groupoid K∗ ⋉ A

(1)
K of Definition 8.5.

Lemma 8.9. Let K be a global field and v ∈ ΣK a place. The map

dv(k, x) = log |k|v ∈ R (16)

defines a homomorphism of the groupoid G(1)
K to the additive group R and the

time evolution

σv
t (f)(k, x) = |k|itv f(k, x), ∀t ∈ R, ∀f ∈ S(G(1)

K ) (17)

generates a 1-parameter group of automorphisms of the algebra S(G(1)
K ).

The following result shows that the nontrivial part of the dynamics σv
t con-

centrates on the algebra S(G(v)) with G(v) as in (12).
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Proposition 8.10. The morphism ρv of (6) restricts to a σv
t -equivariant

morphism S(G(1)
K ) → S(G(v)). Moreover, the restriction of the one param-

eter group σv
t to the kernel of ρv is inner.

Proof. For the first statement note that the proper inclusion AK,v ⊂ AK re-

stricts to a proper inclusion A
(1)
K,v ⊂ A

(1)
K . For the second statement, notice

that the formula
hv(x) = log |x|v, ∀x ∈ A

(1)
K , (18)

defines the multipliers eithv of the kernel of ρv. Indeed eithv is a bounded

continuous function on A
(1)
K r A

(1)
K,v.

We can then check that the 1-cocycle dv is the coboundary of hv. In fact, we
have

hv(k x) − hv(x) = dv(k, x), ∀(k, x) ∈ G(1)
K r G(v). (19)

We now recall that, for an étale groupoid like G(v), every unit y ∈ G(v)(0)

defines, by

(πy(f)ξ)(γ) =
∑

γ1γ2=γ

f(γ1)ξ(γ2), (20)

a representation πy by left convolution of the algebra of G(v) in the Hilbert
space Hy = ℓ2(G(v)y), where G(v)y denotes the set of elements of the groupoid
G(v) with source y. By construction the unitary equivalence class of the rep-
resentation πy is unaffected when one replaces y by an equivalent z ∈ G(v)(0)

i.e. one assumes that there exists γ ∈ G(v) with range and source y and z.
Thus we can think of the label y of πy as living in the quotient space XK, v of
equivalence classes of elements of G(v)(0).

The relation between ΞK, v and XK, v is then the following.

Theorem 8.11. For y ∈ XK, v, the representation πy is a positive energy
representation if and only if y ∈ ΞK, v.

Proof. Let first y ∈ G(v)(0) ∩ ΞK, v. Thus one has y ∈ A
(1)
K,v, yw 6= 0 for all w

and |yw| = 1 for all w /∈ S where S is a finite set of places. We can identify

G(v)y with the set of k ∈ K∗ such that k y ∈ A
(1)
K,v. We extend y to the adele

ỹ = y × 1 whose component at the place v is equal to 1 ∈ Kv. Then ỹ is an
idele. Thus by Lemma 8.4 the number of elements of the orbit K∗ỹ in a given
compact subset of AK is finite. It follows that log |k|v is lower bounded on
G(v)y . Indeed otherwise there would exist a sequence kn ∈ K∗ ∩ G(v)y such

that |kn|v → 0. Then kn ỹ ∈ A
(1)
K for all n large enough and this contradicts

the discreteness of K∗ỹ. In the representation πy the time evolution σt is
implemented by the Hamiltonian Hy given by

(Hy ξ)(k, y) = log |k|v ξ(k, y). (21)

Namely, we have
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πy(σt(f)) = eitHyπy(f)e−itHy , ∀f ∈ Cc(G(v)) . (22)

Thus since log |k|v is lower bounded on G(v)y we get that the representation
πy is a positive energy representation.

Let then y ∈ G(v)(0) rΞK, v. We shall show that log |k|v is not lower bounded
on G(v)y , and thus that πy is not a positive energy representation. We consider
as above the adele ỹ = y×1 whose component at the place v is equal to 1 ∈ Kv.
Assume that log |k|v is lower bounded on G(v)y . Then there exists ǫ > 0 such
that, for k ∈ K∗,

k y ∈ A
(1)
K,v ⇒ |k|v ≥ ǫ .

This shows that the neighborhood of 0 ∈ AK defined as

W = {a ∈ AK ; |av| < ǫ , aw ∈ K(1)
w , ∀w 6= v}

does not intersect K∗ỹ. Thus by Lemma 8.4 we get that ỹ is an idele and
y ∈ ΞK, v.

The specific example of the Bost-Connes system combined with Theorem
8.11 shows that one can refine the recipe of [15] (cf. also [12], [13], [14]) for
taking “classical points” of a noncommutative space. The latter recipe only
provides a notion of classical points that can be thought of, by analogy with
the positive characteristic case, as points defined over the mysterious “field
with one element” F1 (see e.g. [29]). To obtain instead a viable notion of the
points defined over the maximal unramified extension F̄1, one performs the
following sequence of operations.

X
Dual System−→ X̂

Periodic Orbits−→ ∪ X̂v
Classical Points−→ ∪Ξv (23)

which make sense in the framework of endomotives of [11]. Note in particular
that the dual system X̂ is of type II and as such does not have a non-trivial
time evolution. Thus it is only by restricting to the periodic orbits that one
passes to noncommutative spaces of type III for which the cooling operation
is non-trivial. In the analogy with geometry in non-zero characteristic, the set
of points X(F̄q) over F̄q of a variety X is indeed obtained as the union of the
periodic orbits of the Frobenius.

Remark 8.12. Theorem 8.11 does not give the classification of KMSβ states

for the quantum statistical system (C∗(K∗ ⋉ A
(1)
K,v), σt). It just exhibits ex-

tremal KMSβ states but does not show that all of them are of this form.
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8.3 The curve inside the adeles class space

In the case of a function field K = Fq(C), the set of periodic classical points of
the adeles class space AK/K

∗ is (non-canonically) isomorphic to the algebraic
points C(F̄q). In fact, more precisely the set of algebraic points C(F̄q) is
equivariantly isomorphic to the quotient ΞK/CK,1 where CK,1 ⊂ CK is the
kernel of the norm | · | : CK → R∗

+, and ΞK is as in (8).

