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Introduction

The L-series L(E, s) =
∑∞
n=1 ann

−s of an elliptic curve E over Q converges
for Re s > 3/2. The Modularity Conjecture, settled by Wiles-Taylor-Diamond-
Breuil-Conrad [BCDT], implies that L(E, s) analytically continues to an entire
function and its leading term at s = 1 is described by the following long
standing conjecture.

Conjecture 1 (Birch and Swinnerton-Dyer). L-function L(E, s) has a
zero of order r = rank E(Q) at s = 1, and

lim
s→1

L(E, s)
(s− 1)r

=
c∞(E)cfin(E)R(E)|X(E)|

|E(Q)tors|2
.

Here E(Q)tors denotes the torsion subgroup of the group E(Q) of rational
points of E, the fudge factor cfin is the Tamagawa number of E, and R(E) is
the regulator calculated with respect to the Néron-Tate height pairing. If ω is
the real period of E, then c∞ = ω or 2ω, according to whether the group of
real points E(R) is connected or not.
Finally, X(E) denotes the Tate-Shafarevich group of E. The latter is

formed by isomorphism classes of pairs (T, φ), where T is a smooth projective
curve over Q of genus one which possesses a Qp-rational point for every prime
p (including p =∞), and φ : E → Jac(T ) is an isomorphism defined over Q.
The Tate-Shafarevich group is very difficult to determine. It is known that
the subgroup

X(E)[n] := {a ∈X(E) | na = 0}
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is finite for any n > 1 and it is conjectured that X(E) is always finite. In
theory, the standard 2-descent method calculates the dimension of the F2-
vector space X(E)[2] (see [Cr1], [S]). It is not clear in general how to exhibit
the curves of genus 1 which represent elements of X(E) of order > 2 (see,
however, [CFNS2]).
It has been known for a long time that the order of X(E), provided the

latter is always finite, can take arbitrarily large values. Cassels [C] was the
first one to show this by proving that |X(E)[3]| can be arbitrarily large for
a special family of elliptic curves with j-invariant zero. Only in 1987 it was
finally established that there are any elliptic curves over Q for which the
Tate-Shafarevich group is finite (Rubin [Ru], Kolyvagin [K], Kato). Ten years
later Rohrlich [Ro] by combining results of [HL] and [K], proved that given a
modular elliptic curve E over Q (hence any curve—according to [BCDT]), and
a positive integer n, there exists a quadratic twist Ed of E such that X(Ed)
is finite and |X(Ed)[2]| ­ n. This finally proved that X(E) can indeed be a
group of arbitrarily large finite order.
Assuming the Birch and Swinnerton-Dyer Conjecture, Mai and Murty [M2]

showed that for the family of quadratic twists of any elliptic curve E, one has

lim
d

N(Ed)
1
4−ε

|X(Ed)|
= 0.

Goldfeld and Szpiro [GS], and Mai and Murty [MM2] (as reported by
Rajan [R]), in the early 1990s proposed the following general conjecture:

Conjecture 2 (Goldfeld-Szpiro-Mai-Murty). For any ε > 0 we have3

|X(E)| � N(E)1/2+ε.

Estimate (1) holds for the family of rank zero quadratic twists of any particular
elliptic curve provided the Birch and Swinnerton-Dyer Conjecture holds for
every member of that family.
The Birch and Swinnerton-Dyer Conjecture combined with the following

consequence of the Generalised Lindelöf Hypothesis (see [GHP], p. 154)

lim
d→∞

L(rd)(Ed, 1)
N(Ed)ε

= 0 (d square-zero),

where rd denotes the rank of the group Ed(Q), and the following conjecture
of Lang (see [L])

3In this article we adhere to the following notational convention. Let A(E) and
B(E) be some quantities A(E) and B(E) dependent on a curve E belonging to
a specified class C of elliptic curves defined over Q. We say that A(E) � B(E)
if, for any K > 0, there exists N0 such that A(E) < KB(E) for all curves in C

with conductor N(E) > N0. This is meaningful only if C contains infinitely many
nonisomorphic curves. If either A(E) or B(E) depend on some parameter ε, then
the choice of N0 is allowed to depend on ε.
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R(E)� N(E)−ε,

easily imply that
|X(Ed)| � N(Ed)1/4+ε.

