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1 Introduction

The Cremona group Crk(n) over a field k is the group of birational au-
tomorphisms of the projective space Pn

k , or, equivalently, the group of k-
automorphisms of the field k(x1, x2, . . . , xn) of rational functions in n inde-
pendent variables. The group Crk(1) is the group of automorphisms of the pro-
jective line, and hence it is isomorphic to the projective linear group PGLk(2).
Already in the case n = 2 the group Crk(2) is not well understood in spite
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of extensive classical literature (e.g. [20], [34]) on the subject as well as some
modern research and expositions of classical results (e.g. [2]). Very little is
known about the Cremona groups in higher-dimensional spaces.

In this paper we consider the plane Cremona group over the field of com-
plex numbers, denoted by Cr(2). We return to the classical problem of classi-
fication of finite subgroups of Cr(2). The classification of finite subgroups of
PGL(2) is well-known and goes back to F. Klein. It consists of cyclic, dihedral,
tetrahedral, octahedral and icosahedral groups. Groups of the same type and
order constitute a unique conjugacy class in PGL(2). Our goal is to find a
similar classification in the two-dimensional case.

The history of this problem begins with the work of E. Bertini [9] who clas-
sified conjugacy classes of subgroups of order 2 in Cr(2). Already in this case
the answer is drastically different. The set of conjugacy classes is parametrized
by a disconnected algebraic variety whose connected components are respec-
tively isomorphic to either the moduli spaces of hyperelliptic curves of genus g
(de Jonquiéres involutions), or the moduli space of canonical curves of genus
3 (Geiser involutions), or the moduli space of canonical curves of genus 4 with
vanishing theta characteristic (Bertini involutions). Bertini’s proof was con-
sidered to be incomplete even according to the standards of rigor of the 19th
century algebraic geometry. A complete and short proof was published only a
few years ago by L. Bayle and A. Beauville [5].

In 1894 G. Castelnuovo [15], as an application of his theory of adjoint lin-
ear systems, proved that any element of finite order in Cr(2) leaves invariant
either a net of lines, or a pencil of lines, or a linear system of cubic curves with
n ≤ 8 base points. A similar result was claimed earlier by S. Kantor in his
memoir which was awarded a prize by the Accademia delle Scienze di Napoli
in 1883. However Kantor’s arguments, as was pointed out by Castelnuovo,
required justifications. Kantor went much further and announced a similar
theorem for arbitrary finite subgroups of Cr(2). He proceeded to classify pos-
sible groups in each case (projective linear groups, groups of de Jonquiéres
type, and groups of type Mn). A much clearer exposition of his results can
be found in a paper of A. Wiman [49]. Unfortunately, Kantor’s classification,
even with some correction made by Wiman, is incomplete for the following
two reasons. First, only maximal groups were considered and even some of
them were missed. The most notorious example is a cyclic group of order 8
of automorphisms of a cubic surface, also missed by B. Segre [47] (see [33]).
Second, although Kantor was aware of the problem of conjugacy of subgroups,
he did not attempt to fully investigate this problem.

The goal of our work is to complete Kantor’s classification. We use a
modern approach to the problem initiated in the works of Yuri Manin and
the second author (see a survey of their results in [38]). Their work gives a
clear understanding of the conjugacy problem via the concept of a rational
G-surface. It is a pair (S,G) consisting of a nonsingular rational projective
surface and a subgroup G of its automorphism group. A birational map S− →
P2

k realizes G as a finite subgroup of Cr(2). Two birational isomorphic G-
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surfaces define conjugate subgroups of Cr(2), and conversely a conjugacy class
of a finite subgroup G of Cr(2) can be realized as a birational isomorphism
class of G-surfaces. In this way classification of conjugacy classes of subgroups
of Cr(2) becomes equivalent to the birational classification of G-surfaces. A
G-equivariant analog of a minimal surface allows one to concentrate on the
study of minimal G-surfaces, i.e. surfaces which cannot be G-equivariantly
birationally and regularly mapped to another G-surface. Minimal G-surfaces
turn out to be G-isomorphic either to the projective plane, or a conic bundle,
or a Del Pezzo surface of degree d = 9 − n ≤ 6. This leads to groups of
projective transformations, or groups of de Jonquiéres type, or groups of type
Mn, respectively. To complete the classification one requires

• to classify all finite groups G which may occur in a minimal G-pair (S,G);
• to determine when two minimal G-surfaces are birationally isomorphic.

To solve the first part of the problem one has to compute the full au-
tomorphism group of a conic bundle surface or a Del Pezzo surface (in the
latter case this was essentially accomplished by Kantor and Wiman), then
make a list of all finite subgroups which act minimally on the surface (this
did not come up in the works of Kantor and Wiman). The second part is less
straightforward. For this we use the ideas from Mori’s theory to decompose a
birational map of rational G-surfaces into elementary links. This theory was
successfully applied in the arithmetic case, where the analog of the group G
is the Galois group of the base field (see [38]). We borrow these results with
obvious modifications adjusted to the geometric case. Here we use the analogy
between k-rational points in the arithmetic case (fixed points of the Galois
action) and fixed points of the G-action. As an important implication of the
classification of elementary G-links is the rigidity property of groups of type
Mn with n ≥ 6: any minimal Del Pezzo surface (S,G) of degree d ≤ 3 is not
isomorphic to a minimal G-surface of different type. This allows us to avoid
much of the painful analysis of possible conjugacy for a lot of groups.

The large amount of group-theoretical computations needed for the classi-
fication of finite subgroups of groups of automorphisms of conic bundles and
Del Pezzo surfaces makes us expect some possible gaps in our classification.
This seems to be a destiny of enormous classification problems. We hope that
our hard work will be useful for the future faultless classification of conjugacy
classes of finite subgroups of Cr(2).

It is appropriate to mention some recent work on classification of conjugacy
classes of subgroups of Cr(2). We have already mentioned the work of L. Bayle
and A. Beauville on groups of order 2. The papers [7],[22], [51] study groups
of prime orders, Beauville’s paper [8] classifies p-elementary groups, and a
thesis of J. Blanc [6] contains a classification of all finite abelian groups. The
second author studies two non-conjugate classes of subgroups isomorphic to
S3 × Z/2Z. In the work of S. Bannai and H. Tokunaga examples are given of
non-conjugate subgroups isomorphic to S4 and A5.
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2 First examples

2.1 Homaloidal linear systems

We will be working over the field of complex numbers. Recall that a dominant
rational map χ : P2− → P2 is given by a 2-dimensional linear system H equal
to the proper transform of the linear system of lines H′ = |`| in the target
plane. A choice of a basis in H gives an explicit formula for the map in terms
of homogeneous coordinates

(x′0, x
′
1, x

′
2) = (P0(x0, x1, x2), P1(x0, x1, x2), P2(x0, x1, x2)),

where P0, P1, P2 are linear independent homogeneous polynomials of degree
d, called the (algebraic) degree of the map. This is the smallest number d such
that H is contained in the complete linear system |OP2(d)| of curves of degree
d in the plane. By definition of the proper transform, the linear system H
has no fixed components, or, equivalently, the polynomials Pi’s are mutually
coprime. The birational map χ is not a projective transformation if and only
if the degree is larger than 1, or, equivalently, when χ has base points, the
common zeros of the members of the linear system. A linear system defining
a birational map is called a homaloidal linear system. Being proper transform
of a general line under a birational map, its general member is an irreducible
rational curve. Also two general curves from the linear system intersect outside
the base points at one point. These two conditions characterize homaloidal
linear systems (more about this later).

2.2 Quadratic transformations

A quadratic Cremona transformation is a birational map χ : P2− → P2

of degree 2. The simplest example is the standard quadratic transformation
defined by the formula

τ1 : (x0, x1, x2) 7→ (x1x2, x0x2, x0x1). (1)

In affine coordinates this is given by τ1 : (x, y) 7→ ( 1
x ,

1
y ). It follows from the

definition that τ−1
1 = τ1, i.e., τ1 is a birational involution of P2. The base
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points of T are the points p0 = (1, 0, 0), p1 = (0, 1, 0), p2 = (0, 0, 1). The
transformation maps an open subset of the coordinate line xi = 0 to the point
pi. The homaloidal linear system defining τ1 is the linear system of conics
passing through the points p0, p1, p2.

The Moebius transformation x 7→ x−1 of P1 is conjugate to the trans-
formation x 7→ −x (by means of the map x 7→ x−1

x+1 ). This shows that the
standard Cremona transformation τ1 is conjugate in Cr(2) to a projective
transformation given by

(x0, x1, x2) 7→ (x0,−x1,−x2).

When we change the homaloidal linear system defining τ1 to the homa-
loidal linear system of conics passing through the point p1, p2 and tangent at
p2 to the line x0 = 0 we obtain the transformation

τ2 : (x0, x1, x2) 7→ (x2
1, x0x1, x0x2). (2)

In affine coordinates it is given by (x, y) 7→ ( 1
x ,

y
x2 ). The transformation τ2

is also a birational involution conjugate to a projective involution. To see
this we define a rational map χ : P2− → P3 by the formula (x0, x1, x2) 7→
(x2

1, x0x1, x0x2, x1x2). The Cremona transformation τ2 acts on P3 via this
transformation by (u0, u1, u2, u3) 7→ (u1, u0, u3, u2). Composing with the pro-
jection of the image from the fixed point (1, 1, 1, 1) we get a birational map
(x0, x1, x2) 7→ (y0, y1, y2) = (x1(x0 − x1), x0x2 − x2

1, x1(x2 − x1)). It de-
fines the conjugation of τ2 with the projective transformation (y0, y1, y2) 7→
(−y0, y2 − y0, y1 − y0).

Finally, we could further “degenerate” τ1 by considering the linear system
of conics passing through the point p3 and intersecting each other at this point
with multiplicity 3. This linear system defines a birational involution

τ3 : (x0, x1, x2) 7→ (x2
0, x0x1, x

2
1 − x0x2). (3)

Again it can be shown that τ3 is conjugate to a projective involution.
Recall that a birational transformation is not determined by the choice of

a homaloidal linear system, one has to choose additionally a basis of the linear
system. In the above examples, the basis is chosen to make the transformation
an involution.

2.3 De Jonquiéres involutions

Here we exhibit a series of birational involutions which are not conjugate to
each other and not conjugate to a projective involution. In affine coordinates
they are given by the formula

djP : (x, y) 7→ (x,
P (x)
y

), (4)
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where P (x) a polynomial of degree 2g + 1 or 2g + 2 without multiple roots.
The conjugation by the transformation (x, y) 7→ (ax+b

cx+d , y) shows that the
conjugacy class of djP depends only on the orbit of the set of roots of P with
respect to the group PGL(2), or, in other words, on the birational class of the
hyperelliptic curve

y2 + P (x) = 0. (5)

The transformation djP has the following beautiful geometric interpreta-
tion. Consider the projective model Hg+2 of the hyperelliptic curve (5) given
by the homogeneous equation of degree g + 2

T 2
2Fg(T0, T1) + 2T2Fg+1(T0, T1) + Fg+2(T0, T1) = 0, (6)

where
D = F 2

g+1 − FgFg+2 = T 2g+2
0 P (T1/T0)

is the homogenization of the polynomial P (x). The curveHg+2 has an ordinary
singular point of multiplicity g at q = (0, 0, 1) and the projection from this
point to P1 exhibits the curve as a double cover of P1 branched over the 2g+2
zeroes of D.

Consider the affine set T2 = 1 with affine coordinates (x, y) = (T0/T2, T1/T2).
A general line y = kx intersects the curve Hg+2 at the point q = (0, 0) with
multiplicity g and at two other points (α, kα) and (α′, kα′), where α, α′ are
the roots of the quadratic equation

t2Fg+2(1, k) + 2tFg+1(1, k) + Fg(1, k) = 0.

Take a general point p = (x, kx) on the line and define the point p′ = (x′, kx′)
such that the pairs (α, kα), (α′, kα′) and (x, kx), (x′, kx′) are harmonic conju-
gate. This means that x, x′ are the roots of the equation at2+2bt+c = 0, where
aFg(1, k) + cFg+2(1, k) − 2bFg+1(1, k) = 0. Since x + x′ = −2b/c, xx′ = c/a
we get Fg(1, k) + xx′Fg+2(1, k) + (x + x′)Fg+1(1, k) = 0. We express x′ as
(ax+ b)/(cx+ d) and solve for (a, b, c, d) to obtain

x′ =
−Fg+1(1, k)x− Fg(1, k)
xFg+2(1, k) + Fg+1(1, k)

.

Since k = y/x, after changing the affine coordinates (x, y) = (x0/x2, x1/x2)
to (X,Y ) = (x1/x0, x2/x0) = (y/x, 1/x), we get

IHg+2 : (X,Y ) 7→ (X ′, Y ′) :=
(
X,
−Y Pg+1(X)− Pg+2(X)
Pg(X)Y + Pg+1(X)

)
, (7)

where Pi(X) = Fi(1, X). Let T : (x, y) 7→ (x, yPg + Pg+1). Taking P (x) =
P 2

g+1 − PgPg+2, we check that T−1 ◦ djP ◦ T = IHg+2. This shows that our
geometric de Jonquiéres involution IHg+2 given by (7) is conjugate to the de
Jonquiéres involution djP defined by (4).

Let us rewrite (7) in homogeneous coordinates:
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x′0 = x0(x2Fg(x0, x1) + Fg+1(x0, x1)), (8)
x′1 = x1(x2Fg(x0, x1) + Fg+1(x0, x1)),
x′2 = −x2Fg+1(x0, x1)− Fg+2(x0, x1).

Now it is clear that the homaloidal linear system defining IHg+2 consists
of curves of degree g + 2 which pass through the singular point q of the
hyperelliptic curve (6) with multiplicity g. Other base points satisfy

x2Fg(x0, x1) + Fg+1(x0, x1) = −x2Fg+1(x0, x1)− Fg+2(x0, x1) = 0.

Eliminating x2, we get the equation F 2
g+1−FgFg+2 = 0 which defines the set of

the 2g+2 ramification points p1, . . . , p2g+2 of the projection Hg+2 \{q} → P1.
Let

Γ : T2Fg(T0, T1) + Fg+1(T0, T1) = 0

be the first polar Γ of Hg+2 with respect to the point q. The transformation
IHg+2 blows down Γ and the lines 〈q, pi〉 to points. It follows immediately
from (8) that the set of fixed points of the involution IHg+2 outside the base
locus is equal to the hyperelliptic curve (6). Also we see that the pencil of
lines through q is invariant with respect to IHg+2.

Let σ : S → P2 be the blow-up of the point q and the points p1, . . . , p2g+2.
The full pre-image of the line `i = 〈q, pi〉 consists of two irreducible compo-
nents, each isomorphic to P1. They intersect transversally at one point. We
will call such a reducible curve, a bouquet of two P1’s. One component is the
exceptional curve Ri = σ−1(pi) and another one is the proper transform R′i
of the line `i. The proper transform of Hg+2 intersects σ−1(`i) at its singular
point. Thus the proper transform H̄g+2 of the hyperelliptic curve Hg+2 inter-
sects the exceptional curve E = σ−1(q) at the same points where the proper
transform of lines `i intersect E. The proper transform Γ̄ of Γ intersects Ri at
one nonsingular point, and intersects E at g points, the same points where the
proper inverse transform H̄g+2 of Hg+2 intersects E. The involution IHg+2

lifts to a biregular automorphism τ of S. It switches the components Ri and
R′i of σ−1(`i), switches E with Γ̄ and fixes the curve H̄g+2 pointwiseley. The
pencil of lines through q defines a morphism φ : S → P1 whose fibres over the
points corresponding to the lines `i are isomorphic to a bouquet of two P1’s.
All other fibres are isomorphic to P1. This is an example of a conic bundle
or a Mori fibration (or in the archaic terminology of [37], a minimal rational
surface with a pencil of rational curves).

To show that the birational involutions IHg+2, g > 0, are not conjugate
to each other or to a projective involution we use the following.

Lemma 2.1. Let G be a finite subgroup of Cr(2) and let C1, . . . , Ck be non-
rational irreducible curves on P2 such that each of them contains an open
subset C0

i whose points are fixed under all g ∈ G. Then the set of birational
isomorphism classes of the curves Ci is an invariant of the conjugacy class of
G in Cr(2).
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Proof. Suppose G = T ◦ G′ ◦ T−1 for some subgroup G′ of Cr(2) and some
T ∈ Cr(2). Then, replacing C0

i by a smaller open subset we may assume that
T−1(C0

i ) is defined and consists of fixed points of G′. Since Ci is not rational,
T−1(C0

i ) is not a point, and hence its Zariski closure is a rational irreducible
curve C ′i birationally isomorphic to Ci which contains an open subset of fixed
points of G′.

Since a connected component of the fixed locus of a finite group of projec-
tive transformations is a line or a point, we see that IHg+2 is not conjugate
to a subgroup of projective transformations for any g > 0. Since IHg+2 is
conjugate to some involution (4), where P (x) is determined by the birational
isomorphism class of Hg+2, we see from the previous lemma that IHg+2 is
conjugate to IH ′

g′+2 if and only if g = g′ and the curves Hg+2 and H ′
g+2

are birationally isomorphic. Finally, let us look at the involution IH2. It is a
quadratic transformation which is conjugate to the quadratic transformation
τ2 : (x, y) 7→ (x, x/y).

A Jonquiéres involution (4) is a special case of a Cremona transformation
of the form

(x, y) 7→ (
ax+ b

cx+ d
,
r1(x)y + r2(x)
r3(x)y + r4(x)

),

where a, b, c, d ∈ C, ad − bc 6= 0 and ri(x) ∈ C(x) with r1(x)r4(x) −
r2(x)r3(x) 6= 0. These transformations form a subgroup of Cr(2) called a de
Jonquiéres subgroup and denoted by dJ(2). Of course, its definition requires
a choice of a transcendence basis of the field C(P2). If we identify Cr(2) with
the group AutC(C(x, y)), and consider the field C(x, y) as a field K(y), where
K = C(x), then

dJ(2) ∼= PGLC(x)(2) o PGL(2)

where PGL(2) acts on PGLC(x)(2) via Moebius transformations of the variable
x.

It is clear that all elements from dJ(2) leave the pencil of lines parallel to
the y-axis invariant. One can show that a subgroup of Cr(2) which leaves a
pencil of rational curves invariant is conjugate to dJ(2).

2.4 Geiser and Bertini involutions

The classical definition of a Geiser involution is as follows [29]. Fix 7 points
p1, . . . , p7 in P2 in general position (we will make this more precise later). The
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linear system L of cubic curves through the seven points is two-dimensional.
Take a general point p and consider the pencil of curves from L passing
through p. Since a general pencil of cubic curves has 9 base points, we can
define γ(p) as the ninth base point of the pencil. One can show that the alge-
braic degree of a Geiser involution is equal to 8. Another way to see a Geiser
involution is as follows. The linear system L defines a rational map of degree
2

f : P2− → |L|∗ ∼= P2.

The points p and γ(p) lie in the same fibre. Thus γ is a birational deck
transformation of this cover. Blowing up the seven points, we obtain a Del
Pezzo surface S of degree 2 (more about this later), and a regular map of
degree 2 from S to P2. The Geiser involution γ becomes an automorphism of
the surface S.

It is easy to see that the fixed points of a Geiser involution lie on the
ramification curve of f . This curve is a curve of degree 6 with double points
at the points p1, . . . , p7. It is birationally isomorphic to a canonical curve
of genus 3. Applying Lemma 2.1, we obtain that a Geiser involution is not
conjugate to any de Jonquiéres involution IHg+2. Also, as we will see later,
the conjugacy classes of Geiser involutions are in a bijective correspondence
with the moduli space of canonical curves of genus 3.

To define a Bertini involution we fix 8 points in P2 in general position
and consider the pencil of cubic curves through these points. It has the ninth
base point p9. For any general point p there will be a unique cubic curve C(p)
from the pencil which passes through p. Take p9 for the zero in the group
law of the cubic C(p) and define β(p) as the negative −p with respect to
the group law. This defines a birational involution on P2, a Bertini involution
[9]. One can show that the algebraic degree of a Bertini involution is equal
to 17. We will see later that the fixed points of a Bertini involution lie on a
canonical curve of genus 4 with vanishing theta characteristic (isomorphic to
a nonsingular intersection of a cubic surface and a quadric cone in P3). So, a
Bertini involution is not conjugate to a Geiser involution or a de Jonquiéres
involution. It can be realized as an automorphism of the blow-up of the eight
points (a Del Pezzo surface of degree 1), and the quotient by this involution
is isomorphic to a quadratic cone in P3.

3 Rational G-surfaces

3.1 Resolution of indeterminacy points

Let χ : S− → S′ be a birational map of nonsingular projective surfaces. It
is well-known (see [32]) that there exist birational morphisms of nonsingular
surfaces σ : X → S and φ : X → S′ such that the following diagram is
commutative
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X
σ

��~~
~~

~~
~

φ

  B
BB

BB
BB

B

S //_______ S′.

(9)

It is called a resolution of indeterminacy points of χ. Recall also that any
birational morphism can be factored into a finite sequence of blow-ups of
points. Let

σ : X = XN
σN−→ XN−1

σN−1−→ · · · σ2−→ X1
σ1−→ X0 = S (10)

be such a factorization. Here σi : Xi → Xi−1 is the blow-up of a point
xi ∈ Xi−1. Let

Ei = σ−1
i (xi), Ei = (σi+1 ◦ . . . σN )−1(Ei). (11)

Let H ′ be a very ample divisor class on S′ and H′ be the corresponding
complete linear system |H ′|. Let HN = φ∗(H′). Define m(xN ) as the smallest
positive number such that HN + m(xN )EN = σ∗N (HN−1) for some linear
system HN−1 on XN−1. Then proceed inductively to define linear systems
Hk on each Xk such that Hk+1 + m(xk+1)Ek+1 = σ∗k+1(Hk), and finally a
linear system H = H0 on S such that H1 +m(x1)E1 = σ∗1(H). It follows from
the definition that

φ∗(H′) = σ∗(H)−
N∑

i=1

m(xi)Ei. (12)

The proper transform of H′ on S under χ is contained in the linear system H.
It consists of curves which pass through the points xi with multiplicity ≥ mi.
We denote it by

χ−1(H′) = |H −m(x1)x1 − · · · −m(xN )xN |,

where H ⊂ |H|. Here for a curve on S to pass through a point xi ∈ Xi−1

with multiplicity ≥ m(xi) means that the proper transform of the curve on
Xi−1 has xi as a point of multiplicity ≥ m(xi). The divisors Ei are called the
exceptional curves of the resolution σ : X → S of the birational map χ. Note
that Ei is an irreducible curve if and only if σi+1 ◦ . . . ◦ σN : X → Xi is an
isomorphism over Ei = σ−1(xi).

The set of points xi ∈ Xi, i = 1, . . . , N , is called the set of indeterminacy
points, or base points, or fundamental points of χ. Note that, strictly speaking,
only one of them, x1, lies in S. However, if σ1 ◦ . . . ◦ σi : Xi → S is an
isomorphism in a neighborhood of xi+1 we can identify this point with a
point in S. Let {xi, i ∈ I} be the set of such points. Points xj , j 6∈ I, are
infinitely near points. A precise meaning of this classical notion is as follows.

Let S be a nonsingular projective surface and B(S) be the category of
birational morphisms π : S′ → S of nonsingular projective surfaces. Recall

that a morphism from (S′ π′→ S) to (S′′ π′′→ S) in this category is a regular
map φ : S′ → S′′ such that π′′ ◦ φ = π′.
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Definition 3.1. The bubble space Sbb of a nonsingular surface S is the factor
set

Sbb =
( ⋃

(S′
π′→S)∈B(S)

S′
)
/R,

where R is the following equivalence relation: x′ ∈ S′ is equivalent to x′′ ∈
S′′ if the rational map π′′−1 ◦ π′ : S′− → S′′ maps isomorphically an open
neighborhood of x′ to an open neighborhood of x′′.

It is clear that for any π : S′ → S from B(S) we have an injective map
iS′ : S′ → Sbb. We will identify points of S′ with their images. If φ : S′′ → S′

is a morphism in B(S) which is isomorphic in B(S′) to the blow-up of a point
x′ ∈ S′, any point x′′ ∈ φ−1(x′) is called infinitely near point to x′ of the first
order. This is denoted by x′′ � x′. By induction, one defines an infinitely near
point of order k, denoted by x′′ �k x

′. This defines a partial order on Sbb.
We say that a point x ∈ Sbb is of height k, if x �k x0 for some x0 ∈ S.

This defines the height function on the bubble space

htS : Sbb → N.

Clearly, S = ht−1(0).
It follows from the known behavior of the canonical class under a blow-up

that

KX = σ∗(KS) +
N∑

i=1

Ei. (13)

The intersection theory on a nonsingular surface gives

H′2 = (φ∗(H′))2 = (σ∗(H)−
N∑

i=1

m(xi)Ei)2 = H2 −
N∑

i=1

m(xi)2, (14)

KS′ · H′ = KS · H −
N∑

i=1

m(xi).

Example 3.2. Let χ : P2 − → P2 be a Cremona transformation, H′ = |`| be
the linear system of lines in P2, and H ⊂ |n`|. The formulas (14) give

n2 −
N∑

i=1

m(xi)2 = 1, (15)

3n−
N∑

i=1

m(xi) = 3.

The linear system H is written in this situation as H = |n`−
∑N

i=1mixi|. For
example, a quadratic transformation with 3 base points p1, p2, p3 is given by
the linear system |2` − p1 − p2 − p3|. In the case of the standard quadratic
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transformation τ1 the curves E1, E2, E3 are irreducible, the map σ1 : X1 →
X0 = P2 is an isomorphism in a neighborhood of p2, p3 and the map σ2 :
X2 → X1 is an isomorphism in a neighborhood of σ−1(p3). This shows that
we can identify p1, p2, p3 with points on P2. In the case of the transformation
(2), we have σ1(p2) = p1 and p3 can be identified with a point on P2. So in
this case p2 � p1. For the transformation (3) we have p3 � p2 � p1.

For a Geiser involution (resp. a Bertini involution) we have H = |8` −
3p1 − · · · − 3p7| (resp. H = |17`− 6p1 − · · · − 6p8|).

3.2 G-surfaces

Let G be a finite group. A G-surface is a pair (S, ρ), where S is a nonsingular
projective surface and ρ is an isomorphism from G to a group of automor-
phisms of S. A morphism of the pairs (S, ρ) → (S′, ρ′) is defined to be a
morphism of surfaces f : S → S′ such that ρ′(G′) = f ◦ρ(G)◦f−1. In particu-
lar, two subgroups of Aut(S) define isomorphic G-surfaces if and only if they
are conjugate inside of Aut(S). Often, if no confusion arises, we will denote a
G-surface by (S,G).

Let χ : S → S′ be a birational map of G-surfaces. Then one can G-
equivariantly resolve χ, in the sense that one can find the diagram (9) where
all maps are morphisms of G-surfaces. The group G acts on the surface X
permuting the exceptional configurations Ei in such a way that Ei ⊂ Ej implies
g(Ei) ⊂ g(Ej). This defines an action of G on the set of indeterminacy points
of χ (g(xi) = xj if g(Ei) = g(Ej)). The action preserves the order, i.e. xi � xj

implies g(xi) � g(xj), so the function ht : {x1, . . . , xN} → N is constant on
each orbit Gxi.

Let H′ = |H ′| be an ample linear system on S′ and

φ∗(H′) = σ∗(H)−
N∑

i=1

m(xi)Ei

be its inverse transform on X as above. Everything here is G-invariant, so H
is a G-invariant linear system on S and the multiplicities m(xi) are constant
on the G-orbits. So we can rewrite the system in the form

φ∗(H′) = σ∗(H)−
∑
κ∈I

m(κ)Eκ,

where I is the set of G-orbits of indeterminacy points. For any κ ∈ I we set
m(κ) = m(xi), where xi ∈ κ and Eκ,=

∑
xi∈κ Ei. Similarly one can rewrite

the proper transform of H′ on S

|H −
∑
κ∈I

m(κ)κ|. (16)

Now we can rewrite the intersection formula (14) in the form
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H ′2 = H2 −
∑
κ∈I

m(κ)2d(κ) (17)

KS′ ◦H ′ = KS ·H −
∑
κ∈I

m(κ)d(κ),

where d(κ) = #{i : xi ∈ κ}.

Remark 3.3. In the arithmetical analog of the previous theory all the nota-
tions become more natural. Our maps are maps over a perfect ground field
k. A blow-up is the blow-up of a closed point in the scheme-theoretical sense,
not necessary k-rational. An exceptional curve is defined over k but when we
replace k with its algebraic closure k̄, it splits into the union of conjugate
exceptional curves over k̄. So, in the above notation, κ means a closed point
on S or an infinitely near point. The analog of d(κ) is of course the degree of
a point, i.e. the extension degree [k(x) : k], where k(x) is the residue field of
x.

3.3 The G-equivariant bubble space

Here we recall Manin’s formalism of the theory of linear systems with basis
condition in its G-equivariant form (see [45]).

First we define the G-equivariant bubble space of a G-surface S as a G-
equivariant version (S,G)bb of Definition 3.1. One replaces the category B(S)
of birational morphisms S′ → S with the category B(S,G) of birational mor-
phisms of G-surfaces. In this way the group G acts on the bubble space
(S,G)bb and the height function becomes constant on G-orbits. Let

Z∗(S,G) = lim−→Pic(S′), (18)

where the inductive limit is taken with respect to the functor Pic from the
category B(S,G) with values in the category of abelian groups defined by
S′ → Pic(S′). The group Z∗(S,G) is equipped with a natural structure of
G-module. Also it is equipped with the following natural structures.

(a) A symmetric G-invariant pairing

Z∗(S,G)× Z∗(S,G)→ Z

induced by the intersection pairing on each Pic(S′).
(b) A distinguished cone of effective divisors classes in Z∗(S,G)

Z∗+(S,G) = lim−→Pic+(S′),

where Pic+(S′) is the cone of effective divisor classes on each S′ from
B(S,G).

(c) A distinguished G-equivariant homomorphism

K : Z∗(S,G)→ Z, K(z) = KS′ · z, for any S′ → S from B(S,G).
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Let f : S′ → S be a morphism from B(S,G) and E1, . . . , En be its excep-
tional curves. We have a natural splitting

Pic(S′) = f∗(Pic(S))⊕ Z[E1]⊕ · · · ⊕ Z[En].

Now let Z0(S,G) = Z(S,G)bb
be the free abelian group generated by the set

(S,G)bb. Identifying exceptional curves with points in the bubble space, and
passing to the limit we obtain a natural splitting

Z∗(S,G) = Z0(S,G)⊕ Pic(S). (19)

Passing to invariants we get the splitting

Z∗(S,G)G = Z0(S,G)G ⊕ Pic(S)G. (20)

Write an element of Z∗(S,G)G in the form

z = D +
∑
κ∈O

m(κ)κ,

where O is the set of G-orbits in Z0(S,G)G and D is a G-invariant divisor
class on S. Then

(a) z · z′ = D ·D′ −
∑

κ∈O m(κ)m′(κ)d(κ);
(b) z ∈ Z∗+(S,G) if and only if D ∈ Pic+(S)G,m(κ) ≥ 0 and m(κ′) ≤ m(κ) if

κ′ � κ;
(c) K(z) = D ·KS −

∑
κ∈O m(κ)d(κ).

Let φ : S′ → S be an object of B(S,G). Then we have a natural map
φbb : (S′, G)bb → (S,G)bb which induces an isomorphism φ∗bb : Z(S,G) →
Z(S′, G). We also have a natural isomorphism φbb

∗ : Z(S′, G)→ Z(S,G). None
of these maps preserves the splitting (19). Resolving indeterminacy points of
any birational map χ : (S,G)− → (S′, G′) we can define

• proper direct transform map χ∗ : Z∗(S,G) ∼→ Z∗(S′, G);
• proper inverse transform map χ∗ : Z∗(S′, G) ∼→ Z∗(S,G).

The group Z∗(S,G) equipped with all above structures is one of the main G-
birational invariants of S. It can be viewed as the Picard group of the bubble
space (S,G)bb.