Proposition 8.13. For K = Fq(C) a function field, the orbits of Frobenius
on C(F̄q) give an equivariant identification

ΞK/CK,1 ≃ C(F̄q), (24)

between ΞK/CK,1 with the action of qZ and C(F̄q) with the action of the group
of integer powers of the Frobenius.

Proof. At each place v ∈ ΣK the quotient group of the range N of the norm
| · | : CK → R∗

+ by the range Nv of | · | : Kv → R∗
+ is the finite cyclic group

N/Nv = qZ/qnvZ ≃ Z/nvZ, (25)

where nv is the degree of the place v ∈ ΣK. The degree nv is the same as the
cardinality of the orbit of the Frobenius acting on the fiber of the map (2)
from algebraic points in C(F̄q) to places in ΣK. Thus, one can construct in
this way an equivariant embedding

C(F̄q) →֒ (AK/K
∗)/CK,1 (26)

obtained, after choosing a point in each orbit, by mapping the orbit of the
integer powers of the Frobenius in C(F̄q) over a place v to the orbit of
CK/CK,1 ∼ qZ on the adele a(v).

Modulo the problem created by the fact that the identification above is non-
canonical and relies upon the choice of a point in each orbit, it is then possible
to think of the locus ΞK, in the number field case, as a replacement for C(F̄q)
inside the adeles class space AK/K

∗.
In the case of K = Q, the quotient ΞQ/CQ,1 appears as a union of periodic
orbits of period log p under the action of CQ/CQ,1 ∼ R, as in Figure 1. What
matters, however, is not the space ΞQ/CQ,1 in itself but the way it sits inside
AQ/Q

∗. Without taking into account the topology induced by AK the space
ΞK would just be a disjoint union of orbits without any interesting global
structure, while it is the embedding in the adeles class space that provides
the geometric setting underlying the Lefschetz trace formula of [10] and its
cohomological formulation of [11].
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Log2 Log3 Log5 ... LogHpL ...

Fig. 1. The classical points ΞQ/CQ,1 of the adeles class space AQ/Q∗.

8.4 The valuation systems for K = Q

We concentrate again on the specific case of K = Q to understand better the
properties of the dynamical systems σp

t associated to the finite primes p ∈ ΣQ.
We know that, in the case of the BC system, the KMS state at critical tem-
perature β = 1 is given by the additive Haar measure on finite adeles [5].
Thus, one expects that, for the systems associated to the finite primes, the
additive Haar measure of AQ,p should play an analogous role.

Definition 8.14. Let A∗
Q,p ⊂ A

(1)
Q,p be the subspace

A∗
Q,p = {x ∈ AQ,p| |xw| = 1 ∀w 6= p,∞ and p−1 ≤ |x∞| < 1}. (27)

As above G(p) denotes the reduction of the groupoid GQ,p by the open subset

A
(1)
Q,p ⊂ AQ,p, namely

G(p) = {(k, x) ∈ GQ,p |x ∈ A
(1)
Q,p, kx ∈ A

(1)
Q,p}. (28)

Notice that the set A
(1)
Q,p meets all the equivalence classes in AQ,p by the action

of Q∗. In fact, given x ∈ AQ,p , one can find a representative y with y ∼ x in

AQ,p/Q
∗, such that y ∈ Ẑ × R. Upon multiplying y by a suitable power of p,

one can make y∞ as small as required, and in particular one can obtain in
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this way a representative in A
(1)
Q,p. Let us assume that |yw| = 1 for all finite

places w 6= p and that y∞ > 0. Then there exists a unique n ∈ N ∪ {0} such
that pn y ∈ A∗

Q,p.

Given a prime p we define the function fp(λ, β) for λ ∈ (1, p ] and β > 1 by

fp(λ, β) =
∑

ck p
−kβ (29)

where the ck ∈ {0, . . . p − 1} are the digits of the expansion of λ in base p.
There is an ambiguous case where all digits ck are equal to 0 for k > m while
cm > 0, since the same number

λ =
∑

ck p
−k

is obtained using the same cj for j < m, cm − 1 instead of cm and cj = p− 1
for j > m. In that case, for β > 1, (29) gives two different values and we
choose the value coming from the second representation of λ, i.e. the lower of
the two. These coefficients ck of the expansion of λ in base p are then given
by

ck = ⌈λpk − 1⌉ − p ⌈λpk−1 − 1⌉ , (30)

where ⌈x⌉ = infn∈Z{n ≥ x} denotes the ceiling function.

Note that, for β > 1, the function fp(λ, β) is discontinuous (cf. Figures 2 and
3) at any point (λ, β) where the expansion of λ in base p is ambiguous, i.e.
λ ∈ N p−k. Moreover for β = 1 one gets

fp(λ, 1) = λ , ∀λ ∈ (1, p ] . (31)
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Fig. 2. Graphs of the functions fp(λ, β) as functions of β for p = 3, λ = n/27. The
gray regions are the gaps in the range of fp.
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We then obtain the following result.

Theorem 8.15. Let (C∗(G(p)), σp
t ) be the C∗-dynamical system associated to

the groupoid (28) with the time evolution (17). Then the following properties
hold:

1. For any y ∈ A∗
Q,p the corresponding representation πy has positive energy.

2. Let Hy denote the Hamiltonian implementing the time evolution in the
representation πy, for y ∈ A∗

Q,p with y∞ = λ−1 and λ ∈ (1, p ]. Then the
partition function is given by

Zp(λ, β) = Tr(e−βHy) = 2
1 − p−β

1 − p1−β
fp(λ, β) . (32)

3. The functionals

ψβ, y(a) = Tr(e−βHy πy(a)) , ∀a ∈ C∗(G(p)) (33)

satisfy the KMSβ condition for σp
t and depend weakly continuously on the

parameter y ∈ A∗
Q,p.