The following unconditional bounds

|X(E)| �


N(E)79/120+ε if j(E) = 0
N(E)37/60+ε if j(E) = 1728
N(E)59/120+ε otherwise,

where j(E) denotes the j-invariant of E, are known for curves of rank zero
with complex multiplication [GL].
In general, for elliptic curves satisfying the Birch and Swinnerton-Dyer

Conjecture, Goldfeld and Szpiro [GS] show that the Goldfeld-Szpiro-Mai-
Murty Conjecture is equivalent to the Szpiro Conjecture:

|∆(E)| � N(E)6+ε,

where ∆(E) denotes the discriminant of the minimal model of E. Masser
proves in [Ma] that 6 in the exponent of (2) cannot be improved; in [We] de
Weger conjectures that the exponent in (1) is also, in a certain sense, the best
possible.

Conjecture 3 (de Weger). For any ε > 0 and any C > 0, there exists an
elliptic curve over Q with

|X(E)| > CN(E)1/2−ε.

He shows [We] that Conjecture 3 is a consequence of the following three
conjectures: the Birch and Swinnerton-Dyer Conjecture for curves of rank
zero, the Szpiro Conjecture, and the Riemann Hypothesis for Rankin-Selberg
zeta functions associated to certain modular forms of weight 32 .
On the other hand, de Weger demonstrates that the following variant of

Conjecture 3 which involves the minimal discriminant instead of the conduc-
tor, is a consequence of just the Birch and Swinnerton-Dyer Conjecture for
elliptic curves with L(E, 1) 6= 0.

Conjecture 4 (de Weger). For any ε > 0 and any C > 0, there exists an
elliptic curve over Q with

|X(E)| > C|∆(E)|1/12−ε.

For the purpose of the present article the quantity

GS(E) :=
|X(E)|√
N(E)
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will be referred to as the Goldfeld-Szpiro ratio of E. Eleven examples of elliptic
curves with GS(E) ­ 1 are given in [We], the largest value being 6.893... .
Further forty seven examples with GS(E) ­ 1 are produced by Nitaj [Ni],
his largest value of GS(E) being 42.265. Note that curves of small conductor
with GS(E) > 1 were already known from Cremona’s tables [Cr2]. In all
these examples GS(E) is calculated by using the formula for |X(E)| which is
predicted by the Birch and Swinnerton-Dyer conjecture, see (4) below.

Let us say a few words about the order of the Tate-Shafarevich group for
those curves when it is known. The results by Stein and his collaborators
[GJPST, Thm. 4.4] imply that |X(E)| = 72 for the curves denoted 546f2 and
858k2, respectively, in Cremona’s tables [Cr2]. No other curve of rank zero and
conductor less than 1000 has larger |X(E)| if the Birch and Swinnerton-Dyer
conjecture holds for such curves. Gonzalez-Avilés demonstrated [GA, Thm.
B], that formula (4) for the order of the Tate-Shafarevich group holds for all
the quadratic twists

Ed : y2 = x3 + 21dx2 + 112d2x

with L(Ed, 1) 6= 0. The largest value of |X(Ed)| for such curves, when d ¬
2000, is |X(E1783)| = 82 (cf. [Le, Table I]).
Assuming the validity of the Birch and Swinnerton-Dyer conjecture, one

can compute |X(E)| for an elliptic curve of rank zero E by evaluating L(E, 1)
with sufficient accuracy. (In practice, this is possible only for curves with not
too big conductors.) We shall be referring to this number as the analytic
order of the Tate-Shafarevich group of E. In what follows |X(E)| will denote
exclusively the analytic order of X(E).
It is rather surprising how small is the analytic order in all known exam-

ples: de Weger [We] produced one with |X(E)| = 2242, Rose [Rs] produced
another one with |X(E)| = 6352; finally, Nitaj [Ni] found a curve with

|X(E)| = 18322

and that seems to be the largest known value prior to year 2002.
For the family of cubic twists considered by Zagier and Kramarz [ZK]

E′d : x
3 + y3 = d (d cubic-free),

the value of |X(E′d)| does not exceed 212 for d ¬ 70000. In this case, the Birch
and Swinnerton-Dyer, the Lang, and the Generalised Lindelöf conjectures
imply that

|X(E′d)| � N(E′d)1/3+ε.