The previous machinery gives a convenient way to consider the linear sys-
tems defining rational maps of surfaces. Thus we can rewrite (12) in the form
|z|, where z = H −

∑
mixi is considered as an element of Z∗+(S,G). The

condition that |z| is homaloidal becomes equivalent to the conditions

z2 = H2 −
∑

m2
i = H ′2, (21)

K(z) = H ·KS −
∑

mi = H ′ ·KS′ .

When S = S′ = P2 we get the equalities (15).
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3.4 Minimal rational G-surfaces

Let (S, ρ) be a rational G-surface. Choose a birational map φ : S− → P2. For
any g ∈ G, the map φ ◦ g ◦ φ−1 belongs to Cr(2). This defines an injective
homomorphism

ιφ : G→ Cr(2). (22)

Suppose (S′, ρ′) is another rational G-surface and φ′ : S′− → P2 is a birational
map.

The following lemma is obvious.

Lemma 3.4. The subgroups ιφ(G) and ιφ′(G) of Cr(2) are conjugate if and
only if there exists a birational map of G-surfaces χ : S′− → S.

The lemma shows that a birational isomorphism class of G-surfaces defines
a conjugacy class of subgroups of Cr(2) isomorphic to G. The next lemma
shows that any conjugacy class is obtained in this way.

Lemma 3.5. Suppose G is a finite subgroup of Cr(2), then there exists a
rational G-surface (S, ρ) and a birational map φ : S → P2 such that, for all
g ∈ G,

G = φ ◦ ρ(G) ◦ φ−1.

Proof. We give two proofs. The fist one is after A. Verra. LetD = ∩g∈Gdom(g),
where dom(g) is an open subset on which g is defined. Then U = ∩g∈Gg(D)
is an open invariant subset of P2 on which g ∈ G acts biregularly. Order G
in some way and consider a copy of P2

g indexed by g ∈ G. For any u ∈ U let
g(u) ∈ P2

g. We define a morphism

φ : U →
∏
g∈G

P2
g, u 7→ (g(u))g∈G.

Define an action of G on φ(U) by g′((xg)g∈G) = (xgg′)g∈G. Then φ is obviously
G-equivariant. Now define V as the Zariski closure of φ(U) in the product. It
is obviously a G-invariant surface which contains an open G-invariant subset
G-isomorphic to U . It remains to replace V by its G-equivariant resolution of
singularities (which always exists).

The second proof is standard. Let U be as above and U ′ = U/G be the
orbit space. It is a normal algebraic surface. Choose any normal projective
completion X ′ of U ′. Let S′ be the normalization of X ′ in the field of rational
functions of U . This is a normal projective surface on which G acts by bireg-
ular transformations. It remains to define S to be a G-invariant resolution of
singularities (see also [23]).

Summing up, we obtain the following result.

Theorem 3.6. There is a natural bijective correspondence between birational
isomorphism classes of rational G-surfaces and conjugate classes of subgroups
of Cr(2) isomorphic to G.
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So our goal is to classify G-surfaces (S, ρ) up to birational isomorphism of
G-surfaces.

Definition 3.7. A minimal G-surface is a G-surface (S, ρ) such that any bi-
rational morphism of G-surfaces (S, ρ)→ (S′, ρ′) is an isomorphism. A group
G of automorphisms of a rational surface S is called a minimal group of au-
tomorphisms if the pair (S, ρ) is minimal.

Obviously, it is enough to classify minimal rational G-surfaces up to bira-
tional isomorphism of G-surfaces.

Before we state the next fundamental result, let us recall some terminology.
A conic bundle structure on a rational G-surface (S,G) is a G-equivariant

morphism φ : S → P1 such that the fibres are isomorphic to a reduced conic in
P2. A Del Pezzo surface is a surface with ample anti-canonical divisor −KS .

Theorem 3.8. Let S be a minimal rational G-surface. Then either S admits
a structure of a conic bundle with Pic(S)G ∼= Z2, or S is isomorphic to a Del
Pezzo surface with Pic(S)G ∼= Z.

An analogous result from the classical literature is proven by using the
method of the termination of adjoints, first introduced for linear system of
plane curves in the work of G. Castelnuovo. It consists in replacing a linear
system |D| with the linear system |D+KS | and repeat doing this to stop only if
the next step leads to the empty linear system. The application of this method
to finding a G-invariant linear system of curves on the plane was initiated in
the works of S. Kantor [41], who essentially stated the theorem above but
without the concept of minimality. In arithmetical situation this method was
first applied by Enriques [28]. A first modern proof of the theorem was given
by Manin [44] and by the second author [37] (an earlier proof of Manin used
the assumption that G is an abelian group). Nowadays the theorem follows
easily from a G-equivariant version of Mori’s theory (see [42], Example 2.18)
and the proof can be found in literature ([7], [22]). For this reason we omit
the proof.

Recall the classification of Del Pezzo surfaces (see [24], [45]). The number
d = K2

S is called the degree. By Noether’s formula, 1 ≤ d ≤ 9. For d ≥ 3,
the anti-canonical linear system | −KS | maps S onto a nonsingular surface of
degree d in Pd. If d = 9, S ∼= P2. If d = 8, then S ∼= P1×P1, or S ∼= F1, where
as always we denote by Fn the minimal ruled surface P(OP1 ⊕ OP1(n)). For
d ≤ 7, a Del Pezzo surface S is isomorphic to the blow-up of n = 9− d points
in P2 satisfying the following conditions

• no three are on a line;
• no six are on a conic;
• if n = 8, then then the points are not on a plane cubic which has one of

them as its singular point.
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For d = 2, the linear system |−KS | defines a finite morphism of degree 2 from
S to P2 with a nonsingular quartic as the branch curve. Finally, for d = 1, the
linear system | − 2KS | defines a finite morphism of degree 2 onto a quadric
cone Q ⊂ P3 with the branch curve cut out by a cubic.

For a minimal Del Pezzo G-surface the group Pic(S)G is generated by KS

if S is not isomorphic to P2 or P1 × P1. In the latter cases it is generated by
1
3KS or 1

2KS , respectively.
A conic bundle surface is either isomorphic to Fn or to a surface obtained

from Fn by blowing up a finite set of points, no two lying in a fibre of a ruling.
The number of blow-ups is equal to the number of singular fibres of the conic
bundle fibration. We will exclude the surfaces F0 and F1, considering them
as Del Pezzo surfaces.

There are minimal conic bundles with ample −KS (see Proposition 5.2).

4 Automorphisms of minimal ruled surfaces

4.1 Some of group theory

We employ the standard notations for groups used by group-theorists (see
[18]):

Cn, a cyclic group of order n,
n = Cn if no confusion arises;
nr = Cr

n, the direct sum of r copies of Cn (not to be confused with cyclic
group of order nr);

Sn, the permutation group of degree n,
An, the alternating group of degree n,
D2n, the dihedral group of order 2n,
Q4n = 〈a, b | a2n = 1, b2 = an, b−1ab = a−1〉, dicyclic group of order 4n, a

generalized quaternion group if n = 2k;
Hn(p), the Heisenberg group of unipotent n × n-matrices with entries in

Fp.
GL(n) = GL(n,C), general linear group over C,
SL(n) = SL(n,C), special linear group over C,
PGL(n) = GL(n,C)/C∗, general projective linear group over C,
O(n), the orthogonal linear group over C,
PO(n), the projective orthogonal linear group over C,
Ln(q) = PSL(n,Fq), where q = pr is a power of a prime number p;
T ∼= A4, O ∼= S4

∼= PGL(2,F3), I ∼= A5
∼= L2(5) ∼= L2(22), tetrahedral,

octahedron, icosahedron subgroups of PGL(2),
T ∼= SL(2,F3), Ō ∼= GL(2,F3), Ī ∼= SL(2,F5), D2n

∼= Q4n, binary tetra-
hedral, binary octahedron,binary icosahedron, binary dihedral subgroups of
SL(2),

A•B is an upward extension of B with help of a normal subgroup A;
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A : B is a split extension A•B, i.e. a semi-direct product A o B ((it is
defined by a homomorphism φ : B → Aut(A));

A•B is a non-split extension A•B,
nA = n•A, where the normal group n is equal to the center.
pa+b = Ca

p •Cb
p, where p is prime;

A4B (or A4D B), the diagonal product of A and B over their common
homomorphic image D (i.e. the subgroup of A × B of pairs (a, b) such that
α(a) = β(b) for some surjections α : A→ D,β : B → D). When D is omitted
it means that D is the largest possible;

1
m [A×B] = A4D B, where #D = m;
A o Sn, the wreath product, i.e. An : Sn, where Sn is the symmetric group

acting on An by permuting the factors;
µn, the group of nth roots of unity with generator εn = e2πi/n.

We will often use the following simple result from group theory which is
known as Goursat’s Lemma.

Lemma 4.1. Let G be a finite subgroup of the product A×B of two groups A
and B. Let p1 : A×B → A, p2 : A×B → B be the projection homomorphisms.
Let Gi = pi(G),Hi = Ker(pj |G), i 6= j = 1, 2. Then Hi is a normal subgroup
in Gi. The map φ : G1/H1 → G2/H2 defined by φ(aH1) = p2(a)H2 is an
isomorphism, and

G = G1 4D G2,

where D = G1/H1, α : G1 → D is the projection map to the quotient, and β
is the composition of the projection G2 → G2/H2 and φ−1.

Note some special cases:

G41 G
′ ∼= G×G′, G4G′ G′ = {(g, α(g)) ∈ G×G′, g ∈ G1},

where α : G→ G′ is a surjection and G′ → G′ is the identity.
We will be dealing with various group extensions. The following lemma is

known in group theory as the Schur-Zassenhaus Theorem. Its proof can be
found in [30], 6.2.

Lemma 4.2. Let A•B be an extension of groups. Suppose that the orders of A
and B are coprime. Then the extension splits. If moreover A or B is solvable,
then all subgroups of A : B defining splittings are conjugate.

We will often use the following simple facts, their proofs are left to the
reader (or can be found in www.planetmath.org).

Lemma 4.3. A subgroup of D2n = 〈a, b | an = b2 = b−1aba = 1〉 is either
cyclic or dihedral. A normal subgroup H is either cyclic subgroup 〈a〉, or n =
2k and H is one of the following two subgroups 〈a2, b〉, 〈a2, ab〉 of index 2.
These two subgroups are interchanged under the outer automorphism a 7→
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a, b 7→ ab. If H is cyclic of order n/k, the quotient group is isomorphic to
D2n/k.

The group of Aut(D2n) is isomorphic to (Z/n)∗ : n and it is generated by
the transformations a 7→ as, b 7→ atb. The subgroup of interior automorphisms
is generated by transformations a 7→ a−1, b 7→ b and a 7→ a, b 7→ a2b.

It will be convenient to list all isomorphism classes of non-abelian groups
of order 16.

Notation Center LCS Extensions Presentation

2×D8 22 16, 2, 1 21+3, 22+2, 23+1, a4 = b2 = c2 = 1,
(2× 4) : 2 [a, b]a2 = [a, c] = [b, c] = 1

2×Q8 22 16, 2, 1 22+2, a4 = a2b−2 = a2[a, b] = 1
(2× 4)•2

D16 2 16, 4, 2, 1 8 : 2, 2D8, a8 = b2 = a2[a, b] = 1
(22)•4, D•

82

SD16 2 16, 4, 2, 1 8 : 2, D•
82, a8 = b2 = [a, b]a−2 = 1

2D8, (2
2)•4

Q16 2 16, 4, 2, 1 8•2, 2D8, a8 = a4b−2 = [a, b]a2 = 1
4•(22)

AS16 4 16, 2, 1 21+3, D8 : 2 a4 = b2 = c2 = [a, b] = 1
4(22), (2× 4) : 2 [c, b]a−2 = [c, a] = 1

K16 22 16, 2, 1 22+2, (2× 4)•2 a4 = b4 = [a, b]a2 = 1
2•(2× 4), 4 : 4

L16 22 16, 2, 1 22 : 4, 2•(2× 4) a4 = b2 = c2 = 1,
(2× 4) : 2 [c, a]b = [a, b] = [c, b] = 1

M16 4 16, 2, 1 8 : 2, 4(22) a8 = b2 = 1, [a, b]a4 = 1
2•(2× 4)

Table 1. Non-abelian groups of order 16

Recall that there are two non-isomorphic non-abelian groups of order 8,
D8 and Q8.

Finally we describe central extension of polyhedral and binary polyhedral
groups. Recall that the isomorphism classes of central extensions A•G, where
A is an abelian group, are parametrized by the 2-cohomology group H2(G,A).
We will assume that A ∼= p, where p is prime. We will use the following facts
about the cohomology groups of polyhedral and binary polyhedral groups
which can be found in text-books on group cohomology (see, for example,
[1]).

Lemma 4.4. Let G be a polyhedral group or a binary polyhedral group. If
G ∼= n is cyclic, then H2(G, p) ∼= p if p | n and zero otherwise. If G is not
cyclic, then H2(G, p) = 0 if p 6= 2, 3. Moreover

(i) If G is a polyhedral group, then
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H2(G, 2) ∼=



2 if G ∼= D2n, n odd,
23 if G ∼= D2n, n even,
2 if G ∼= T,

22 if G ∼= O,

2 if G ∼= I.

H2(G, 3) ∼=

{
3 if G ∼= T,

1 otherwise.

(ii)If G is a binary polyhedral group, then

H2(G, 2) ∼=


2 if G ∼= D2n, n odd,
22 if G ∼= D2n, n even,
2 if G ∼= O,

1 otherwise.

H2(G, 3) ∼=

{
3 if G ∼= T ,

1 otherwise.

4.2 Finite groups of projective automorphisms

We start with the case S = P2, where Aut(S) ∼= PGL(3). To save space we
will often denote a projective transformation

(x0, x1, x2) 7→ (L0(x0, x1, x2), L1(x0, x1, x2), L2(x0, x1, x2))

by [L0(x0, x1, x2), L1(x0, x1, x2), L2(x0, x1, x2)].
Recall some standard terminology from the theory of linear groups. Let G

be a subgroup of the general linear group GL(V ) of a complex vector space V .
The group G is called intransitive if the representation of G in V is reducible.
Otherwise it is called transitive. A transitive group G is called imprimitive if it
contains an intransitive normal subgroup G′. In this case V decomposes into
a direct sum of G′-invariant proper subspaces, and elements from G permute
them. A group is primitive if it is neither intransitive, nor imprimitive. We
reserve this terminology for subgroups of PGL(V ) keeping in mind that each
such group can be represented by a subgroup of GL(V ).

Let G′ be a finite intransitive subgroup of GL(3) and G be its image in
PGL(3). Then G′ is conjugate to a subgroup C∗ ×GL(2) of block matrices.

To classify such subgroups we have to classify subgroups of GL(2). We
will use the well-known classification of finite subgroups of PGL(2). They are
isomorphic to one of the following polyhedral groups

• a cyclic group Cn;
• a dihedral group D2n of order 2n ≥ 2;
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• the tetrahedral group T ∼= A4 of order 12;
• the octahedron group O ∼= S4 of order 24;
• the icosahedron group I ∼= A5 of order 60.

Two isomorphic subgroups are conjugate subgroups of PGL(2).
The pre-image of such group in SL(2,C) under the natural map

SL(2)→ PSL(2) = SL(2)/(±1) ∼= PGL(2)

is a double extension G = 2•G. The group G = 2•G is called a binary poly-
hedral group. A cyclic group of odd order is isomorphic to a subgroup SL(2)
intersecting trivially the center.

Consider the natural surjective homomorphism of groups

β : C∗ × SL(2)→ GL(2), (c, A) 7→ cA.

Its kernel is the subgroup {(1, I2), (−1,−I2)}.
Let G be a finite subgroup of GL(2) with center Z(G). Since cA =

(−c)(−A) and det(cA) = c2 detA, we see that G̃ = β−1(G) is a subgroup
of µ2m × Ḡ′, where G′ is a binary polyhedral group with nontrivial center
whose image G′ in PGL(2) is isomorphic to G/Z(G). The homomorphism β

defines an isomorphism from the kernel H2 of the first projection G̃ → µ2m

onto the subgroup G0 = Ker(det : G → C∗). Also it defines an isomorphism
from the kernel H1 of the second projection G̃ → Ḡ′ onto Z(G). Applying
Lemma 4.1, we obtain

G̃ ∼= µ2m 4D G
′
, D = Ḡ′/G0.

Lemma 4.5. Let G be a finite non-abelian subgroup of GL(2). Then G =
β(G̃), where G̃ ⊂ C∗ × SL(2,C) is conjugate to one of the following groups

(i) G̃ = µ2m × Ī , G ∼= m× Ī;
(ii)G̃ = µ2m ×O, G ∼= m×O;
(iii)G̃ = µ2m × T , G ∼= m× T ;
(iv)G̃ = µ2m ×Q4n, G ∼= m×Q4n;
(v) G̃ = 1

2 [µ4m ×O], G ∼= 2m•O ∼= (m× T )•2 (split if m = 1, 2);
(vi)G̃ = 1

3 [µ6m × T ], G ∼= 2m•T ∼= (m× 22)•3 (split if m = 1, 3);
(vii)̃G ∼= 1

2 [µ4m ×Q8n], G ∼= 2m•D4n
∼= (m×Q4n)•2 (split if m = 1, 2);

(viii)̃G = 1
2 [µ4m ×Q4n], G ∼= 2m•D2n

∼= (m× 2n)•2 (split if m = 1, 2);
(ix)G̃ = 1

4 [µ4m ×Q4n], n is odd, G ∼= m•D2n
∼= (m× n)•2 (split if m = 1, 2).

Note that, although Q8n has two different non-cyclic subgroups of index 2,
they are conjugate under an element of SL(2), so they lead to conjugate sub-
groups in GL(2).

Lemma 4.4 gives us some information when some of these extensions split.



458 Igor V. Dolgachev and Vasily A. Iskovskikh

An abelian subgroup G ⊂ GL(2) is conjugate to a subgroup of diagonal
matrices of the form (εam, ε

b
n), where εm, εn are primitive roots of unity and

a, b ∈ Z. Let d = (m,n),m = du, n = dv, d = kq for some fixed positive
integer k. Let H1 = 〈εkm〉 ⊂ 〈εm〉,H2 = 〈εkn〉 ⊂ 〈εn〉 be cyclic subgroups of
index k. Applying Lemma 4.1 we obtain

G ∼= 〈εm〉 4k 〈εn〉

where the homomorphisms 〈εm〉 → k, 〈εn〉 → k differ by an automorphism of
the cyclic group 〈εk〉 ∼= k defined by a choice of a new generator εsm, (s, k) = 1.
In this case

G = (〈εkm〉 × 〈εkn〉•〈εk〉 (23)

is of order mn/k = uvkq2. In other words, G consists of diagonal matrices of
the form (εam, ε

b
n), where a ≡ sb mod k.

Corollary 4.6. Let G be an intransitive finite subgroup of GL(3). Then its
image in PGL(3) consists of transformations [ax0 + bx1, cx0 + dx1, x2], where
the matrices

(
a b
c d

)
form a non-abelian finite subgroup H of GL(2) from Lemma

4.5 or an abelian group of the form (23).

Now suppose G is transitive but imprimitive subgroup of PGL(3). Let G′

be its largest intransitive normal subgroup. Then G/G′ permutes transitively
the invariant subspaces of G′, hence we may assume that all of them are one-
dimensional. Replacing G by a conjugate group we may assume that G′ is
a subgroup of diagonal matrices. We can represent its elements by diagonal
matrices g = (εam, ε

b
n, 1), where a ≡ sb mod k as in (23). The groupG contains

a cyclic permutation τ of coordinates. Since G′ is a normal subgroup of G,
we get τ−1gτ = (ε−b

n , ε−b
n εam, 1) ∈ G′. This implies that n|bm,m|an, hence

u|b, v|a. Since (εm, εsn, 1) or (εs
′

m, εn, 1), ss′ ≡ 1 mod k, belongs to G we must
have u = v = 1, i.e. m = n = d. Therefore G′ consists of diagonal matrices g =
(εad, ε

sa
d , 1). Since τ−1gτ = (ε−sa

d , εa−sa
d , 1) ∈ G′, we get a− sa ≡ −s2a mod k

for all a ∈ Z/mZ. Hence the integers s satisfy the congruence s2 − s+ 1 ≡ 0
mod k. If, moreover, G/G′ ∼= S3, then we have an additional condition s2 ≡ 1
mod k, and hence either k = 1 and G′ = µn × µn or k = 3, s = 2 and
G′ = n× n/k.

This gives the following.

Theorem 4.7. Let G be a transitive imprimitive finite subgroup of PGL(3).
Then G is conjugate to one of the following groups

• G ∼= n2 : 3 generated by transformations

[εnx0, x1, x2], [x0, εnx1, x2], [x2, x0, x1];

• G ∼= n2 : S3 generated by transformations

[εnx0, x1, x2], [x0, εnx1, x2], [x0, x2, x1], [x2, x0, x1];
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• G = Gn,k,s
∼= (n× n

k ) : 3, where k > 1, k|n and s2 − s+ 1 = 0 mod k. It
is generated by transformations

[εn/kx0, x1, x2], [εsnx0, εnx1, x2], [x2, x0, x1].

• G ' (n× n
3 ) : S3 generated by transformations

[εn/3x0, x1, x2], [ε2nx0, εnx1, x2], [x0, x2, x1], [x1, x0, x2].

The next theorem is a well-known result of Blichfeldt [10].

Theorem 4.8. Any primitive finite subgroup G of PGL(3) is conjugate to one
of the following groups.

1. The icosahedron group A5 isomorphic to L2(5). It leaves invariant a non-
singular conic.

2. The Hessian group of order 216 isomorphic to 32 : L2(3). It is realized as
the group of automorphisms of the Hesse pencil of cubics

x3 + y3 + z3 + txyz = 0.

The subgroup L2(3) is isomorphic to 2•A4
∼= T and permutes the four

reducible members of the pencil.
3. The Klein group of order 168 isomorphic to L2(7) (realized as the full

group of automorphisms of the Klein quartic x3y + y3z + z3x = 0).
4. The Valentiner group of order 360 isomorphic to A6. It can be realized as

the full group of automorphisms of the nonsingular plane sextic

10x3y3 + 9zx5 + y5 − 45x2y2z2 − 135xyz4 + 27z6 = 0.

5. Subgroups of the Hessian group:
• 32 : 4;
• 32 : Q8.

4.3 Finite groups of automorphisms of F0

Since F0 is isomorphic to a nonsingular quadric in P3, the group Aut(F0)
is isomorphic to the projective orthogonal group PO(4). The classification
of finite subgroups of O(4) is due to É. Goursat [31] (in the real case see a
modern account in [19]). Goursat’ Lemma 4.1 plays an important role in this
classification.

Obviously,
Aut(F0) ∼= PGL(2) o S2,

First we classify subgroups of PGL(2) × PGL(2) by applying Goursat’s
Lemma.

Observe the following special subgroups of PGL(2)× PGL(2).
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1. G = G1 ×G2 is the product subgroup.
2. G41 G = {(g1, g2) ∈ G × G : α(g1) = g2} ∼= G is a α-twisted diagonal

subgroup. If α = idG, we get the diagonal subgroup.

Note that α-twisted diagonal groups are conjugate in Aut(F0) if α(g) =
xgx−1for some x in the normalizer of G inside Aut(P1). In particular, we
may always assume that α is an exterior automorphism of G.

We will use the notation [p1, . . . , pr] for the Coxeter group defined by the
Coxeter diagram

• • • • •
p1 p2 pr

· · ·

Following [19] we write [p1, . . . , pr]+ to denote the index 2 subgroup of
even length words in standard generators of the Coxeter group. If exactly one
of the numbers p1, . . . , pr is even, say pk, there are two other subgroups of
index 2 denoted by [p1, . . . , p

+
r ] (resp. [+p1, . . . , pr]). They consist of words

which contain each generator R1, . . . , Rk−1 (resp. Rk+1, . . . , Rr) even number
of times. The intersection of these two subgroups is denoted by [+p1, . . . , p

+
r ].

For example,

D2n = [n], T = [3, 3]+, O = [3, 4]+, I = [3, 5]+.

Recall that each group [p1, . . . , pr] has a natural linear representation in
Rr as a reflection group. If r = 3, the corresponding representation defines
a subgroup of PO(4). If r = 2, it defines a subgroup of PO(3) which acts
diagonally on P2×P2 and on P1×P1 embedded in P2×P2 by the product of
the Veronese maps. We denote [p1, . . . , pr] the quotient of [p1, . . . , pr] by its
center. Similar notation is used for the even subgroups of [p1, . . . , pr].

Theorem 4.9. Let G be a finite subgroup of PGL(2)×PGL(2) not conjugate
to the product A×B of subgroups of PGL(2). Then G is conjugate to one of
the following groups or its image under the switching of the factors.

• 1
60 [I × I] ∼= I ∼= [3, 5]+;

• 1
60 [I × I] ∼= I ∼= [3, 3, 3]+;

• 1
24 [O ×O] ∼= O ∼= [3, 4]+;

• 1
24 [O ×O] ∼= O ∼= [2, 3, 3]+;

• 1
12 [T × T ] ∼= T ∼= [3, 3]+;

• 1
2 [O ×O] ∼= (T × T ) : 2 ∼= [3, 4, 3]+;

• 1
6 [O ×O] ∼= 24 : S3

∼= [3, 3, 4]+;
• 1

3 [T × T ] ∼= 24 : 3 ∼= [+3, 3, 4+];
• 1

2 [D2m ×D4n] ∼= (m×D2n)•2 (m,n ≥ 2);
• 1

4 [D4m ×D4n] ∼= (m× n) : 4 (m,n odd);
• 1

2k [D2mk ×D2nk]s ∼= (m× n) : D2k, (s, k) = 1);
• 1

2k [D2mk ×D2nk]s ∼= (m× n) : D2k, (s, 2k) = 1,m, n odd);
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• 1
k [Cmk × Cnk]s ∼= (m× n)•k ((s, k) = 1);

• 1
k [Cmk × Cnk]s ∼= (m× n)•k ((s, 2k) = 1,m, n odd;);

• 1
2 [D2m ×O] ∼= (m× T ) : 2;

• 1
2 [D4m ×O] ∼= (D2m × T ) : 2(m ≥ 2);

• 1
6 [D6n ×O] ∼= (m× 22) : S3(m ≥ 2);

• 1
2 [C2m ×O] ∼= (m× T )•2 (split if m = 1);

• 1
3 [C3m × T ] ∼= (m× 22)•3 (split if m = 1);

• 1
2 [D4m ×D4n] ∼= (D2m ×D2n)•2 (m,n ≥ 2);

• 1
2 [C2m ×D4n] ∼= (m×D2n)•2 (n ≥ 2);

• 1
2 [C2m ×D2n] ∼= (m× n) : 2 ∼= m•D2n.

All other finite subgroups of Aut(P1×P1) are conjugate to a group G0•2,
where the quotient 2 is represented by an automorphism which interchanges
the two rulings of F0. It is equal to τ ◦ g, where τ is the switch (x, y) 7→ (y, x)
and g ∈ PGL(2)× PGL(2).

4.4 Finite groups of automorphisms of Fn, n 6= 0

Let S be a minimal ruled surface Fn, n 6= 0. If n = 1, the group Aut(F1) is
isomorphic to a subgroup of Aut(P2) leaving one point fixed. We will not be
interested in such subgroups so we assume that n ≥ 2.

Theorem 4.10. Let S = Fn, n 6= 2. We have

Aut(Fn) ∼= Cn+1 : (GL(2)/µn),

where GL(2)/µn acts on Cn by means of its natural linear representation in
the space of binary forms of degree n. Moreover,

GL(2)/µn
∼=

{
C∗ : PSL(2), if n is even,
C∗ : SL(2), if n is odd.

Proof. This is of course well-known. We identify Fn with the weighted pro-
jective plane P(1, 1, n). An automorphism is given by the formula

(t0, t1, t2) 7→ (at0 + bt1, ct0 + dt1, et2 + fn(t0, t1)),

where fn is a homogeneous polynomial of degree n. The vector space Cn+1 is
identified with the normal subgroup of transformations [t0, t1, t2 + fn(t0, t1)].
The quotient by this subgroup is isomorphic to the subgroup of trans-
formations [at0 + bt1, ct0 + dt1, et2] modulo transformations of the form
[ct0, ct1, cnt2]. This group is obviously isomorphic to GL(2)/µn. Consider the
natural projection GL(2)/µn → PGL(2) ∼= PSL(2). Define a homomorphism
SL(2) → GL(2)/µn by assigning to a matrix A the coset of A modulo µn. If
n is even, the kernel of this homomorphism is 〈−I2〉, so we have a splitting
GL(2) ∼= C∗ : PGL(2). If n is odd, the homomorphism is injective and defines
a splitting GL(2)/µn

∼= C∗ : SL(2).



462 Igor V. Dolgachev and Vasily A. Iskovskikh

Suppose G is a finite subgroup of Aut(Fn). Obviously, G is contained in
the subgroup GL(2)/µn.

Suppose G ∩ C∗ = {1}. Then G is isomorphic to a subgroup of PGL(2)
(resp. SL(2)) over which the extension splits. Note that the kernel C∗ of the
projections GL(2)/µn → PGL(2) or GL(2)/µn → SL(2) is the center. Thus
each finite subgroup H of PGL(2) (resp. SL(2)) defines k conjugacy classes of
subgroups isomorphic to H, where k = #Hom(H,C∗) = #G/[G,G].

If G ∼= C∗ ∼= µm is non-trivial, the group is a central extension m•H,
where H is a polyhedral group, if n is even, and a binary polyhedral group
otherwise. We can apply Lemma 4.4 to find some cases when the extension
must split. In other cases the structure of the group is determined by using
Theorem 4.9. We leave this to the reader.

5 Automorphisms of conic bundles

5.1 Geometry of conic bundles

Let π : S → P1 be a conic bundle with singular fibres over points in a finite
set Σ ⊂ P1. We assume that k = #Σ > 0. Recall that each singular fibre
Fx, x ∈ Σ, is the bouquet of two P1’s.

Let E be a section of the conic bundle fibration π. The Picard group of S
is freely generated by the divisor classes of E, the class F of a fibre, and the
classes of k components of singular fibres, no two in the same fibre. The next
lemma follows easily from the intersection theory on S.

Lemma 5.1. Let E and E′ be two sections with negative self-intersection −n.
Let r be the number of components of singular fibres which intersect both E
and E′. Then k − r is even and

2E · E′ = k − 2n− r.

In particular,
k ≥ 2n+ r.

Since a conic bundle S is isomorphic to a blow-up of a minimal ruled
surface, it always contains a section E with negative self-intersection −n. If
n ≥ 2, we obviously get k ≥ 4. If n = −1, since (S, g) is minimal, there exists
g ∈ G such that g(E) 6= E and E ∩ g(E) 6= ∅. Applying the previous lemma
we get

k ≥ 4.

5.2 Exceptional conic bundles

We give three different constructions of the same conic bundle, which we will
call an exceptional conic bundle.
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First construction.
Choose a ruling p : F0 → P1 on F0 and fix two points on the base, say 0 and

∞. Let F0 and F∞ be the corresponding fibres. Take g+1 points a1, . . . , ag+1

on F0 and g+1 points ag+2, . . . , a2g+2 on F∞ such that no two lie in the same
fibre of the second ruling q : F0 → P1. Let σ : S → F0 be the blow-up of the
points a1, . . . , a2g+2. The composition π = q ◦ σ : S → P1 is a conic bundle
with 2g+2 singular fibres Ri +R′i over the points xi = q(ai), i = 1, . . . , 2g+2.
For i = 1, . . . , g + 1, Ri = σ−1(ai) and Rn+i is the proper transform of the
fibre q−1(ai). Similarly, for i = 1, . . . , n, R′i is the proper transform of the
fibre q−1(ai) and R′g+1+i = σ−1(ag+1+i).

Let E0, E∞ be the proper transforms of F0, F∞ on S. Each is a section of
the conic bundle π. The section E0 intersects R1, . . . , R2g+2, and the section
E∞ intersects R′1, . . . , R

′
2g+2.

Let

D0 = 2E0 +
2g+2∑
i=1

Ri, D∞ = 2E∞ +
2g+2∑
i=1

R′i.