Proof. (1) This follows from Theorem 8.11. For y ∈ A∗
Q,p one has

r ∈ Q∗, ry ∈ A
(1)
Q,p =⇒ r = p−km, (34)

for some k ≥ 0 and some integer m prime to p and such that |r y∞| < 1. This
implies

|m| < pk+1 (35)

and one finds
|r|p = pk ≥ 1 and log |r|p ≥ 0, (36)

In fact, the argument above shows that the spectrum of the Hamiltonian Hy

implementing the time evolution σp
t in the representation πy is given by

Spec(Hy) = {k log p}k∈N∪{0}, (37)

hence πy is a positive energy representation.
(2) We begin by the special case with y∞ = p−1. Then λ = p and fp(λ, β) =

p−1
1−p−β since all digits of λ = p are equal to p− 1. We want to show that the
partition function is given by

Tr(e−βHy) = 2
p− 1

1 − p1−β
. (38)

The multiplicity of an eigenvalue k log p of Hy is the number of integers m 6=
0 ∈ Z that are prime to p and such that p−k |m| y∞ < 1. Since we are assuming
that y∞ = p−1, this gives |m| < pk+1. Thus, the multiplicity is just 2 (pk+1 −
pk). The factor 2 comes from the sign of the integer m. The factor (pk+1−pk)
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corresponds to subtracting from the number pk+1 of positive integers m ≤
pk+1 the number pk of those that are multiples of p.

We now pass to the general case. For x > 0, ⌈x − 1⌉ is the cardinality of
(0, x) ∩ N. The same argument used above shows that the multiplicity of the
eigenvalue k log p is given by the counting

2
(
⌈λpk − 1⌉ − ⌈λpk−1 − 1⌉

)
.

Thus

Tr(e−βHy) = 2
∞∑

k=0

(
⌈λpk − 1⌉ − ⌈λpk−1 − 1⌉

)
p−kβ . (39)

One has the following equalities of convergent series,

∞∑

k=0

(
⌈λpk − 1⌉ − ⌈λpk−1 − 1⌉

)
p−kβ =

∞∑

k=0

⌈λpk − 1⌉ (p−kβ − p−(k+1)β)

so that,

Tr(e−βHy) = 2 (1 − p−β)

∞∑

k=0

⌈λpk − 1⌉ p−kβ . (40)

Similarly

∞∑

k=0

(
⌈λpk − 1⌉ − p ⌈λpk−1 − 1⌉

)
p−kβ =

∞∑

k=0

⌈λpk − 1⌉ (p−kβ − p p−(k+1)β)

which gives

fp(λ, β) = (1 − p1−β)

∞∑

k=0

⌈λpk − 1⌉ p−kβ , (41)

since the coefficients ck of the expansion of λ in base p are given by (30).
Combining (40) with (41) gives (32).
(3) It follows from (22) and the finiteness of the partition function (32) that
the functionals (33) fulfill the KMSβ condition. In terms of functions on the
groupoid G(p) one has

ψβ, y(f) =
∑

f(1, n p−k y) p−kβ , ∀f ∈ Cc(G(p)) (42)

where the sum is absolutely convergent. Each of the terms in the sum gives a
weakly continuous linear form thus one obtains the required continuity.

Remark 8.16. The partition function Zp(λ, β) is a discontinuous function
of the parameter λ and this might seem to contradict the third statement of
Theorem 8.15. It would if the algebra C∗(G(p)) were unital since, in that case,
the partition function is given by evaluation on the unit and weak continuity
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Fig. 3. Graph of the function Zp(λ, β) as a function of λ for p = 3, β = 1.2.

implies that it is continuous. In our case C∗(G(p)) is not unital, and the
partition function is expressed as a supremum of the form

Zp(λ, β) = sup{ψβ, y(a∗a)|a ∈ C∗(G(p)) , ||a|| ≤ 1} .

In particular it shows that Zp(λ, β) is lower semi-continuous as a function of
λ.

The precise qualitative properties of the partition functions Zp(λ, β) are de-
scribed by the following result

Proposition 8.17. As a function of λ ∈ (1, λ] the partition function Zp(λ, β)
satisfies for β > 1:

1. Zp is strictly increasing.
2. Zp is continuous on the left, and lower semi-continuous.
3. Zp is discontinuous at any point of the form λ = mp−k with a jump of

2 p−kβ (for m prime to p).

4. The measure
∂Zp

∂λ is the sum of the Dirac masses at the points λ = mp−k,
m prime to p, with coefficients 2 p−kβ.

5. The closure of the range of Zp is a Cantor set.

Proof. (1) This follows from (40) which expresses Zp as an absolutely conver-
gent sum of multiples of the functions ⌈λpk−1⌉. The latter are non-decreasing
and jump by 1 at λ ∈ N p−k ∩ (1, p ]. The density of the union of these finite
sets for k ≥ 0 shows that Zp is strictly increasing.

(2) This follows as above from (40) and the semi-continuity properties of the
ceiling function.
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(3) Let λ = mp−k with m prime to p. Then for any j ≥ k one gets a jump of
2 (1 − p−β) p−jβ coming from (40) so that their sum gives

2 (1 − p−β)

∞∑

j=k

p−jβ = 2 p−kβ

(4) This follows as above from (40) and from (3) which computes the discon-
tinuity at the jumps.

(5) Recall that when writing elements of an interval in base p one gets a
map from the cantor set to the interval. This map is surjective but fails to
be injective due to the identifications coming from

∑∞
0 (p− 1) p−m = p. The

connectedness of the interval is recovered from these identifications. In our case
the coefficients ck of the expansion in base p of elements of (1, p ] are such that
c0 ∈ {1, . . . , p− 1} while ck ∈ {0, . . . , p− 1} for k > 0. This is a Cantor set K
in the product topology of K = {1, . . . , p−1}×∏N {0, . . . , p−1}. As shown in
Figure 3, the discontinuities of the function Zp(λ, β) as a function of λ replace
the connected topology of (1, p ] by the totally disconnected topology of K.
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Fig. 4. Graphs of the functions Zp(λ, β) as functions of β for p = 3, λ = n/27. The
gray regions are the gaps in the range. All these functions have a pole at β = 1.

Remark 8.18. One can use (39) to define Zp(λ, β) for any λ > 0, as

Zp(λ, β) = 2

∞∑

−∞

(
⌈λpk − 1⌉ − ⌈λpk−1 − 1⌉

)
p−kβ . (43)
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This makes sense for ℜ(β) > 1 since ⌈λpk − 1⌉ = 0 for k ≤ − log λ
log p . The

extended function (43) satisfies

Zp(pλ, β) = pβZp(λ, β),

which suggests replacing Zp(λ, β) with

ζp(λ, β) = λ−βZp(λ, β) (44)

so that
ζp(pλ, β) = ζp(λ, β). (45)

This replacement Zp 7→ ζp corresponds to the shift in the Hamiltonian Hy by

Hy 7→ Hy − log |y∞|.

