\relax \immediate\closeout\minitoc \let \MiniTOC =N \citation{FG2} \citation{BFZ} \citation{FG2} \@writefile{toc}{\contentsline {title}{Cluster ensembles, quantization and the dilogarithm II: The intertwiner.}{649}} \@writefile{toc}{\contentsline {author}{V.V.Fock\unskip {}\and A.B.Goncharov\unskip {}}{649}} \citation{FG3} \citation{FG3} \citation{FG3} \@writefile{toc}{\contentsline {section}{\numberline {1}Cluster ensembles}{651}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.1}Basic definitions}{651}} \newlabel{f1}{{1}{651}} \newlabel{f2}{{2}{651}} \newlabel{f3}{{3}{651}} \citation{FG2} \citation{FG3} \newlabel{f3cc}{{4}{652}} \newlabel{6.4.03.2}{{5}{653}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.2}Connections between quantum ${\cal X}$-varieties}{653}} \newlabel{6.9.03.11}{{1}{653}} \newlabel{6.9.03.11s}{{2}{654}} \@writefile{toc}{\contentsline {section}{\numberline {2}Motivation: $\ast $-quantization of cluster ${\cal X}$-varieties}{655}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.1}$\ast $-quantization of the space ${\cal X}^+$ via the quantum logarithm}{655}} \newlabel{5.24.03.1as}{{6}{655}} \newlabel{6.3.03.10}{{3}{655}} \citation{FG2} \newlabel{6.1.03.2}{{7}{656}} \newlabel{6.1.03.1}{{8}{656}} \newlabel{3.13.03.1}{{2.1}{656}} \newlabel{6.3.03.1}{{9}{656}} \newlabel{6.4.03.10}{{4}{656}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Modular double of a cluster ${\cal X}$-variety and $\ast $-quantization of the space ${\cal X}^+$}{657}} \newlabel{6.2.03.3}{{5}{657}} \newlabel{6.2.03.1}{{10}{657}} \newlabel{erer}{{6}{658}} \newlabel{11.12.03.323}{{2.2}{658}} \newlabel{6.2.03.4}{{11}{658}} \newlabel{11.12.03.1}{{7}{658}} \@writefile{toc}{\contentsline {section}{\numberline {3}The intertwiner}{659}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}A bimodule structure on functions on the ${\cal A}$--space}{659}} \newlabel{5.29.03.2}{{12}{659}} \newlabel{5.29.03.1}{{8}{660}} \newlabel{5.29.03.5}{{9}{660}} \citation{FG3} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}The intertwiner via the quantum dilogarithm }{661}} \newlabel{11.13.03.2}{{13}{661}} \newlabel{11.13.03.1}{{14}{661}} \newlabel{convolution}{{15}{661}} \newlabel{11.11.03.76}{{10}{661}} \newlabel{12.9.03.10}{{16}{662}} \newlabel{homomorphism}{{17}{662}} \newlabel{homomorphism_k}{{18}{662}} \newlabel{11.30.03.1}{{19}{663}} \newlabel{12.1.03.2}{{20}{664}} \newlabel{12.1.03.1}{{21}{664}} \citation{FG3} \citation{FG3} \newlabel{11.30.03.2}{{11}{665}} \@writefile{toc}{\contentsline {section}{\numberline {4}The quantum logarithm and dilogarithm functions}{665}} \newlabel{phi}{{22}{665}} \citation{Ba} \citation{Bax} \citation{Fad} \bibcite{Ba}{Ba} \newlabel{5.31.03.1}{{12}{666}} \newlabel{qdilog}{{13}{666}} \bibcite{Bax}{Bax} \bibcite{BFZ}{BFZ} \bibcite{Fad}{Fad} \bibcite{FCh}{FCh} \bibcite{FG1}{FG1} \bibcite{FG2}{FG2} \bibcite{FG3}{FG3} \bibcite{FZI}{FZI} \bibcite{K}{K} \@writefile{toc}{\contentsline {section}{References}{667}} \@mtwritefile{\contentsline {mtchap}{References}{667}} \immediate\closeout\minitoc