It is easy to check that D0 ∼ D∞. Consider the pencil P spanned by the
curves D0 and D∞. It has 2g+ 2 simple base points pi = Ri ∩R′i. Its general
member is a nonsingular curve C. In fact, a standard formula for computing
the Euler characteristic of a fibred surface in terms of the Euler characteristics
of fibres shows that all members except D0 and D∞ are nonsingular curves.
Let F be a fibre of the conic bundle. Since C · F = 2, the linear system |F |
cuts out a g1

2 on C, so it is a hyperelliptic curve or the genus g of C is 0 or
1. The points pi are obviously the ramification points of the g1

2 . Computing
the genus of C we find that it is equal to g, thus p1, . . . , p2g+2 is the set of
ramification points. Obviously all nonsingular members are isomorphic curves.
Let σ : S′ → S be the blow-up the base points p1, . . . , p2g+2 and let D denote
the proper transform of a curve on S. We have

2Ē0 + 2Ē∞ +
2g+2∑
i=1

(R̄i + R̄′i + 2σ−1(pi)) ∼ 2σ∗(C).

This shows that there exists a double over X ′ → S′ branched along the divisor∑2g+2
i=1 (R̄i+R̄′i). Since R̄i

2 = R̄′i
2 = −2, the ramification divisor onX ′ consists

of 4g + 4 (−1)-curves. Blowing them down we obtain a surface X isomorphic
to the product C × P1. This gives us the following.

Second construction. A pair (C, h) consisting of a nonsingular curve and an
involution h ∈ Aut(C) with quotient P1 will be called a hyperelliptic curve.
If C is of genus g ≥ 2, then C is a hyperelliptic curve and h is its involu-
tion defined by the unique g1

2 on C. Let δ be an involution of P1 defined
by (t0, t1) 7→ (t0,−t1). Consider the involution τ = h × δ of the product
X = C × P1. Its fixed points are 4g + 4 points ci × {0} and ci × {∞}, where
X〈h〉 = {c1, . . . , c2g+2}. Let X ′ be a minimal resolution of X/(τ). It is easy to
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see that the images of the curves {ci} × P1 are (−1)-curves on X ′. Blowing
them down we obtain our exceptional conic bundle.

• • • • • • • •

• • • • • • • •
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Third construction.
Let us consider a quasi-smooth hypersurface Y of degree 2g+2 in weighted

projective space P = P(1, 1, g + 1, g + 1) given by an equation

F2g+2(T0, T1) + T2T3 = 0, (24)

where F2g+2(T0, T1) is a homogeneous polynomial of degree 2g + 2 without
multiple roots. The surface is a double cover of P(1, 1, g+ 1) (the cone over a
Veronese curve of degree g+1) branched over the curve F2g+2(T0, T1)+T 2

2 = 0.
The pre-images of the singular point of P(1, 1, g + 1) with coordinate (0, 0, 1)
is a pair of singular points of Y with coordinates (0, 0, 1, 0) and (0, 0, 0, 1).
The singularities are locally isomorphic to the singular points of a cone of
the Veronese surface of degree g + 1. Let S be a minimal resolution of Y .
The pre-images of the singular points are disjoint smooth rational curves E
and E′ with self-intersection −(g + 1). The projection P(1, 1, g + 1, g + 1)→
P1, (t0, t1, t2, t3) 7→ (t0, t1) lifts to a conic bundle on S with sections E,E′.
The pencil λT2 + µT3 = 0 cuts out a pencil of curves on Y which lifts to a
pencil of bisections of the conic bundle S with 2g+ 2 base points (t0, t1, 0, 0),
where F2g+2(t0, t1) = 0.

It is easy to see that this is a general example of an exceptional conic
bundle. In Construction 2, we blow down the sections E0, E∞ to singular
points. Then consider an involution g0 of the surface which is a descent of the
automorphism of the product C × P1 given by idC × ψ, where ψ : (t0, t1) 7→
(t1, t0). The quotient by (g0) gives P(1, 1, g+1) and the ramification divisor is
the image on S of the curve C × (1, 1) or C × (1,−1). On one of these curves
g0 acts identically, on the other one it acts as the involution defined by the
g1
2 .
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Proposition 5.2. Let φ : S → P1 be a minimal conic G-bundle with k ≤ 5
singular fibres. Then S is a Del Pezzo surface, unless k = 4 and S is an
exceptional conic bundle.

Proof. Since k ≤ 5 we have K2
S = 8− k ≥ 3. By Riemann-Roch, | −KS | 6= ∅.

Suppose S is not a Del Pezzo surface. Then there exists an irreducible curve
C such that −KS ·C ≤ 0. Suppose, the equality takes place. By Hodge’s Index
Theorem, C2 < 0, and by the adjunction formula, C2 = −2 and C ∼= P1. If the
strict inequality takes place, then C is a component of a divisor D ∈ | −KS |,
hence | −KS − C| 6= ∅ and |KS + C| = ∅. Moreover, since K2

S > 0, we have
C 6∈ | −KS |. Applying Riemann-Roch to the divisor KS +C we easily obtain
that C is of arithmetic genus 0, and hence C ∼= P1. By adjunction, C2 ≤ −2.
In both cases we have a smooth rational curve with C2 ≤ −2.

If k = 4 and S is an exceptional conic bundle, then S is not a Del Pezzo
surface since it has sections with self-intersection −2. Assume this is not the
case. Let C be the union of smooth rational curves with self-intersection < −2.
It is obviously a G-invariant curve, so we can write C ∼ −aKS−bf , where f is
the divisor class of a fibre of φ. Intersecting with f we get a > 0. Intersecting
with KS , we get 2b > ad, where d = 8 − k ≥ 3. It follows from Lemma
5.1, that S contains a section E with self-intersection −2 or −1. Intersecting
C with E we get 0 ≤ C · E = a(−KS · E) − b ≤ a − b. This contradicts
the previous inequality. Now let us take C to be the union of (−2)-curves.
Similarly, we get 2b = ad and C2 = −aKS ·C − bC · f = −bC · f = −2ab. Let
r be the number of irreducible components of C. We have 2a = C · f ≥ r and
−2r ≤ C2 = −2ab ≤ −br. If b = 2, we have the equality everywhere, hence C
consists of r = 2a disjoint sections, and 8 = rd. Since d ≥ 3, the only solution
is d = 4, r = 2, and this leads to the exceptional conic bundle. Assume b = 1.
Since C2 = −2a is even, a is a positive integer, and we get 2 = ad. Since
d ≥ 3, this is impossible.

5.3 Automorphisms of an exceptional conic bundle

Let us describe the automorphism group of an exceptional conic bundle. The
easiest way to do it to use Construction 3. We denote by Yg an exceptional
conic bundle given by equation (24). Since we are interested only in minimal
groups we assume that g ≥ 1.

Since KYg = OP(−2), any automorphism σ of Yg is a restriction of an
automorphism of P. Let G1 be the subgroup of SL(2) of transformations pre-
serving the zero divisor of F2g+2(T0, T1) and χ1 : G1 → C∗ be the multiplica-
tive character of G1 defined by σ∗1(F2g+2) = χ1(σ1)F2g+2. Similarly, let G2

be the subgroup of GL(2) of matrices preserving the zeroes of T2T3 and let
χ2 : G2 → C∗ be the character defined by σ∗(T2T3) = χ2(σ2)T2T3. Let

(G1 ×G2)0 = {(σ1, σ2) ∈ G1 ×G2 : χ1(σ1) = χ2(σ2)}.
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In the notation of the diagonal products,

(G1 ×G2)0 =
1
m

[G1 ×G2],

where χ1(G1) = µm ⊂ C∗. The subgroup

K = 〈(−I2, (−1)g+1I2)〉

acts identically on Yg and the quotient group is isomorphic to Aut(Yg).
Let Aut(Yg) ∼= (G1 × G2)0/K → PGL(2) be the homomorphism induced

by the projection of G1 to PGL(2). Its image is a finite subgroup P of PGL(2).
Its kernel H consists of cosets modulo K of pairs (±I2, σ2), where χ2(σ2) = 1.
Clearly, H ∼= Ker(χ2).

It is easy to see that Ker(χ2) ∼= C∗ : 2 is generated by diagonal matrices
with determinant 1 and the matrix which switches the coordinates. Inside of
GL(2) it is conjugate to the normalizer N of the maximal torus in SL(2). So
we obtain an isomorphism

Aut(Yg) ∼= N•P . (25)

Suppose there exists a homomorphism η : G1 → C∗ such that η(−1) =
(−1)g+1. Then the homomorphism

G1 → (G1 ×G2)0/K, σ1 7→ (σ1, η(σ1)I2) mod K

factors through a homomorphism P → (G1 ×G2)0/K and defines a splitting
of the extension (25). Since elements of the form (σ1, η(σ1)I2) commute with
elements of N , we see that the extension is trivial when it splits. It is easy
to see that the converse is also true. Since the trivial η works when g is odd,
we obtain that the extension always splits in this case. Assume g is even and
G1 admits a 1-dimensional representation η with η(−I2) = −1. If its kernel
is trivial, G1 is isomorphic to a subgroup of C∗, hence cyclic. Otherwise, the
kernel is a subgroup of SL(2) not containing the center. It must be a cyclic
subgroup of odd order. The image is a cyclic group. Thus G1 is either cyclic,
or a binary dihedral group D2n with n odd.

To summarize we have proved the following.

Proposition 5.3. The group of automorphisms of an exceptional conic bun-
dle (24) is isomorphic to an extension N•P , where P is the subgroup of
PGL(2) leaving the set of zeroes of F2g+2(T0, T1) invariant and N ∼= C∗ : 2 is
a group of matrices with determinant ±1 leaving T2T3 invariant. Moreover,
the extension splits and defines an isomorphism

Aut(Yg) ∼= N × P

if and only if g is odd, or g is even and P is either a cyclic group or a dihedral
group D4k+2.
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Now let G be a finite minimal subgroup of Aut(Yg). Assume first that
Aut(Yg) ∼= N×P . Let N ′ be the projection of G to N and P ′ be the projection
to P . Since G is minimal, N ′ contains an element which switches V (T2) and
V (T3). Thus N ′ is isomorphic to a dihedral group D2n. Applying Goursat’s
Lemma we obtain that

G ∼= N ′ 4D Q,

where D is a common quotient of N ′ and Q. If N ′ is a dihedral group, then
D is either dihedral group or a cyclic of order 2. Using Goursat’s Lemma it is
easy to list all possible subgroups. We leave it as an exercise to the reader.

If Aut(Yg) is not isomorphic to the direct product N ×P , we can only say
that

G ∼= H•Q,

where H is a subgroup of D2n or Q4n, and Q is a polyhedral group. Note that
we can write these extensions in the form n•(2•Q) or n•(22•Q).

Example 5.4. Let π : S → P1 be an exceptional conic bundle with g = 1. It
has 4 singular fibres. According to the first construction, the blow up S′ of S
at the four singular points of the singular fibres admits an elliptic fibration
f : S′ → P1 with two singular fibres of type I∗0 in Kodaira’s notation. The
j-invariant of the fibration is zero, and after the degree 2 base change P1 → P1

ramified at 2 points, the surface becomes isomorphic to the product E × P1,
where E is an elliptic curve. Its j-invariant corresponds to the cross ratio
of the 4 points, where a section of π with self-intersection −2 intersects the
singular fibres. Conversely, starting from the product, we can divide it by an
elliptic involution, to get the conic bundle. This is our second construction.

According to the third construction, the surface can be given by an equa-
tion

F4(T0, T1) + T2T3 = 0

in the weighted projective space P(1, 1, 2, 2). The projection to (T0, T1) is a
rational map undefined at the four points Pi = (a, b, 0, 0), where F4(a, b) = 0.
After we blow them up we get the conic bundle. The projection to (T2, T3 is
a rational map undefined at the two singular points (0, 0, 1, 0) and (0, 0, 0, 1).
After we blow them up, we get the elliptic fibration. We have two obvious
commuting involutions σ1 = [t0, t1,−t3,−t2] and σ2 = [t0, t1, t3, t2]. The locus
of fixed points of each of them is an elliptic curve with equation T2 = 0 or
T3 = 0. The group 〈σ1, σ2〉 ∼= 22 permutes these two curves.

The groups of automorphisms of S is easy to describe. It follows from
Proposition 5.3 that G is a finite subgroup of P ×K, where P is a subgroup of
PGL(2) leaving the zeros of F4 invariant and K is a subgroup of GL(2) leaving
the zeroes of t2t3 invariant. First we choose coordinates T0, T1 to write F4 in
the form T 4

0 + T 4
1 + aT 2

0 T
2
1 , a

2 6= 4. It is always possible if F4 has 4 distinct
roots (true in our case). Let P be the subgroup of PGL(2) leaving the set of
zeroes of F4 invariant. It is one of the following groups 1, 2, 4, 22, D8, A4. If
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a2 6= 0,−12, 36, then P is a subgroup of 22. If a2 = 0, 36, then P is a subgroup
of D8. If a2 = −12, then P is a subgroup of A4.

Suppose a is not exceptional. Let P̄ be the corresponding binary group.
Then it leaves F4 invariant, so G is a subgroup of K ′ × P , where K ′ consists
of matrices leaving t2t3 invariant. It is generated by diagonal matrices with
determinant 1 and the transformations [t1, t0]. Thus

G ⊂ D2n × 22,

where we use that a a finite subgroup of K ′ is either cyclic or binary dihedral.
Suppose a2 = 0, 36 and G contains an element of order 4. The form can

be transformed to the form T 4
0 +T 4

1 . The value of the character at an element
τ of order 4 is equal to −1. We obtain

G ⊂ 1
2 [Q× P ] ∼= (Q′ × P ′)•2 ∼= Q′•P

where Q is a finite subgroup of K and the diagonal product is taken with
respect to the subgroup Q′ = Q ∩K ′ of Q and the subgroup P ∩ 22 of index
2 of P . The group Q′ is cyclic or dihedral.

Suppose a = −2
√

3i and G contains an element g of order 3 given by
[ 1−i

2 t0 + 1−i
2 t1,− 1+i

2 t0 − 1+i
2 t1]. Its character is defined by χ(g) = ε3. We

obtain
G ⊂ 1

3
[Q× P ],

where the diagonal product is taken with respect to the subgroupQ = χ−1
2 (µ3)

of K and the subgroup P ′ = P ∩ 22 of index 3 of P . Again G is a subgroup
of D2n•P .

5.4 Minimal conic bundles G-surfaces

Now assume (S,G) is a minimal G-surface such that S admits a conic bundle
map φ : S → P1. As we had noticed before the number of singular fibres k is
greater or equal to 4. Thus

K2
S = 8− k ≤ 4. (26)

Let (S,G) be a rational G-surface and

a : G→ O(Pic(X)), g 7→ (g∗)−1 (27)

be the natural representation of G in the orthogonal group of the Picard
group. We denote by G0 the kernel of this representation. Since k > 2 and
G0 fixes any component of a singular fibre, it acts identically on the base of
the conic bundle fibration. Since G0 fixes the divisor class of a section, and
sections with negative self-intersection do not move in a linear system, we
see that G0 fixes pointwisely any section with negative self-intersection. If we
consider a section as a point of degree 1 on the generic fibre, we see that G0

must be is a cyclic group.



Finite subgroups of the plane Cremona group 469

Proposition 5.5. Assume G0 6= {1}. Then S is an exceptional conic bundle.

Proof. Let g0 be a non-trivial element from G0. Let E be a section with
E2 = −n < 0. Take an element g ∈ G such that E′ = g(E) 6= E. Since g0 has
two fixed points on each component of a singular fibre we obtain that E and E′

do not intersect the same component. By Lemma 5.1, we obtain that k = 2n.
Now we blow down n components in n fibres intersecting E and n components
in the remaining n fibres intersecting E′ to get a minimal ruled surface with
two disjoint sections with self-intersection 0. It must be isomorphic to F0. So,
we see that S is an exceptional conic bundle (Construction 1) with n = g+1.

From now on in this section, we assume that G0 = {1}.
Let Sη be the general fibre of φ. By Tsen’s theorem it is isomorphic to P1

K ,
where K = C(t) is the field of rational functions of the base. Consider Sη as
a scheme over C. Then

AutC(Sη) ∼= AutK(Sη) : PGL(2) ∼= dJ(2),

where dJ(2) is a de Jonquiéres subgroup of Cr(2) and AutK(Sη) ∼= PGL(2,K).
A finite minimal group G of automorphisms of a conic bundle is isomorphic
to a subgroup of AutC(Sη). Let GK = G∩AutK(Sη) and GB

∼= G/GK be the
image of G in PGL(2). We have an extension of groups

1→ GK → G→ GB → 1 (28)

Let R be the subgroup of Pic(S) spanned by the divisor classes of Ri −
R′i, i = 1, . . . , k. It is obviously G-invariant and RQ is equal to the orthogonal
complement of Pic(S)G

Q in Pic(S)Q. The orthogonal group of the quadratic
lattice R is isomorphic to the wreath product 2 oSk. The normal subgroup 2k

consists of transformations which switch some of the Ri’s with R′i. A subgroup
isomorphic to Sk permutes the classes Ri −R′i.

Lemma 5.6. Let G be a minimal group of automorphisms of S. There exists
an element g ∈ GK of order 2 which switches the components of some singular
fibre.

Proof. Since G is minimal, the G-orbit of any Ri cannot consist of disjoint
components of fibres. Thus it contains a pair Rj , R

′
j and hence there exists

an element g ∈ G such that g(Rj) = R′j . If g is of odd order 2k + 1, then g2k

and g2k+1 fix Rj , hence g fixes Rj . This contradiction shows that g is of even
order 2m. Replacing g by an odd power, we may assume that g is of order
m = 2a.

Assume a = 1. Obviously the singular point p = Rj ∩ R′j of the fibre
belongs to the fixed locus Sg of g. Suppose p is an isolated fixed point. Then
we can choose local coordinates at p such that g acts by (z1, z2) 7→ (−z1,−z2),
and hence acts identically on the tangent directions. So it cannot switch the
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components. Thus Sg contains a curve not contained in fibres which passes
through p. This implies that g ∈ GK .

Suppose a > 1. Replacing g by g′ = gm/2 we get an automorphism of
order 2 which fixes the point xj and the components Rj , R

′
j . Suppose Sg′

contains one of the components, say Rj . Take a general point y ∈ Rj . We
have g′(g(y)) = g(g′(y)) = g(y). This shows that g′ fixes R′j pointwisely.
Since Sg′ is smooth, this is impossible. Thus g′ has 3 fixed points y, y′, p on
Fj , two on each component. Suppose y is an isolated fixed point lying on
Rj . Let π : S → S′ be the blowing down of Rj . The element g′ descends
to an automorphism of order 2 of S′ which has an isolated fixed point at
q = π(Rj). Then it acts identically on the tangent directions at q, hence on
Rj . This contradiction shows that Sg′ contains a curve intersecting Fj at y
or at p, and hence g′ ∈ GK . Since g′ is an even power, it cannot switch any
components of fibres. Hence g′ acts identically on R and hence on all Pic(S).
Thus g′ = gm/2 = 1 (recall that we assume that G0 is trivial), contradicting
the definition of order of g.

The restriction of the homomorphism G→ O(R) ∼= 2k : Sk to GK defines
a surjective homomorphism

ρ : GK → 2s, s ≤ k.

An element from Ker(ρ) acts identically onR and hence on Pic(S). By Lemma
5.6, GK is not trivial and s > 0. A finite subgroup of PGL(2,K) does not
admit a surjective homomorphism to 2s for s > 2. Thus s = 1 or 2.

Case 1: s = 1.
Let Σ′ be the non-empty subset of Σ such that GK switches the compo-

nents of fibres over Σ′. Since GK is a normal subgroup of G, the set Σ′ is a
G-invariant set. If Σ 6= Σ′, we repeat the proof of Lemma 5.6 starting from
some component Ri of a fibre over a point x 6∈ Σ′, and find an element in
GK of even order which switches the components of maybe another fibre Fx,
where x 6∈ Σ′. Since GK = 2, we get a contradiction.

Let GK = 〈h〉. The element h fixes two points on each nonsingular fi-
bre. The closure of these points is a one-dimensional component C of Sh.
It is a smooth bi-section of the fibration. Since we know that h switches all
components, its trace on the subgroup R generated by the divisor classes
Ri−R′i is equal to −k. Thus its trace on H2(S,Q) is equal to 2−k. Applying
the Lefschetz fixed-point-formula, we get e(Sh) = 4 − k. If C is the disjoint
union of two components, then Sh consists of k isolated fixed points (the
singular points of fibres) and C. We get e(Sh) = 4 + k. This contradiction
shows that C is irreducible and e(C) = 4 − k. Since h fixes pointwisely C
and switches the components Ri and R′i, the intersection point Ri ∩R′i must
be on C. Thus the projection C → P1 has ≥ k ramification points. Hence
4− k = e(C) = 4− (2 + 2g(C)) ≤ 4− k. This shows that k = 2g(C) + 2, i.e.
the singular points of fibres are the ramification points of the g1

2 .
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Case 2: s = 2.
Let g1, g2 be two elements from GK which are mapped to generators of

the image of GK in 2k. Let C1 and C2 be one-dimensional components of the
sets Sg1 and Sg2 . As in the previous case we show that C1 and C2 are smooth
hyperelliptic curves of genera g(C1) and g(C2). Let Σ1 and Σ2 be the sets
of branch points of the corresponding double covers. As in the previous case
we show that Σ = Σ1 ∪ Σ2. For any point x ∈ Σ1 ∩ Σ2 the transformation
g3 = g1g2 fixes the components of the fibre Fx. For any point x ∈ Σ1 \ Σ2,
g3 switches the components of Fx. Let C3 be the one-dimensional component
of Sg3 and Σ3 be the set of branch points of g3. We see that Σi = Σj + Σk

for distinct i, j, k, where Σj +Σk = (Σj ∪Σk) \ (Σj ∩Σk). This implies that
there exist three binary forms p1(t0, t1), p2(t0, t1), p3(t0, t1), no two of which
have a common root, such that Σ1 = V (p2p3), Σ2 = V (p1p3), Σ3 = V (p1p2).
Setting di = deg pi, we get

2g(Ci) + 2 = dj + dk.

Let us summarize what we have learnt.

Theorem 5.7. Let G be a minimal finite group of automorphisms of a conic
bundle f : S → P1 with a set Σ of singular fibres. Assume G0 = {1}. Then
k = #Σ > 2 and one of the following cases occurs.

(1)G = 2P , where the central involution h fixes pointwisely an irreducible
smooth bisection C of π and switches the components in all fibres. The
curve C is a curve of genus g = (k − 2)/2. The conic bundle projection
defines a g1

2 on C with ramification points equal to singular points of fibres.
The group P is isomorphic to the group of automorphisms of C modulo
the involution defined by the g1

2.
(2)G ∼= 22•P , each nontrivial element gi of the subgroup 22 fixes pointwisely

an irreducible smooth bisection Ci. The set Σ is partitioned in 3 subsets
Σ1, Σ2, Σ3 such that the projection f : Ci → P1 ramifies over Σj +Σk, i 6=
j 6= k. The group P is subgroup of Aut(P1) leaving the set Σ and its
partition into 3 subsets Σi invariant.

It follows from Lemma 4.4 that in Case 1 the non-split extension is iso-
morphic to a binary polyhedral group, unless G = O or D2n, where n is
even.

Remark 5.8. It follows from the previous description that any abelian group
G of automorphisms of a conic bundle must be a subgroup of some extension
Q•P , where Q is a dihedral, binary dihedral or cyclic group, and P is a
polyhedral group. This implies that G is either a cyclic group, or a group
2×m, or 22 ×m, or 24. All these groups occur (see Example 5.12 and [6]).
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5.5 Automorphisms of hyperelliptic curves

We consider a curve of genus g equipped with a linear series g1
2 as a curve C

of degree 2g + 2 in P(1, 1, g + 1) given by an equation

T 2
2 + F2g+2(T0, T1) = 0.

An automorphism σ of C is defined by a transformation

(t0, t1, t2) 7→ (at1 + bt0, ct1 + dt0, αt2),

where
(

a b
c d

)
∈ SL(2) and F (aT0+bT1, cT0+dT1) = α2F (T0, T1). So to find the

group of automorphisms of C we need to know relative invariants Φ(T0, T1)
for finite subgroups P̄ of SL(2,C) (see [48]). The set of relative invariants is a
finitely generated C-algebra. Its generators are called Gründformen. We will
list the Gründformen (see [48]). We will use them later for the description of
automorphism groups of Del Pezzo surfaces of degree 1.

• P̄ is a cyclic group of order n.

A generator is given by the matrix

g =
(
εn 0
0 ε−1

n

)
.

The Gründformen are t0 and t1 with characters determined by

χ1(g) = εn, χ2(g) = ε−1
n .

• P̄ ∼= Q4n is a binary dihedral group of order 4n.

Its generators are given by the matrices

g1 =
(
ε2n 0
0 ε−1

2n

)
, g2 =

(
0 i
i 0

)
.

The Gründformen are

Φ1 = tn0 + tn1 , Φ2 = tn0 − tn1 , Φ3 = t0t1. (29)

The generators g1 and g2 act on the Gründformen with characters

χ1(g1) = χ2(g1) = −1, χ1(g2) = χ2(g2) = in,

χ3(g1) = 1, χ3(g2) = −1.

• P̄ is a binary tetrahedral group of order 24.
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Its generators are given by the matrices

g1 =
(
ε4 0
0 ε−1

4

)
, g2 =

(
0 i
i 0

)
, g3 =

1
i− 1

(
i i
1 −1

)
.

The Gründformen are

Φ1 = t0t1(t40 − t41), Φ2, Φ3 = t40 ± 2
√
−3t20t

2
1 + t41.

The generators g1, g2, g3 act on the Gründformen with characters

χ1(g1) = χ1(g2) = χ1(g3) = 1,

χ2(g1) = χ2(g2) = 1, χ2(g3) = ε3,

χ3(g1) = χ3(g2) = 1, χ3(g3) = ε23.

• P̄ is a binary octahedral group of order 48.

Its generators are

g1 =
(
ε8 0
0 ε−1

8

)
, g2 =

(
0 i
i 0

)
, g3 =

1
i− 1

(
i i
1 −1

)
.

The Gründformen are

Φ1 = t0t1(t40 − t41), Φ2 = t80 + 14t40t
4
1 + t81, Φ3 = (t40 + t41)((t

4
0 + t41)

2 − 36t40t
4
1).

The generators g1, g2, g3 act on the Gründformen with characters

χ1(g1) = −1, χ1(g2) = χ1(g3) = 1,

χ2(g1) = χ2(g2) = χ2(g3) = 1,

χ3(g1) = −1, χ3(g2) = χ(g3) = 1.

• P̄ is a binary icosahedral group of order 120.

Its generators are

g1 =
(
ε10 0
0 ε−1

10

)
, g2 =

(
0 i
i 0

)
, g3 =

1√
5

(
ε5 − ε45 ε25 − ε35
ε25 − ε35 −ε5 + ε45

)
.

The Gründformen are

Φ1 = t300 + t301 + 522(t250 t
5
1 − t50t251 )− 10005(t200 t

10
1 + t100 t

20
1 ),

Φ2 = −(t200 + t201 ) + 228(t150 t
5
1 − t50t151 )− 494t100 t

10
1 ,

Φ3 = t0t1(t100 + 11t50t
5
1 − t101 ).

Since P/(±1) ∼= A5 is a simple group and all Gründformen are of even degree,
we easily see that the characters are trivial.
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5.6 Commuting de Jonquiéres involutions

Recall that a de Jonquiéres involution IHg+2 is regularized by an automor-
phism of the surface S which is obtained from F1 by blowing up 2g+2 points.
Their images on P2 are the 2g + 2 fixed points of the involution of Hg+2. Let
π : S → X = S/IHg+2. Since the fixed locus of the involution is a smooth
hyperelliptic curve of genus g, the quotient surface X is a nonsingular surface.
Since the components of singular fibres of the conic bundle on S are switched
by IHg+2, their images on X are isomorphic to P1. Thus X is a minimal ruled
surface Fe. What is e?

Let C̄ = π(C) and Ē = π(E), where E is the exceptional section on S.
The curve Ē is a section on X whose preimage in the cover splits. It is either
tangent to C̄ at any of its of g intersection points (since IHg+2(E) ·E = g) or
is disjoint from C̄ if g = 0. Let s be the divisor class of a section on Fe with
self-intersection −e and f be the class of a fibre. It is easy to see that

C̄ = (g + 1 + e)f + 2s, Ē =
g + e− 1

2
f + s.

Let R̄ be a section with the divisor class s. Suppose R̄ = Ē, then R̄ · C̄ =
g + 1 − e = 2g implies g = 1 − e, so (g, e) = (1, 0) or (0, 1). In the first
case, we get an elliptic curve on F0 with divisor class 2f + 2s and S is non-
exceptional conic bundle with k = 4. In the second case S is the conic bundle
(non-minimal) with k = 2.

Assume that (g, e) 6= (1, 0). Let R = π−1(R̄) be the pre-image of R̄. We
have R2 = −2e. If it splits into two sections R1 +R2, then R1 ·R2 = C̄ · R̄ =
g+1−e, hence −2e = 2(g+1−e)+2R2

1 gives R2
1 = −g−1. Applying Lemma

(5.1), we getR1·R2 = g+1−e = g−1+(2g+2−a)/2 = −a/2, where a ≥ 0. This
gives e = g+1, but intersecting Ē with R̄ we get e ≤ g−1. This contradiction
shows that R̄ does not split, and hence R is an irreducible bisection of the
conic bundle with R2 = −2e. We have R ·E = (g−e−1)/2, R ·Ri = R ·R′i = 1,
where Ri +R′i are reducible fibres of the conic fibration.

This shows that the image of R in the plane is a hyperelliptic curve H ′
g′+2

of degree d = (g − e + 3)/2 and genus g′ = d − 2 = (g − e − 1)/2 with
the point q of multiplicity g′. It also passes through the points p1, . . . , p2g+2.
Its Weierstrass points p′1, . . . , p

′
2g′+2 lie on Hg+2. Here we use the notation

from 2.3. Also the curve H ′
g′+2 is invariant with respect to the de Jonquiéres

involution.
Write the equation of H ′

g′+2 in the form

Ag′(T0, T1)T 2
2 + 2Ag′+1(T0, T1)T2 +Ag′+2(T0, T1) = 0. (30)

It follows from the geometric definition of the de Jonquiéres involution that
we have the following relation between the equations of H ′

g′+2 and Hg+2 (cf.
[17], p.126)

FgAg′+2 − 2Fg+1Ag′+1 + Fg+2Ag′ = 0. (31)
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Consider this as a system of linear equations with coefficients ofAg′+2, Ag′+1, Ag′

considered as the unknowns. The number of the unknowns is equal to
(3g− 3e+ 9)/2. The number of the equations is (3g− e+ 5)/2. So, for a gen-
eral Hg+2 we can solve these equations only if g = 2k + 1, e = 0, d = k + 2 or
g = 2k, e = 1, d = k+1. Moreover, in the first case we get a pencil of curves R
satisfying these properties, and in the second case we have a unique such curve
(as expected). Also the first case covers our exceptional case (g, e) = (1, 0).

For example, if we take g = 2 we obtain that the six Weierstrass points
p1, . . . , p6 of Hg+2 must be on a conic. Or, if g = 3, the eight Weierstrass
points together with the point q must be the base points of a pencil of cubics.
All these properties are of course not expected for a general set of 6 or 8 points
in the plane.

To sum up, we have proved the following.

Theorem 5.9. Let Hg+2 be a hyperelliptic curve of degree g + 2 and genus g
defining a de Jonquiéres involution IHg+2. View this involution as an auto-
morphism τ of order 2 of the surface S obtained by blowing up the singular
point q of Hg+2 and its 2g + 2 Weierstrass points p1, . . . , p2g+2. Then

(i) the quotient surface X = S/(τ) is isomorphic to Fe and the ramification
curve is C = Sτ ;

(ii)if Hg+2 is a general hyperelliptic curve then e = 0 if g is odd and e = 1 if
g is even;

(iii)the branch curve C̄ of the double cover S → Fe is a curve from the divisor
class (g + 1 + e)f + 2s;

(iv)there exists a section from the divisor class g+e−1
2 f + s which is tangent

to C̄ at each g intersection points unless g = 0, e = 1 in which case it is
disjoint from C̄;

(v) the reducible fibres of the conic bundle on S are the pre-images of the 2g+2
fibres from the pencil |f | which are tangent to C̄;

(vi)the pre-image of a section from the divisor class s either splits if (g, e) =
(1, 0) or a curve of genus g = 0, or a hyperelliptic curve C ′ of genus
g′ = (g − e − 1)/2 ≥ 1 which is invariant with respect to τ . It intersects
the hyperelliptic curve C at its 2g′ + 2 Weierstrass points.

