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Abstract. This paper is the second part of our preprint “Cluster ensembles,
quantization and the dilogarithm” [FG2]. Its main result is a construction,
by means of the quantum dilogarithm, of certain intertwiner operators, which
play the crucial role in the quantization of the cluster X -varieties and con-
struction of the corresponding canonical representation.

Cluster ensemble (loc. cit.) is a pair (A,X ) of schemes over Z, called cluster
A- and X -varieties, related by a map p : A −→ X . The ring of regular
functions on the cluster A-variety is the upper cluster algebra [BFZ].

Cluster A- and X -varieties are glued from families of coordinatized split
algebraic tori by means of certain subtraction free rational transformations.
In particular it makes sense to consider the spaces of their positive real points,
denoted by A+ and X+.

The cluster X -variety has a Poisson structure, given in any cluster coor-
dinate system {Xi} by

{Xi, Xj} = ε̂ijXiXj , ε̂ij ∈ Z.

The Poisson tensor ε̂ij depends on the choice of coordinate system. There is
a canonical non-commutative deformation Xq of the cluster X -variety in the
direction of this Poisson structure ([FG2]).

The gluing procedure underlying the definition of a cluster variety can be
understood as a functor from a certain groupoid, called the cluster modular
groupid G, to a category of commutative algebras.

In Section 3 we suggest a ∗-quantization of the cluster X -variety, under-
stood as a functor from the gropoid G to the category of non-commutative
topological ∗-algebras. More precisely, the coordinate systems on cluster va-
rieties are parametrized by the objects i of the groupoid G, called seeds. To
each seed i we assign two coordinatized tori, Ai and Xi. The algebra of the
smooth functions on the latter admits a canonical ~-deformation, given by
a topological Heisenberg ∗-algebra H~

i . So to define a functor we need to
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relate these algebras for different seeds. We write the formulas relating the
generators of the algebras H~

i , but do not specify the category of topological
∗-algebras. As a result, the ∗-quantization of the cluster X -variety serves only
as a motivation, and we state in Sections 3 Claims instead of Theorems when
those unspecified topological algebras enter the formulations. Hopefully there
will be a precise version of Section 3. However the rest of the paper does not
depend on that, while motivations given in Section 3 clarify what we do next.

In Section 4 we proceed to a construction of the canonical unitary projec-
tive representation of the modular gropoid. It is realized in the Hilbert space
L2(A+) assigned to the set of positive real points of the cluster A-variety.

For each seed i there is a Hilbert space L2(A+
i ) (which is canonically

identified with L2(A+)). In Section 4.1 the Heisenberg ∗-algebra H~
i is repre-

sented in L2(A+
i ). In fact a bigger algebra – the chiral double H~

i ⊗H~
io of the

Heisenberg ∗-algebra – acts on the same Hilbert space.
The morphisms in the groupoid G are defined as compositions of certain

elementary ones, called mutations and symmetries. Given a mutation i → i′

we construct a unitary operator

Ki→i′ : L2(A+
i ) −→ L2(A+

i′ ).

It intertwines the actions of the Heisenberg ∗-algebras related to the seeds i
and i′3. (Similar itertwiners for symmetries are rather tautological). This con-
struction is the main result of the paper. The operator Ki→i′ is characterized
by its intertwining property uniquely up to a constant.

Certain compositions of mutations and symmetries are identity morphisms
in the groupoid G. So to get a representation of the modular groupoid we
have to show that the corresponding compositions of the intertiners Ki→i′

are multiples of the identity operators. This is a rather difficult problem. It
is solved in [FG3], where we give another construction of the intertwiner and
introduce the geometric object reflecting its properties, the cluster double.
Alltogether the intertwiners give rise to a unitary projective reprersentation
of the cluster modular groupoid.

The paper is organized as follows: the essential for us properties of the
quantum logarithm and dilogarithm are collected, without proofs in Section
5. The proofs and more of the properties of these functions can be found
in Section 4 of [FG3]. In Section 2.1 we recall, for the convinience of the
reader, basic definitions/facts about cluster ensembles. Claim 2.2 delivers a
quantization of the space of real positive points of the cluster X -variety. The
main results of this paper is Theorem 10 providing an explicit formula for the
intertwiner Ki→i′ .