We can now refine Theorem 8.11 and consider the zero temperature KMS
state of the system (C∗(G(p)), σp

t ) corresponding to the positive energy rep-
resentation πy for y ∈ ΞQ, p .

Proposition 8.19. As β → ∞ the vacuum states (zero temperature KMS
states) of the system (C∗(G(p)), σp

t ) with Hamiltonian Hy have a degeneracy
of 2⌈λ − 1⌉, where y∞ = λ−1. There is a preferred choice of a vacuum state
given by the evaluation at y ∈ A∗

Q,p .

Proof. When we look at the orbit of y ∈ A∗
Q,p, i.e. at the intersection Q∗y ∩

A
(1)
Q,p and label its elements by pairs (k,m) as above, we find that all elements

with k = 0 give a ground state. This degeneracy of the vacuum reflects the
fact that the limit of the partition function as the temperature goes to 0 is
not in general equal to 1. For instance, for y∞ = p−1, one finds

lim
β→∞

Tr(e−βHy) = lim
β→∞

2
p− 1

1 − p1−β
= 2(p− 1).

More generally, one finds similarly the limit

lim
β→∞

Tr(e−βHy) = 2⌈λ− 1⌉.

Among the 2⌈λ− 1⌉ vacuum states, the state given by evaluation at y ∈ A∗
Q,p

is singled out, since my /∈ A∗
Q,p for m 6= 1. It is then natural to consider, for

each finite place p ∈ ΣQ, the section

sp(x) = Q∗x ∩ A∗
Q,p, ∀x ∈ CQa

(p) ⊂ AQ/Q
∗ (46)

of the projection from AQ to the orbit CQa
(p).

Notice that sp is discontinuous at the boundary of the domain A∗
Q,p. Indeed

when y∞ crosses the value p−1 the class in CQa
(p) varies continuously but the

representative in A∗
Q,p jumps discontinuously so that its archimedian compo-

nent remains in the interval [p−1, 1). This suggests to consider a cyclic covering
of ΞQ which we now discuss in §8.5.
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8.5 The cyclic covering Ξ̃Q of ΞQ

By construction ΞK is a subspace of the adeles class space XK. We shall now
show, in the case K = Q, that it admits a natural lift Ξ̃Q to a subspace of AQ

which reduces the ambiguity group Q∗ to a cyclic group. One thus obtains a
natural cyclic covering Ξ̃Q ⊂ AQ of ΞQ. We already saw above, in Proposition
8.19, that it is natural to choose representatives for the elements of the orbit
CQa

(p), for a finite prime p, in the subset of adeles given by

Ξ̃Q,p := {y ∈ AQ| yp = 0 and |yℓ| = 1 for ℓ 6= p,∞ and y∞ > 0}. (47)

We extend this definition at ∞ by

Ξ̃Q,∞ := {y ∈ AQ| |yw| = 1 ∀w 6= ∞ and y∞ = 0}. (48)

Definition 8.20. The locus Ξ̃Q ⊂ AQ is defined as

Ξ̃Q =
⋃

v∈ΣQ

Ξ̃Q,v ⊂ AQ (49)

We then have the following simple fact.

Proposition 8.21. Let π be the projection from Ξ̃Q to ΞQ, with π(x) the class
of x modulo the action of Q∗.

1. The map π : Ξ̃Q → ΞQ is surjective.
2. Two elements in Ξ̃Q,v have the same image in CQa

(v) iff they are on the
same orbit of the following transformation T

Tx = p x , ∀x ∈ Ξ̃Q,p , Tx = −x , ∀x ∈ Ξ̃Q,∞ (50)

Proof. The first statement follows by lifting CQ inside A∗
Q as the subgroup

Ẑ∗ × R∗
+. Then any element of CQa

(v) has a representative in (Ẑ∗ × R∗
+)a(v)

The proof of the second statement is straightforward, since for a finite prime
p the subgroup pZ ⊂ Q∗ is the group of elements of Q∗ which leave Ξ̃Q,p

globally invariant.

8.6 Arithmetic subalgebra, Frobenius and monodromy

We now describe a natural algebra of coordinates B on ΞQ.
The BC system of [5], as well as its arithmetic generalizations of [12] and
[14], have the important property that they come endowed with an arithmetic
structure given by an arithmetic subalgebra. The general framework of en-
domotives developed in [11] shows a broad class of examples where a similar
arithmetic structure is naturally present. We consider here the issue of ex-
tending the construction of the “rational subalgebra” of the BC-system to the

algebra S(G(1)
Q ) of §8.1.
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In order to get a good geometric picture it is convenient to think in terms of
Q-lattices rather than of adeles, as in [12]. Thus, we let L denote the set of
1-dimensional Q-lattices (as defined in [12]). We consider the map

ι : Ẑ × R∗
+ → L , ι(ρ, λ) = (Λ, φ) = (λ−1Z, λ−1ρ) (51)

which associates to an adele (ρ, λ) ∈ Ẑ×R∗
+ ⊂ AQ the Q-lattice obtained using

ρ to label the torsion points of R/λ−1Z. Replacing (ρ, λ) by (nρ, nλ), for a
positive integer n ∈ N, one obtains the pair ( 1

nΛ, φ), which is commensurable
to (Λ, φ). Thus, the action of Q∗

+ corresponds to commensurability of Q-
lattices under the map ι. Multiplying λ by a positive scalar corresponds to
the scaling action of R∗

+ on Q-lattices.
Let us recall the definition of the “rational algebra” AQ of [12] for the BC
system, given in terms of Q-lattices. We let