(vii)the curve C ′ is uniquely defined if e > 0 and varies in a pencil if e = 0.

Let IH ′
g′+2 be the de Jonquiéres involution defined by the curve H ′

g′+2

from equation (30). Then it can be given in affine coordinates by formulas
(7), where Fi is replaced with Ai. Thus we have two involutions defined by
the formulas

IHg+2 : (x′, y′) =
(
x,
−yPg+1(x)− Pg+2(x)
Pg(x)y + Pg+1(x)

)
, (32)

IH ′
g′+2 : (x′, y′) =

(
x,
−yQg′+1(x)−Qg′+2(x)
Qg(x)y +Qg′+1(x)

)
,
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where Pi are the dehomogenizations of the Fi’s and Qi are the dehomogeniza-
tions of the Ai’s. Composing them in both ways we see that the relation (31)
is satisfied if and only if the two involutions commute. Thus a de Jonquiéres
involution can be always included in a group of de Jonquiéres transformations
isomorphic to 22. In fact, for a general IHg+2 there exists a unique such group
if g is even and there is a ∞1 such groups when g is odd. It is easy to check
that the involution IHg+2 ◦H ′

g′+2 is the de Jonquiéres involution defined by
the third hyperelliptic curve with equation

det

Fg Fg+1 Fg+2

Ag′ Ag′+1 Ag′′+2

1 −T2 T 2
2

 = Bg′′T
2
2 + 2Bg′′−1T2 +Bg′′+2 = 0, (33)

(cf. [17], p.126).
If we blow up the Weierstrass point of the curve C ′ (the proper transform

of H ′
g′+2 in S), then we get a conic bundle surface S′ from case (2) of Theorem

5.7.

5.7 A question on extensions

It still remains to decide which extensions

1→ GK → G→ GB → 1 (34)

describe minimal groups of automorphisms of conic bundles. We do not have
the full answer and only make a few remarks and examples. Lemma 4.4 helps
to decide on splitting in the case when K is abelian and central.

Example 5.10. Consider a de Jonquiéres transformation

djP : (x, y) 7→ (x, P (x)/y),

where P (T1/T0) = T−2g
0 F2g+2(T0, T1) is a dehomogenization of ahomogeneous

polynomial F2g+2(T0, T1) of degree 2g + 2 defining a hyperelliptic curve of
genus g. Choose F2g+2 to be a relative invariant of a binary polyhedral group
P̄ with character χ : P̄ → C∗. We assume that χ = α2 for some character
α : P̄ → C∗. For any g =

(
a b
c d

)
∈ P̄ define the transformation

g : (x, y) 7→ (
ax+ b

cx+ d
, α(g)(cx+ d)−g−1y).

We have
P (
ax+ b

cx+ d
) = α2(g)(cx+ d)−2g−2P (x).

It is immediate to check that g and djp commute. The matrix −I2 defines the
transformation g0 : (x, y) 7→ (x, α(−I2)(−1)g+1y). So, if

α(−I2) = (−1)g+1,
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the action of P̄ factors through P and together with djP generate the group
2 × P . On the other hand, if α(−I2) = (−1)g, we get the group G = 2 × P̄ .
In this case the group G is regularized on an exceptional conic bundle with
G0
∼= 2. The generator corresponds to the transformation g0.

Our first general observation is that the extension G = 2P always splits if
g is even, and of course, if P is a cyclic group of odd order. In fact, suppose
G does not split. We can always find an element g ∈ G which is mapped to
an element ḡ in P of even order 2d such that g2d = g0 ∈ GK . Now g1 = gd

defines an automorphism of order 2 of the hyperelliptic curve C = Sg0 with
fixed points lying over two fixed points of ḡ in P1. None of these points belong
to Σ, since otherwise g0, being a square of g1, cannot switch the components
of the corresponding fibre. Since g1 has two fixed points on the invariant fibre
and both of them must lie on C, we see that g1 has 4 fixed points. However
this contradicts the Hurwitz formula.

Recall that a double cover f : X → Y of nonsingular varieties with branch
divisor W ⊂ Y is given by an invertible sheaf L together with a section sW ∈
Γ (Y,L2) with zero divisor W . Suppose a group G acts on Y leaving invariant
W . A lift of G is a group G̃ of automorphisms of X such that it commutes
with the covering involution τ of X and the corresponding homomorphism
G̃→ Aut(Y ) is an isomorphism onto the group G.

The following lemma is well-known and is left to the reader.

Lemma 5.11. A subgroup G ⊂ Aut(Y ) admits a lift if and only if L admits a
G-linearization and in the corresponding representation of G in Γ (Y,L2) the
section sW is G-invariant.

Example 5.12. Let pi(t0, t1), i = 0, 1, 2, be binary forms of degree d. Con-
sider a curve C in F0

∼= P1 × P1 given by an equation

F = p0(t0, t1)x2
0 + 2p1(t0, t1)x0x1 + p2(t0, t1)x2

1 = 0.

Assume that the binary form D = p2
1 − p0p2 does not have multiple roots.

Then C is a nonsingular hyperelliptic curve of genus d − 1. Suppose d = 2a
is even so that the genus of the curve is odd. Let P be a polyhedral group
not isomorphic to a cyclic group of odd order. Let V = Γ (P1,OP1) and ρ :
P → GL(S2aV ⊗S2V ) be its natural representation, the tensor product of the
two natural representations of P in the space of binary forms of even degree.
Suppose that F ∈ S2aV ⊗ S2V is an invariant. Consider the double cover
S → F0 defined by the section F and the invertible sheaf L = OF0(a, 1). Now
assume additionally that P does not have a linear representation in SaV ⊗ V
whose tensor square is equal to ρ. Thus L does not admit a P -linearization and
we cannot lift P to a group of automorphisms of the double cover. However,
the binary polyhedral group P̄ lifts. Its central involution acts identically on
F0, hence lifts to the covering involution of S. It follows from the discussion
in the previous subsection that S is a non-exceptional conic bundle, and the
group P̄ is a minimal group of automorphisms of S with GK

∼= 2 and GB
∼= P .
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Here is a concrete example. Take

p0 = t0t1(t20 + t21), p1 = t40 + t41, p2 = t0t1(t20 − t21).

Let P̄ ⊂ SL(2) be a cyclic group of order 4 that acts on the variables t0, t1 via
the transformation [it0,−it1] and on the variables x0, x1 via the transforma-
tion [ix0,−ix1]. Then P̄ acts on S2V ⊗V via [−1, 1,−1]⊗ [i,−i]. The matrix
−I2 acts as 1 ⊗ −1 and hence P = P̄ /(±I2) does not act on S2V ⊗ V . This
realizes the cyclic group C4 as a minimal group of automorphisms of a conic
bundle with k = 2g + 2 = 8.

The previous example shows that for any g ≡ 1 mod 4 one can realize a
binary polyhedral group P̄ = 2.P as a minimal group of automorphisms of a
conic bundle with 2g + 2 singular fibres. We do not know whether the same
is true for g ≡ 3 mod 4.

Example 5.13. Let pi(t0, t1), i = 1, 2, 3, be three binary forms of even degree
d with no multiple roots. Assume no two have common zeroes. Consider a
surface S in P1 × P2 given by a bihomogeneous form of degree (d, 2)

p1(t0, t1)z2
0 + p2(t0, t1)z2

1 + p3(t0, t1)z2
2 = 0, (35)

The surface is nonsingular. The projection to P1 defines a conic bundle struc-
ture on S with singular fibres over the zeroes of the polynomials pi. The curves
Ci equal to the pre-images of the lines zi = 0 under the second projection are
hyperelliptic curves of genus g = d− 1. The automorphisms σ1, σ2 defined by
the negation of one of the first two coordinates z0, z1, z2 form a subgroup of
Aut(S) isomorphic to 22. Let P be a finite subgroup of SL(2,C) and g 7→ g∗

be its natural action on the space of binary forms. Assume that p1, p2, p3 are
relative invariants of P with characters χ1, χ2, χ3 such that we can write them
in the form η2

i for some characters η1, η2, η3 of P . Then P acts on S by the
formula

g((t0, t1), (z0, z1, z2)) = ((g∗(t0), g∗(t1)), (η1(g)−1z0, η2(g)−1z1, η3(g)−1z2)).

For example, let P = 〈g〉 be a cyclic group of order 4. We take p1 =
t20 + t21, p2 = t20 − t21, p3 = t0t1. It acts on S by the formula

g : ((t0, t1), (z0, z1, z2)) 7→ ((it1, it0), (iz0, z1, iz2)).

Thus g2 acts identically on t0, t1, z1 and multiplies z0, z2 by −1. We see that
GK = 〈g2〉 and the extension 1 → GK → G → GB → 1 does not split. If we
add to the group the transformation (t0, t1, z0, z1, z2) 7→ (t0, t1, z0,−z1, z2) we
get a non-split extension 22+1.

On the other hand, let us replace p2 with t20 + t21 + t0t1. Define g1 as acting
only on t0, t1 by [it1, it0], g2 acts only on z0 by z0 7→ −z0 and g3 acts only on
z1 by z1 7→ −z1. We get the groups 〈g1, g2〉 = 22 and 〈g1, g2, g3〉 = 23.
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In another example we take P to be the dihedral group D8. We take
p1 = t20 + t21, p2 = t20 − t21, p3 = t0t1. It acts on S by the formula(

i 0
0 −i

)
: ((t0, t1), (z0, z1, z2)) 7→ ((it0,−it1), (iz0, iz1, z2)),

( 0 i
i 0 ) : ((t0, t1), (z0, z1, z2)) 7→ ((it1, it0), (z0, iz1, z2)),

The scalar matrix c = −I2 belongs to GK
∼= 22 and the quotient P/(c) ∼= 22

acts faithfully on the base. This gives a non-split extension 22+2.
Finally, let us take

p1 = t40 + t41, p2 = t40 + t41 + t20t
2
1, p3 = t40 + t41 − t20t21.

These are invariants for the group D4 acting via g1 : (t0, t1) 7→ (t0,−t1), g2 :
(t0, t1) 7→ (t1, t0). Together with transformations σ1, σ2 this generates the
group 24 (see another realization of this group in [8]).

6 Automorphisms of Del Pezzo surfaces

6.1 The Weyl group

Let S be a Del Pezzo surface of degree d not isomorphic to P2 or F0. It
is isomorphic to the blow-up of N = 9 − d ≤ 8 points in P2 satisfying the
conditions of generality from section 3.4. The blow-up of one or 2 points is
obviously non-minimal (since the exceptional curve in the first case and the
proper transform of the line through the two points is G-invariant). So we
may assume that S is a Del Pezzo surface of degree d ≤ 6.

Let π : S → P2 be the blowing-up map. Consider the factorization (10) of π
into a composition of blow-ups of N = 9− d points. Because of the generality
condition, we may assume that none of the points p1, . . . , pN is infinitely
near, or, equivalently, all exceptional curves Ei are irreducible curves. We
identify them with curves Ei = π−1(pi). The divisor classes e0 = [π∗(line], ei =
[Ei], i = 1, . . . , N, form a basis of Pic(S). It is called a geometric basis.

Let

α1 = e0 − e1 − e2 − e3, α2 = e1 − e2, . . . , αN = eN−1 − eN .

For any i = 1, . . . , N define a reflection isometry si of the abelian group Pic(S)

si : x 7→ x+ (x · αi)αi.

Obviously, s2i = 1 and si acts identically on the orthogonal complement of αi.
LetWS be the group of automorphisms of Pic(S) generated by the transforma-
tions s1, . . . , sN . It is called the Weyl group of S. Using the basis (e0, . . . , eN )
we identify WS with a group of isometries of the odd unimodular quadratic
form q : ZN+1 → Z of signature (1, N) defined by
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qN (m0, . . . ,mN ) = m2
0 −m2

1 − · · · −m2
N .

Since KS = −3e0 + e1 + · · ·+ eN is orthogonal to all αi’s, the image of WS in
O(qN ) fixes the vector kN = (−3, 1, . . . , 1). The subgroup of O(qN ) fixing kN

is denoted by WN and is called the Weyl group of type EN . The orthogonal
complement RN of kN equipped with the restricted inner-product, is called
the root lattice of WN .

We denote by RS the sublattice of Pic(S) equal to the orthogonal comple-
ment of the vector KS . The vectors α1, . . . , αN form a Z-basis of RS . By re-
striction the Weyl groupWS is isomorphic to a subgroup of O(RS). A choice of
a geometric basis α1, . . . , αN defines an isomorphism from RS to the root lat-
tice Q of a finite root system of type EN (N = 6, 7, 8), D5(N = 5), A4(N = 4)
and A2+A1(N = 3). The group WS becomes isomorphic to the corresponding
Weyl group W (EN ).

The next lemma is well-known and its proof goes back to Kantor [41] and
Du Val [27]. We refer for modern proofs to [2] or [25].

Lemma 6.1. Let (e′0, e
′
1, . . . , e

′
N ) be another geometric basis in Pic(S) defined

by a birational morphism π′ : S → P2 and a choice of a factorization of π′

into a composition of blow-ups of points. Then the transition matrix is an
element of WN . Conversely, any element of WN is a transition matrix of two
geometric bases in Pic(S).

The next lemma is also well-known and is left to the reader.

Lemma 6.2. If d ≤ 5, then the natural homomorphism

ρ : Aut(S)→WS

is injective.

We will use the known classification of conjugacy classes in the Weyl
groups. According to [14] they are indexed by certain graphs. We call them
Carter graphs. One writes each element w ∈W as the product of two involu-
tions w1w2, where each involution is the product of reflections with respect to
orthogonal roots. LetR1,R2 be the corresponding sets of such roots. Then the
graph has vertices identified with elements of the set R1∪R2 and two vertices
α, β are joined by an edge if and only if (α, β) 6= 0. A Carter graph with no
cycles is a Dynkin diagram. The subscript in the notation of a Carter graph
indicates the number of vertices. It is also equal to the difference between the
rank of the root lattice Q and the rank of its fixed sublattice Q(w).

Note that the same conjugacy classes may correspond to different graphs
(e.g. D3 and A3, or 2A3 +A1 and D4(a1) + 3A1).

The Carter graph determines the characteristic polynomial of w. In par-
ticular, it gives the trace Tr2(g) of g∗ on the cohomology space H2(S,C) ∼=
Pic(S)⊗C. The latter should be compared with the Euler-Poincarè character-
istic of the fixed locus Sg of g by applying the Lefschetz fixed-point formula.
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Graph Order Characteristic polynomial

Ak k + 1 tk + tk−1 + · · ·+ 1

Dk 2k − 2 (tk−1 + 1)(t + 1)

Dk(a1) l.c.m(2k − 4, 4) (tk−2 + 1)(t2 + 1)

Dk(a2) l.c.m(2k − 6, 6) (tk−3 + 1)(t3 + 1)
...

...
...

Dk(a k
2−1) even k (t

k
2 + 1)2

E6 12 (t4 − t2 + 1)(t2 + t + 1)

E6(a1) 9 t6 + t3 + 1

E6(a2) 6 (t2 − t + 1)2(t2 + t + 1)

E7 18 (t6 − t3 + 1)2(t + 1)

E7(a1) 14 t7 + 1

E7(a2) 12 (t4 − t2 + 1)(t3 + 1)

E7(a3) 30 (t5 + 1)(t2 − t + 1)

E7(a4) 6 (t2 − t + 1)2(t3 + 1)

E8 30 t8 + t7 − t5 − t4 − t3 + t + 1

E8(a1) 24 t8 − t4 + 1

E8(a2) 20 t8 − t6 + t4 − t2 + 1

E8(a3) 12 (t4 − t2 + 1)2

E8(a4) 18 (t6 − t3 + 1)(t2 − t + 1)

E8(a5) 15 t8 − t7 + t5 − t4 + t3 − t + 1

E8(a6) 10 (t4 − t3 + t2 − t + 1)2

E8(a7) 12 (t4 − t2 + 1)(t2 − t + 1)2

E8(a8) 6 (t2 − t + 1)4

Table 2. Carter graphs and characteristic polynomials

Tr2(g) = s− 2 +
∑
i∈I

(2− 2gi), (36)

where Sg the disjoint union of smooth curves Ri, i ∈ I, of genus gi and s
isolated fixed points.

To determine whether a finite subgroup G of Aut(S) is minimal, we use
the well-known formula from the character theory of finite groups

rank Pic(S)G =
1

#G

∑
g∈G

Tr2(g).

The tables for conjugacy classes of elements from the Weyl group WS give
the values of the trace on the lattice RS = K⊥

S . Thus the group is minimal if
and only if the sum of the traces add up to 0.
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6.2 Del Pezzo surfaces of degree 6

Let S be a Del Pezzo surface of degree 6. We fix a geometric basis e0, e1, e2, e3
which is defined by a birational morphism π : S → P2 with indeterminacy
points p1 = (1, 0, 0), p2 = (0, 1, 0) and p3 = (0, 0, 1). The vectors

α1 = e0 − e1 − e2 − e3, α2 = e1 − e2, α3 = e2 − e3)

form a basis of the lattice RS with Dynkin diagram of type A2 + A1. The
Weyl group

WS = 〈s1〉 × 〈s2, s3〉 ∼= 2× S3.

The representation ρ : Aut(S)→WS is surjective. The reflection s1 is realized
by the lift of the standard quadratic transformation τ1. The reflection s2( resp.
s3) is realized by the projective transformations [x1, x0, x2] (resp. [x0, x2, x1]).
The kernel of ρ is the maximal torus T of PGL(3), the quotient of (C∗)3 by
the diagonal subgroup C∗. Thus

Aut(S) ∼= T : (S3 × 2) ∼= N(T ) : 2,

where N(T ) is the normalizer of T in PGL(2). It is easy to check that s1 acts
on T as the inversion automorphism.

Let G be a minimal finite subgroup of Aut(S). Obviously, ρ(G) contains s1
and s2s2 since otherwise G leaves invariant α1 or one of the vectors 2α1 +α2,
or α1 +2α2. This shows that G∩N(T ) is an imprimitive subgroup of PGL(3).
This gives

Theorem 6.3. Let G be a minimal subgroup of a Del Pezzo surface of degree
6. Then

G = H•〈s1〉,

where H is an imprimitive finite subgroup of PGL(3).

Note that one the groups from the theorem is the group 22 : S3
∼= S4. Its

action on S given by the equation

x0y0z0 − x1y1z1 = 0

in (P1)3 is given in [4].

6.3 Del Pezzo surfaces of degree d = 5.

In this case S is isomorphic to the blow-up of the reference points p1 =
(1, 0, 0), p2 = (0, 1, 0), p3 = (0, 0, 1), p4 = (1, 1, 1). The lattice RS is of type
A4 and WS

∼= S5. It is known that the homomorphism ρ : Aut(S) → WS is
an isomorphism. We already know that it is injective. To see the surjectivity
one can argue, for example, as follows.
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Let τ be the standard quadratic transformation with base points p1, p2, p3.
It follows from its formula that the point p4 is a fixed point. We know that
τ can be regularized on the Del Pezzo surface S′ of degree 6 obtained by the
blow-up of the first three points. Since the pre-image of p4 in S′ is a fixed point,
τ lifts to an automorphism of S. Now let φ be a projective transformation
such that φ(p1) = p1, φ(p2) = p2, φ(p4) = p3. For example, we take A =
[t0− t2, t1,−t2,−t2]. Then the quadratic transformation φ−1τφ is not defined
at the points p1, p2, p4 and fixes the point p3. As above, it can be lifted to an
involution of S. Proceeding in this way we define 4 involutions τ = τ1, . . . , τ4
of S each fixes one of the exceptional curves. One checks that their images in
the Weyl group WS generate the group.

Another way to see the isomorphism Aut(S) ∼= S5 is to use a well-known
isomorphism between S and the moduli space M0,5

∼= (P1)5//SL(2). The
group S5 acts by permuting the factors.

Theorem 6.4. Let (S,G) be a minimal Del Pezzo surface of degree d = 5.
Then G = S5, A5, 5 : 4, 5 : 2, or C5.

Proof. As we have just shown Aut(S) ∼= W4
∼= S5. The group S5 acts on

RS
∼= Z4 by means of its standard irreducible 4-dimensional representation

(view Z4 as a subgroup of Z5 of vectors with coordinates added up to zero and
consider the representation of S5 by switching the coordinates). It is known
that a maximal proper subgroup of S5 is equal (up to a conjugation) to one
of three subgroups S4, S3 × 2, A5, 5 : 4. A maximal subgroup of A5 is either
5×2 or S3 or D10 = 5 : 2. It is easy to see that the groups S4 and S3×2 have
invariant elements in the lattice Q4. It is known that an element of order 5
in S5 is a cyclic permutation, and hence has no invariant vectors. Thus any
subgroup G of S5 containing an element of order 5 defines a minimal surface
(S,G). So, if (S,G) is minimal, G must be equal to one of the groups from
the assertion of the theorem.

6.4 Automorphisms of a Del Pezzo surface of degree d = 4

In this caseR is of typeD5 andWS
∼= 24 : S5. We use the following well-known

classical result.

Lemma 6.5. Let S be a Del Pezzo surface of degree 4. Then S is isomorphic
to a nonsingular surface of degree 4 in P4 given by equations

F1 =
4∑

i=0

t2i = 0, F2 =
4∑

i=0

ait
2
i = 0, (37)

where all ai’s are distinct.

Proof. It is known that a Del Pezzo surface in its anti-canonical embedding
is projectively normal. Using Riemann-Roch, one obtains that S is a com-
plete intersection Q1 ∩Q2 of two quadrics. Let P = λQ1 + µQ2 be the pencil
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spanned by these quadrics. The locus of singular quadrics in the pencil is a
homogeneous equation of degree 5 in the coordinates λ, µ. Since S is nonsin-
gular, it is not hard to see that the equation has no multiple roots (otherwise
P contains a reducible quadric or there exists a quadric in the pencil with
singular point at S, in both cases S is singular). Let p1, . . . , p5 be the singular
points of singular quadrics from the pencil. Suppose they are contained in a
hyperplane H. Since no quadrics in the pencil contains H, the restriction P|H
of the pencil of quadrics to H contains ≥ 5 singular members. This implies
that all quadrics in P|H are singular. By Bertini’s theorem, all quadrics are
singular at some point p ∈ H. This implies that all quadrics in P are tangent
to H at p. One of the quadrics must be singular at p, and hence S is singular
at p. This contradiction shows that p1, . . . , p5 span P4. Choose coordinates in
P4 such that the singular points of singular quadrics from P are the points
(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), and so on. Then each hyperplane V (ti) = (ti = 0) is
a common tangent hyperplane of quadrics from P at the point pi. This easily
implies that the equations of quadrics are given by (37).

Let Qi = V (aiF1 − F2), i = 0, . . . , 4, be one of the singular quadrics in
the pencil P. It is a cone over a nonsingular quadric in P3, hence it contains
two families of planes. The intersection of a plane with any other quadric in
the pencil is a conic contained in S. Thus each Qi defines a pair of pencils of
conics |Ci| and |C ′i|, and it is easy to see that |Ci + C ′i| = | −KS |.

Proposition 6.6. Let S be a Del Pezzo surface given by equations (37). The
divisor classes ci = [Ci] together with KS form a basis of Pic(S) ⊗ Q. The
Weyl group WS acts on this basis by permuting the ci’s and sending ci to
c′i = [C ′i] = −KS − ci.

Proof. If we choose a geometric basis (e0, e1, . . . , e5) in Pic(S), then the 5 pairs
of pencils of conics are defined by the classes e0− ei, 2e0− e1−· · ·− e5 + ei. It
is easy to check that the classes [Ci]’s and KS form a basis in Pic(S)⊗Q. The
group WS contains a subgroup isomorphic to S5 generated by the reflections
in vectors e1−e2, . . . , e4−e5., It acts by permuting e1, . . . , e5, hence permuting
the pencils |Ci|. It is equal to the semi-direct product of S5 and the subgroup
isomorphic to 24 which is generated by the conjugates of the product s of
two commuting reflections with respect to the vectors e0 − e1 − e2 − e3 and
e4 − e5. It is easy to see that s([C4]) = [C ′4], s([C5]) = [C ′5] and s([Ci]) = [Ci]
for i 6= 4, 5. This easily implies that WS acts by permuting the classes [Ci]
and switching even number of them to [C ′i].

Corollary 6.7. Let W (D5) act in C5 by permuting the coordinates and
switching the signs of even number of coordinates. This linear representation
of W (D5) is isomorphic to the representation of W (D5) on RS ⊗ C.

The group of projective automorphisms generated by the transformations
which switch xi to −xi generates a subgroup H of Aut(S) isomorphic to 24.
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We identify the group H with the linear space of subsets of even cardinality of
the set J = {0, 1, 2, 3, 4}, or, equivalently, with the subspace of FJ

2 of functions
with support at a subset of even cardinality. We equip H with the symmetric
bilinear form defined by the dot-product in FJ

2 , or, equivalently, by (A,B) =
#A∩B mod 2. We denote elements of H by iA, where iA is the characteristic
function of A ⊂ J .

There are two kinds of involutions iA. An involution of the first kind
corresponds to a subset A of 4 elements. The set of fixed points of such an
involution is a hyperplane section of S, an elliptic curve. The trace formula
(36) gives that the the trace of iA in Pic(S) is equal to −2. The corresponding
conjugacy class in W5 is of type 4A1. There are 5 involutions of the first kind.
The quotient surface S/〈iA〉 = Q is isomorphic to a nonsingular quadric. The
map S → Q coincides with the map S → P1 × P1 that is given by the pencils
|Ci| and |C ′i|.

Involutions of the second type correspond to subsets A of cardinality 2.
The fixed-point set of such involution consists of 4 isolated points. This gives
that the trace is equal to 2, and the conjugacy class is of type 2A1. The
quotient S/(iA) is isomorphic to the double cover of P2 branched along the
union of two conics.

The subgroup of the Weyl group W (D5) generated by involutions from
the conjugacy class of type 2A1 is the normal subgroup 24 in the decomposi-
tion W (D5) ∼= 24 : S5. The product of two commuting involutions from this
conjugacy class is an involution of type 4A1. Thus the image of H in WS is a
normal subgroup isomorphic to 24.

Let G ∼= 2a be a subgroup of 24. All cyclic groups G are not minimal.
There are three kinds of subgroups H of order 4 in 24. A subgroup of the

first kind does not contain an involution of the first kind. An example is the
group generated by i01, i12. The trace of its nonzero elements equal to 1. So
this group is not minimal.

A subgroup of the second type contains only one involution of the first
kind. An example is the group generated by i01, i23. The trace formula gives
rank Pic(S)H = 2. So it is also non-minimal.

A subgroup of the third kind contains two involutions of the first kind.
For, example a group generated by i1234, i0234. It contains 2 elements with
trace −3 and one element with trace 1. Adding up the traces we see the group
is a minimal group. It is easy to see that SH consists of 4 isolated points.

Now let us consider subgroups of order 8 of 24. They are parametrized by
the same sets which parametrize involutions. A subgroup HA corresponding
to a subset A consists of involutions iB such that #A∩B is even. The subsets
A correspond to linear functions on 24. If #A = 2, say A = {0, 1}, we see that
HA contains the involutions i01, i01ab, icd, c, d 6= 0, 1. Adding up the traces we
obtain that these subgroups are minimal.

If #A = 4, say A = {1, 2, 3, 4}, the subgroup HA consists of i1234 and iab,
where a, b 6= 0. Adding up the traces we obtain that HA is not minimal.

Since 24 contains a minimal subgroup, it is minimal itself.
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Now suppose that the image G′ of G in S5 is non-trivial. The subgroup
S5 of Aut(S) can be realized as the stabilizer of a set of 5 skew lines on
S (corresponding to the basis vectors e1, . . . , e5). Thus any subgroup H of
S5 realized as a group of automorphisms of S is isomorphic to a group of
projective transformations of P2 leaving invariant a set of 5 points. Since
there is a unique conic through these points, the group is isomorphic to a
finite group of PGL(2) leaving invariant a set of 5 distinct points. In section
4, we listed all possible subgroups of GL(2) and in section 5 we described their
relative invariants. It follows that a subgroup leaves invariant a set of 5 distinct
points if and only if it is one of the following groups C2, C3, C4, C5, S3, D10.
The corresponding binary forms of degree 5 are projectively equivalent to the
following binary forms:

• C2 : t0(t20 − t21)(t20 + at21), a 6= −1, 0, 1;
• C4 : t0(t20 − t21)(t20 + t21);
• C3, S3 : t0t1(t0 − t1)(t0 − ε3t1)(t0 − ε23t1);
• C5, D10 : (t0 − t1)(t0 − ε5t1)(t0 − ε25t1)(t0 − ε35t1)(t0 − ε45t1).

The corresponding surfaces are projectively equivalent to the following sur-
faces

C2 : x2
0 + x2

1 + x2
2 + x2

3 + x2
4 = x2

0 + ax2
1 − x2

2 − ax2
3 = 0, a 6= −1, 0, 1(38)

C4 : x2
0 + x2

1 + x2
2 + x2

3 + x2
4 = x2

0 + ix2
1 − x2

2 − ix2
3 = 0 (39)

S3 : x2
0 + ε3x

2
1 + ε23x

2
2 + x2

3 = x2
0 + ε23x

2
1 + ε3x

2
2 + x2

4 = 0 (40)

D10 :
4∑

i=0

εi5x
2
i =

4∑
i=0

ε4−i
5 x2

i = 0 (41)

Remark 6.8. Note that equations (40), (41), (41) are specializations of equa-
tion (39). It is obvious for equation (40) where we have to take a = i.
Equation (39) specializes to equation (41) when we take a = ± 1√

−3
(use

that the Moebius transformation of order 3 x 7→
√

ax+1
x+
√

a
permutes cyclically

∞,
√
a,−
√
−a and fixes 1,−1). Equation (39) specializes to equation (41)

if we take a = −2 ±
√

5 (use that the Moebius transformation x 7→ x+2a−1
x+1

permutes cyclically (∞, 1, a,−a,−1)). We thank J. Blanc for this observation.

Since the subgroup S5 leaves the class e0 invariant, it remains to consider
subgroups G of 24 : S5 which are not contained in 24 and not conjugate to a
subgroup of S5. We use the following facts.

1) Suppose G contains a minimal subgroup of 24. Then G is minimal.
2) Let G be the image of G in S5. Then it is a subgroup of one of the

groups listed above.
3) The group W (D5) is isomorphic to the group of transformations of R5

which consists of permutations of coordinates and changing even number of
signs of the coordinates. Each element w ∈ W (D5) defines a permutation of
the coordinate lines which can be written as a composition of cycles (i1 . . . ik).
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If w changes signs of even number of the coordinates xi1 , . . . , xik
, the cycle is

called positive. Otherwise it is called a negative cycle. The conjugacy class of
w is determined by the lengths of positive and negative cycles, except when
all cycles of even length and positive in which case there are two conjugacy
classes. The latter case does not occur in the case when n is odd. Assign to a
positive cycle of length k the Carter graph Ak−1. Assign to a pair of negative
cycles of lengths i ≥ j the Carter graph of type Di+1 if j = 1 and Di+j(aj−1)
if j > 1. Each conjugacy class is defined by the sum of the graphs. We identify
D2 with 2A1, and D3 with A3. In Table 2 below we give the conjugacy classes
of elements in W (D5), their characteristic polynomials and the traces in the
root lattice of type D5.

Order Notation Characteristic polynomial Trace Representatives

2 A1 t + 1 3 (ab)

2 2A1 (t + 1)2 1 (ab)(cd), (ab)(cd)iabcd

2 2A∗
1 (t + 1)2 1 (ab)(cd), (ab)(cd)iab

2 3A1 (t + 1)3 -1 (ab)icd

2 4A1 (t + 1)4 -3 iabcd

3 A2 t2 + t + 1 2 (abc), (abc)iab

4 A3 t3 + t2 + t + 1 1 (abcd), (abcd)iab, (abcd)iabcd

4 A1 + A3 (t3 + t2 + t + 1)(t + 1) -1 (ab)(cd)iae

4 D4(a1) (t2 + 1)2 1 (ab)(cd)iac

5 A4 (t4 + t3 + t2 + t + 1) 0 (abcde), (abcde)iA
6 A2 + A1 (t2 + t + 1)(t + 1) 0 (ab)(cde)

6 A2 + 2A1 (t2 + t + 1)(t + 1)2 -2 (abc)iabde, (abc)ide

6 D4 (t3 + 1)(t + 1) 0 (abc)iabce

8 D5 (t4 + 1)(t + 1) -1 (abcd)iabce, (abcd)ide

12 D5(a1) (t3 + 1)(t2 + 1) 0 (abc)(de)iac

Table 3. Conjugacy classes in W (D5)

In the following G denotes the image of G in K = W (D5)/24 ∼= S5. Case
1. G ∼= C2.