3The precise meaning we put into “intertwining” is clear from the computation
carried out in the proof: we deal with the genrators of the Heisenbrg algebra only,
and thus are not concerned with the nature of the topological completion, which
was left unspecified in Section 3. For a different approach see [FG3].
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1 Cluster ensembles

1.1 Basic definitions

A seed i is a triple (I, ε, d), where I is a finite set, ε is a matrix εij , i, j ∈ I,
with εij ∈ Z, and d = {di}, i ∈ I, are positive integers, such that the matrix
ε̂ij := εijd

−1
j is skew-symmetric.

For a seed i we assign a torus Xi = (Gm)I with the coordinates {Xi|i ∈ I}
on the factors. and a Poisson structure given by

{Xi, Xj} = ε̂ijXiXj . (1)

Let i = (I, ε, d) and i′ = (I ′, ε′, d′) be two seeds, and k ∈ I. A mutation in
the direction k ∈ I is an isomorphism µk : I → I ′ such that d′µk(i) = di, and

ε′µk(i)µk(j) =

−εij if i = k or j = k,
εij if εikεkj ≤ 0,
εij + |εik|εkj if εikεkj > 0.

(2)

A symmetry of a seed i = (I, ε, d) is an automorphism σ of the set I preserving
the matrix ε and the numbers di. Symmetries and mutations induce rational
maps between the corresponding seed X -tori, denoted by the same symbols
µk and σ and given by the formulae σ∗Xσ(i) = Xi and

µ∗k(i)Xµk(i) =
{

X−1
k if i = k,

Xi(1 + X
−sgn(εik)
k )−εik if i 6= k.

(3)

A seed cluster transformation is a composition of symmetries and muta-
tions. Two seeds are equivalent if related by a cluster transformation. The
equivalence class of a seed i is denoted by |i|. A seed cluster transformation
induces a rational map between the two seed X -tori, called a cluster transfor-
mation map.

A cluster X -variety X|i| is a scheme over Z obtained by gluing the seed
X -tori for the seeds equivalent to a given seed i via the cluster transformation
maps, and then taking the affine closure. Every seed provides a cluster X -
variety with a rational coordinate system. Its coordinates are called cluster
coordinates. Cluster transformation maps preserve the Poisson structure. Thus
a cluster X -variety has a canonical Poisson structure.

The cluster A-varieties. Given a seed i, define a seed A-torus Ai := (Gm)I

with the standard coordinates {Ai|i ∈ I} on the factors. Symmetries and
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mutations give rise to birational maps between the seed A-tori, given by
σ∗Aσ(i) = Ai and

µ∗k(i)Aµk(i) =

{
Ai if i 6= k,

A−1
k

(∏
i|εki>0 Aεki

i +
∏

i|εki<0 A−εki
i

)
if i = k.

(4)

The cluster A-variety A|i| is a scheme over Z obtained by gluing all seed
A-tori for the seeds equivalent to a given seed i using the above birational
isomorphisms, and taking the affine closure.

There is a map p : A −→ X , given in every cluster coordinate system by
p∗Xk =

∏
I∈I Aεki

i .

Cluster A- and X -varieties have canonical positive atlases, so it makes
sense to consider the sets of their real positive points, denoted A+ and X+.

The cluster modular groupoid. Seed cluster transformations inducing the
same map of the seedA-tori are called trivial seed cluster transformations. The
cluster modular groupoid G|i| is a groupoid whose objects are seeds equivalent
to a given seed i, and Hom(i, i′) is the set of all seed cluster transformations
from i to i′ modulo the trivial ones. Given a seed i, the cluster mapping class
group Γi is the automorphism group of the object i of G|i|. The group Γi acts
by automorphisms of the cluster A-variety.

The quantum space Xq. It is a canonical non-commutative q-deformation
of the cluster X -variety defined in Section 3 of [FG2].

We start from the seed quantum torus algebra Tq
i , defined as an associative

∗-algebra with generators X±1
i , i ∈ I and q±1 and relations

q−bεij XiXj = q−bεjiXjXi, ∗Xi = Xi, ∗q = q−1.

Let QTor∗ be a category whose objects are quantum torus algebras and mor-
phisms are ∗-homomorphisms of their fraction fields. The quantum space Xq

is understood as a contravariant functor

ηq : The modular groupoid G|i| −→ QTor∗.