For quadratic twists of a given curve one can calculate the analytic order
of the Tate-Shafarevich group by using a well known theorem of Waldspurger
[W] in conjunction with purely combinatorial methods. The details for some
curves with complex multiplication can be found in [Fr1],[Fr2],[Le],[N],[T].
Here we shall consider only one example, the family
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Ed : y2 = x3 − d2x (d ­ 1 an odd square-free integer)

of so called congruent-number elliptic curves. Define the sequence a(d) by

∞∑
n=1

a(n)qn := η(8z)η(16z)Θ(2z)

where

η(z) = q1/24
∞∏
n=1

(1− qn), Θ(z) =
∞∑

n=−∞
qn
2

(q = e2πiz),

When curve Ed is of rank zero then, assuming as usual the Birch and
Swinnerton-Dyer conjecture, we have (see [T]):

|X(Ed)| =
(
a(d)
τ(d)

)2
where τ(d) denotes the number of divisors of d. (Coefficients a(d) can also be
calculated using a formula of Ono [O].) Conjecturally, one expects that

|X(Ed)| � N(Ed)1/4+ε,

hence the sequence of curves Ed (and, more generally, the family of quadratic
twists of any curve) is not a likely candidate to produce curves with large
Goldfeld-Szpiro ratio.

The primary aim of this article is to present the results of our search for
curves with exceptionally large analytic orders of the Tate-Shafarevich group.
We exhibit 134 examples of curves of rank zero with |X(E)| > 18322 which
was the largest previously known value for any explicit curve. For our record
curve we have

|X(E)| = 63, 4082.

For the reasons explicated in the last section, we focused on the family

E(n, p) : y2 = x(x+ p)(x+ p− 4 · 32n+1),

and three families of isogeneous curves, for n and p being integers within the
bounds 3 ¬ n ¬ 19 and 0 < |p| < 1000. Compared to the previously published
results, in our work we faced dealing with curves of very big conductor. A big
conductor translates into a very slow convergence rate of the approximation
to L(E, 1). The main difficulty was to design a successful search strategy for
curves with an exceptionally large Goldfeld-Szpiro ratio, (3), which is usually
accompanied by a large value of the analytic order of the Tate-Shafarevich
group.
Our explorations brought out also a number of unplanned discoveries:

curves of rank zero with the value of L(E, 1) much smaller, or much bigger,
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than in any previously known example (see Tables 6 and 5 below). A partic-
ularly notable case involves a pair of non-isogeneous curves whose values of
L(E, 1) coincide in their first 11 digits after the decimal!
Details of the computations, tables and related comments are contained

in Sections 1 - 3. Further remarks on Conjecture 3 are the subject of Section
4.

The actual calculations were carried out by the second author in the Sum-
mer and early Fall 2002 on a variety of computers, almost all of them located
in the Department of Mathematics in Berkeley. Supplemental computations
were conducted also in 2003 and the Summer 2004.
The results were reported by M.W. at the conference Geometric Methods

in Algebra and Number Theory which took place in December 2003 in Miami,
and by A.D. at the Number Theory Seminar at the Max-Planck-Institut in
October 2006; A.D. would like to thank the Department of Mathematics in
Berkeley and the Max-Planck-Institut in Bonn, for their support and hospi-
tality during his visits in 2006 when the revised version of this article was
prepared; M.W. would like to thank the Institute of Matematics at the Uni-
versity of Szczecin for its hospitality during his visits there in the Summer
2002, when the project started, and in the Summer 2003. The second author
was partially supported by NSF Grants DMS–9707965 and DMS–0503401.