It follows from the description of the image of Aut(S) in W (D5) given
in Corollary 6.7, that G is generated by the permutation s = (02)(13). Let
g 6∈ G∩24. Then g = s or g = siA for some A. It follows from Table 3 that g is
either of type 2A1, or of type A1+A3, or of type D4(a1). Let K = G∩24 ∼= 2a.
If a = 0 or 1, the group is not minimal.

a = 2.
Suppose first that s acts identically on K. Then the group is commutative

isomorphic to 23 if it does not contain elements of order 4 and 2×4 otherwise.
In the first case
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K = F := 〈i02, i13〉. (42)

is the subspace of fixed points of s in 24. Since (siA)2 = iA+s(A), we see that
G \ K = {siA, A ∈ K}. Consulting Table 3 we compute the traces of all
elements from G to conclude that the total sum is equal to 8. Thus the group
is not minimal.

In the second case G contains 4 elements of order 4 of the form siA, where
A 6∈ K. Suppose A+ s(A) = {0, 1, 2, 3}. Since K is a subspace of the second
type, it contributes 4 to the total sum of the traces. Thus the sum of the
traces of the elements of order 4 must be equal to −4. In other words they
have to be elements with trace −1 of the form siA, where #A = 2, 4 ∈ A.
This gives the unique conjugacy class of a minimal group isomorphic to 2×4.
It is represented by the group G = 〈K, si04〉.

Assume now that G is non-abelian, obviously isomorphic to D8. The sub-
space K contains one element from the set F . The nontrivial coset contains 2
elements of order 4 and two elements of order 2. Suppose K is of the second
type with the sum of the traces of its elements equal to 4. Two elements of
order 2 in G \K have the trace equal to 1. Elements of order 4 have the trace
equal to 1 or −1. So the group cannot be minimal. Thus K must be of the
third type, the minimal one. This gives us the minimal group conjugate to
the subgroup G = 〈i1234, i02, si04〉 isomorphic to D8.

a = 3.
There are three s invariant subspaces of 24 of dimension 3. Their orthogo-

nal complements are spanned by the one of the vectors in the set (42). As we
saw earlier, if K⊥ = 〈iA〉, where #A = 2, the subspace K is a minimal group.
Otherwise the total sum of the traces of elements from K is equal to 8. In the
first case we may assume that K = 〈i14, i34, i02〉. All elements of order 2 in
the nontrivial coset have the trace equal to 1. Thus we must have elements
of order 4 in the coset with trace −1. Let siA be such an element, where we
may assume that A = {0, 4}. Thus G = 〈K, si04〉. Its nontrivial coset has 4
elements of order 4 with trace 1 and 4 elements of order 4 with trace −1. The
group is minimal. It is a non-split extension (23)•2. Its center is isomorphic
to 22. The classification of groups of order 16 from Table 1 shows that this is
group is isomorphic to L16.

a = 4.
In this case G = 24 : 2, where the extension is defined by the action of s in

24. The group has 2-dimensional center with the quotient isomorphic to 23.
Case 2. G ∼= C3.
We may assume that G = 〈s〉, where s = (012). Applying Lemma 4.2, we

obtain that G is a split extension K : 3, where K = G ∩ 24 ∼= 2a. Since there
are no minimal elements of order 3, we must have a > 0. If a = 1, the group
is 2 : 3 ∼= 6. There are no minimal elements of order 6, so we may assume that
a > 1.

Assume a = 2. The group is abelian 22 × 3 or non-abelian 22 : 3 ∼= A4. In
the first case, K = 〈i0123, i0124〉 is the subspace of the third type, the minimal
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one. Thus the total number of elements in the nontrivial cosets is equal to 0.
An element of order 3 has the trace equal to 1. An element of order 6 has
trace equal to −2 of 0. So we must have an element of order 6 with trace −2.
It must be equal to si34. Its cube is i34 ∈ K. So we get one conjugacy class of
a minimal group isomorphic to 22 × 3. It is equal to 〈K, si34〉.

If G ∼= A4, the subspace K is not minimal. The group does not contain
elements of order 6. So the traces of all elements not from K are positive.
This shows that the group cannot be minimal.

Assume a = 3. The subspace K is minimal if and only if its orthogonal
complement is generated by i34. Again the group must contain si34 with trace
−2 and hence equal to 〈K, si34〉 = 〈K, s〉. The group G is minimal and is
isomorphic to 2× (22 : 3) ∼= 2×A4.

Finally assume that K = 〈i0123〉⊥ is not minimal. We have computed
earlier the sum of the traces of its elements. It is equal to 8. Again it must
contain an element of order 6 equals si0123. Since K contains i0123, the group
contains s. Now we can add all the traces and conclude that the group is not
minimal.

Of course we should not forget the minimal group 24 : 3.
Case 3. G ∼= S3.
The group G is generated by the permutations of coordinates (012) and

(12)(34). It is immediately checked that H = G∩ 24 is not trivial for minimal
G. The only subgroup of H invariant with respect to the conjugation action
of G on H is H itself. This gives a minimal group isomorphic to 24 : S3.
The extension is defined by the restriction to S3 of the natural action of
S4 = W (A4) on its root lattice modulo 2.

Case 4. G ∼= C4.
The group 24 : 4 contains 24 : 2, so all minimal groups of the latter group

are minimal subgroups of 24 : 4. Without loss of generality, we may assume
that the group G is generated by the permutations of coordinates s = (0123).
The only proper subgroup of 24 invariant with respect to the conjugation
action of G on K = G ∩ 24 is either 〈i0123〉 or its orthogonal complement. In
the first case G ∼= 2•4 ∼= 2× 4 or 8. In the first case the group is not minimal.
In the second case G = 〈(0123)i0123〉 is minimal.

Assume K = 〈i0123〉⊥. If s 6∈ G, then siA ∈ G, where A 6∈ K. The Table
3 shows that all such elements are minimal of order 8. This gives a minimal
group G ∼= 23 : 4 = 22 : 8.

Next we have to consider the case when s ∈ G so that G = 〈K, s〉. The
total number of traces of elements from K is equal to 8. Consulting the Table
3 we obtain that the elements in the cosets sK, s2K, s3K have the trace equal
to 1. So the group is not minimal.

Our last minimal group in this case is 24 : 4.
Case 5. G = C5 or D10.
Again, we check using the table of conjugacy classes that no group iso-

morphic to D10 is minimal. Also no proper subgroup of H is invariant with
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respect to conjugation by a permutation of order 5, or by a subgroup of S5

generated by (012) and (12)(34). Thus we get two minimal groups isomorphic
to 24 : 5 or 24 : D10.

The following theorem summarizes what we have found.

Theorem 6.9. Let (S,G) be a minimal Del Pezzo surface of degree d = 4.
Then G is isomorphic to one of the following groups

1. Aut(S) ∼= 24.
24, 23, 22.

2. Aut(S) ∼= 24 : 2
2× 4, D8, L16, 24 : 2,

and from the previous case.
3. Aut(S) ∼= 24 : 4

8, 22 : 8, 24 : 4,

and from the previous two cases.
4. Aut(S) ∼= 24 : S3.

22 × 3, 2×A4, 24 : 3, 24 : S3,

and from Cases 1) and 2).
5. Aut(S) ∼= 24 : D10

24 : D10, 24 : 5,

and from Cases 1) and 2).

6.5 Cubic surfaces

The following theorem gives the classification of cyclic subgroups of Aut(S)
and identifies the conjugacy classes of their generators.

Theorem 6.10. Let S be a nonsingular cubic surface admitting a non-trivial
automorphism g of order n. Then S is equivariantly isomorphic to one of the
following surfaces V (F ) with

g = [x0, ε
a
nx1, ε

b
nx2, ε

c
nx3]. (43)

• 4A1 (n = 2), (a, b, c) = (0, 0, 1),

F = T 2
3L1(T0, T1, T2) + T 3

0 + T 3
1 + T 3

2 + αT0T1T2.

• 2A1 (n = 2), (a, b, c) = (0, 1, 1),

F = T0T2(T2 + αT3) + T1T3(T2 + βT3) + T 3
0 + T 3

1 .

• 3A2 (n = 3), (a, b, c) = (0, 0, 1),

F = T 3
0 + T 3

1 + T 3
2 + T 3

3 + αT0T1T2.
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• A2 (n = 3), (a, b, c) = (0, 1, 1),

F = T 3
0 + T 3

1 + T 3
2 + T 3

3 .

• 2A2 (n = 3), (a, b, c) = (0, 1, 2),

F = T 3
0 + T 3

1 + T2T3(T0 + aT1) + T 3
2 + T 3

3 .

• D4(a1) (n = 4), (a, b, c) = (0, 2, 1),

F = T 2
3 T2 + L3(T0, T1) + T 2

2 (T0 + αT1).

• A3 +A1 (n = 4), (a, b, c) = (2, 1, 3),

F = T 3
0 + T0T

2
1 + T1T

2
3 + T1T

2
2 .

• A4 (n = 5), (a, b, c) = (4, 1, 2),

F = T 2
0 T1 + T 2

1 T2 + T 2
2 T3 + T 2

3 T0.

• E6(a2) (n = 6), (a, b, c) = (0, 3, 2),

F = T 3
0 + T 3

1 + T 3
3 + T 2

2 (αT0 + T1).

• D4 (n = 6), (a, b, c) = (0, 2, 5),

F = L3(T0, T1) + T 2
3 T2 + T 3

2 .

• A5 +A1 (n = 6), (a, b, c) = (4, 2, 1),

F = T 2
3 T1 + T 3

0 + T 3
1 + T 3

2 + λT0T1T2.

• 2A1 +A2 (n = 6), (a, b, c) = (4, 1, 3),

F = T 3
0 + βT0T

2
3 + T 2

2 T1 + T 3
1 .

• D5 (n = 8), (a, b, c) = (4, 3, 2),

F = T 2
3 T1 + T 2

2 T3 + T0T
2
1 + T 3

0 .

• E6(a1) (n = 9), (a, b, c) = (4, 1, 7),

F = T 2
3 T1 + T 2

1 T2 + T 2
2 T3 + T 3

0 .

• E6 (n = 12), (a, b, c) = (4, 1, 10),

F = T 2
3 T1 + T 2

2 T3 + T 3
0 + T 3

1 .
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We only sketch a proof, referring for the details to [26]. Let g be a nontriv-
ial projective automorphism of S = V (F ) of order n. All possible values of n
can be obtained from the classification of conjugacy classes of W (E6). Choose
coordinates to assume that g acts as in (43). Then F is a sum of monomials
which belong to the same eigensubspace of g in its action in the space of cubic
polynomials. We list all possible eigensubspaces. Since V (F ) is nonsingular,
the square or the cube of each variable divides some monomial entering in F .
This allows one to list all possible nonsingular V (F ) admitting an automor-
phism g. Some obvious linear change of variables allows one to find normal
forms. Finally, we determine the conjugacy class by using the trace formula
(36) applied to the locus of fixed points of g and its powers.

The conjugacy class labeled by the Carter graph with 6 vertices defines a
minimal cyclic group.

Corollary 6.11. The following conjugacy classes define minimal cyclic groups
of automorphisms of a cubic surface S.

• 3A2 of order 3,
• E6(a2) of order 6,
• A5 +A1 of order 6,
• E6(a1) of order 9,
• E6 of order 12.

Next we find all possible automorphism groups of nonsingular cubic sur-
faces. Using a normal form of a cubic admitting a cyclic group of automor-
phisms from given conjugacy class, we determine all other possible symmetries
of the equation. We refer for the details to [26]. The list of possible automor-
phism groups of cubic surfaces is given in Table 4.

Remark 6.12. Note that there are various ways to write the equation of cubic
surfaces from the table. For example, using the identity

(x+ y + z)3 + ε3(x+ ε3y + ε23z)
3 + ε23(x+ ε23y + ε3z)3 = 9(x2z + y2x+ z2y)

we see that the Fermat cubic can be given by the equation

T 3
0 + T 2

1 T3 + T 2
3 T2 + T 2

2 T1 = 0.

Using Theorem 6.10 this exhibits a symmetry of order 9 of the surface, whose
existence is not obvious in the original equation.

Using the Hesse form of an equation of a nonsingular plane cubic curve
we see that a surface with equation

T 3
0 + F3(T1, T2, T3) = 0

is projectively equivalent to a surface with the equation

T 3
0 + T 3

1 + T 3
2 + T 3

3 + 6aT0T1T2 = 0.
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Type Order Structure F (T0, T1, T2, T3) Parameters

I 648 33 : S4 T 3
0 + T 3

1 + T 3
2 + T 3

3

II 120 S5 T 2
0 T1 + T0T

2
2 + T2T

2
3 + T3T

2
1

III 108 H3(3) : 4 T 3
0 + T 3

1 + T 3
2 + T 3

3 + 6aT1T2T3 20a3 + 8a6 = 1

IV 54 H3(3) : 2 T 3
0 + T 3

1 + T 3
2 + T 3

3 + 6aT1T2T3 a− a4 6= 0,
8a3 6= −1,

20a3 + 8a6 6= 1

V 24 S4 T 3
0 + T0(T

2
1 + T 2

2 + T 2
3 ) 9a3 6= 8a

+aT1T2T3 8a3 6= −1,

VI 12 S3 × 2 T 3
2 + T 3

3 + aT2T3(T0 + T1) + T 3
0 + T 3

1 a 6= 0

VII 8 8 T 2
3 T2 + T 2

2 T1 + T 3
0 + T0T

2
1

VIII 6 S3 T 3
2 + T 3

3 + aT2T3(T0 + bT1) + T 3
0 + T 3

1 a3 6= −1

IX 4 4 T 2
3 T2 + T 2

2 T1 + T 3
0 + T0T

2
1 + aT 3

1 a 6= 0

X 4 22 T 2
0 (T1 + T2 + aT3) + T 3

1 + T 3
2

+T 3
3 + 6bT1T2T3 8b3 6= −1

XI 2 2 T 3
1 + T 3

2 + T 3
3 + 6aT1T2T3 b3, c3 6= 1

+T 2
0 (T1 + bT2 + cT3) b3 6= c3

8a3 6= −1,

Table 4. Groups of automorphisms of cubic surfaces

The special values of the parameters a = 0, 1, ε3, ε23 give the Fermat cubic. The
values a satisfying 20a3 +8a6 = 1 give a plane cubic with an automorphism of
order 4 (a harmonic cubic). Since a harmonic cubic is isomorphic to the cubic
with equation T 3

1 + T1T
2
2 + T 3

3 = 0, using Theorem 6.10 we see symmetries of
order 6 from the conjugacy class E6(a2) for surfaces of type III, IV and of
order 12 for the surface

T 2
3 T1 + T 2

2 T3 + T 3
0 + T 3

1 = 0

of type III.

It remains to classify minimal groups G. Note that if G is realized as a
group of projective (or weighted projective) automorphisms of a family of
surfaces (St), then G is a subgroup of the group of projective automorphisms
of any surface St0 corresponding to a special value t0 of the parameters. We
indicate this by writing S′ → S. The types of S′ when it happens are

IV → III, IV → I, V I, V III, IX → I, XI → X.

So it suffices to consider the surfaces of types I, II, III, V, VII, X.
We will be using the following lemma, kindly communicated to us by R.

Griess. For completeness sake, we provide its proof.

Lemma 6.13. Let Sn+1 act naturally on its root lattice Rn = {(a1, . . . , an+1) ∈
Zn+1 : a1 + · · ·+ an+1 = 0}. Let Rn(p) ∼= Fn

p be the reduction of Rn modulo a
prime number p > 2 not dividing n+ 1. Then the set of conjugacy classes of
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subgroups dividing a splitting of Fn
p : Sn+1 is bijective to the set Fp if p | n+1

and consists of one element otherwise.

Proof. It is easy to see that, fixing a splitting, there is a natural bijection
between conjugacy classes of splitting subgroups in A : B and the cohomology
setH1(B,A), where B acts on A via the homomorphism B → Aut(A) defining
the semi-direct product. So, it suffices to prove that H1(Sn+1,Rn(p)) ∼= Fp if
p | n+1 and zero otherwise. Consider the permutation representation of Sn+1

on M = Fn+1
p . We have an exact sequence of Sn+1-modules

0→ Rn(p)→M → Fp → 0

defined by the map (a1, . . . , an+1) → a1 + · · · + an+1. The module M is the
induced module of the trivial representation of the subgroup Sn of Sn+1. By
Eckmann-Shapiro’s Lemma,

H1(Sn+1,M) = H1(Sn,Fp) = Hom(Sn,Fp).

Suppose p - n+ 1, then the exact sequence splits, and we get

0 = H1(Sn+1,M) = H1(Sn+1,Rn(p))⊕H1(Sn+1,Fp).

Since H1(Sn+1,Fp) = Hom(Sn+1,Fp) = 0, we get the result. If p | n+ 1, then
H0(Sn+1,M) = 0,H0(Sn+1,Fp) = Fp and the exact sequence of cohomology
gives the desired result.

Type I.
Let us first classify F3-subspaces of the group K = 33. We view 33 as the

S4-module R3(3) ∼= F3
3 from the previous lemma. We denote the image of a

vector (a, b, c, d) in K by [a, b, c, d]. In our old notations

[a, b, c, d] = [εax0, ε
bx1, ε

cx2, ε
dx3].

There are 13 (= #P2(F3)) one-dimensional subspaces in 33. The group S4 acts
on this set with 3 orbits. They are represented by vectors [1, 2, 0, 0], [1, 1, 1, 0], [1, 1, 2, 2]
with respective stabilizer subgroups 22, S3 and D8. We call them lines of type
I,II,III, respectively. As subgroups they are cyclic groups of order 3 of the
following types. 

2A2 Type I,
3A2 Type II,
A2 Type III.

The conjugacy class of a 2-dimensional subspace K is determined by its
orthogonal complement in 33 with respect to the dot-product pairing on F4

3.
Thus we have 3 types of 2-dimensional subspaces of types determined by the
type of its orthogonal complement.

An easy computation gives the following table.
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Type 3A2 2A2 A2 Trace
I 4 2 2 0
II 2 6 0 0
III 0 4 4 2

(44)

Here we list the types of the nontrivial elements in the subspace and the last
column is the sum 1

9

∑
g∈L Tr(g|RS). This gives us two conjugacy classes of

minimal subgroups isomorphic to 32.
Let G be a subgroup of Aut(S), G be its image in S4 and K = G∩ 33. Let

k = dimF3 K.
Case 1 : k = 0.
In this case G defines a splitting of the projection 33 : S4 → S4. Assume

G ∼= S4. It follows from Lemma 6.13 that there are 3 conjugacy classes of
subgroups isomorphic to S4 which define a splitting. Let us show each of
them is minimal.

We start with the standard S4 generated by permutations of the coordi-
nates. It contains 6 elements of type 4A1, 8 elements of type 2A2, 3 elements
of type 2A1 and 6 elements of type A3 +A1. Adding up the traces we obtain
that the group is minimal.

Suppose G is another subgroup isomorphic but not conjugate to the pre-
vious S4. It corresponds to a 1-cocylce φ : S4 → F3

3 defined by a vector
v = (a1, a2, a3, a4) with a1 + a2 + a3 + a4

φv(σ) = (a1, a2, a3, a4)− (aσ(1), aσ(2), aσ(3), aσ(4)) = (a, b, c, d).

The cohomology class of this cocycle depends only on the sum of the coordi-
nates of the vector v. Without loss of generality we may choose v = (1, 0, 0, 0)
and drop the subscript in φ. We identify the vector φ(σ) with the auto-
morphism [εa3x0, ε

b
3x1, ε

c
3x2, ε

d
3x3]. Thus a new S4 consists of transformation

σ ◦ φ(σ). We check that the type of an element σφ(σ) is equal to the type of
σ for each σ ∈ S4. This shows that the representation of a new S4 in RS has
the same character as that of the old S4. This shows that all three S4’s are
minimal.

Let G be mapped isomorphically to a subgroup G′ of S4. If G′ is a 2-group,
then it is contained in a 2-Sylow subgroup of one of the S4’s. By the above
its representation in RS is the same as the restriction of the representation of
S4. A 2-Sylow subgroup of S4 contains 3 elements of type 2A1, two element
of type 4A1 and 2 elements of type A3 + A1. Adding up the traces we get 8.
Thus the group is not minimal.

If G′ is not a 2-group, then G′ is either S3 or 3. A lift of a permutation
(i23) is given by a matrix  0 0 εa3

εb3 0 0
0 εc3 0

 ,
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where a+ b+ c ≡ 0 mod 3. It is immediately checked that all such matrices
define an element of type 2A2. Adding up the traces we see that a lift of S3

is minimal.
Case 2 : k = 1.
Let G′ be the image of G in S4 and K = G ∩ 33. Clearly, the subspace

K must be invariant with respect to the restriction of the homomorphism
S4 → Aut(33) to G′.

AssumeK is of type I, say generated by nK = [1, 2, 0, 0]. Then its stabilizer
in S4 is generated by (12), (34), (123) isomorphic to 22. The conjugation by
(12) sends nK to −nK , and the conjugation by (34) fixes nK . Thus the group
K : 22 is isomorphic S3 × 2. It is easy to check that the product g = (34)nK

is of order 6, of minimal type A5 +A1. Thus the groups K : 22 and its cyclic
subgroup of order 6 are minimal. Also its subgroup of order 6 is minimal. Its
subgroup 〈nK , (12)〉 ∼= S3 contains 3 elements of type 4A1 and 2 elements of
type 2A2. Adding up the traces we see that S3 is also minimal. It is obviously
not conjugate from the S3 from the previous case.

Assume K is of type II, say generated by nK = [1, 1, 1, 0]. Since nK is
minimal, any subgroup in this case is minimal. The stabilizer of K in S4 is
generated by (123), (12) and is isomorphic to S3. Our group G is a subgroup
of 3•S3 with K contained in the center. There are three non-abelian groups
of order 18: D18, 3 × S3, 32 : 2. The extension in the last group is defined by
the automorphism of 32 equal to the minus identity. In our case the image
of G in S3 acts identically on K. Since the center of D18 or 32 : 2 is trivial,
this implies that either G is a cyclic subgroup of D18 of order 9 or 3, or a
subgroup of S3 × 3 in which case G ∼= 3, 32, 6, 3× S3. Note that the group 32

is not conjugate to a subgroup of 33. To realize a cyclic subgroup of order 9
is enough to take g = nK(234). Note that the Sylow subgroup of 3•S3 is of
order 9, so all 3-subgroups of order 9 are conjugate.

Assume K is of type III, say generated by nK = [1, 1, 2, 2]. The sta-
bilizer group is generated by (12), (34), (13)(24) and is isomorphic to D8.
Our group G is a subgroup of 3 : D8. The split extension is defined by the
homomorphism D8 → 2 with kernel 〈(12), (34)〉 ∼= 22. The subgroup iso-
morphic to D8 is contained in a non-minimal S4, hence is not minimal. Let
H = 〈nK , (12), (34)〉 ∼= 6×2 so that 3 : D8

∼= H : 2. The subgroup H contains
4 elements of type D4, 4 elements of type A2, 2 elements of type A1 and one
element of type 2A1. Adding up the traces of elements from H we get the
sum equal to 24. The nontrivial coset contains 8 elements of type A3 + A1,
4 elements of type 4A1 and one element of type 2A1. Adding up the traces
we get 0. Thus the group is not minimal. So this case does not reveal any
minimal groups.

Case 3 : k = 2.
The image of G in S4 is contained in the stabilizer of the orthogonal vector

nK . Thus G is a subgroup of one of the following groups
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G =


K : 22 if K is of type I,
K•S3 if K is of type II,
K : D8 if K is of type III.

Since K of type I or II contains a minimal element of order 3, the subgroups
of K : 22 and K•S3 are minimal. Recall that they all contain K.

Assume K is of type I. Recall that the S4-module 33 is isomorphic to the
root lattice R3(3) of A3 modulo 3. A permutation σ of order 2 represented by
the transposition (12) decomposes the module into the sum of one-dimensional
subspaces with eigenvalues −1, 1, 1. So, if σ fixes nK it acts on K with eigen-
values −1, 1. Otherwise it acts identically on K. The product (12)(34) acts
with eigenvalues (−1,−1, 1), so if it fixes nK then it acts as the minus identity
on K. In our case nK = [1, 2, 0, 0] and (12), (12)(34) ∈ 22 fix nK . Accordingly,
(12) acts as (−1, 1) giving a subgroup K : 2 ∼= 3 × S3, (12)(34) gives the
subgroup K : 2 ∼= 32 : 2 6∼= 32 : 2. Finally, (34) acts identically on K giving the
subgroup 32× 2. So we obtain 3 subgroups of index 2 of K : 22 isomorphic to
32 : 2, 32×2, S3×3. The remaining subgroups are K ∼= 32 and K : 22 ∼= 32 : 22.

AssumeK is of type II. Again we have to find all subgroupsH ofG = K•S3

containing K. Elements of order 2 are transpositions in S3. They fix nK .
Arguing as above we see that K : 2 ∼= 3 × S3. An element of order 3 in S3

fixes nK . Hence it acts in the orthogonal complement as an element of type
A2 in the root lattice of type A2 modulo 3. This defines a unique non-abelian
group of order 27 isomorphic to the Heisenberg group H3(3). The third group
is K•S3

∼= H3(2) : 2 ∼= 3(32 : 2).
Assume K is of type III. This time K is not minimal. Each subgroup of

order 2 of type 4A1 of D8 defines a subgroup K : 2 ∼= 3 × S3 of K : D8. It
contains 3 elements of order 2, of type 4A1, 6 elements of order 6, of type D4,
and the elements from K. Adding up the traces we get the sum equal to 18.
So the subgroup is not minimal. An element of order 2 of type 2A1 defines a
subgroup 32 : 2 not isomorphic to 3× S3. It contains 9 elements of type 2A1,
and the elements from K. Adding up the traces we get the sum equal to 36.
So the group is not minimal.

Assume G ∼= K : 4. It contains the previous group 32 : 2 as a subgroup
of index 2. It has 9 2-Sylow subgroups of order 4. Thus the nontrivial coset
consists of 18 elements of order 4. Each element of order 4 has the trace equal
tom 0. This shows that the group is not minimal.

Finally it remains to investigate the group K : D8. It contains the previous
group K : 4 as a subgroup of index 2. The sum of the traces of its elements
is equal to 36. The nontrivial coset consists of the union of 4 subsets, each is
equal to the set of nontrivial elements in the group of type K : 2 ∼= 3 × S3.
The sum of traces of elements in each subset is equal to 12. So the total sum
is 72 and the group is not minimal.

Case 3 : k = 3.
This gives the groups 33 : H, where H is a subgroup of S4 which acts on 33

via the restriction of the homomorphism S4 → Aut(33) describing the action
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of W (A3) on its root lattice modulo 3. We have the groups

33 : S4, 33 : D8, 33 : S3, 33 : 22(2), 33 : 3, 33 : 4, 33 : 2(2).

Type II.
The surface is isomorphic to the Segre cubic surface in P4 given by the

equations
4∑

i=0

x3
i =

4∑
i=0

xi = 0.

The group S5 acts by permuting the coordinates. The orbit of the line x0 =
x1 + x2 = x3 + x4 = 0 consists of 15 lines. It is easy to see that the remaining
12 lines form a double-six. The lines in the double-six are described as follows.

Let ω be a primitive 5th root of unity. Let σ = (a1, . . . , a5) be a permuta-
tion of {0, 1, 2, 3, 4}. Each line `σ is the span by a pair of points (ωa1 , . . . , ωa5)
and (ω−a1 , . . . , ω−a5). This gives 12 different lines. One immediately checks
that `σ ∩ `σ′ 6= ∅ if and only if σ′ = σ ◦ τ for some odd permutation τ . Thus
the orbit of the alternating subgroup A5 of any line defines a set of 6 skew
lines (a sixer) and therefore A5 is not minimal. Let `1, . . . , `6 be a sixer. It
is known that the divisor classes `i,KS span Pic(S) ⊗ Q. This immediately
implies that Pic(S)A5 is spanned (over Q) by KS and the sum

∑
`i. Since S5

does not leave this sum invariant, we see that S5 is a minimal group.
A maximal subgroup of S5 not contained in A5 is isomorphic to S4, or

5 : 4, or 2 × S3. The subgroups isomorphic to S4 are conjugate so we may
assume that it consists of permutations of 1, 2, 3, 4. The group has 6 elements
of type 4A1 conjugate to (12), 3 elements of type 2A1 conjugate to (12)(34),
8 elements of type 2A2 conjugate to (123) and 6 elements of type A3 + A1

conjugate to (1234). The total sum of the traces is equal to 0. So the group
is minimal. This gives another, non-geometric proof of the minimality of S5.

Consider a 2-Sylow subgroup G of S4 isomorphic to D8. It consists of 5
elements of order 2, two of type 4A1 (from the conjugacy class of (12)) and 3
of type 2A1 (from the conjugacy class of (12)(34)). Its cyclic subgroup of order
4 is generated by an element of type A3 + A1. Adding up the traces we see
that the subgroup is not minimal. Thus S4 has no minimal proper subgroups.

A subgroup isomorphic to 5 : 4 is conjugate to a subgroup generated by
two cycles (01234) and (0123). Computing the traces, we find that the group
is not minimal. The subgroup isomorphic to 2×S3 is conjugate to a subgroup
generated by (012), (01), (34). Its element of order 6 belongs to the conjugacy
class D4. So this group is different from the isomorphic group in the previous
case. Computing the traces we find that it is not minimal.

Type III.
The surface is a specialization of a surface of type IV . Recall that each

nonsingular plane cubic curve is isomorphic to a member of the Hesse pencil

T 3
1 + T 3

2 + T 3
3 + 6aT1T2T3 = 0.
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The group of projective automorphisms leaving the pencil invariant is the
Hesse group G216 of order 216. It is isomorphic to 32 : T . The stabilizer of a
general member of the pencil is isomorphic to a non-abelian extension 32 : 2.
It is generated by

g1 = [x1, ε3x2, ε
2
3x3], g2 = [x2, x3, x1], g3 = [x2, x1, x3].

The pencil contains 6 members isomorphic to a harmonic cubic. They corre-
spond to the values of the parameters satisfying the equation 8a6 +20a3−1 =
0. The stabilizer of a harmonic member is the group 32 : 4. The additional
generator is given by the matrix

g4 =
1√
3

1 1 1
1 ε3 ε23
1 ε23 ε3


The pencil also contains 4 anharmonic cubics isomorphic to the Fermat cubic.
They correspond to the parameters a satisfying the equation a4 − a = 0. The
stabilizer of an anharmonic member is isomorphic to 32 : 6. The additional
generator is given by g5 = [x1, ε3x2, ε3x3].

All curves from the Hesse pencil have 9 common inflection points. If we
fix one of them, say (1,−1, 0), all nonsingular members acquire a group law.
The group of automorphisms generated by g1, g2 correspond to translations
by 3-torsion points. The automorphism g3 is the negation automorphism. The
automorphism g4 is the complex multiplication by

√
−1. The automorphism

g5 is the complex multiplication by e2πi/3.
The Hesse group admits a central extension 3G216

∼= H3(3) : T realized as
the complex reflection group in C3. It acts linearly on the variables T1, T2, T3

leaving the polynomial T 3
1 + T 3

2 + T 3
3 + 6aT1T2T3 unchanged. We denote by

g̃i the automorphism of the cubic surface obtained from the automorphism gi

of the Hesse pencil by acting identically on the variable T0. The center of the
group 3G216 is generated by c = [g̃1, g̃2] = [1, ε3, ε3, ε3]. This is an element of
order 3, of minimal type 3A2.