ǫa(Λ, φ) =
∑

y∈Λ+φ(a)

y−1, (52)

for any a ∈ Q/Z. This is well defined, for φ(a) 6= 0, using the summation

limN→∞

∑N
−N , and is zero by definition for φ(a) = 0. The function

ϕa(ρ, λ) = ǫa(ι(ρ, λ)), ∀(ρ, λ) ∈ Ẑ × R∗
+, (53)

is well defined and homogeneous of degree 1 in λ. Moreover, for fixed a ∈ Q/Z
with denominator m, it only depends upon the projection of ρ on the finite
group Z/mZ, hence it defines a continuous function on Ẑ × R∗

+. Using the
degree 1 homogeneity in λ, one gets that (53) extends by continuity to 0 on

Ẑ × {0}.
One gets functions that are homogeneous of weight zero by taking the deriva-
tives of the functions ϕa. The functions

ψa(ρ, λ) =
1

2πi

d

dλ
ϕa(ρ, λ), ∀(ρ, λ) ∈ Ẑ × R∗

+, (54)

are independent of λ hence they define continuous functions on A
(1)
Q . They

are non trivial on Ξ̃Q,∞ = Ẑ∗ × {0} ⊂ Ẑ × {0} and they agree there with the
functions ea of [12].

Proposition 8.22. Let B be the algebra generated by the ϕa and ψa defined
in (53) and (54) above.

1. The expression

N(f) =
1

2πi

d

dλ
f (55)

defines a derivation N of B.
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2. The algebra B is stable under the derivation Y that generates the 1-

parameter semigroup F (µ) of endomorphisms of S(G(1)
Q ) of (11) and one

has, at the formal level, the relation

F (µ)N = µNF (µ). (56)

3. For any element f ∈ B one has

α ◦ f(x) = f(α̃ x), ∀x ∈ Ξ̃Q,∞ and ∀α ∈ Gal(Qcycl/Q), (57)

where α̃ ∈ Ẑ∗ ⊂ CQ is the element of the idele class group associated to
α ∈ Gal(Qcycl/Q) by the class field theory isomorphism.

Proof. 1) By construction N is a derivation of the algebra of functions. More-
over (54) shows that N(ϕa) = ψa, while N(ψa) = 0. Thus, the derivation rule
shows that B is stable under N .
2) The derivation generating the one parameter semigroup F (µ) is given, up
to sign, by the grading operator

Y (f) = λ
d

dλ
f. (58)

By construction, any of the ϕa is of degree one, i.e. Y (ϕa) = ϕa and ψa is of
degree 0. Thus, again the derivation rule shows that B is stable under Y .
3) This only involves the functions ψa, since by construction the restriction
of ϕa is zero on Ξ̃Q,∞. The result then follows from the main result of [5] in
the reformulation given in [12] (see also [13], Chapter 3). In fact, all these
functions take values in the cyclotomic field Qcycl ⊂ C and they intertwine
the action of the discontinuous piece Ẑ∗ of CQ with the action of the Galois
group of Qcycl.

This is in agreement with viewing the algebra B as the algebra of coordinates
on Ξ̃Q. Indeed, in the case of a global field K of positive characteristic, the
action of the Frobenius on the points of C(F̄q) (which have coordinates in F̄q)
corresponds to the Frobenius map

Fr : u 7→ uq, ∀u ∈ K (59)

of the function field K of the curve C. The Frobenius endomorphism u 7→ uq of
K is the operation that replaces a function f : C(F̄q) → F̄q by its q-th power,
i.e. the composition Fr◦f with the Frobenius automorphism Fr ∈ Gal(F̄q/Fq).
For f ∈ K, one has

Fr ◦ f = f q = f ◦ Fr, (60)

where on the right hand side Fr is the map that raises every coordinate to the
power q. This corresponds to the interwtining with the Galois action discussed
above.
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Notice moreover that, as we have seen in Proposition 8.6, only the semigroup

C+
Q acts on the reduced system S(G(1)

Q ) and it acts by endomorphisms. It
nevertheless acts in a bijective manner on the points of ΞQ. This is similar
to what happens with the Frobenius endomorphism (59), which is only an
endomorphism of the field of functions K̄, while it acts bijectively (as a Galois
automorphism of the coordinates) on the points of C(F̄q).

Further notice that there is a striking formal analogy between the operators
F and N of Proposition 8.22 satisfying the relation (56) and the Frobenius
and local monodromy operators introduced in the context of the “special fiber
at arithmetic infinity” in Arakelov geometry (see [18], [19]). In particular, one
should compare (56) with §2.5 of [19] that discusses a notion of Weil–Deligne
group at arithmetic infinity.

9 Functoriality of the adeles class space

We investigate in this section the functoriality of the adele class space XK and
of its classical subspace ΞK ⊂ XK, for Galois extensions of the global field K.
This issue is related to the question of functoriality. Namely, given a finite
algebraic extension L of the global field K, we want to relate the adele class
spaces of both fields. Assume the extension is a Galois extension. In general,
we do not expect the relation between the adeles class spaces to be canonical,
in the sense that it will involve a symmetry breaking choice on the Galois
group G = Gal(L/K) of the extension. More precisely, the norm map

n(a) =
∏

σ∈G

σ(a) ∈ AK, ∀a ∈ AL (1)

appears to be the obvious candidate that relates the two adeles class spaces.
In fact, since n(L) ⊂ K, the map (1) passes to the quotient and gives a
natural map from XL = AL/L

∗ to XK = AK/K
∗ that looks like the covering

required by functoriality. However, the problem is that the norm map fails to
be surjective in general, hence it certainly does not qualify as a covering map.
In fact, this problem already occurs at the level of the idele class group CK,
namely the norm map fails to be a surjection from CL to CK.
The correct object to consider is the Weil group WL,K. This is an extension
of CL by the Galois group G = Gal(L/K), which is not a semi-direct product.
The corresponding non-trivial 2-cocycle is called the “fundamental class”. One
has a natural morphism t, called the transfer, from WL,K to CK. The transfer
satisfies the following two properties.

• The morphism t restricts to the norm map from CL to CK.
• The morphism t is surjective on CK

Thus, the correct way to understand the relation between the adeles class
spaces XL and XK is by extending the construction of the Weil group and of
the the transfer map.
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One obtains in this way n copies of the adele class space XL of L and a map
to XK which is now a covering from G×ΞL → ΞK. This space has a natural
action of the Weil group. We explain this in more detail in what follows.