1 Examples of elliptic curves with large |X(E)|

Consider the family

E(n, p) : y2 = x(x+ p)(x+ p− 4 · 32n+1),

with (n, p) ∈ N × Z and p 6= 0, 4 · 32n+1. Any member of this family is
isogeneous over Q to three other curves Ei(n, p) (i = 2, 3, 4):

E2(n, p) : y2 = x3 + 4(2 · 32n+1 − p)x2 + 16 · 34n+2x, (1)

E3(n, p) : y2 = x3 + 2(4 · 32n+1 + p)x2 + (4 · 32n+1 − p)2x, (2)

and

E4(n, p) : y2 = x3 + 2(p− 8 · 32n+1)x2 + p2x. (3)

The L-series and ranks of isogeneous curves coincide, while the orders of
E(Q)tors and X(E), the real period, ω, and the Tamagawa number cfin may
differ. The curves being 2-isogeneous, the analytic orders ofX(Ei) may differ
from |X(E(n, p)| only by a power of 2.
All the examples we found where at least one of the four analytic orders of

X(E(n, p) andX(Ei(n, p)) (i = 2, 3, 4) is greater or equal to 10002 are listed
in Table 1. Notation used: |X| = |X(E)| and |Xi| = |X(Ei)|.
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For a curve E of rank zero, we compute the analytic order of X(E), i.e.,
the quantity

|X(E)| = L(E, 1) · |E(Q)tors|
2

c∞(E)cfin(E)
,

by using the following approximation to L(E, 1), cf. [Co]:

Sm = 2
m∑
l=1

al
l
e
− 2πl√

N ,

which, for

m ­
√
N

2π

(
2 log 2 + k log 10− log(1− e−2π/

√
N )
)
,

differs from L(E, 1) by less than 10−k.

It seems that the currently available techniques of n-descent for n = 3,
4, and 5 (cf. [CFNS2], [MS2], [Be], [F]), can be utilized to see that 602 divides
the actual order of X(E) for E = E3(15, 12). On the other hand, the results
of Kolyvagin and Kato could be used to prove that the actual order of X(E)
divides |X(E)|. This would establish validity of the exact form of the Birch
and Swinnerton-Dyer Conjecture in this case. The Birch and Swinnerton-Dyer
conjecture is invariant under isogeny, hence this would establish validity of this
conjecture for each of its three isogeneous relatives. In particular, this would
show that X(E4(15, 12)) is indeed a group of order 38402.
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Table 1. Examples of elliptic curves E(n, p) (n ¬ 19; 0 < |p| ¬ 1000) with
max(|X|, |X2|, |X3|, |X4|) ­ 10002.

(n, p) N(n, p) |X| |X2| |X3| |X4|
(11,−489) 1473152464197864 6802 6802 13602 6802

(11, 163) 1473152461647240 3462 13842 1732 13842

(11, 301) 5440722586421136 5762 11522 5762 2882

(11, 336) 15816054028824 5292 10582 5292 10582

(11, 865) 15635299103673360 6172 12342 6172 6172

(12,−605) 4473683858657640 10312 10312 10312 20622

(12,−257) 20904304573762872 15452 15452 30902 30902

(12,−56) 569377945555104 10492 10492 20982 10492

(12, 22) 143157883450560 4162 16642 4162 16642

(12, 24) 81339706505952 6032 12062 6032 12062

(12, 63) 63264216170568 5542 11082 5542 11082

(12, 262) 42622006206125760 4682 18722 2342 18722

(12, 382) 62143535763983040 6482 25922 3242 25922

(12, 466) 75808606453660608 14352 57402 14352 57402

(12, 694) 112899512607942336 5762 23042 2882 23042

(12, 934) 151942571712321216 5122 20482 2562 20482
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(n, p) N(n, p) |X| |X2| |X3| |X4|
(13,−672) 1281100377506040 3892 15562 3892 7782