Now we have a complete description of the automorphism group of a sur-
face of type IV . Any minimal subgroup of H3(3) : 2 can be found among
minimal subgroups of surfaces of type I. However, we have 2 non-conjugate
subgroups of type S3 equal to 〈g̃1, g̃3〉 and 〈g̃2, g̃3〉, and two non-conjugate
subgroups in S3 × 3 obtained from the previous groups by adding the central
element c.

Surfaces of type III acquire additional minimal subgroups of the form
A : 4, where A is a subgroup of H3(3). The element g̃4 acts by conjugation
on the subgroup H3(3) via (g̃1, g̃2) 7→ (g̃2

2 , g̃1). Using g̃4, we can conjugate the
subgroups isomorphic to S3, 3× S3, 32. Also we get two new minimal groups
H3(3) : 4 and 12.

Type V.
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The group S4
∼= 22 : S3 acts by permuting the coordinates T1, T2, T3 and

multiplying them by −1 leaving the monomial T1T2T3 unchanged. To make
the action explicit, we identify 22 with the subspace of F3

2 of vectors whose
coordinates add up to 0. The semi-direct product corresponds to the natural
action of S3 by permuting the coordinates. Thus g = ((a, b, c), σ) ∈ 22 : S3

acts as the transformation [x0, (−1)axσ(1), (−1)bxσ(2), (−1)cxσ(3)]. It is easy to
compute the types of elements of S4 in their action on S. The group contains
3 elements of type 2A1, 6 elements of type 4A1, 8 elements of type 2A2 and
6 elements of type A3 + A1. Adding up the traces we see that the group is
minimal. The subgroup S3 is minimal. No other subgroup is minimal.

Type VII.
The automorphism group of the surface of type VII is a non-minimal cyclic

group of order 8.

Type X.
The automorphism group of the surface of type X consists of the identity,

two involutions of type 4A1 and one involution of type 2A1. Adding up the
traces, we get that the group is not minimal.

Let us summarize our result in the following.

Theorem 6.14. Let G be a minimal subgroup of automorphisms of a nonsin-
gular cubic surface. Then G is isomorphic to one of the following groups.

1. G is a subgroup of automorphisms of a surface of type I.

S4(3), S3 (2), S3 × 2, S3 × 3 (2), 32 : 2 (2), 32 : 22,

H3(3) : 2, H3(3), 33 : 2 (2), 33 : 22 (2), 33 : 3, 33 : S3, 33 : D8, 33 : S4, 33 : 4,

33, 32 (3), 32 × 2, 9, 6 (2), 3.

2. G is a subgroup of automorphisms of a surface of type II.

S5, S4.

3. G is a subgroup of automorphisms of a surface of type III.

H3(3) : 4, H3(3) : 2, H3(3), S3 × 3, S3, 32, 12, 6, 3.

4. G is a subgroup of automorphisms of a surface of type IV.

H3(3) : 2, H3(3), S3 (2), 3× S3 (2), 32 (2), 6, 3.

5. G is a subgroup of automorphisms of a surface of type V.

S4, S3.

6. G is a subgroup of automorphisms of a surface of type VI.

6, S3 × 2, S3.

7. G is a subgroup of automorphisms of a surface of type VIII.

S3.
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6.6 Automorphisms of Del Pezzo surfaces of degree 2

Recall that the center of the Weyl group W (E(7)) is generated by an ele-
ment w0 which acts on the root lattice as the negative of the identity. Its
conjugacy class is of type A7

1. The quotient group W (E7)′ = W (E7)/(〈w0〉 is
isomorphic to the simple group Sp(6,F2). The extension 2.Sp(6,F2) splits by
the subgroup W (E7)+ equal to the kernel of the determinant homomorphism
det : W (E7)→ {±1}. Thus we have

W (E7) = W (E7)+ × 〈w0〉.

Let H be a subgroup of W (E7)′. Denote by H+ its lift to an isomorphic
subgroup of W+. Any other isomorphic lift of H is defined by a nontrivial
homomorphism α : H → 〈w0〉 ∼= 2. Its elements are the products hα(h), h ∈
H+. We denote such a lift by Hα. Thus all lifts are parametrized by the group
Hom(H, 〈w0〉)and H+ corresponds to the trivial homomorphism. Note that
wHαw

−1 = (w′Hw′−1)α, where w′ is the image of w in W (E7)′. In particular,
two lifts of the same group are never conjugate.

Now we apply this to our geometric situation. Let S be a Del Pezzo surface
of degree 2. Recall that the map S → P2 defined by |−KS | is a degree 2 cover.
Its branch curve is a nonsingular curve of degree 4. It is convenient to view
a Del Pezzo surface of degree 2 as a hypersurface in the weighted projective
space P(1, 1, 1, 2) given by an equation of degree 4

T 2
3 + F4(T0, T1, T2) = 0. (45)

The automorphism of the cover γ = [t0, t1, t2,−t3] defines the conjugacy class
of a Geiser involution of P2. For any divisor class D on S we have D+γ∗0 (D) ∈
| −mKS | for some integer m. This easily implies that γ∗ acts as the minus
identity in RS . Its image in the Weyl group W (E7) is the generator w0 of its
center. Thus the Geiser involution is the geometric realization of w0.

Let ρ : Aut(S) → W (E7) be the natural injective homomorphism corre-
sponding to a choice of a geometric basis in Pic(S). Denote by Aut(S)+ the
full preimage of W (E7)+. Since W (E7)+ is a normal subgroup, this definition
is independent of a choice of a geometric basis. Under the restriction homo-
morphism Aut(S) → Aut(B) the group Aut(S)+ is mapped isomorphically
to Aut(B) and we obtain

Aut(S)+ ∼= Aut(S)/〈γ〉 ∼= Aut(B).

¿From now on we will identify any subgroup G of Aut(B) with a subgroup
of Aut(S) which we call the even lift of G. Under the homomorphism ρ :
Aut(S) → W (E7) all elements of G define even conjugacy classes, i.e. the
conjugacy classes of elements from W (E7)+. It is immediate to see that a
conjugacy class is even if and only if the sum of the subscripts in its Carter
graph is even. An isomorphic lift of a subgroup G to a subgroup of Aut(S)
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corresponding to some nontrivial homomorphism G → 〈γ〉 (or, equivalently
to a subgroup of index 2 of G) will be called an odd lift of G.

The odd and even lifts of the same group are never conjugate, two minimal
lifts are conjugate in Aut(S) if and only if the groups are conjugate in Aut(B).
Two odd lifts of G are conjugate if and only if they correspond to conjugate
subgroups of index 2 (inside of the normalizer of G in Aut(B)).

The following simple lemma will be heavily used.

Lemma 6.15. Let G be a subgroup of Aut(B) and H be its subgroup of index
2. Assume H is a minimal subgroup of Aut(S) (i.e. its even lift is such a
subgroup). Then G is minimal in its even lift and its odd lift corresponding to
H. Conversely, if G is minimal in both lifts, then H is a minimal subgroup.

Proof. Let Tr(g)± be the trace of g ∈ G in the representation of G in RS

corresponding to the minimal (resp. odd) lift. Suppose G is minimal in both
lifts. Then ∑

g∈G

Tr+(g) =
∑
g∈H

Tr+(g) +
∑
g 6∈H

Tr+(g) = 0,

∑
g∈G

Tr−(g) =
∑
g∈H

Tr−(g) +
∑
g 6∈H

Tr−(g) =

=
∑
g∈H

Tr+(g)−
∑
g 6∈H

Tr+(g) = 0.

This implies that
∑

g∈H Tr+(g) = 0, i.e. H is minimal. The converse is obvi-
ously true.

Since γ generates a minimal subgroup of automorphisms of S, any group
containing γ is minimal. So, we classify first subgroups of Aut(B) which admit
minimal lifts. These will be all minimal subgroups of Aut(S) which do not
contain the Geiser involution γ. The remaining minimal groups will be of the
form 〈γ〉 × G̃, where G̃ is any lift of a subgroup G of Aut(B). Obviously, the
product does not depend on the parity of the lift.

As in the case of cubic surfaces we first classify cyclic subgroups.

Lemma 6.16. Let g be an automorphism of order n > 1 of a nonsingular
plane quartic C = V (F ). Then one can choose coordinates in such a way that
g = [t0, εant1, ε

b
nt2] and F is given in the following list.

(i) (n = 2), (a, b) = (0, 1),

F = T 4
2 + T 2

2L2(T0, T1) + L4(T0, T1).

(ii)(n = 3), (a, b) = (0, 1),

F = T 3
2L1(T0, T1) + L4(T0, T1).
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(iii)(n = 3), (a, b) = (1, 2),

F = T 4
0 + αT 2

0 T1T2 + T0T
3
1 + T0T

3
2 + βT 2

1 T
2
2 .

(iv)(n = 4), (a, b) = (0, 1),

F = T 4
2 + L4(T0, T1).

(v) (n = 4), (a, b) = (1, 2),

F = T 4
0 + T 4

1 + T 4
2 + αT 2

0 T
2
2 + βT0T

2
1 T2.

(vi)(n = 6), (a, b) = (3, 2),

F = T 4
0 + T 4

1 + αT 2
0 T

2
1 + T0T

3
2 .

(vii)(n = 7), (a, b) = (3, 1),

F = T 3
0 T1 + T 3

1 T2 + T 3
2 T0 + αT0T

2
1 T2.

(viii)(n = 8), (a, b) = (3, 7),

F = T 4
0 + T 3

1 T2 + T1T
3
2 .

(ix)(n = 9), (a, b) = (3, 2),

F = T 4
0 + T0T

3
1 + T 3

2 T1.

(x) (n = 12), (a, b) = (3, 4),

F = T 4
0 + T 4

1 + T0T
3
2 .

Here the subscript in polynomial Li indicates its degree.

Also observe that the diagonal matrix (t, t, t, t2) acts identically on S.
Let g ∈ Aut(B) be an element of order n of type (∗) from the previous

Lemma. The following Table identifies the conjugacy class of two lifts g̃ of g
in the Weyl group W (E7). If n is even, then g admits two lifts in Aut(S) of
order n. If n is odd, then one of the lifts is of order n and another is of order
2n. We denote by (∗)+ the conjugacy class of the lift which is represented
by an element from W (E7)+ (of order n if n is odd). The conjugacy class of
another lift is denoted by (∗)−. The last column of the Table gives the trace
of g on RS .

The following is the list of elements of finite order which generate a mini-
mal cyclic group of automorphisms. To identify the conjugacy class of a min-
imal lift we use the trace formula (36). If both lifts have the same trace, we
distinguish them by computing the traces of their powers.
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Type Order Notation Trace

(0)− 2 7A1 -7

(i)+ 2 4A1 -1
(i)− 2 3A1 1

(ii)+ 3 3A2 -2
(ii)− 6 E7(a4) 2

(iii)+ 3 2A2 1
(iii)− 6 D6(a2) + A1 -1

(iv)+ 4 D4(a1) 3
(iv)− 4 2A3 + A1 -3

(v)+ 4 2A3 -1
(v)− 4 D4(a1) + A1 1

(vi)+ 6 E6(a2) 2
(vi)− 6 A2 + A5 -2

(vii)+ 7 A6 0
(vii)− 14 E7(a1) 0

(viii)+ 8 D5 + A1 -1
(viii)− 8 D5 1

(ix)+ 9 E6(a1) 1
(ix)− 18 E7 -1

(x)+ 12 E6 0
(x)− 12 E7(a2) 0

Table 5. Conjugacy classes of automorphisms of a Del Pezzo surface of degree 2

1. Order 2 (A7
1) (The Geiser involution) g = [t0, t1, t2,−t3]

F = T 2
3 + F4(T0, T1, T2).

2. Order 4 (2A3 +A1) g = [t0, t1, it2, t3]

F = T 2
3 + T 4

2 + L4(T0, T1).

3. Order 6 (E7(a4)) g = [t0, t1, ε3t2,−t3]

F = T 2
3 + T 3

2L1(T0, T1) + L4(T0, T1).

4. Order 6 (A5 +A2) g = [t0,−t1, ε3t2,−t3]

F = T 2
3 + T 4

0 + T 4
1 + T0T

3
2 + aT 2

0 T
2
1 .

5. Order 6 (D6(a2) +A1) g = [t0, ε3x1, ε
2
3x2,−x3]

F = T 2
3 + T0(T 3

0 + T 3
1 + T 3

2 ) + T1T2(αT 2
0 + βT1T2).

6. Order 12 (E7(a2)) g = [t0, ε4t1, ε3t2, t3]

F = T 2
3 + T 4

0 + T 4
1 + T0T

3
2 , (t0, t1, t2, t3).
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7. Order 14 (E7(a1)) g = [t0, ε4t1, ε3t2, t3]

F = T 2
3 + T 3

0 T1 + T 3
1 T2 + T 3

2 T0.

8. Order 18 (E7) g = [t0, ε3t1, ε29t2,−t3]

F = T 2
3 + T 4

0 + T0T
3
1 + T 3

2 T1.

Using the information about cyclic groups of automorphisms of plane quartics,
it is not hard to get the classification of possible automorphism groups (see
[26]). It is given in Table 5.

Type Order Structure Equation Parameters

I 336 2× L2(7) T 2
3 + T 3

0 T1 + T 3
1 T2 + T 3

2 T0

II 192 2× (42 : S3) T 2
3 + T 4

0 + T 4
1 + T 4

2

III 96 2× 4A4 T 2
3 + T 4

2 + T 4
0 + aT 2

0 T 2
1 + T 4

1 a2 = −12

IV 48 2× S4 T 2
3 + T 4

2 + T 4
1 + T 4

0 + a 6= −1±
√
−7

2

+a(T 2
0 T 2

1 + T 2
0 T 2

2 + T 2
1 T 2

2 )

V 32 2×AS16 T 2
3 + T 4

2 + T 4
0 + aT 2

0 T 2
1 + T 4

1 a2 6= 0,−12, 4, 36

VI 18 18 T 2
3 + T 4

0 + T0T
3
1 + T1T

3
2

VII 16 2×D8 T 2
3 + T 4

2 + T 4
0 + T 4

1 + aT 2
0 T 2

1 + bT 2
2 T0T1 a, b 6= 0

VIII 12 2× 6 T 2
3 + T 3

2 T0 + T 4
0 + T 4

1 + aT 2
0 T 2

1

IX 12 2× S3 T 2
3 + T 4

2 + aT 2
2 T0T1 + T2(T

3
0 + T 3

1 ) + bT 2
0 T 2

1

X 8 23 T 2
3 + T 4

2 + T 4
1 + T 4

0 distinct a, b, c 6= 0
+aT 2

2 T 2
0 + bT 2

1 T 2
2 + cT 2

0 T 2
1

XI 6 6 T 2
3 + T 3

2 T0 + L4(T0, T1)

XII 4 22 T 2
3 + T 4

2 + T 2
2 L2(T0, T1) + L4(T0, T1)

XIII 2 2 T 2
3 + F4(T0, T1, T2)

Table 6. Groups of automorphisms of Del Pezzo surfaces of degree 2

Next we find minimal subgroups of automorphisms of a Del Pezzo surface
of degree 2.

As in the previous case it is enough to consider surfaces S′ which are not
specialized to surfaces S of other types. When this happens we write S′ → S.
We have

IX → IV → I, II,

XII → X → V II → V → II, III,

XI → V III → III.

All of this is immediate to see, except the degeneration V III → III. This is
achieved by some linear change of variables transforming the form x3y + y4

to the form u4 + 2
√

3iu2v2 + v4. So it suffices to consider surfaces of types I,
II, III, VI.
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Before we start the classification we advice the reader to go back to the
beginning of the section and recall the concepts of odd and even lifts of sub-
groups of Aut(B).

Type I.
Since L2(7) has no subgroups of index 2 (in fact, it is a simple group), it

admits a unique lift to a subgroup of Aut(S). It is known that the group L2(7)
is generated by elements of order 2, 3 and 7. Consulting Table 4, we find that
an element of order 2 must be of type 4A1, an element of order 3 must be of
types 3A2 or 2A2, and element of order 7 is of type A6. To decide the type
of a generator g of order 3, we use that it acts as a cyclic permutation of the
coordinates in the plane, hence has 3 fixed points (1, 1, 1), (1, η3, η2

3), (1, η2
3 , η3).

The last two of them lie on the quartic. This easily implies that g has 4 fixed
points on S, hence its trace in Pic(S) is equal to 2. This implies that g is of type
2A2. Comparing the traces with the character table of the group L2(7) we find
that the representation of L2(7) in (RS) ⊗ C is an irreducible 7-dimensional
representation of L2(7). Thus the group is minimal.

Assume G is a proper subgroup of L2(7). It is known that maximal sub-
groups of L2(7) are isomorphic to S4 or 7 : 3. There are two conjugacy classes
of subgroups isomorphic to S4 (in the realization L2(7) ∼= L3(2) they occur
as the stabilizer subgroups of a point or a line in P2(F2)). Since S4 contains a
unique subgroup of index 2, each subgroup can be lifted in two ways. Consider
the even lift of S4 lying in L2(7). To find the restriction of the 7-dimensional
representation V7 = (RS)C to G we apply the Frobenius Reciprocity formula.
Let χk denote a k-dimensional irreducible representation of L2(7) and χ̄k be
its restriction to S4. It is known that the induced character of the trivial
representation of S4 is equal to χ1 + χ6 (see [18]). Applying the Frobenius
Reciprocity formula we get 〈χ̄1, χ̄7〉 = 〈χ1 + χ6, χ7〉 = 0. This computation
shows that the even lifts of the two conjugacy classes of S4 in L2(7) are mini-
mal subgroups. It follows from Lemma 6.15 the the odd lifts are minimal only
if the lift of the subgroup A4 of S4 is minimal. One checks that the induced
character of the trivial representation of A4 is equal to χ1 + χ6 + χ7. By the
Frobenius Reciprocity formula, the restriction of V7 to A4 contains the trivial
summand. Thus A4 is not minimal and we conclude that there are only 2
non-conjugate lifts of S4 to a minimal subgroup of Aut(S).

Next consider the subgroup 7 : 3. It admits a unique lift. The induced
representation of its trivial representation has the character equal to χ1 +χ7.
Applying the Frobenius Reciprocity formula, we see that this group is not
minimal.

Let H be any subgroup of L2(7) which admits a minimal lift. Since Aut(S)
does not contain minimal elements of order 3 or 7,H must be a subgroup of S4.
Since A4 does not admit a minimal lift,H is either a cyclic group or isomorphic
to either 22 or D8. The only cyclic group which may admit a minimal lift is
a cyclic group of order 4. However, the character table for L2(7) shows that
the value of the character χ7 at an element of order 4 is equal to −1, hence
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it is of type 2A3. It follows from the Table that this element does not admit
minimal lifts.

Suppose G ∼= 22. In the even lift, it contains 3 nontrivial elements of type
4A1. Adding up the traces we see that this group is not minimal. In the odd
lift, it contains one element of type 4A1 and two of type 3A1. Again, we see
that the group is not minimal.

Assume G ∼= D8. The group S4 is the normalizer of D8. This shows that
there are two conjugacy classes of subgroups isomorphic to D8. The group G
admits 2 lifts. In the even lift it contains 2 elements of type 2A3 and 5 elements
of type 4A1. Adding up the traces, we obtain that the lift is minimal. Since
the lift of 4 is not minimal, the odd lift of D8 is not minimal.

Type II.
The group Aut(B) is generated by the transformations

g1 = [t0, it1, t2,−t3], τ = [t1, t0, t2, t3], σ = [t0, t2, t1, t3]

of types D4(a1), 4A1, 4A1, respectively. Let g2 = σg1σ
−1 = [t0, t1, it2,−t3].

We have
τg1τ

−1 = g−1
1 g−1

2 , τg2τ
−1 = g2.

The elements g1, g2, γ generate a normal subgroup isomorphic to 42. The quo-
tient group is isomorphic to S3. Its generators of order 2 can be represented
by τ and σ. The elements g2

1 , g
2
2 , τ, σ generate a subgroup (not normal) iso-

morphic to S4. Thus
Aut(B) ∼= 42 : S3 (46)

and
Aut(S) ∼= 2× (42 : S3). (47)

Consider the natural homomorphism f : Aut(B) → S3 with kernel 42. We
will consider different cases corresponding to a possible image of a subgroup
G ⊂ Aut(B) in S3. For the future use we observe that Aut(B) does not contain
elements of order 6 because its square is an element of type 3A2 but all our
elements of order 3 are of type 2A2. Also it does not contain 23 (this follow
from the presentation of the group). We will also use that Aut(B) contains 2
conjugacy classes of elements of order 4 of types D4(a1) (represented by g1)
and 2A3 (represented by g1g2).

Case 3 : f(G) = {1}.
In this case G is a subgroup of 42. The group itself contains 3 elements of

type 4A1, 6 elements of type D4(a1) and 6 elements of type 2A3. The sum of
the traces is equal to 16. Thus the group is not minimal. So no subgroup is
minimal in the even lift. An odd lift corresponding to the homomorphism 42 →
〈γ〉 sending an element of typeD4(a1) to γ defines an odd lift. There is only one
conjugacy class of subgroups of index 2 in 42. It defines an odd lift of 42. We
may assume that the subgroup of index 2 is generated by g1, g2

2 . It admits two
odd lifts corresponding to the subgroups 〈g2

1 , g
2
2〉 and 〈g1g2

2〉. Finally a cyclic
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subgroup 4 of type D4(a1) admits an odd lift. No other subgroup admits a
minimal lift.

Case 2 : |f(G)| = 2.
Replacing the group by a conjugate group, we may assume that f(G) =

〈τ〉. We have

G1 = f−1(〈τ〉) = 〈τ, g1, g2〉 ∼= 42 : 2 ∼= 4D8,

where the center is generated by g2.
Let H = 〈τ, g2

1g2〉. One immediately checks that H is normal in G1 and
isomorphic to D8. We have G1

∼= D8 : 4. The subgroup H consists of 5
elements of type 4A1 and 2 elements of type 2A3. Adding up the traces we
obtain that H is minimal in its even lift. Thus G1 is minimal in its even lift.
The subgroup G2 = 〈τ, g2

1 , g2〉 is of order 16. It contains H defining a split
extension D8 : 2 with center generated by g2. It is isomorphic to the group
AS16 (see Table 1) is of index 2 in G1. Since it is minimal, the odd lift of G1

corresponding to this subgroup is minimal.
We check that τg1 is of order 8 and the normalizer of the cyclic group

〈τg1〉 is generated by this subgroup and g2
1 . This gives us another subgroup

G3 of index 2 of G1. It is a group of order 16 isomorphic to M16. An element
of order 8 is of type D5(a1) + A1. Thus the sum of the traces is equal to 8.
Adding up the traces of elements in the nontrivial coset of 〈τg1〉 we get that
the sum is equal to −8 (all elements have the trace equal to −1). This shows
that G3 is minimal. Thus the corresponding odd lift of G1 is minimal.

Let G be a subgroup of index 2 of G1 and g = τga
1g

b
2 ∈ G be the element

of largest possible order in H. We verify that g2 = g2b−a
2 . If g is of order

8, we check that it generates either 〈τg1〉 considered earlier or its conjugate
subgroup. Its normalizer is conjugate to the subgroup G3 considered earlier. If
g is of order 4, then 2b−a ≡ 2 mod 4. We list all possible cases and find that
all elements of order 4 are conjugate. Thus we may assume that G contains
g = τg2

1 . Now we check that the normalizer of this group is our group G2.
So, all subgroups of index 2 are accounted for. They are two of them

isomorphic to AS16 and M16. They are all minimal in their even lift, and
hence define odd lifts of G1.

Let G be a subgroup of index 4 of f−1(τ). It follows from above argument
that G is conjugate to a subgroup of index 2 of G2 or G3. It could be D8, 8,
or 2× 4. The first group is minimal, hence D8 : 2 admits an odd minimal lift.
Other two groups are not minimal. The last group admits an odd minimal lift.
Note that it is not conjugate to odd 2× 4 from Case 1. Finally a cyclic group
of type D4(a1) admits an odd minimal lift. It is not conjugate to a group from
Case 1.

Case 3 : |f(G)| = 3.
Without loss of generality we may assume that f(G) = 〈στ〉. By Lemma

4.2, G is a split extension H : 3, where H is a subgroup of 〈g1, g2〉. Let G1 =
f−1(〈στ〉). It is a split extension 42 : 3. By Sylow’s Theorem, all subgroups
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of order 3 are conjugate. Thus we may assume that H contains στ . The
possibilities are G1 or G2 = 〈g2

1 , g
2
2 , στ〉 ∼= 22 : 3 ∼= A4. The group A4 has

3 elements of type 4A1, 4 elements of type 2A2 and 4 elements of type 3A2.
Adding up the traces we see that the group is minimal. Thus G1 is minimal
too. The group G1 does not have subgroups of index 2, so it does not admit
odd lifts. Other groups in this case are conjugate to the non-minimal group
〈στ〉.

Case 4 :f(G) = S3.
In this case G∩f−1(〈στ〉) is a subgroup of index 2 equal to one of the two

groups considered in the previous case. We get G = Aut(B), or G ∼= 22 : S3
∼=

S4, or S3. Considering the preimage of 〈τ〉, we find that all groups isomorphic
to S4 are conjugate and their Sylow 2-subgroup is D8 from the previous case.
Thus both Aut(B) and S4 admit two minimal lifts. A group isomorphic to S3

contains 2 elements of type 2A2 and it is not minimal in any lift.

Type III.
We assume that a = 2

√
3i in the equation of the surface. The group Aut(B)

is isomorphic to 4A4. It is generated (as always in its even lift) by

g1 = [t1, t0, t2,−t3], g2 = [it1,−it0, t2,−t3],

g3 = [ε78t0 + ε78t1, ε
5
8t0 + ε8t1,

√
2ε12t2, 2ε6t3], c = [t0, t1, it2,−t3]

The “complicated” transformation g3 is of order 3 (see our list of Gründformen
for binary polyhedral groups). The generators g1, g2 are of type 4A1, the
generator g3 is of type 2A2 and the generator c is of type D4(a1).

The element c generates the center. We have g1g2 = g2g1c
2. This shows

that the quotient by 〈c〉 is isomorphic to A4 and the subgroup 〈c, g1, g2〉 ∼= 4D4

is a group of order 16 isomorphic to the group AS16 (see Table 1).
Let f : Aut(B) → A4 be the natural surjection with kernel 〈c〉. Let G be

a subgroup of Aut(B).
Case 1 : G ⊂ Ker(f) ∼= 4.
There are no even minimal subgroups. The whole kernel admits a minimal

odd lift.
Case 2 : #f(G) = 2.
Without loss of generality we may assume that f(G) = 〈g1〉. The subgroup

f−1(〈g1〉) is generated by c, g1 and is isomorphic to 4× 2. It is not minimal in
the even lift and minimal in the unique odd lift. Its subgroup 〈cg1〉 of order 4
is of type 2A3 and does not admit minimal lifts.

Case 3 :f(G) = 〈g3〉.
We have G = f−1(〈g3〉) = 〈c, g3〉 = 〈cg3〉 ∼= 12. The element cg3 is of

type E6, hence not minimal. Its square is an element of type E6(a2), also not
minimal. The subgroup 〈(cg3)2〉 ∼= 6 defines an odd minimal lift of G. The
subgroup 〈(cg3)4〉 is of order 3. It defines an odd minimal lift of 〈(cg3)2〉. The
group 〈g3〉 admits an odd minimal lift.
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Case 4 : f(G) = 〈g1, g2〉 ∼= 22.
The subgroup H = f−1(〈g1, g2〉) is generated by c, g1, g2. As we observed

earlier, it is isomorphic to the group AS16 from Table 1. A proper subgroup is
conjugate in Aut(B) to either 〈g1, g2〉 ∼= D8 or 〈cg1, g2〉. All of the subgroups
are isomorphic to D8 with center generated by c2. The cyclic subgroup of
order 4 is of type 2A3, thus the subgroups are minimal in the even lift (we
have done this computation for surfaces of type II). Thus the group H is
minimal in the even lift and also minimal in two odd lifts corresponding to
its two subgroups of index 2.

Case 5 : f(G) = A4.
It is easy to see that G has non-trivial center (the center of its Sylow 2-

subgroup). It is equal to 〈c〉 or 〈c2〉. In the first case G = Aut(B). Since it
contains minimal subgroups it is minimal.

A subgroup G of index 2 is isomorphic to 2A4
∼= D8 : 3. Its Sylow 2-

subgroup is equal to one of the two subgroups isomorphic to D8 from Case 4.
Thus Aut(B) admits two odd lifts. Since G has no subgroups of index 2, the
odd lifts of G do not exist.

Type VI.
In this case Aut(B) ∼= 9 is not minimal so does not admit minimal lifts.
To summarize our investigation we give two lists. In the first we list all

groups which do not contain the Geiser involution γ. We indicate by + or −
the types of their lifts. Also we indicate the number of conjugacy classes.

All other minimal groups are of the form 〈γ〉 × G, where G is one of the
lifts of a subgroup of Aut(B). In the second list we give only groups 2 × G,
where G does not admit a minimal lift. All other groups are of the form 2×G,
where G is given in the previous table.

Theorem 6.17. Let G be a minimal group of automorphisms of a Del Pezzo
surface of degree 2. Then G is either equal to a minimal lift of a subgroup
from Table 7 or equal to γ × G′, where G′ is either from the table of one of
the following groups of automorphisms of the branch quartic curve B

1. Type I: 7 : 3, A4, S3, 7, 4, 3, 2.
2. Type II: 22, S3, 8, 4, 3, 2.
3. Type III: 22, 4, 2.
4. Type IV: S3, 22, 3, 2.
5. Type V: 22, 2.
6. Type VI: 9, 3.
7. Type VII: 22, 4, 2
8. Type VIII: 3.
9. Type IX: S3, 3, 2.

10. Type X: 22, 2.
11. Type XI: 3.
12. Type XII: {1}.
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Type of S Group Lift Conjugacy classes

I L2(7) + 1
S4 + 2
D8 + 2

II 42 : S3 +,- 2
S4 +,- 2

42 : 3 + 1
A4 + 1

42 : 2 ∼= D8 : 4 +,-,- 3
M16 + 1

AS16 +,- 2
D8 + 1
42 - 1

2× 4 - 2
4 - 2

III 4A4 +,- 2
2A4
∼= D8 : 3 + 1

AS16 +,- 2
D8 + 1
12 - 1
6 - 1

2× 4 - 1
4 - 1

IV S4 + 1
D8 + 1

V AS16 +,- 2
D8 + 1

2× 4 - 2
4 - 1

VII D8 + 1

VIII 6 - 1

Table 7. Minimal groups of automorphisms not containing γ

6.7 Automorphisms of Del Pezzo surfaces of degree 1

Let S be a Del Pezzo surface of degree 1. The linear system | − 2KS | defines
a finite map of degree 2 onto a quadric cone Q in P3. Its branch locus is
a nonsingular curve B of genus 4 cut out by a cubic surface. Recall that a
singular quadric is isomorphic to the weighted projective space P(1, 1, 2). A
curve of genus 4 of degree 6 cut out in Q by a cubic surface is given by equation
F (T0, T1, T2) of degree 6. After change of coordinates it can be given by an
equation T 3

2 + F4(T0, T1)T2 + F6(T0, T1) = 0, where F4 and F6 are binary
forms of degree 4 and 6. The double cover of Q branched along such curve is
isomorphic to a hypersurface of degree 6 in P(1, 1, 2, 3)

T 2
3 + T 3

2 + F4(T0, T1)T2 + F6(T0, T1) = 0. (48)
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The vertex of Q has coordinates (0, 0, 1) and its pre-image in the cover
consist of one point (0, 0, 1, a), where a2 + 1 = 0 (note that (0, 0, 1, a) and
(0, 0, 1,−a) represent the same point on P(1, 1, 2, 3)). This is the base-point
of | − KS |. The members of | − KS | are isomorphic to genus 1 curves with
equations y2 + x3 + F4(t0, t1)x + F6(t0, t1) = 0. The locus of zeros of ∆ =
F 3

4 + 27F 2
6 is the set of points in P1 such that the corresponding genus 1

curve is singular. It consists of a simple roots and b double roots. The zeros of
F4 are either common zeros with F6 and ∆, or represent nonsingular elliptic
curves isomorphic to an anharmonic plane cubic curve. The zeros of F6 are
either common zeros with F4 and ∆, or represent nonsingular elliptic curves
isomorphic to a harmonic plane cubic curve.