It assigns to a seed i the quantum torus ∗-algebra Tq
i , and to a mutation

i −→ i′ a map of the fraction fields Frac(Tq
i′) −→ Frac(Tq

i ), given by a q-
deformation of formulas (3)4: Set qk := q1/hk ,

(µq
k)∗(Xi) :=

{
X−1

k if i = k,

Xi

(∏|εik|
a=1 (1 + q2a−1

k X
−sgn(εik)
k )

)−εik

if i 6= k.

4See also a more transparent and less computational definition given later on in
Section 3 of [FG3].
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One uses Theorem 7.2 in loc. cit. to prove that ηq sends trivial seed cluster
transformations to the identity maps.

The chiral dual to a seed i = (I, ε, d) is a seed io := (I,−ε, d). Mutations
commute with the chiral duality on seeds. Therefore a cluster X -variety X
(respectively A-variety A), gives rise to the chiral dual cluster X -variety (re-
spectively A-variety) denoted by X o (respectively A0). They are related, see
Lemmas 1 - 2 .

The Langlands dual to a seed i = (I, ε, d) is the seed i∨ = (I, ε∨, d∨), where
d∨i := d−1

i and
ε∨ij = −ε∨ji := d̂−1

i εij d̂j , d̂i := d−1
i . (5)

The Langlands duality on seeds commutes with mutations. Therefore it gives
rise to the Langlands dual cluster A-, and X -varieties, denoted A∨ and X∨.

Below we skip the subscript |i| encoding the corresponding cluster ensem-
ble whenever possible.

1.2 Connections between quantum X -varieties

There are three ways to alter the space X|i|,q:
(i) change q to q−1,
(ii) change i to io,
(iii) change the quantum space X|i|,q to the opposite quantum space X opp

|i|,q .
(In (iii) we change every quantum torus from which we glue the space to the
opposite one).

The following lemma tells that the resulting three quantum spaces are
canonically isomorphic:

Lemma 1. a) There is a canonical isomorphism of quantum spaces

αq
X : X|i|,q −→ X opp

|i|,q−1 , (αq
X )∗ : Xi 7−→ Xi.

(Given in on the generators of any cluster coordinate system by Xi 7−→ Xi).
b) There is a canonical isomorphism of quantum spaces

iqX : X|i|,q −→ X|io|,q−1 , (iqX )∗ : Xo
i 7−→ X−1

i .

(Given in any cluster coordinate system by Xo
i 7−→ X−1

i , where Xo
i are the

generators of Xio,q−1).
c) There is a canonical isomorphism of quantum spaces

βq
X := αq

X ◦ iqX : X|io|,q −→ X opp
|i|,q , Xi 7−→ Xo

i
−1.

Proof. Apparently each of the three maps is an isomorphism of the cor-
responding seed quantum tori algebras. For example, in the case b) we have
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iqX

(
(q−1)−bεo

ij Xo
i Xo

j

)
= q−bεij X−1

i X−1
j .

So we need to check that they commute with the mutations.
a) Let us assume first that εik = a < 0. The claim results from the

fact that the following two compositions are equal (observe that α∗ is an
antiautomorphism):

Xi
µ∗k7−→ Xi

a∏
b=1

(1 + q2b−1
k Xk) α∗7−→

a∏
b=1

(1 + q2b−1
k Xk)Xi;

Xi
α∗7−→ Xi

(µo
k)∗7−→ Xi

a∏
b=1

(1 + q
−(2b−1)
k Xk).

The computation in the case εik > 0 is similar.
b) To check that iqX ◦ µ∗k = µ∗k ◦ iqX we calculate each of the maps on the

generator Xi. Let us assume εik = −a < 0. Then εo
ik = a, and one has

iqX ◦ µ∗k(Xo
i
′) = X−1

i

a∏
b=1

(1 + q2b−1X−1
k ),

µ∗k ◦ iqX (Xo
i
′) =

(
Xi

a∏
b=1

(1 + q−(2b−1)X−1
k )−1

)−1

=

=
a∏

b=1

(1 + q−(2b−1)X−1
k )X−1

i = X−1
i

a∏
b=1

(1 + q2b−1X−1
k ).

The case εik > 0 is similar. One can deduce it to the case εik < 0 since
µk ◦ µk = Id, and ε′ik = −εik. The part b) is proved.

c) Follows from a) and b). The lemma is proved.