9.1 The norm map

We begin by recalling the well known properties of the norm map that are
relevant to our set-up. Thus, we let L ⊃ K be a finite Galois extension of K

of degree n, with G = Gal(L/K) the Galois group.
Since the adeles depend naturally on the field, one has a canonical action of G
on AL. If v ∈ ΣK is a place of K, there are mv places of L over v and they are
permuted transitively by the action of G. Let Gw be the isotropy subgroup of
w. Then Gw is the Galois group Gw = Gal(Lw/Kv).
One has a canonical embedding of AK as the fixed points of the action of G
on AL by

AK = AG
L , (av) 7→ (aπ(w)), with π : ΣL → ΣK. (2)

The norm map n : AL → AK is then defined as in (1). By [44] IV 1, Corollary
3, it is given explicitly by

n(x) = z , zv =
∏

w|v

nLw/Kv
(xw) , ∀x ∈ AL . (3)

Here the notation w|v means that w is a place of L over the place v ∈ ΣK.
Also nLw/Kv

is the norm map of the extension Lw/Kv. When restricted to
principal adeles of L it gives the norm map from L to K. When restricted to
the subgroup L∗

w = (. . . , 1, . . . , y, . . . , 1, . . .) ⊂ A∗
L, it gives the norm map of

the extension Lw/Kv. For nontrivial extensions this map is never surjective,
but its restriction n : O(Lw)∗ → O(Kv)∗ is surjective when the extension is
unramified, which is the case for almost all places v ∈ ΣK (cf. [44], Theorem 1
p.153). In such cases, the module of the subgroup n(L∗

w) ⊂ K∗
v is a subgroup

of index the order of the extension Kv ⊂ Lw. The restriction of the norm
map to the idele group A∗

L is very far from surjective to A∗
K and its range is

a subgroup of infinite index. The situation is much better with the idele class
groups since (cf. [44], Corollary p.153) the norm map is an open mapping
n : CL → CK whose range is a subgroup of finite index.

9.2 The Weil group and the transfer map

The Weil groupWL,K associated to the Galois extension K ⊂ L is an extension

1 → CL →WL,K → G→ 1 (4)

of CL by the Galois group G. One chooses a section s from G and lets a ∈
Z2(G,CL) be the corresponding 2-cocycle so that



Weil’s proof and adeles classes 387

aα,β = s−1
αβ sα sβ , ∀α, β ∈ G. (5)

The algebraic rules in WL,K are then given by

sα sβ = sαβ aα,β, ∀α, β ∈ G (6)

and
sα x s

−1
α = α(x), ∀α ∈ G, ∀x ∈ CL. (7)

The transfer homomorphism

t : WL,K → CK (8)

is then given by

t(x) = n(x), ∀x ∈ CL and t(sα) =
∏

β

aα,β , ∀α ∈ G. (9)

Its main properties are the following (see [40]).

• t is a surjective group morphism WL,K → CK.
• Let W ab

L,K be the abelian quotient of WL,K by the closure of its commutator

subgroup W c
L,K. Then t induces an isomorphism of W ab

L,K with CK.

9.3 The covering

We finally describe the resulting functoriality of the adeles class spaces in
terms of a covering map obtained by extending the Weil group and transfer
map described above. Let, as above, L ⊃ K be a finite Galois extension of K.

Lemma 9.1. The transfer map extends to a map

τ : G×XL → XK (10)

of the adele class spaces.

Proof. We endow G × XL with a two sided action of G compatible with τ .
By construction the norm map n of (1) is well defined on AL. Since it is
multiplicative and we have n(L∗) ⊂ K∗, it induces a map of quotient spaces
n : XL → XK. By construction CL acts on XL and the actions by left and
right multiplication coincide, so we use both notations. We define the map τ
as

τ : G×XL → XK, τ(α, x) = t(sα)n(x), ∀x ∈ XL, ∀α ∈ G. (11)

This makes sense since t(sα) ∈ CK and CK acts on XK. By construction, the
restriction of τ to G× CL is the transfer map.
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One identifiesG×CL withWL,K by the map which to (α, g) ∈ G×CL associates
the element sα g of WL,K.
In the following we use the notation

xg = g−1(x). (12)

We have the following result.

Lemma 9.2. Let L ⊃ K be a finite Galois extension of K.

1. The expressions

sαg(β, x) = (αβ, aα,βg
βx), and (α, x)sβg = (αβ, aα,βx

βg) (13)

define a left and a right action of WL,K on G×XL.
2. The map τ of (11) satisfies the equivariance property

τ(gxk) = t(g)τ(x)t(k), ∀x ∈ G×XL, and ∀g, k ∈WL,K. (14)

Proof. 1) We defined the rules (6) as the natural extension of the multiplica-
tion in WL,K using

sαgsβh = sαsβg
βh = sαβaα,βg

βh. (15)

Thus, the proof of associativity in the group WL,K extends and it implies
that (13) defines a left and a right action of WL,K and that these two actions
commute.
2) The proof that the transfer map t is a group homomorphism extends to
give the required equality, since the norm map is a bimodule morphism when
extended to XL.

At the level of the classical points, we can then describe the covering map in
the following way.

Proposition 9.3. Let L and K be as above.

1. The restriction of τ to G×ΞL ⊂ G×XL defines a surjection

τ : G×ΞL → ΞK. (16)

2. The map τ induces a surjection

τ : G× (ΞL/CL,1) → ΞK/CK,1. (17)

Proof. 1) By construction ΞL = ∪w∈ΣL
CLa

(w), where a(w) ∈ XL is the class,
modulo the action of L∗, of the adele with all entries equal to 1 except for a
zero at w as in (7). Let π denote the natural surjection from ΣL to ΣK. One
has

τ(1, a(w)) = a(π(w)), ∀w ∈ ΣL. (18)



Weil’s proof and adeles classes 389

In fact, one has τ(1, a(w)) = n(a(w)). Moreover, by (3), the adele a = n(a(w))
has components az = 1 for all z 6= π(w) and aπ(w) = 0. Thus a = a(π(w)). The
equivariance of the map τ as in Lemma 9.2 together with the surjectivity of
the transfer map from WL,K to CK then show that we have

τ(WL,K(1, a(w))) = CK a
(π(w)), ∀w ∈ ΣL.