Observe that no common root of F4 and F6 is a multiple root of F6 since
otherwise the surface is singular.

Since the ramification curve of the cover S → Q (identified with the branch
curve B) is obviously invariant with respect to Aut(S) we have a natural
surjective homomorphism

Aut(S)→ Aut(B). (49)

Its kernel is generated by the deck involution β which we call the Bertini
involution. It defines the Bertini involution in Cr(2). The Bertini involution
is the analog of the Geiser involution for Del Pezzo surfaces of degree 2. The
same argument as above shows that β acts in RS as the minus of the identity
map. Under the homomorphism Aut(S) → W (E8) defined by a choice of a
geometric basis, the image of β is the elements w0 generating the center of
W (E8). This time w0 is an even element, i.e. belongs toW (E8)+. The quotient
group W (E8)+/〈w0〉 is isomorphic to the simple group O(8,F2)+.

Since Q is a unique quadric cone containing B, the group Aut(B) is a
subgroup of Aut(Q). Consider the natural homomorphism

r : Aut(B)→ Aut(P1).

Let G be a subgroup of Aut(B) and P be its image in Aut(P1). We assume
that elements fromG act on the variables T0, T1 by linear transformations with
determinant 1. The polynomials F4 and F6 are the relative invariants of the
binary group P̄ . They are polynomials in Gründformen which were listed in
section 5.5. Let χ4, χ6 be the corresponding characters of P̄ defined by the
binary forms F4, F6. Let χ2, χ3 be the characters of G defined by the action
on the variables T2, T3. Assume that F4 6= 0. Then

χ4χ2 = χ6 = χ3
3 = χ2

3.

If g ∈ G∩Ker(r)\{1}, then g acts on the variables T0, T1 by either the identity
or the minus identity. Thus χ4(g) = χ6(g) = 1 and we must have χ2(g) =
χ3(g)2 = 1. This shows that g = [t0, t1, t3,−t3] = [−t0,−t1, t2,−t3] = β.

If F4 = 0, then we must have only χ2(g)3 = χ3(g)2 = 1. Since [−t0,−t1, t2,−t3]
is the identity transformation, we may assume that χ3(g) = 1 and represent
g by g = [t0, t1, ε3t3,±t3]. Thus G ∩Ker(r) = 〈β, α〉 ∼= 6.
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Conversely, start with a polyhedral group P such that its lift to a binary
polyhedral group P̄ acts on the variables T0, T1 leaving V (F4) and V (F6)
invariant. Let χ4, χ6 be the corresponding characters. Assume that there exist
character χ2, χ3 : P̄ → C∗ such that

χ2
0 = χ4χ1 = χ6 = χ3

1. (50)

Then g = [at0+bt1, ct0+t1] ∈ P̄ acts on S by [at0+bt1, ct0+t1, χ2(g)t2, χ3(t3)].
This transformation is the identity in Aut(S) if and only if g = [−t0,−t1]
and χ2(−1) = 1, χ3(−1) = −1. This shows that P̄ can be identified with a
subgroup of Aut(S) with −I2 = β if and only if χ3(−1) = −1. If χ3(−1) = 1,
then P can be identified with a subgroup of Aut(S) not containing β. In the
latter case,

r−1(P ) =

{
P × 〈β〉 if F4 6= 0
P × 〈β, α〉 otherwise.

In particular, if F4 = 0, there are three subgroups of Aut(S) which are mapped
surjectively to P .

In the former case

r−1(P ) =

{
P̄ if F4 6= 0,
P̄ × 〈α〉 otherwise.

Of course it could happen that neither P nor P̄ lifts to a subgroup of
Aut(S). In this case r−1(P ) ∼= 2P 6∼= P̄ or r−1(P ) ∼= 3× 2P (if F4 = 0).

In the following list we give a nontrivial subgroup Pof Aut(P1) as a group
of automorphisms of B and a smallest lift P̃ of P to a subgroup of r−1(P ).
If F4 6= 0, then we will see that P̃ = r−1(P ) or P̃ ∼= P . In the latter case
r−1(P ) ∼= 2 × P . If F4 = 0, and P̃ ∼= P , then r−1(P ) ∼= 6 × P̃ . Otherwise
r−1(P ) ∼= 3× P̃ .

Also we give generators of P̃ to Aut(S) as a group acting on t0, t1 with
determinant 1 and the Bertini involution as an element of the lift.

1. Cyclic groups P
(i) P = {1}, F4 = 0, r−1(P ) = 〈β, α〉 ∼= 6.
(ii)P ∼= 2, g = [it0,−it1,−t2, it3],

F4 = F2(T 2
0 , T

2
1 ) 6= 0, F6 = F3(T 2

0 , T
2
1 );

(iii)P ∼= 2, P̃ ∼= 4, g = [it0,−it1, t2, t3], β = g2,

F4 = a(T 4
0 + T 4

1 ) + bT 2
0 T

2
1 , F6 = T0T1F2(T 2

0 , T
2
1 );

(iv)P ∼= 2, P̃ = 4, g = [−t1, t0, t2, t3], β = g2,

F4 as in (iii), F6 = (T 2
0 + T 2

1 )(a(T 4
0 + T 4

1 ) + T0T1(bT0T1 + c(T 2
0 − T 2

1 ));



514 Igor V. Dolgachev and Vasily A. Iskovskikh

(v) P ∼= 2, g = [−t1, t0,−t2, it3],

F4 as in (iii), F6 = a(T 6
0 − T 6

1 ) + bT0T1(T 4
0 + T 4

1 );

(vi)P ∼= 3, g = [ε3t0, ε23t1, ε
2
3t2, t3],

F4 = T0(aT 3
0 + bT 3

1 ), F6 = F2(T 3
0 , T

3
1 );

(vii)P ∼= 3, g = [ε3t0, ε23t1, t2, t3],

F4 = aT 2
0 T

2
1 , F6 = F2(T 3

0 , T
3
1 );

(viii)P ∼= 4, g = [ε8t0, ε−1
8 t1, it2, ε

3
8t3],

F4 = aT 4
0 + bT 4

1 , F6 = T 2
0 (cT 4

0 + dT 4
1 );

(ix)P ∼= 4, P̃ ∼= 8, g = [ε8t0, ε−1
8 t1,−t2, t3], β = g4,

F4 = aT 2
0 T

2
1 , F6 = T0T1(T 4

0 + T 4
1 );

(x) P ∼= 5, g = [ε10t0, ε−1
10 t1, ε5t2, ε

3
10t3],

F4 = aT 4
0 , F6 = T0(T 5

0 + T 5
1 );

(xi)P ∼= 6, g = [ε12t0, ε−1
12 t1, ε6t2, it3],

F4 = aT 4
0 , F6 = bT 6

0 + T 6
1 , b 6= 0;

(xii)P ∼= 6, g = [ε12t0, ε−1
12 t1,−t2, it3],

F4 = aT 2
0 T

2
1 , F6 = T 6

0 + T 6
1 ;

(xiii)P ∼= 10, P̃ ∼= 20, g = [ε20t0, ε−1
20 t1, ε

8
10t2, ε

−1
10 t3], g

10 = β,

F4 = T 4
0 , F6 = T0T

5
1 ;

(xiv)P ∼= 12, g = [ε24t0, ε−1
24 t1, ε12t2, ε24t3],

F4 = T 4
0 , F6 = T 6

1 .

2. Dihedral groups
(i) P ∼= 22, P̃ ∼= D8, g1 = [it1, it0,−t2, it3], g2 = [−t1, t0,−t2, it3], β =

(g1g2)2, g2
1 = g2

2 = 1,

F4 = a(T 4
0 + T 4

1 ) + bT 2
0 T

2
1 , F6 = T0T1[c(T 4

0 + T 4
1 ) + dT 2

0 T
2
1 ];

(ii)P ∼= 22, P̃ ∼= Q8, g1 = [it1, it0, t2, t3], g2 = [−t1, t0, t2, t3], β = g2
1 = g2

2 ,

F4 = a(T 4
0 + T 4

1 ) + bT 2
0 T

2
1 , F6 = T0T1(T 4

0 − T 4
1 );
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(iii)P ∼= D6, g1 = [ε6t0, ε−1
6 t1, t2,−t3], g2 = [it1, it0,−t2, it3],

F4 = aT 2
0 T

2
1 , F6 = T 6

0 + T 6
1 + bT 3

0 T
3
1 ;

(iv)P ∼= D8, P̃ ∼= D16, g1 = [ε8t0, ε−1
8 t1,−t2, it3], g2 = [−t1, t0,−t2, it3],

g4
1 = β, g2

2 = 1,

F4 = aT 2
0 T

2
1 , F6 = T0T1(T 4

0 + T 4
1 );

(v) P ∼= D12, P̃ ∼= 2D12
∼= (2 × 6)•2, g1 = [ε12t0, ε−1

12 t1,−t2, it3], g2 =
[−t1, t0, t2, t3], g6

1 = 1, g2
2 = β,

F4 = aT 2
0 T

2
1 , F6 = T 6

0 + T 6
1 .

3. Other groups
(i) P ∼= A4, P̃ ∼= T , g1 = [ε78t0 + ε78t1, ε

5
8t0 + ε8t1,

√
2ε3t2, 2t3], g2 =

[it0,−it1, t2, t3], g3
1 = g2

2 = β,

F4 = T 4
0 + 2

√
−3T 2

0 T
2
1 + T 4

2 , F6 = T0T1(T 4
0 − T 4

1 ),

(ii)P ∼= O, P̃ ∼= T : 2, g1 = [ε78t0 + ε78t1, ε
5
8t0 + ε8t1,

√
2ε3t2, 2t3], g2 =

[ε8t0, ε−1
8 t1,−t2, it3], g3 = [−ε8t1, ε78t0,−t2, it3], g3

1 = g4
2 = β, g2

3 =
1, r−1(P ) = 3× Ō,

F4 = 0, F6 = T0T1(T 4
0 − T 4

1 ),

Table 6 gives the list of the full automorphism groups of Del Pezzo surfaces
of degree 1.

The following is the list of cyclic minimal groups 〈g〉 of automorphisms of
Del Pezzo surfaces V (F ) of degree 1.

1. Order 2
• A8

1 (the Bertini involution) g = [t0, t1, t2,−t3]

F = T 2
3 + T 3

2 + F4(T0, T1)T2 + F6(T0, T1),

2. Order 3
• 4A2 g = [t0, t1, ε3t2, t3]

F = T 2
3 + T 3

2 + F6(T0, T1),

3. Order 4
• 2D4(a1) g = [t0,−t1,−t2,±it3]

F = T 2
3 + T 3

2 + (aT 4
0 + bT 2

0 T
2
1 + cT 4

1 )T2 + T0T1(dT 4
0 + eT 4

1 ),

4. Order 5
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Type Order Structure F4 F6 Parameters

I 144 3× (T : 2) 0 T0T1(T
4
0 − T 4

1 )

II 72 3× 2D12 0 T 6
0 + T 6

1

III 36 6×D6 0 T 6
0 + aT 3

0 T 3
1 + T 6

1 a 6= 0

IV 30 30 0 T0(T
5
0 + T 5

1 )

V 24 T a(T 4
0 + αT 2

0 T 2
1 + T 4

1 ) T0T1(T
4
0 − T 4

1 ) α = 2
√
−3

VI 24 2D12 aT 2
0 T 2

1 T 6
0 + T 6

1 a 6= 0

VII 24 2× 12 T 4
0 T 6

1

VIII 20 20 T 4
0 T0T

5
1

IX 16 D16 aT 2
0 T 2

1 T0T1(T
4
0 + T 4

1 ) a 6= 0

X 12 D12 T 2
0 T 2

1 T 6
0 + aT 3

0 T 3
1 + T 6

1 a 6= 0

XI 12 2× 6 0 G3(T
2
0 , T 2

1 )

XII 12 2× 6 T 4
0 aT 6

0 + T 6
1 a 6= 0

XIII 10 10 T 4
0 T0(aT 5

0 + T 5
1 ) a 6= 0

XIV 8 Q8 T 4
0 + T 4

1 + aT 2
0 T 2

1 bT0T1(T
4
0 − T 4

1 ) a 6= 2
√
−3

XV 8 2× 4 aT 4
0 + T 4

1 T 2
0 (bT 4

0 + cT 4
1 )

XVI 8 D8 T 4
0 + T 4

1 + aT 2
0 T 2

1 T0T1(b(T
4
0 + T 4

1 ) + cT 2
0 T 2

1 ) b 6= 0

XVII 6 6 0 F6(T0, T1)

XVIII 6 6 T0(aT 3
0 + bT 3

1 ) cT 6
0 + dT 3

0 T 3
1 + T 6

1

XIX 4 4 G2(T
2
0 , T 2

1 T0T1F2(T
2
0 , T 2

1 )

XX 4 22 G2(T
2
0 , T 2

1 G3(T
2
0 , T 2

1 )

XXI 2 2 F4(T0, T1) F6(T0, T1)

Table 8. Groups of automorphisms of Del Pezzo surfaces of degree 1

• 2A4 g = [t0, ε5t1, t2, t3]

F = T 2
3 + T 3

2 + aT 4
0 T2 + T0(bT 5

0 + T 5
1 ),

5. Order 6
• E6(a2) +A2 g = [t0,−t1, ε3t2, t3]

F = T 2
3 + T 3

2 +G3(T 2
0 , T

2
1 ),

• E7(a4) +A1 g = [t0, ε3t1, t2,−t3]

F = T 2
3 + T 3

2 + (T 4
0 + aT0T

3
1 )T2 + bT 6

0 + cT 3
0 T

3
1 + dT 6

1 ,

• 2D4 g = [ε6t0, ε−1
6 t1, t2, t3]

F = T 2
3 + aT 2

0 T
2
1 T2 + bT 6

0 + cT 3
0 T

3
1 + eT 6

1 ,

• E8(a8) g = [t0, t1, ε3t2,−t3]

F = T 2
3 + T 3

2 + F6(T0, T1),

• A5 +A2 +A1 g = [t0, ε6t1, t2, t3]

F = T 2
3 + T 3

2 + aT 4
0 T2 + T 6

0 + bT 6
1 ,
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6. Order 8
• D8(a3) g = [it0, t1,−it2,±ε8t3]

F = T 2
3 + T 3

2 + aT 2
0 T

2
1 T2 + T0T1(T 4

0 + T 4
1 ),

7. Order 10
• E8(a6) g = [t0, ε5t1, t2,−t3]

F = T 2
3 + T 3

2 + aT 4
0 T2 + T0(bT 5

0 + T 5
1 ),

8. Order 12
• E8(a3) g = [−t0, t1, ε6t2, it3]

F = T 2
3 + T 3

2 + T0T1(T 4
0 + aT 2

0 T
2
1 + T 4

1 ),

9. Order 15
• E8(a5) g = [t0, ε5t1, ε3t2, t3]

F = T 2
3 + T 3

2 + T0(T 5
0 + T 5

1 ),

10. Order 20
• E8(a2) g = [t0, ε10t1,−t2, it3]

F = T 2
3 + T 3

2 + aT 4
0 T2 + T0T

5
1 ,

11. Order 24
• E8(a1) g = [it0, t1, ε12t2, ε8t3]

F = T 2
3 + T 3

2 + T0T1(T 4
0 + T 4

1 ),

12. Order 30
• E8 g = [t0, ε5t1, ε3t2,−t3]

F = T 2
3 + T 3

2 + T0(T 5
0 + T 5

1 ).

To list all minimal subgroups of Aut(S) is very easy. We know that any
subgroup in Ker(r) contains contains one of the elements α, β, αβ which are
all minimal of types 8A1, 4A2, E8(a8). So, a subgroup is not minimal only if
its image P in Aut(B) can be lifted isomorphically to Aut(S).

We will use the following lemma.

Lemma 6.18. Let P ⊂ Aut(P1) and G ⊂ Aut(S) be contained in r−1(P ).
Then G is a minimal group unless G = P̃ ∼= P and G is a non-minimal cyclic
group or non-minimal dihedral group D6.

Proof. It follows from above classification of possible subgroups of Aut(B)
and its lifts to Aut(S) that any non-isomorphic lift contains β or α, or βα
which generate minimal cyclic groups. If the lift is isomorphic to P then P is
either a cyclic group or P ∼= D6. The group D6 contains 3 elements of type
4A1 and 2 elements of type 2A2. Adding up the traces we see that the group
is not minimal.
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Let us classify minimal groups of automorphisms of a Del Pezzo surface of
degree 1. As in the previous cases, to find a structure of such groups is enough
to consider the types of surfaces which are not specialized to surfaces of other
types. The following notation Type A→Type B indicates that a surface of
type A specializes to a surface of type B.

V, IX,XIV,XV I,XV II,XIX,XXI → I,

III, V I,X,XI,XII,XV I,XV II,XV III,XX,XXI → II

XIII,XXI → IV, XIII,XXI → V III,

XII,XX,XXI → V II, XX,XI → XV.

It remains to consider surfaces of types

I, II, IV, V II, V III, XV.

Type I. P ∼= S4.
Possible conjugacy classes of subgroupsH are {1}, 2, 2, 3, 22, 4, D8, D6, A4, S4.

Groups of order 2 have two conjugacy classes in P represented by [it0,−it1]
and [−t1, t0]. The groups are realized in cases (iii) and (iv). None of them
lifts isomorphically. An cyclic group of order 3 is generated by a non-minimal
element realized in case (vii). Its isomorphic minimal lift is not minimal. A
cyclic group of order 4 does not admit an isomorphic lift. The dihedral sub-
group 22 is of type (ii). This information, together with Lemma 6.18 allows
us to classify all minimal subgroups.

• P = {1}: 〈βα〉 ∼= 6, 〈α〉 ∼= 3, 〈α〉 ∼= 2;
• P = 2: 4, 12;
• P = 2: 4, 12;
• P = 3: 32, 3× 6;
• P = 22: Q8, Q8 × 3;
• P = 22: D8, D8 × 3;
• P = 4: 8, 8× 3;
• P = D8: D16, D8 × 3;
• P = D6: D6 × 2, D6 × 3, D6 × 6;
• P = A4: T , T × 3;
• P = S4: T : 2, 3× (T : 2).

Surfaces specializing to a surface of type I have the following minimal
subgroups.

V: 4, 6, Q8, T .
IX: 4(2), 8, D16.
XIV: 4, Q8.
XVI: D8.
XVII:2, 3, 6.
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XIX: 2, 4.
XXI: 2.
Type II: P = D12.
Possible subgroups are {1}, 2, 2, 3, 22, 6, D6, D12. Cyclic subgroups of order

2, 3 and 6 admit isomorphic non-minimal lifts. All these groups are not mini-
mal. There are two conjugacy classes of subgroups of order 2 in P represented
by [it0,−it1] and [−t1, t0]. One subgroups lifts isomorphically, other one does
not. The cyclic group of order 6 admits an isomorphic lift and not minimal.
The dihedral group D6 admits a non-minimal isomorphic lift.

• P = {1}: 〈βα〉 ∼= 6, 〈α〉 ∼= 3, 〈α〉 ∼= 2;
• P = 2: 4, 12;
• P = 2: 22, 22 × 3, 6;
• P = 3: 32, 32 × 2;
• P = 22: Q8, Q8 × 3;
• P = 6: 2× 6,
• P = D6: 2×D6, D6 × 3, D6 × 6;
• P = D12: 2D12, 3× 2D12.

Surfaces specializing to a surface of type II have the following subgroups:
III: 4, 12, 22, 22 × 3, 6, 32, 32 × 2, Q8, Q8 × 3, 2×D6, D6 × 3, D6 × 6.
VI: 4, 22, 32, Q8, 2× 6, 2×D6, 2D12

∼= (2× 6)•2.
X: 2, 2×D6.
XI: 2, 3, 6, 22, 2× 6.
XII: 6× 2, 6, 22, 2× 6.
XVI: 2, 4, D8.
XVII: 2, 3, 6.
XVIII: 2, 6.
XX: 2, 22.
XXI: 2.
Type IV: P = 5 This is easy. We have P ∼= 5. It admits an isomorphic lift

to a non-minimal subgroup.

• P = {1}: 〈βα〉 ∼= 6, 〈α〉 ∼= 3, 〈α〉 ∼= 2;
• P = 5: 5, 10, 15, 30;

Surfaces specializing to a surface of type IV have the following subgroups:
XIII: 5, 10.
XXI: 2.
Type VII: P ∼= 12.

• P = 2: 22.
• P = 3: 6;
• P = 4: 2× 4;
• P = 6: 2× 6;
• P = 12: 2× 12.
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Surfaces specializing to a surface of type VII have the following subgroups:
XII: 2, 6, 2× 6. XX: 2, 22.
XXI: 2.
Type VIII: P ∼= 10.

• P = {1}: 〈βα〉 ∼= 6, 〈α〉 ∼= 3, 〈α〉 ∼= 2;
• P = 2: 22.
• P = 5: 10;
• P = 10: 20.

Surfaces specializing to a surface of type VIII have the following subgroups:
XIII: 5, 10.
XXI: 2.
Type XV: P ∼= 4.

• P = {1}: 〈βα〉 ∼= 6, 〈α〉 ∼= 3, 〈α〉 ∼= 2;
• P = 2: 22.
• P = 4: 2× 4.

Surfaces specializing to a surface of type VIII have the following subgroups:
XX: 2, 22.
XXI: 2.

7 Elementary links and factorization theorem

7.1 Noether-Fano inequality

Let |d`−m1x1 − · · · −mNxN | be a homaloidal net in P2. The following is a
well-known classical result.

Lemma 7.1. (Noether’s inequality) Assume d > 1,m1 ≥ · · · ≥ mN ≥ 0.
Then

m1 +m2 +m3 ≥ d+ 1,

and the equality holds if and only if either m1 = · · · = mN or m1 = n−1,m2 =
· · · = mN .

Proof. We have

m2
1 + · · ·+m2

N = d2 − 1, m1 + · · ·+mN = 3d− 3.

Multiplying the second equality by m3 and subtracting from the first one, we
get

m1(m1 −m3) +m2(m2 −m3)−
∑
i≥4

mi(m3 −mi) = d2 − 1− 3m3(d− 1).
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¿From this we obtain

(d−1)(m1+m2+m3−d−1) = (m1−m3)(d−1−m1)+(m2−m3)(d−1−m2)+

+
∑
i≥4

mi(m3 −mi).

Since d− 1−mi ≥ 0, this obviously proves the assertion.

Corollary 7.2.
m1 > d/3.

Let us generalize Corollary 7.2 to birational maps of any rational surfaces.
The same idea works even for higher-dimensional varieties. Let χ : S → S′ be
a birational map of surfaces. Let σ : X → S, φ : X → S′ be its resolution. Let
|H ′| be a linear system on S′ without base points. Let

φ∗(H ′) ∼ σ∗(H)−
∑

i

miEi

for some divisor H on S and exceptional curves Ei of the map σ.

Theorem 7.3. (Noether-Fano inequality) Assume that there exists some in-
teger m0 ≥ 0 such that |H ′ +mKS′ | = ∅ for m ≥ m0. For any m ≥ m0 such
that |H +mKS | 6= ∅ there exists i such that

mi > m.

Proof. We know that KX = σ∗(KS) +
∑

i Ei. Thus we have the equality in
Pic(X)

φ∗(H ′) +mKX = (σ∗(H +mKS)) +
∑

(m−mi)Ei.

Applying f∗ to the left-hand side we get the divisor class H ′ +mKS′ which,
by assumption, cannot be effective. Since |σ∗(H +mKS)| 6= ∅, applying φ∗ to
the right-hand side, we get the sum of an effective divisor and the image of
the divisor

∑
i(m−mi)Ei. If all m−mi are nonnegative, it is also an effective

divisor, and we get a contradiction. Thus there exists i such that m−mi < 0.

Example 7.4. Assume S = S′ = P2, H = d` and H ′ = `. We have |H +
KS′ | = | − 2`| = ∅. Thus we can take m0 = 1. If d ≥ 3, we have for any
1 ≤ a ≤ d/3, |H ′ + aKS | = |(d − 3a)`| 6= ∅. This gives mi > d/3 for some i.
This is Corollary 7.2.

Example 7.5. Let χ : S− → S′ be a birational map of Del Pezzo surfaces.
Assume that S′ is not a quadric or the plane. Consider the complete linear
system H ′ = |−KS′ |. Then |H ′+mKS′ | = ∅ for m ≥ 2. Let χ−1(H ′) = |D−η|
be its proper transform on S. Choose a standard basis (e0, . . . , ek) in Pic(S)
corresponding to the blow-up S → P2. Since KS = −3e0 + e1 + · · · + ek,
we can write χ−1(H ′) = | − aKS −

∑
mixi|, where a ∈ 1

3Z. Assume that
χ∗(H ′) = −aKS . Then there exists a point with multiplicity ≥ a if a > 1 that
we assume.
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Remark 7.6. The Noether inequality is of course well-known (see, for exam-
ple, [2], [34]). We give it here to express our respect of this important and
beautiful result of classical algebraic geometry. Its generalization from The-
orem 7.3 is also well-known (see [38], 1.3). Note that the result can be also
applied to G-equivariant maps χ provided that the linear system |H ′| is G-
invariant. In this case the linear system |H − η| is also G-invariant and the
bubble cycle η =

∑
mixi consists of the sum of G-orbits.

The existence of base points of high multiplicity in the linear system |H −
η| = χ−1(H ′) follows from the classical theory of termination of the adjoint
system for rational surfaces which goes back to G. Castelnuovo. Nowadays
this theory has an elegant interpretation in the Mori theory which we give in
the next section.

7.2 Elementary links

We will be dealing with minimal Del Pezzo G-surfaces or minimal conic bun-
dles G-surfaces. In the G-equivariant version of the Mori theory they are
interpreted as extremal contractions φ : S → C, where C = pt is a point in
the first case and C ∼= P1 in the second case. They are also two-dimensional
analogs of rational Mori G-fibrations.

A birational G-map between the Mori fibrations are diagrams

S

φ

��

χ //___ S′

φ′

��
C C ′

(51)

which in general do not commute with the fibrations. These maps are decom-
posed into elementary links. These links are divided into the four following
types.

• Links of type I:

They are commutative diagrams of the form

S

φ

��

Z = S′

φ′

��

σoo

C = pt C ′ = P1αoo

(52)

Here σ : Z → S is the blow-up of a G-orbit, S is a minimal Del Pezzo surface,
φ′ : S′ → P1 is a minimal conic bundle G-fibration, α is the constant map.
For example, the blow-up of a G-fixed point on P2 defines a minimal conic
G-bundle φ′ : F1 → P1 with a G-invariant exceptional section.

• Links of type II:
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They are commutative diagrams of the form

S

φ

��

Z
σoo τ // S′

φ′

��
C = C ′

(53)

Here σ : Z → S, τ : Z → S′ are the blow-ups of G-orbits such that
rank Pic(Z)G = rank Pic(S)G + 1 = rank Pic(S′)G + 1, C = C ′ is either
a point or P1. An example of a link of type II is the Geiser (or Bertini) in-
volution of P2, where one blows up 7 (or 8) points in general position which
form one G-orbit. Another frequently used link of type II is an elementary
transformation of minimal ruled surfaces and conic bundles.

• Links of type III:

These are the birational maps which are the inverses of links of type I.

• Links of type IV:

They exist when S has two different structures of G-equivariant conic bundles.
The link is the exchange of the two conic bundle structures

S

φ

��

= S′

φ′

��
C C ′

(54)

One uses these links to relate elementary links with respect to one conic
fibration to elementary links with respect to another conic fibration. Often the
change of the conic bundle structures is realized via an involution in Aut(S),
for example, the switch of the factors of S = P1 × P1 (see the following
classification of elementary links).

7.3 The factorization theorem

Let χ : S− → S′ be a G-equivariant birational map of minimal G-surfaces.
We would like to decompose it into a composition of elementary links. This
is achieved with help of G-equivariant theory of log-pairs (S,D), where D is
a G-invariant Q-divisor on S. It is chosen as follows. Let us fix a G-invariant
very ample linear systemH ′ on S′. If S′ is a minimal Del Pezzo surface we take
H′ = |−a′KS′ |, a′ ∈ Z+. If S′ is a conic bundle we take H′ = |−a′KS′ +b′f ′|,
where f ′ is the class of a fibre of the conic bundle, a′, b′ are some appropriate
positive integers.

Let H = HS = χ−1(H′) be the proper transform of H′ on S. Then

H = | − aKS −
∑

mxx|,
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if S is a Del Pezzo surface, a ∈ 1
2Z+ ∪ 1

3Z+, and

H = | − aKS + bf −
∑

mxx|,

if S is a conic bundle, a ∈ 1
2Z+, b ∈ 1

2Z. The linear system H is G-invariant,
and the 0-cycle

∑
mxx is a sum of G-orbits with integer multiplicities. One

uses the theory of log-pairs (S,D), where D is a general divisor from the linear
system H, by applying some “untwisting links” to χ in order to decrease the
number a, the algebraic degree of H. Since a is a rational positive number
with bounded denominator, this process terminates after finitely many steps
(see [21],[38]).

Theorem 7.7. Let f : S− → S′ be a birational map of minimal G-surfaces.
Then χ is equal to a composition of elementary links.

The proof of this theorem is the same as in the arithmetic case ([38],
Theorem 2.5). Each time one chooses a link to apply and the criterion used
for termination of the process is based on the following version of Noether’s
inequality in the Mori theory.

Lemma 7.8. In the notation from above, if mx ≤ a for all base points x of
H and b ≥ 0 in the case of conic bundles, then χ is an isomorphism.

The proof of this lemma is the same as in the arithmetic case ([38], Lemma
2.4).

We will call a base points x of H with mx > a a maximal singularity of
H. It follows from 3.2 that if H has a maximal singularity of height > 0,
then it also has a maximal singularity of height 0. We will be applying the
“untwisting links” of types I-III to these points. If φ : S → P1 is a conic bundle
with all its maximal singularities untwisted with helps of links of type II, then
either the algorithm terminates, or b < 0. In the latter case the linear system
|KS + 1

aH| = |
b
af | is not nef and has canonical singularities (i.e. no maximal

singularities). Applying the theory of log-pairs to the pair (S, | baf |) we find
an extremal contraction φ′ : S → P1, i.e. another conic bundle structure on
S. Rewriting H in a new basis −KS , f

′ we find the new coefficient a′ < a.
Applying the link of type IV relating φ and φ′, we start over the algorithm
with decreased a.

It follows from the proofs of Theorem 7.7 and Lemma 7.8 that all maximal
singularities of H are in general position in the following sense.

(i) If S is a minimal Del Pezzo G-surface, then the blow-up of all maximal
singularities of H is a Del Pezzo surface (of course this agrees with the
description of points in general position at the end of section 3.8).

(ii) If φ : S → P1 is a conic bundle, then none of the maximal singularities lie
on a singular fibre of φ and no two lie on one fibre.
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The meaning of these assertions is that the linear system |H| has no fixed
components. In the case of Del Pezzo surfaces with an orbit of maximal sin-
gular points we can find a link by blowing up this orbit to obtain a surface Z
with Pic(Z)G ∼= Z⊕Z and two extremal rays. By applying Kleiman’s criterion
this implies that −KZ is ample. The similar situation occurs in the case of
conic bundles (see [38], Comment 2).

Let S be a minimal Del Pezzo G-surface of degree d. Let us write HS =
| − aKS −

∑
mκκ| as in (16).

Lemma 7.9. Let κ1, . . . , κn be the G-orbits of maximal multiplicity. Then
n∑

i=1

d(κi) < d.

Proof. Let D1, D2 ∈ HS be two general divisors from HS . Since HS has no
fixed components, we have

0 ≤ D1 ·D2 = a2d−
∑

m2
κd(κ) ≤ a2d−

n∑
i=1

m2
κi
d(κi) =

a2(d−
n∑

i=1

d(κi))−
n∑

i=1

(m2
κi
− a2)d(κi).

It follows from Example 7.5 that mκi
> a for all i = 1, . . . , n. This implies

that d >
∑n

i=1 d(κi).

Definition 7.10. A minimal Del Pezzo G-surface is called superrigid (resp.
rigid) if any birational G-map χ : S− → S′ is a G-isomorphism (resp. there
exists a birational G-automorphism α : S− → S such that χ ◦ α is a G-
isomorphism).