(13,−160) 915071698203240 10792 10792 21582 10792

(13,−125) 3660286792808760 6392 12782 6392 25562

(13,−69) 16837319246889384 5162 5162 2582 10322

(13,−42) 20497606039673280 5022 20082 2512 20082

(13,−17) 12444975095505720 3482 13922 3482 27842

(13,−5) 3660286792794360 15832 15832 15832 31662

(13,−3) 1464114717117648 23642 23642 11822 23642

(13, 60) 457535849098320 5522 11042 2762 5522

(13, 66) 32210523776515392 6182 24722 3092 24722

(13, 73) 610744996281840 4942 19642 2472 9882

(13, 96) 10765549390536 5882 11762 2942 5882

(13, 136) 264786704158368 2582 10322 2582 10322

(13, 544) 3111243773819208 9292 18582 9292 9292

(13, 708) 21595692076981920 8122 32482 4062 16242

(13, 876) 835002924582096 3402 13602 852 13602

(13, 928) 5307415849389480 4702 18802 4702 9402

(14,−948) 2033174929441680 3122 12482 1562 6242

(14,−800) 8235645283809960 3902 15602 1952 15602

(14,−672) 11529903397328568 23102 46202 23102 23102

(14,−596) 61355557364338608 5982 11962 5982 23922

(14,−281) 15300603799975032 2532 10122 2532 20242

(14,−212) 21824460002049648 5602 5602 5602 11202

(14,−33) 72473678497325160 10022 20042 10022 40082

(14,−12) 3294258113514528 10772 21542 10772 21542

(14,−11) 144947356994638704 18062 36122 9032 36122

(14,−3) 775119556121040 5882 11762 2942 11762

(14, 12) 205891132094640 5642 22562 2822 45122

(14, 96) 1647129056756616 3062 12242 1532 6122

(14, 100) 16471290567565920 11862 23722 5932 23722

(14, 240) 8235645283778760 11842 23682 5922 11842

(14, 268) 726037150017264 8582 17162 4292 17162

(14, 528) 18118419624294264 3562 14242 3562 7122

(14, 652) 33560254531348080 2682 21442 672 21442

Table 2. Examples of elliptic curves E(n, p) (n = 14, 15; 0 < |p| ¬ 1000) with
max1¬i¬4 |Xi| ­ 10002.
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(n, p) N(n, p) |X| |X2| |X3| |X4|
(15,−852) 8222777088032880 5622 11242 2812 11242