For sαg ∈WL,K, one has

sαg(1, a
(w)) = (α, ga(w)),

since aα,1 = 1. Thus, WL,K(1, a(w)) = G× CLa
(w) and one gets

τ(G × CLa
(w)) = CKa

(π(w)), ∀w ∈ ΣL.

Since the map π is surjective we get the conclusion.
2) The transfer map satisfies t(CL,1) ⊂ CK,1. When restricted to the subgroup
CL the transfer coincides with the norm map n and in particular if |g| = 1
one has |n(g)| = 1. Thus one obtains a surjection of the quotient spaces

τ : (G×ΞL)/CL,1 → ΞK/CK,1.

Moreover, the right action of the subgroup CL,1 ⊂WL,K is given by

(α, x)g = (α, xg).

This means that we can identify

(G×ΞL)/CL,1 ∼ G× (ΞL/CL,1).

9.4 The function field case

Let K = Fq(C) be a global field of positive characteristic, identified with the
field of rational functions on a nonsingular curve C over Fq. We consider the
extensions

L = K ⊗Fq
Fqn . (19)

The Galois groupG is the cyclic group of order n with generator σ ∈ Gal(L/K)
given by σ = id⊗Fr, where Fr ∈ Gal(Fqn/Fq) is the Frobenius automorphism.
Given a point x ∈ C(F̄q) we let n be the order of its orbit under the Frobenius.
One then has x ∈ C(Fqn) and evaluation at x gives a well defined place
w(x) ∈ ΣL. The projection π(w(x)) ∈ ΣK is a well defined place of K which
is invariant under x 7→ Fr(x).
In the isomorphism of Z-spaces

ϑL : C(F̄q) → ΞL/CL,1

described in §8.3, we have no ambiguity for places corresponding to points
x ∈ C(Fqn). To such a point we assign simply
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ϑL(x) = a(w(x)) ∈ ΞL/CL,1.

We now describe what happens with these points of ΞL/CL,1 under the cov-
ering map τ . We first need to see explicitly why the surjectivity only occurs
after crossing by G.

Proposition 9.4. Let K and L = K ⊗Fq
Fqn be as above.

1. The image n(CL) ⊂ CK is the kernel of the morphism from CK to G =
Z/nZ given by

g 7→ ρ(g) = logq |g| mod n.

2. One has ρ(t(sσ)) = 1 mod n, where σ ∈ Gal(L/K) is the Frobenius gen-
erator.

Proof. Since L is an abelian extension of K, one has the inclusions

K ⊂ L ⊂ Kab ⊂ Lab, (20)

where Kab is the maximal abelian extension of K. Using the class field theory
isomorphisms

CK ∼W (Kab/K) and CL ∼W (Lab/L),

one can translate the proposition in terms of Galois groups. The result then
follows using [40] p.502.

10 Vanishing cycles: an analogy

We begin by considering some simple examples that illustrate some aspects
of the geometry of the adeles class space, by restricting to the semilocal case
of a finite number of places. This will also illustrate more explicitly the idea
of considering the adeles class space as a noncommutative compactification of
the idele class group.
We draw an analogy between the complement of the idele classes in the adele
classes and the singular fiber of a degeneration. This analogy should be taken
with a big grain of salt, since this complement is a highly singular space and
it really makes sense only as a noncommutative space in the motivic sense
described in sections 4 and 5 above.

10.1 Two real places

We first consider the example of the real quadratic field K = Q(
√

2) and we
restrict to its two real places v1 and v2. Thus, we replace the adeles AK simply
by the product Kv1 × Kv2 over the real places, which is just the product of
two copies of R. The ideles A∗

K are correspondingly replaced by K∗
v1
×K∗

v2
and

the inclusion of ideles in adeles is simply given by the inclusion



Weil’s proof and adeles classes 391

(R∗)2 ⊂ R2. (1)

The role of the action of the group K∗ by multiplication is now replaced by
the action by multiplication of the group U of units of K = Q(

√
2). This group

is
U = Z/2Z × Z

where the Z/2Z comes from ±1 and the Z is generated by the unit u = 3−2
√

2.
Its action on R2 is given by the transformation

S(x, y) = (ux, u−1y). (2)

Thus, in this case of two real places the semi-local version of the adeles class
space is the quotient

Xv1,v2 := R2/U (3)

of R2 by the symmetry (x, y) 7→ (−x,−y) and the transformation S.
Both of these transformations preserve the function

f̃ : R2 → R, f̃(x, y) = xy, (4)

which descends to a function

f : Xv1,v2 → R. (5)

Moreover one has

(x, y) ∈ (R∗)2 ⊂ R2 ⇔ f(x, y) 6= 0

and the fiber of f over any non zero ε ∈ R is easily identified with a one
dimensional torus

f−1(ε) ∼ R∗
+/u

Z, ∀ε 6= 0 (6)

where one can use the map (x, y) 7→ |x| to obtain the required isomorphism.
The fiber f−1(0) of f over the point ε = 0, on the other hand, is no longer a
one dimensional torus and it is singular. It is the union of three pieces

f−1(0) = T1 ∪ T2 ∪ {0} (7)

corresponding respectively to

• T1 is the locus x = 0, y 6= 0, which is a torus T1 ∼ R∗
+/u

Z under the
identification given by the map (x, y) 7→ |y|.

• T2 is the locus x 6= 0, y = 0, which is also identified with a torus T2 ∼
R∗

+/u
Z under the analogous map (x, y) 7→ |x|.

• The last piece is the single point x = 0, y = 0.
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One can see that at the naive level that the quotient topology on the singular
fiber (7) looks as follows. For any point x ∈ Tj its closure is x̄ = {x} ∪ {0}.
Moreover the point 0 is closed and the induced topology on its complement
is the same as the disjoint union of two one dimensional tori Tj . In fact
one can be more precise and see what happens by analyzing the C∗-algebras
involved. The C∗-algebra A associated to the singular fiber is by construction
the crossed product

A = C0(f̃
−1(0)) ⋊ U (8)

with f̃ as in (4). One lets

Aj = C0(Vj) ⋊ U (9)

where we use the restriction of the action of U to the subsets

Vj = {(x1, x2) |xj = 0} ∼ R.