Lemma 2. The cluster ensembles related to the seeds i and io are canonically
isomorphic as pairs of varieties. The isomorphism is provided by the following
maps:

Id : A|i| −→ Aio ; iX : X|i| −→ X|io|.

Proof. In a given cluster coordinate system our maps are obviously iso-
morphisms. The compatibility with X -cluster transformations is the part b)
of Lemma 1; for the A-cluster transformations we have

Ao
kAo′

k =
∏

εo
ki>0

(Ao
i )

εo
ki +

∏
εo

ki<0

(Ao
i )
−εo

ki =
∏

εki<0

A−εki
i +

∏
εki>0

Aεki
i = AkA′k

Compatibility with the projection p is clear. The lemma is proved.
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2 Motivation: ∗-quantization of cluster X -varieties

2.1 ∗-quantization of the space X+ via the quantum logarithm

Let {Xi} be coordinates on the cluster X -variety corresponding to a seed i.
Since by definition the functions Xi are strictly positive at the points of X+,
we can introduce the logarithmic coordinates xi := log Xi on X+. For every
seed i they provide an isomorphism

βi : X+
i

∼−→ RI ; t 7−→ {xi(t)}.

For a mutation µk : i → i′ there is a gluing map

βi→i′ : X+
i −→ X+

i′ , βi→i′(x′i) =
{

xi − εik log(1 + e−sgn(εik)xk) i 6= k,
−xk i = k

(6)

To prepare the soil for quantization, let us look at this from a different
point of view. Let Com∗ be the category of commutative topological ∗-algebras
over C. Recall the cluster modular groupoid G|i|. There is a contravariant
functor

β : G|i| −→ Com∗.

Namely, we assign to a seed i a commutative topological ∗-algebra S(X+
i ) of

smooth complex valued functions in X+
i with ∗f := f , and to a mutation

i → i′ a homomorphism β∗i→i′ : S(X+
i′ ) −→ S(X+

i ).

Let C be a category whose morphisms are C-vector spaces. Projectivisation
PC of the category C as a new category with the same objects as C, and mor-
phisms given by HomPC(C1, C2) := HomC(C1, C2)/U(1), where U(1) is the
multiplicative group of complex numbers with absolute value 1. A projective
functor F : G → C is a functor from G to PC.

Let C∗ be the category of topological ∗-algebras. Two functors F1, F2 :
C −→ C∗ essentially coincide if there exists a third functor F and natural
transformations F1 → F, F2 → F providing for every object C dense inclusions
F1(C) ↪→ F (C), F1(C) ↪→ F (C).

Definition 3. A quantization of the space X+
|i| is a family of contravariant

projective functors
κ~
|i| : G|i| −→ C∗

depending smoothly on a real parameter ~, related to the original Poisson
manifold X+

|i| as follows:
i) The limit κ|i| := lim~→0 κ~

|i| exists and essentially coincides with the
functor β defining X+

|i|.
ii) The Poisson bracket given by lim~→0[f1, f2]/~ is defined and coincides

with the one on X+
|i|.
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Let us define a quantization functor κ~ = κ~
|i|. We assign to every seed i

the Heisenberg ∗–algebra H~
i . It is a topological ∗–algebra over C generated

by the elements xi such that

[xj , xk] = 2πi~ε̂jk; x∗j = xj ; q = eπi~.

Further, let us assign to mutation µk : i → i′ a homomorphism of topo-
logical ∗-algebras

κ~(µk) : H~
i′ −→ H~

i . (7)

We employ the quantum logarithm φ~(z), see (22). Denote by x′i the genera-
tors of H~

i′ . Set

~k := d̂k~; κ~(µk) : x′i 7−→
{

xi − εikφ~k(−sgn(εik)xk) if k 6= i,
−xi if k = i.

(8)

Claim. a) Formulas (8) provide a morphism of ∗–algebras κ~
|i|(µk) : H~

i′ −→
H~

i .
b) The collection of ∗-algebras {Hi} and morphisms {κ~

|i|(µk)} provide a
quantization functor

κ~
|i| : G|i| −→ PC∗.

c) Let ~∨ := 1/~. Then there are isomorphisms

H~
i −→ H~∨

i∨ , xi 7−→ x∨i :=
xi

d̂i~
; (9)

They give rise to a natural transformation of functors κ~
|i| −→ κ~∨

|i∨|.