(15,−248) 141399694410862368 11852 47402 11852 47402

(15,−240) 74120807554080840 9652 38602 9652 38602

(15,−212) 280600200026160 4982 19922 2492 39842

(15,−116) 107475170953411824 23682 47362 23682 94722

(15,−96) 14824161510815304 14342 28382 7172 28382

(15,−84) 3242785330490832 7752 16502 7752 16502

(15,−80) 74120807554076040 6792 13582 6792 13582

(15,−48) 14824161510815016 30572 30572 30572 30572

(15,−12) 5929664604325920 5762 11522 2882 11522

(15,−6) 237186584173036224 37052 37052 37052 74102

(15,−1) 59296646043258936 1622 6482 812 12962

(15, 1) 118593292086517776 40322 80642 20162 80642

(15, 12) 336912761609424 2402 19202 602 38402

(15, 60) 37060403777035920 22992 45982 22992 22992

(15, 88) 130452621295164960 12322 24642 12322 24642

(15, 172) 2489995878769488 12582 25162 6292 12582

(15, 375) 26953020928749960 11432 45722 11432 45722

(16,−408) 72579094756950240 18632 37262 37262 37262

(16,−96) 133417453597333128 38042 76082 19022 76082

(16,−33) 234814718331305640 37172 74372 37172 148682

(16,−32) 133417453597332744 54632 109262 54632 109262

(16,−8) 106733962877866080 8912 8912 8912 17822

(16, 12) 2084647712458320 7922 31682 3962 63362

(16, 48) 7021971241964856 46082 92162 23042 92162

(16, 92) 61372028654772720 10642 21282 5322 21282

(16, 268) 279342793469411664 29162 116642 14582 116642

(16, 300) 166771816996663440 10182 40722 5092 40722

(16, 472) 186310763603371680 31192 124762 31192 124762

(16, 588) 116740271897662896 5492 21962 5492 10982

(16, 592) 17950711938549720 22212 88842 22212 44422

(16, 624) 102025111574427912 11002 22002 5502 11002

(17,−404) 118434048164038608 32462 64922 16232 129482

(17,−68) 10206435200195943696 82842 331362 41422 331362

(19,−32) 19452264734491086120 317042 634082 317042 634082

Table 3. Examples of elliptic curves E(n, p) (16 ¬ n ¬ 19; 0 < |p| ¬ 1000) with
max1¬i¬4 |Xi| ­ 10002.
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2 Values of the Goldfeld-Szpiro ratio GS(E)

The Goldfeld-Szpiro ratio was defined in (3). The articles of de Weger [We]
and Nitaj [Ni] produce altogether 58 examples of elliptic curves with GS(E)
greater than 1 (the record value being 42.265...). For all of these examples the
conductor does not exceed 1010. The largest values of GS(E) that we observed
for our curves are tabulated in Table 4.

E |X(E)| GS(E)

E2(9, 544) 3442 1.20290...

E2,4(16, 48) 92162 1.01357...

E2(10, 204) 5042 0.98366...

E4(15,−212) 39842 0.94753...

E2,4(19,−32) 634082 0.91159...

E4(16, 12) 63362 0.87925...

E4(15, 12) 38402 0.80334...

E2(16, 592) 88822 0.58908...

E2(11, 160) 3222 0.57131...

E4(17,−404) 129842 0.48986...

E4(16,−33) 148682 0.45618...

E2(13, 96) 11762 0.42149...

E2,4(16, 472) 124762 0.36060...

E2,4(17,−68) 331362 0.34368...

E2,4(16,−32) 109262 0.32682...

E2(11, 336) 10582 0.28146...

E4(15,−116) 94722 0.27367...

E2,4(16, 268) 116642 0.25741...

Table 4. Elliptic curves Ei(n, p) (9 ¬ n ¬ 19; 0 < |p| ¬ 1000; 1 ¬ i ¬ 4) with
the largest GS(E). Notation Ei,j(n, p) means that the given values of |X(E)| and
GS(E) are shared by the isogeneous curves Ei(n, p) and Ej(n, p).

3 Large and small (nonzero) values of L(E, 1)

In this section we produce elliptic curves of rank zero with L(E, 1) either much
smaller or much bigger than in all previously known examples (Tables 5 and
6).
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E L(E, 1)

E(11,−733) 88.203561907255071...
E(13,−160) 71.523635814751843...
E(12, 466) 56.224807584564927...
E(7,−433) 36.275918867296195...
E(10, 687) 30.274774697662334...
E(9, 767) 29.638568367562609...
E(9,−93) 28.032198538875886...
E(11, 336) 22.922225180212583...

Table 5. Elliptic curves E(n, p) (n ¬ 19; 0 < |p| ¬ 1000) with the largest values of
L(E, 1) known to us.

E L(E, 1)

E(12,800) 0.0001706491750110...
E(10,142) 0.0002457348122099...
E(11,168) 0.0003276464160384...
E(14,672) 0.0006067526222261...
E(9,160) 0.0007372044423472...
E(10,-534) 0.0009829392448696...
E(10,408) 0.0009829392504019...

Table 6. Elliptic curves E(n, p) (n ¬ 19; 0 < |p| ¬ 1000) with the smallest positive
values of L(E, 1) known to us.

Note that

L(E(10, 408), 1)− L(E(10,−534), 1) = 0.00000000000553237117... .

This is the smallest known difference between the values of L(E, 1) of two
elliptic curves of rank zero. The analytic orders of the Tate-Shafarevich group
are 22, 42, 12, 42 for the isogeneous curves E(10, 408) and Ei(10, 408), re-
spectively, and 22, 82, 82, 82 for the curves E(10,−534) and Ei(10,−534),
repectively, where i = 2, 3, or 4.

We observed that for a large percentage of rank zero curves Ei(n, p) with
7 ¬ n ¬ 19 and 0 < |p| ¬ 1000, one has

L(E, 1) ­ 1
(logN(E))2

.