Evaluation at 0 ∈ R gives a homomorphism

ǫj : Aj → C∗(U) .

Lemma 10.1. One has an exact sequence of the form

0 → C(Tj) ⊗K → Aj
ǫj→ C∗(U) → 0,

where K is the algebra of compact operators.
The C∗-algebra A is the fibered product of the Aj over C∗(U) using the mor-
phisms ǫj.

Proof. The first statement follows using the fact that the action of U on R∗ is
free. Notice that Aj is not unital, so that it is not the unital algebra obtained
from C(Tj) ⊗K by adjoining a unit.

Since the decomposition of f̃−1(0) as the union of the Vj over their common
point 0 is U -equivariant one gets the second statement.

After collapsing the spectrum of C∗(U) to a point, the topology of the spec-
trum of Aj is the topology of Tj ∪ {0} described above. The topology of the
spectrum of A is the topology of f−1(0) of (7) described above.

10.2 A real and a non-archimedean place

We now consider another example, namely the case of K = Q with two places
v1, v2, where v1 = p is a non-archimedean place associated to a prime p and
v2 = ∞ is the real place. Again, we replace adeles by the product Kv1 × Kv2

over the two places, which in this case is just the product

Kv1 × Kv2 = Qp × R. (10)
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The ideles are correspondingly replaced by K∗
v1

× K∗
v2

= Q∗
p × R∗ and the

inclusion is given by
Q∗

p × R∗ ⊂ Qp × R. (11)

The role of the action of the group K∗ by multiplication is now replaced by
the action by multiplication by the group U of elements of K∗ = Q∗ which
are units outside the above two places. This group is

U = Z/2Z × Z, (12)

where the Z/2Z comes from ±1 and the cyclic group is pZ generated by
p ∈ K∗ = Q∗.
The action of U of (12) on R × Qp is given by the transformation

S(x, y) = (px, py). (13)

By comparison with the previous case of K = Q(
√

2), notice how in that case
(cf. (2)) the pair (u, u−1) was just the image of the element 3 − 2

√
2 under

the diagonal embedding of K in Kv1 × Kv2 .
In the present case, the role of the adeles class space XK = AK/K

∗ is then
played by its semi-local version

Xp,∞ = (Qp × R)/U (14)

quotient of Qp×R by the symmetry (x, y) → (−x,−y) and the transformation
S. Both of these transformations preserve the function

f̃ : Qp × R → R+, f̃(x, y) = |x|p |y| ∈ R+, (15)

which descends to a function

f : Xp,∞ → R+. (16)

Moreover, one has

(x, y) ∈ Q∗
p × R∗ ⊂ Qp × R ⇔ f(x, y) 6= 0

and the fiber of f over any non zero ε ∈ R+ is easily identified with Z∗
p

f−1(ε) ∼ Z∗
p, ∀ε 6= 0.

In fact, one can use the fundamental domain

Z∗
p × R∗

+

for the action of U on Q∗
p × R∗ to obtain the required isomorphism.

The fiber f−1(0) of f over the point ε = 0 is no longer Z∗
p and once again it

is singular. It is again described as the union of three pieces

f−1(0) = Tp ∪ T∞ ∪ {0}, (17)

which have, respectively, the following description.
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• Tp is the locus x = 0, y 6= 0, which is identified with a torus Tp ∼ R∗
+/p

Z,
using the map (x, y) 7→ |y|.

• T∞ is the locus x 6= 0, y = 0, which gives the compact space T∞ ∼ Z∗
p/±1

obtained as quotient of Q∗
p by the action of U .

• The remaining piece is the point x = 0, y = 0.

The description of the topology of f−1(0) is similar to what happens in the
case of Q(

√
2) analyzed above.

What is not obvious in this case is how the totally disconnected fiber f−1(ε) ∼
Z∗

p can tie in with the torus Tp ∼ R∗
+/p

Z when ε→ 0.
To see what happens, we use the map

Xp,∞ ∋ (x, y) 7→ g(x, y) = class of |y| ∈ R∗
+/p

Z. (18)

This is well defined on the open set y 6= 0. It is continuous and passes to
the quotient. Thus, when a sequence (xn, yn) ∈ Xp,∞ converges to a point
(0, y) ∈ Tp, y 6= 0, one has g(0, y) = limn g(xn, yn).
The point then is simply that we have the relation

g(x, y) = f(x, y) ∈ R∗
+/p

Z. (19)

In other words, g(xn, yn) = εn with (xn, yn) in the fiber f−1(εn) and the point
of the singular fiber Tp towards which (xn, yn) ∈ Xp,∞ converges depends only
on the value of εn in R∗

+/p
Z.

Fig. 5. The limit cycle of a foliation.

This phenomenon is reminiscent of the behavior of holonomy in the context
of foliations, using a logarithmic scale R∗

+/p
Z ∼ R/(Z log p). It corresponds
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to what happens in the limit cycle of the foliation associated to a flow as
depicted in Figure 5.
As we argued in [11] (see also §3.2 and §7.1 here above), the role of Frobenius
in characteristic zero is played by the one parameter group Fr(t) with t ∈ R

which corresponds to the action of R on the adele class space XQ = AQ/Q
∗

given in the above logarithmic scale, namely

Fr(t)(a) = et a, ∀a ∈ XQ. (20)

Its orbit over p ∈ ΣQ is of length log p and it corresponds, in the simplified
picture of Xp,∞, to the component Tp of the singular fiber f−1(0).

10.3 Singularities of maps

The simple examples described above illustrate how one can use the function
f(x) = |x| in general, and see the place where it vanishes as the complement
of CK in the adeles class space XK. This provides a way of thinking of the
inclusion of CK in XK in terms of the notions of “singular fiber” and “generic
fiber” as seen in the examples above. The generic fiber appears to be typically
identified with CK,1, with the union of the generic fibers giving CK as it should.
This suggests the possibility of adapting to our noncommutative geometry
context some aspects of the well developed theory of nearby and vanishing
cycles. A brief dictionary summarizing this analogy is given here below.

Total space Adele class space XK = AK/K
∗

The map f f(x) = |x|

Singular fiber XK r CK = f−1(0)

Union of generic fibers CK = f−1({0}c)
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