A minimal conic bundle φ : S → P1 is called superrigid (resp. rigid) if
for any birational G-map χ : S− → S′, where φ′ : S′ → P1 is a minimal
conic bundle, there exists an isomorphism δ : P1 → P1 such that the following
diagram is commutative

S

φ

��

χ //___ S′

φ′

��
P1 δ // P1

(55)

(resp. there exists a birational G-automorphism α : S− → S′ such that the
diagram is commutative after we replace χ with χ ◦ α).

Applying Lemma 7.8 and Lemma 7.9, we get the following.

Corollary 7.11. Let S be a minimal Del Pezzo G-surface of degree d = K2
S.

If S has no G-orbits κ with d(κ) < d, then S is superrigid. In particular, a
Del Pezzo surface of degree 1 is always superrigid and a Del Pezzo surface of
degree 2 is superrigid unless G has a fixed point.

A minimal conic G-bundle with K2
S ≤ 0 is superrigid.
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The first assertion is clear. To prove the second one, we untwist all maximal
base points of HS with help of links of type II to get a conic bundle φ′ :
S′ → P1 with b′ < 0. Since H2

S′ = a2K2
S′ + 4ab′ −

∑
m′

x
2 ≥ 0 and K2

S′ =
K2

S ≤ 0, 4ab′ < 0, we get a contradiction with Lemma 7.8. Thus χ after
untwisting maximal base points terminates at an isomorphism (see [35], [36],
[38], Theorem 1.6).

7.4 Classification of elementary links

Here we consider an elementary link f : S− → S′ defined by a resolution
(S σ← Z

τ→ S′). We take HS′ to be the linear system | − aKS′ | if S′ is a Del
Pezzo surface and |f | if S′ is a conic bundle, where f is the divisor class of a
fibre. It is assumed that the point which we blow up are in general position
in sense of the previous subsection.

We denote by DPk (resp. Ck) the set of isomorphism classes of minimal
Del Pezzo surfaces (resp. conic bundles) with k = K2

S (resp. k = 8−K2
S).

Proposition 7.12. Let S, S′ be as in Link I of type I. The map σ : Z = S′ →
S is the blowing up of a G-invariant bubble cycle η with ht(η) = 0 of some
degree d. The proper transform of the linear system |f | on S′ is equal to the
linear system HS = | − aKS −mη|. Here f is the class of a fibre of the conic
bundle structure on S′. The following cases are possible:

1. K2
S = 9
• S = P2, S′ = F1, d = 1,m = 1, a = 1

3 .
• S = P2, S′ ∈ C3, d = 4,m = 1, a = 2

3 .
2. K2

S = 8
• S = F0, π : S′ → P1 a conic bundle with k = 2, d = 2, m = 1, a = 1

2 .
3. K2

S = 4
• S ∈ DP4, p : S′ → P1 a conic bundle with f = −KS′ − l, where l is a

(-1)-curve, d = a = 1,m = 2.

Proof. Let HS = |−aKS−bη|, where η is a G-invariant bubble cycle of degree
d. We have

(−aKS − bη)2 = a2K2
S − b2d = 0, (−aKS − bη,−KS) = aK2

S − bd = 2.

Let t = b/a. We have

(td)2 = dK2
S , K2

S − td = 2/a > 0.

The second inequality, gives td < K2
S , hence d < K2

S . Giving the possible
values for K2

S and using that a ∈ 1
3Z, we check that the only possibilities are:

(K2
S , d, t) = (9, 1, 3), (8, 2, 2), (4, 1, 2), (4, 2, 1).

This gives our cases and one extra case (4, 2, 1). In this case a = 2 and
HS = | − 2KS − 2x1| contradicting the primitiveness of f . Note that this case
is realized in the case when the ground field is not algebraically closed (see
[38]).
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Proposition 7.13. Let S, S′ be as in Link of type II. Assume that S, S′ are
both minimal Del Pezzo surfaces. Then (S σ← Z

τ→ S′), where σ is the blow-up
of a G-invariant bubble cycle η with ht(η) = 0 and some degree d. The proper
transform of the linear system | −KS′ | on S is equal to | − aKS −mη|. And
similarly defined d′,m′, a′ for τ . The following cases are possible:

1. K2
S = 9
• S′ ∼= S = P2, d = d′ = 8,m = m′ = 18, a = a′ = 17 (S ← Z → S′) is

a minimal resolution of a Bertini involution).
• S′ ∼= S = P2, d = d′ = 7,m = m′ = 9, a = a′ = 8 (S ← Z → S′) is a

minimal resolution of a Geiser transformation).
• S′ ∼= S = P2, d = d′ = 6,m = m′ = 6, a = a′ = 5 (S ← Z → S′) is

a minimal resolution of a Cremona transformation given by the linear
system |5`− 2p1 − 2p2 − 2p3 − 2p4 − 2p5|,

• S ∼= P2, S′ ∈ DP5, d = 5,m′ = 6, a = 5
3 , d

′ = 1,m = 2, a′ = 3.
• S ∼= S′ = P2, d = d′ = 3,m = m′ = 1, a = a′ = 2

3 , (S ← Z → S′) is a
minimal resolution of a standard quadratic transformation.

• S = P2, S′ = F0, d = 2,m = 3, a′ = 3
2 , d

′ = 1, a = 4
3 .

2. K2
S = 8
• S ∼= S′ ∼= F0, d = d′ = 7, a = a′ = 15,m = m′ = 16.
• S ∼= S′ ∼= F0, d = d′ = 6, a = a′ = 7,m = m′ = 8.
• S ∼= F0, S

′ ∈ DP5, d = 5, d′ = 2, a = 5
2 ,m = 4, a′ = 4,m′ = 6.

• S ∼= F0, S
′ ∼= F0, d = d′ = 4, a = a′ = 3,m = m′ = 4.

• S ∼= F0, S
′ ∈ DP6, d = 3, d′ = 1, a = 3

2 ,m = 2,m′ = 4, a′ = 2.
• S ∼= F0, S

′ ∼= P2, d = 1, d′ = 2, a = 3
2 ,m = 3, a′ = 4

3 ,m
′ = 2. This link

is the inverse of the last case from the preceding list.
3. K2

S = 6
• S ∼= S′ ∈ DP6, d = d′ = 5, a = 11,m = 12.
• S ∼= S′ ∈ DP6, d = d′ = 4, a = 5,m = 6.
• S ∼= S′ ∈ DP6, d = d′ = 3, a = 3,m = 4.
• S ∼= S′ ∈ DP6, d = d′ = 2, a = 2,m = 3.
• S ∈ DP6, S

′ = F0, d = 1, d′ = 3, a = 3
2 ,m = 2. This link is the inverse

of the link from the preceding list with S′ ∈ DP6, d = 3.
4. K2

S = 5
• S ∼= S′ ∈ DP5, d = d′ = 4,m = m′ = 10, a = a′ = 5..
• S = S′ ∈ DP5, d = d′ = 3,m = m′ = 5, a = a′ = 4.
• S ∈ DP5, S

′ = F0, d = 2, d′ = 5. This link is inverse of the link with
S = F0, S

′ ∈ DP5, d = 5.
• S ∈ DP5, S

′ = P2, d = 1, d′ = 5. This link is inverse of the link with
S = P2, S′ ∈ DP5, d = 5.

5. K2
S = 4
• S ∼= S′ ∈ DP4, d = d′ = 3. This is an analog of the Bertini involution.
• S ∼= S′ ∈ DP4, d = d′ = 2. This is an analog of the Geiser involution.

6. K2
S = 3
• S ∼= S′ ∈ DP3, d = d′ = 2. This is an analog of the Bertini involution.
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• S ∼= S′ ∈ DP3, d = d′ = 1. This is an analog of the Geiser involution.
7. K2

S = 2
• S = S′ ∈ DP2, d = d′ = 1. This is an analog of the Bertini involution.

Proof. Similar to the proof of the previous proposition, we use that

H2
S = a2K2

S − b2d = K2
S′ , aK2

S − bd = K2
S′ ,

H2
S′ = a′2K2

S′ − b′2d = K2
S , a′K2

S − b′d = K2
S .

Since the link is not a biregular map, by Noether’s inequality we have a >
1, a′ > 1, b > a, b′ > a′. This implies

d < K2
S −

1
a
K2

S′ , d
′ < K2

S′ −
1
a′
K2

S .

It is not difficult to list all solutions. For example, assume K2
S = 1. Since d

is a positive integer, we see that there are no solutions. If K2
S = 2, we must

have d = d′ = 1.

Proposition 7.14. Let S, S′ be as in Link of type II. Assume that S, S′ are
both minimal conic bundles. Then (S ← Z → S′) is a composition of ele-
mentary transformations elmx1 ◦ . . .◦elmxs , where (x1, . . . , xs) is a G-orbit of
points not lying on a singular fibre with no two points lying on the same fibre.

We skip the classification of links of type III. They are the inverses of links
of type I.

Proposition 7.15. Let S, S′ be as in Link of type IV. Recall that they consist
of changing the conic bundle structure. The following cases are possible:

• K2
S = 8, S′ = S, f ′ = −KS′−f , it is represented by a switch automorphism;

• K2
S = 4, S′ = S, f ′ = −KS′ − f ;

• K2
S = 2, S′ = S, f ′ = −2KS′ − f ; it is represented by a Geiser involution;

• K2
S = 1, S′ = S, f ′ = −4KS′ − f ; it is represented by a Bertini involution;

Proof. In this case S admits two extremal rays and rank Pic(S)G = 2 so that
−KS is ample. Let |f ′| be the second conic bundle. Write f ′ ∼ −aKS + bf .
Using that f ′2 = 0, f ·KS = f ′ ·KS = −2, we easily get b = −1 and aK2

S = 4.
This gives all possible cases from the assertion.

8 Birational classes of minimal G-surfaces

8.1

Let S be a minimal G-surface S and d = K2
S . We will classify all isomorphism

classes of (S,G) according to the increasing parameter d. Since the number
of singular fibres of a minimal conic bundle is at least 4, we have d ≤ 4 for
conic bundles.
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• d ≤ 0.

By Corollary 7.11, S is a superrigid conic bundle with k = 8− d singular
fibres. The number k is a birational invariant. The group G is of de Jonquiéres
type and its conjugacy class in Cr(2) is determined uniquely by Theorem 5.7
or Theorem 5.3.

Also observe that if φ : S → P1 is an exceptional conic bundle and G0 =
Ker(G → O(Pic(S)) is non-trivial, then no links of type II is possible. Thus
the conjugacy class of G is uniquely determined by the isomorphism class of
S.

• d = 1, S is a Del Pezzo surface.

By Corollary 7.11, the surface S is superrigid. Hence the conjugacy class of
G is determined uniquely by its conjugacy class in Aut(S). All such conjugacy
classes are listed in subsection 6.7.

• d = 1, S is a conic bundle.

Let φ : S → P1 be a minimal conic bundle on S. It has k = 7 singular
fibres. If −KS is ample, i.e. S is a (non-minimal) Del Pezzo surface, then the
center of Aut(S) contains the Bertini involution β. We know that β acts as
−1 on RS , thus β does not act identically on Pic(S)G, hence β 6∈ G. Since
k is odd, the conic bundle is not exceptional, so we cam apply Theorem 5.7,
Case (2). It follows that G must contain a subgroup isomorphic to 22, adding
β we get that S is a minimal Del Pezzo 23-surface of degree 1. However, the
classification shows that there are no such surfaces.

Thus −KS is not ample. It follows from Proposition 7.13 that the structure
of a conic bundle on S is unique. Any other conic bundle birationally G-
isomorphic to S is obtained from S by elementary transformations with G-
invariant set of centers.

• d = 2, S is a Del Pezzo surface.

By Corollary 7.11, S is superrigid unless G has a fixed point on S. If
χ : S− → S′ is a birational G-map, then HS has only one maximal base point
and it does not lie on a (−1)-curve. We can apply an elementary link Z →
S,Z → S of type II which together with the projections S → P2 resolves the
Bertini involution. These links together with the G-automorphisms (including
the Geiser involution) generate the group of birational G-automorphisms of
S (see [38], Theorem 4.6). Thus the surface is rigid. The conjugacy class of G
in Cr(2) is determined uniquely by the conjugacy class of G in Aut(S). All
such conjugacy classes are listed in Table 7 and Theorem 6.17.

• d = 2, φ : S → P1 is a conic bundle.

If −KS is ample, then φ is not exceptional. The center of Aut(S) contains
the Geiser involution γ. Since γ acts non-trivially on Pic(S)G = Z2, we see
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that γ 6∈ G. Applying γ we obtain another conic bundle structure. In other
words, γ defines an elementary link of type IV. Using the factorization theorem
we show that the group of birational G-automorphisms of S is generated by
links of type II, the Geiser involution, and G-automorphisms (see [36], [39],
Theorem 4.9). Thus φ : S → P1 is a rigid conic bundle.

If S is not a Del Pezzo surface, φ could be an exceptional conic bundle
with g = 2. In any case the group G is determined in Theorem 5.3. We do
not know whether S can be mapped to a conic bundle with −KS ample (see
[36]).

Applying Proposition 5.2, we obtain that any conic bundle with d ≥ 3 is
a non-minimal Del Pezzo surface, unless d = 4 and S is an exceptional conic
bundle. In the latter case, the group G can be found in Theorem 5.3. It is not
known whether it is birationally G-isomorphic to a Del Pezzo surface. It is
true in the arithmetic case.

• d = 3, S is a minimal Del Pezzo surface.

The classification of elementary links shows that S is rigid. Birational G-
automorphisms are generated by links of type (6) from Proposition 7.12. The
conjugacy class of G in Cr(2) is determined by the conjugacy class of G in
Aut(S).

• d = 3, S is a minimal conic bundle.

Since k = 5 is odd, G has 3 commuting involutions, the fixed-point locus of
one of them must be a rational 2-section of the conic bundle. It is easy to
see that it is a (−1)-curve C from the divisor class −KS − f . The other two
fixed-point curves are of genus 2. The group G leaves the curve C invariant.
Thus blowing it down, we obtain a minimal Del Pezzo G-surface S′ of degree
4. The group G contains a subgroup isomorphic to 22. Thus G can be found
in the list of minimal groups of degree 4 Del Pezzo surfaces with a fixed point.
For example, the group 22 has 4 fixed points.

• d = 4, S is a minimal Del Pezzo surface.

If SG = ∅, then S admits only self-links of type II, so it is rigid or super-
rigid. The conjugacy class of G in Cr(2) is determined by the conjugacy class
of G in Aut(S) and we can apply Theorem 6.9. If x is a fixed point of G, then
we can apply a link of type I, to get a minimal conic bundle with d = 3. So,
all groups with SG 6= ∅ are conjugate to groups of de Jonquiéres type realized
on a conic bundle S ∈ C5.

• d = 4, S is a minimal conic bundle.

Since k = 4, it follows from Lemma 5.1 that either S is an exceptional conic
bundle with g = 1, or S is a Del Pezzo surface with two sections with self-
intersection −1 intersecting at one point. In the latter case, S is obtained by
regularizing a de Jonquéres involution IH3 (see section 2.3). In the case when
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S is an exceptional conic bundle the groups of automorphisms are described
in Example 5.4. They are minimal if and only if the kernel of the map G →
PGL(2) contains an involution not contained in G0 = Ker(G→ O(Pic(S)). If
G0 is not trivial, then no elementary transformation is possible. So, S is not
birationally isomorphic to a Del Pezzo surface.

• d = 5, S is a Del Pezzo surface, G ∼= 5.

Let us show that (S,G) is birationally isomorphic to (P2, G). Since rational
surfaces are simply-connected, G has a fixed point x on S. The anti-canonical
model of S is a surface of degree 5 in P5. Let P be the tangent plane of S at
x. The projection from P defines a birational G-equivariant map S− → P2

given by the linear system of anti-canonical curves with double point at x. It
is an elementary link of type II.

• d = 5, S is a Del Pezzo surface, G ∼= 5 : 2, 5 : 4.

The cyclic subgroup of order 5 of G has two fixed points on S. This im-
mediately follows from the Lefschetz fixed-point formula. Since it is normal
in G, the groups G has an orbit κ with d(κ) = 2. Using an elementary link of
type II with S′ = F0, we obtain that G is conjugate to a group acting on F0.

• d = 5, S is a Del Pezzo surface, G ∼= A5, S5.

It is clear that SG = ∅ since otherwise G admits a faithful 2-dimensional
linear representation. It is known that it does not exist. Since A5 has no
index 2 subgroups G does not admit orbits κ with d(κ) = 2. The same is
obviously true for G = S5. It follows from the classification of links that
(S,G) is superrigid.

• d = 6.

One of the groups from this case, namely G ∼= 2× S3 was considered in [39],
[40] (the papers also discuss the relation of this problem to some questions in
the theory of algebraic groups raised in [43]). It is proved there that (S,G)
is not birationally isomorphic to (P2, G) but birationally isomorphic to min-
imal (F0, G). The birational isomorphism is easy to describe. We know that
G contains the lift of the standard Cremona involution. It has 4 fixed points
in S, the lifts of the points given in affine coordinates by (±1,±1). The group
S3 fixes (1, 1) and permutes the remaining points p1, p2, p3. The proper trans-
forms of the lines 〈pi, pj〉 in S are disjoint (−1)-curves Ei. The anti-canonical
model of S is a surface of degree 6 in P6. The projection from the tangent
plane to S at the fixed point, is a link of type II with S′ = F0. It blows-up
the fixed point, and then blows down the pre-images of the curves Ei. Now
the group G acts on F0 with FG

0 = ∅.
If minimal G contains some non-trivial imprimitive projective transforma-

tions, then G has no fixed points. It follows from the classification of links that
S is rigid. If G ∼= 6 or S3, then it acts on F0 with a fixed point. The projection
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from this point defines a birational isomorphism (S,G) and (P2, G). Thus the
only groups which are not conjugate to a group of projective transformations
are the groups which are mapped surjectively onto WS = S3 × 2. Those of
them which are mapped isomorphically are conjugate to subgroups of F0.

• d = 8.

In this case S = F0 or Fn, n > 1. In the first case (S,G) is birationally isomor-
phic to (P2, G) if SG 6= ∅ (via the projection from the fixed point). This implies
that the subgroup G′ of G belonging to the connected component of the iden-
tity of Aut(F0) is an extension of cyclic groups. As we saw in Theorem 4.9 this
implies that G′ is an abelian group of transformations (x, y) 7→ (εankx, ε

b
mky),

where a = sb mod k for some s coprime to k. If G 6= G′, then we must have
m = n = 1 and s = ±1 mod k.

If FG
0 = ∅ and Pic(F0)G ∼= Z, then the classification of links shows that

links of type II with d = d′ = 7, 6, 5, d = 3, d′ = 1 map F0 to F0 or to minimal
Del Pezzo surfaces of degrees 5 or 6. These cases have been already considered.
If rank Pic(S)G = 2, then any birational G-map S− → S′ is composed of
elementary transformations with respect to one of the conic bundle fibrations.
They do not change K2

S and do not give rise a fixed points. So, G is not
conjugate to any subgroup of Aut(P2).

Assume n > 1. Then G = A.B, where A ∼= n acts identically on the base of
the fibration and B ⊂ PGL(2). The subgroup B fixes pointwisely two disjoint
sections, one of them is the exceptional one. Let us consider different cases
corresponding to possible groups B.

B ∼= Cn. In this case B has two fixed points on the base, hence G has 2
fixed points on the non-exceptional section. Performing an elementary trans-
formation with center at one of these points we descend G to a subgroup of
Fn−1. Proceeding in this way, we arrive to the case n = 1, and then obtain
that G is a group of automorphisms of P2.

B ∼= Dn. In this case B has an orbit of cardinality 2 in P1. A similar argu-
ment shows thatG has an orbit of cardinality 2 on the non-exceptional section.
Applying the product of the elementary transformations at these points we
descend G to a subgroup of automorphisms of Fn−2. Proceeding in this way
we obtain that G is a conjugate to a subgroup of Aut(P2) or of Aut(F0). In
the latter case it does not have fixed points, and hence is not conjugate to a
linear subgroup of Cr(2).

B ∼= T . The group B has an orbit of cardinality 4 on the non-exceptional
section. A similar argument shows that G is conjugate to a group of automor-
phisms of F2,F0, or P2.

B ∼= O. The group B has an orbit of cardinality 6. As in the previous case
we show that G is conjugate to a group of automorphisms of P2, or F0, or F2,
or F3.

B ∼= I. The group B has an orbit of cardinality 12. We obtain that G is
conjugate to a group of automorphisms of P2 or of Fn, where n = 0, 2, 3, 4, 5, 6.
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• d = 9.

In this case S = P2 and G is a finite subgroup of PGL(3). The methods of the
representation theory allows us to classify them up to conjugacy in the group
PGL(3). However, some of non-conjugate groups can be still conjugate inside
the Cremona group.

For example all cyclic subgroups of PGL(3) of the same order n are con-
jugate in Cr(2). Any element g of order n in PGL(3) is conjugate to a trans-
formation g given in affine coordinates by the formula (x, y) 7→ (εnx, εany).
Let T ∈ dJ(2) be given by the formula (x, y) 7→ (x, xa/y). Let g′ : (x, y) 7→
(ε−1

n x, y). We have

g′ ◦ T ◦ g : (x, y) 7→ (εnx, εany) 7→ (εnx, xa/y) 7→ (x, xa/y) = T.

This shows that g′ and g are conjugate.
We do not know whether any two isomorphic non-conjugate subgroups of

PGL(3) are conjugate in Cr(2).

9 What is left?

Here we list some problems which have not been yet resolved.

• Find the conjugacy classes in Cr(2) of subgroups of PGL(3). For example,
there are two non-conjugate subgroups of PGL(3) isomorphic to A5 or A6

which differ by an outer automorphism of the groups. Are they conjugate
in Cr(2)?

• Find the finer classification of the conjugacy classes of de Jonquiéres
groups.

We already know that the number of singular fibres in a minimal conic bundle
G-surface is an invariant. Even more, the projective equivalence class of the
corresponding k points on the base of the conic fibration is an invariant. Are
there other invariants? In the case when GK

∼= 2, we know that the quotient
of the conic bundle by the involution generating GK is a minimal rule surface
Fe. Is the number e a new invariant?

• Give a finer geometric description of the algebraic variety parametrizing
conjugacy classes.

Even in the case of Del Pezzo surfaces we give only normal forms. What is
precisely the moduli space of Del Pezzo surfaces with a fixed isomorphism
class of a minimal automorphism group?

We know that conic bundles (S,G) with k ≥ 8 singular fibres are super-
rigid, so any finite subgroup G′ of Cr(2) conjugate to G is realized as an
automorphism group of a conic bundle obtained from S by a composition of
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elementary transformations with G-invariant centers. If S is not exceptional
and G ∼= 2.P , then the invariant of the conjugacy class is the hyperelliptic
curve of fixed points of the central involution. If G ∼= 22.P , then we have three
commuting involutions and their curves of fixed points are the invariants of
the conjugacy class. Do they determine the conjugacy class?

When k = 6, 7 we do not know whether (S,G) is birationally isomorphic
to (S′, G), where S′ is a Del Pezzo surface. This is true when k ∈ {0, 1, 2, 3, 5}
or k = 4 and S is not exceptional.

• Find more explicit description of groups G as subgroups of Cr(2).

This has been done in the case of abelian groups in [6]. For example one
may ask to reprove and revise Autonne’s classification of groups whose ele-
ments are quadratic transformations [3]. An example of such non-cyclic group
is the group of automorphisms S5 of a Del Pezzo surface of degree 5.

• Finish the classical work on the birational classification of rational cyclic
planes zn = f(x, y).

More precisely, the quotient S/G of a rational surface S by a cyclic group
of automorphisms defines a cyclic extension of the fields of rational functions.
Thus there exists a rational function R(x, y) such that there exists an iso-
morphism of fields C(x, y)( n

√
R(x, y)) ∼= C(x, y), where n is the order of G.

Obviously we may assume that R(x, y) is a polynomial f(x, y), hence we ob-
tain an affine model of S in the form zn = f(x, y). A birational isomorphism
of G-surfaces replaces the branch curve f(x, y) = 0 by a Cremona equivalent
curve g(x, y). The problem is to describe the Cremona equivalence classes of
the branch curves which define rational cyclic planes.

For example, when (S,G) is birationally equivalent to (P2, G), we may take
f(x, y) = x since all cyclic groups of given order are conjugate in Cr(2). When
n = 2, the problem was solved by M. Noether [46] and later G. Castelnuovo
and F. Enriques [16] had realized that the classification follows from Bertini’s
classification of involutions in Cr(2). When n is prime the problem was studied
by A. Bottari [11]. We refer for modern work on this problem to [12], [13].

• Extend the classification to the case of non-algebraically closed fields, e.g.
Q, and algebraically closed fields of positive characteristic.

Note that there are more automorphism groups in the latter case. For
example, the Fermat cubic surface T 3

0 + T 3
1 + T 3

2 + T 3
3 = 0 over a field of

characteristic 2 has the automorphism group isomorphic to U(4,F4), which is
a subgroup of index 2 of the Weyl group W (E6).

10 Tables

In the following tables we give the tables of conjugacy classes of subgroups
in Cr(2) which are realized as minimal automorphism groups of Del Pezzo
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surfaces of degree d ≤ 5 and not conjugate to subgroups of automorphisms
of minimal rational surfaces or conic bundles. The information about other
groups can be found in the corresponding sections of the paper. The tables
contain the order of a group G, its structure, the type of a surface on which
the group is realized as a minimal group of automorphisms, the equation of
the surface, and the number of conjugacy classes, if finite, or the dimension
of the variety parametrizing the conjugacy classes.



Order Type Surface Equation Conjugacy

2 A7
1 DP2 XIII ∞6

2 A8
1 DP1 XXII

3 3A2 DP3 I,III,IV ∞1

3 4A2 DP1 XVIII ∞3

4 2A3 + A1 DP2 II,III,V ∞1

4 2D4(a1) DP1 I,VI, X,XVII,XX ∞5

5 2A4 DP1 XIV ∞2

6 E6(a2) DP3 I,VI ∞1

6 A5 + A1 DP3 I, III, IV ∞1

6 E7(a4) DP2 XI ∞1

6 A5 + A2 DP2 VIII ∞1

6 D6(a2) + A1 DP2 II,III,IV,IX ∞1

6 A5 + A2 + A1 DP1 II,VIII,XIII ∞2

6 E6(a2) + A2 DP1 II,XII ∞2

6 E8(a8) DP1 XVIII ∞3

6 2D4 DP1 VII,XI ∞1

6 E7(a4) + A1 DP1 II,VIII,XIX ∞4

8 D5 DP4 (40) 1

8 D8(a3) DP1 X 1

9 E6(a1) DP3 I 1

10 E8(a6) DP1 IV,IX,XIV ∞2

12 E6 DP3 III 1

12 E7(a2) DP2 III 1

12 E8(a3) DP1 I,V ∞2

14 E7(a1) DP2 I 1

15 E8(a5) DP1 IV 1

18 E7 DP2 VI 1

20 E8(a2) DP1 IX 1

24 E8(a1) DP1 I 1

30 E8 DP1 IV 1

Table 9. Cyclic subgroups



Order Structure Surface Equation Conjugacy classes

4 22 DP4 ∞2

4 22 DP2 XII ∞5

4 22 DP1 XXI ∞5

4 22 DP1 V, VI,X,XV,XVII ∞3

8 2× 4 DP4 (39) ∞1

8 2× 4 DP2 V 2×∞1

8 2× 4 DP2 I-V ∞1

8 2× 4 DP2 VII ∞2

8 2× 4 DP1 VIII,XVI ∞2

8 23 DP4 ∞2

8 23 DP2 I-V,X ∞3

9 32 DP3 I 1

9 32 DP3 I,IV 2×∞1

9 32 DP3 III 1

9 32 DP1 I,II,III ∞1

12 2× 6 DP4 (40) 1

12 2× 6 DP2 III, VIII ∞1

12 2× 6 DP1 II,VIII,XIII ∞2

12 2× 6 DP1 III,XII ∞2

12 2× 6 DP1 II,VII ∞1

16 24 DP4 ∞2

16 22 × 4 DP2 II,III,V ∞1

16 42 DP2 II 1

16 2× 8 DP2 II 1

18 3× 6 DP3 I 1

18 3× 6 DP1 III ∞1

18 3× 6 DP1 II 1

24 2× 12 DP1 VIII ∞1

24 2× 12 DP2 III 1

27 33 DP3 I 1

32 2× 42 DP2 II 1

36 62 DP1 II 1

Table 10. Abelian non-cyclic subgroups
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Order Structure Surface Equation Conjugacy classes

6 D6 DP3 III,IV,VIII,XI ∞2

6 D6 DP3 I 1

8 D8 DP4 (39) ∞1

8 D8 DP2 II,III,V,VII ∞2

8 D8 DP1 I, XVI ∞3

8 Q8 DP1 II,V,VI,XIV ∞2

8 3×D8 DP1 I, XVI ∞3

8 3×Q8 DP1 II,III ∞1

12 2×D6 DP3 I,VI ∞1

12 T DP2 II 1

12 2×D6 DP2 I,II,IV,IX ∞2

12 2×D6 DP2 II 1

12 2×D6 DP1 I,II,III,VI ∞1

16 2×D8 DP2 II,III,V,VII ∞2

16 D16 DP1 I,IX ∞1

18 3×D6 DP3 III 1

18 3×D6 DP3 I,IV 2×∞1

18 3×D6 DP1 I,II,III ∞1

24 T DP1 I,V ∞1

24 2× T DP4 (41) 1

24 S4 DP3 I 3

24 S4 DP3 II 1

24 S4 DP2 II 1

24 S4 DP2 I, II,IV ∞1

24 2× T DP2 II 1

24 3×Q8 DP1 I 1

24 3×Q8 DP1 II 1

24 3×D8 DP1 I ∞2

36 6×D6 DP1 I,II,III ∞1

48 2×O DP2 I,II,III,V ∞1

48 2× T DP1 I 1

72 3× T DP1 I 1

Table 11. Products of cyclic groups and polyhedral or binary polyhedral non-cyclic
group
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Order Structure Surface Equation Conjugacy classes

8 D8 DP4 (39) ∞1

8 D8 DP2 II,III,IV,V,VII ∞2

8 Q8 DP1 I,V,XIV ∞2

8 D8 DP1 I,V,XVI ∞2

16 L16 DP4 (39) 2×∞1

16 2×D8 DP2 II,III,IV,V,VII 1

16 2×D8 DP2 I 1

16 AS16 DP2 II,III,V 2×∞1

16 M16 DP2 II 1

16 D16 DP1 I,IX ∞1

32 22 : 8 DP4 (40) 1

32 24 : 2 DP4 (39) ∞1

32 D8 : 4 DP2 II 1

32 2×AS16 DP2 III,V 3×∞1

32 2×M16 DP2 II 1

64 24 : 4 DP4 (40) 1

64 2× (D8 : 4) DP2 II 1

27 H3(3) DP3 I,III,IV ∞1

81 33 : 3 DP3 I 1

Table 12. Non-abelian p-groups
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Order Structure Surface Equation Conjugacy classes

18 32 : 2 DP3 I 2

24 2D12 DP1 II,VI ∞1

24 D8 : 3 DP2 III 1

36 32 : 22 DP3 I 1

42 2× (7 : 3) DP1 II 1

48 24 : 3 DP4 (40) 1

48 2×D8 : 3 DP2 III 1

48 T : 2 DP1 I 1

48 42 : 3 DP2 II 1

54 H3(3) : 2 DP3 IV ∞1

54 33 : 2 DP3 I 2

60 A5 DP5 1

72 3× 2D12 DP1 II 1

80 24 : 5 DP4 (41) 1

96 24 : S3 DP4 (40) 1

96 42 : S3 DP2 I 2

96 2× (42 : 3) DP2 II 1

108 33 : 4 DP3 I 2

108 33 : 22 DP3 I 2

120 S5 DP5 1

120 S5 DP3 II 1

144 3× (T : 2) DP1 I 1

160 24 : D10 DP4 (41) 1

162 33 : S3 DP3 I 2

168 L2(7) DP2 I 1

192 2× (42 : S3) DP3 I 1

216 33 : D8 DP3 I 2

336 2× L2(7) DP2 I 1

648 33 : S4 DP3 I 2

Table 13. Other groups
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