We verified, in particular, that (5) holds for every single curve E(7, p) of rank
zero when 0 < |p| ¬ 1000. This is consistent with results of Iwaniec and



Elliptic curves with large analytic order ofX(E) 411

Sarnak who proved [IS] that

L(f, 1) ­ 1
(logN)2

,

for a large percentage of newforms of weight 2, with the level N of a newform
f playing the role of the conductor of an elliptic curve.

On the other hand, we have

L(E(8,−131), 1) = 0.0002764516... < 0.0012048710... = (logN(8,−131))−2,

L(E(9, 160), 1) = 0.0007372044... < 0.0015186182... = (logN(9, 160))−2,

L(E(10, 142), 1) = 0.0002457384... < 0.0009026601... = (logN(10, 142))−2,

L(E(11, 168), 1) = 0.0003276464... < 0.0009902333... = (logN(11, 168))−2,

L(E(12, 800), 1) = 0.0001706491... < 0.0009613138... = (logN(12, 800))−2.

An estimate much weaker than (5) was proposed by Hindry [H], see Conjecture
6 below.

4 Remarks on Conjecture 3

Below we sketch how to utilize curves E(n, p) in order to establish the first of
the two conjectures of de Weger (Conjecture 3 above).
According to Chen [Ch], every sufficiently large even integer can be rep-

resented as the sum p+ q where p is an odd prime and q is the product of at
most two primes. Apply this, for sufficiently large n, to the number

4 · 32n+1 = p+ q.

The factors c∞(E(n, p)) and cfin(E(n, p)) on the right-hand-side of the
formula for the analytic order of the Tate-Shafarevich group, (4), are given
by the following lemma.

lemma Assume p < q, with q having at most two prime factors. Then we
have

c∞(E(n, p)) =
π

3n+1/2 ·AGM(1,
√
q/(p+ q))

(4)

and

cfin(E(n, p)) = 2c2c3cq, i (5)

(6)

where AGM(a, b) denotes the arithmetico-geometric mean of a and b,
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c2 =
2 if p ≡ 1 mod 4
4 if p ≡ 3 mod 4

, c3 =
2(2n+ 1) if p ≡ 2 mod 3

4 if p ≡ 1 mod 3
,

and

cq =

{
2 if q is a prime

4 if q is a product of two primes
.

The conductor is given by the formula

N(E(n, p)) = 2f2 · 3 · p · rad(q),

where rad(q) denotes the product of prime factors, and

f2 =

{
3 if p ≡ 1(mod 4)
4 if p ≡ 3(mod 4) .

lemma
This is easily proven by using calculations of Nitaj [Ni, Propositions 2.1,

3.1 and 3.2]. The following then seems to be a plausible conjecture.

Conjecture 5. For any ε > 0 there exists c(ε) > 0 and infinitely many n
admitting a decomposition (6) with

p ¬ c(ε)qε

such that curve E(n, p) has rank zero.

If we accept Conjecture 5, then

1
c∞(E(n, p))

� N(E(n, p))1/2−ε and 1
cfin(E(n, p))

� N(E(n, p))−ε.

on an infinite set of curves E(n, p).

Since |E(Q)tors| ­ 1 (in fact, |E(Q)tors| can take only twelve values be-
tween 1 and 16, cf[̇Mz]) it remains to estimate L(E, 1). The result of Iwaniec
and Sarnak mentioned in section 3 provides a support for the following con-
jecture recently proposed by Hindry [H, Conjecture 5.4].

Conjecture 6 (Hindry). One has

L(r)(E, 1)� N(E)−ε (r being the rank of E).

Hindry observed that (8) implies that the distance from 1 to the nearest
zero of L(E, s) is � N(E)−ε.
The combination of (7) and (8), for curves of rank zero, yields the assertion

of Conjecture 3 for the analytic order of the Tate-Shafarevich group. In order
to pass to the actual order, one needs, of course, the equality of the two, as
predicted by the Birch and Swinnerton-Dyer Conjecture.
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