Justification. a) Property A3 of the function φ~(x), see Section 4, guar-
antees that the morphism κ~(µk) preserves the real structure. It follows from
Property A1 that when ~ → 0 the limit of the quantum formula (8) exists
and coincides with the mutation formula (6) for the logarithmic coordinates
xi.

b) To check that we have a functor one needs to check first that mutation
formulas are compatible with the transformations κ~(µk). This is a straitfor-
ward calculation using Property A5. Then one has to check that the defining
relations for the groupoid G|i| are mapped to zero. Here we need the results
of Sections 3.2-3.3 of [FG2] and the following well known lemma:

Lemma 4. Suppose that A,B are selfadjoint operators, [A,B] = −λ is a
scalar, and f(z) is a continuous function with primitive F (z). Then

eA+f(B) = eAexp

{
1
λ

∫ B+λ

B

f(z)dz

}
:= eAexp

(
F (B + λ)− F (B)

λ

)
.



Cluster ensembles, quantization and the dilogarithm II: The intertwiner. 657

c) Thanks to formula (5) the map xi 7−→ x∨i is an ∗–algebra homomor-
phism:

[x∨i , x∨j ] =
[xi, xj ]

d̂id̂j~2
= 2πi~∨ε̂ij/d̂id̂j

(5)
= 2πi~∨ε̂∨ij .

To verify that it commutes with mutation homomorphisms we use Properties
A2 and A4 of the function φ~(x), observing that

xi + |εik|φ~k(xk)

d̂i~
=

xi

d̂i~
+
|d̂−1

i εikd̂k|φ
bdk~(xk)

d̂k~
(5)+A4

= x∨i + |ε∨ik|φ~∨k (x∨k ).

2.2 Modular double of a cluster X -variety and ∗-quantization of
the space X+

Set
q := eπi~, q∨ := eπi/~, ~ ∈ R.

Definition 5. The modular double X|i|,q × X|i∨|,q∨ of a quantum cluster X -
variety X|i|,q is a contravariant functor

ηq
|i| ⊗ ηq∨

|i∨| : G|i| −→ QTor∗.

So we assign to a seed i a quantum torus algebra Tq
i ⊗Tq∨

i∨ , and to a mutation
µk : i → i′ a positive ∗-homomorphism of the fraction fields of the quantum
torus algebras

ηq
|i|(µk)⊗ ηq∨

|i∨|(µk) : Tq
i′ ⊗ Tq∨

i′∨ −→ Tq
i ⊗ Tq∨

i∨ , T := Frac(T).

We want to relate the modular double X|i|,q×X|i∨|,q∨ with the quantization
of the space X+

|i|. We are going to define a natural transformation of functors

ηq
|i| ⊗ ηq∨

E∨ −→ κ~
|i|.

We use the following easy fact. Assume that [yi, yj ] is a scalar. Then we
have

eyieyj = e[yi,yj ]eyj eyi . (10)

Let i be a seed. Denote by Xi the generators of Tq
i , and by X∨

i the generators of
Tq∨

i∨ . It is easy to check using (10) that there are the following homomorphisms:

li : Tq
i −→ Hh

i , Xi 7−→ exi , and l∨i : Tq∨

i∨ −→ H~
i , X∨

i 7−→ ex∨i .

They evidently commute with the ∗-structures. Their images commute.
Indeed, since ε̂ij ∈ Z one has e[xi,xj/~] = e2πibεij = 1. So exi commutes with
exj/~. Therefore they give rise to a homomorphism of the tensor product:

Li := li ⊗ l∨i : Tq
i ⊗ Tq∨

i∨ −→ H~
i .
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Proposition 6. For any mutation µk : i → i′ the following diagram, where
the left vertical arrow is the map ηq(µk)⊗ηq∨(µk), and the right one is κ~(µk),
is commutative:

Tq
i ⊗ Tq∨

i

Li−→ H~
i

ηq,q∨ ↑ ↑ κ~

Tq
i′ ⊗ Tq∨

i′
Li′−→ H~

i′

Proof. We need Lemma 4. The case i = k is trivial, so we assume that
i 6= k. Let εik = −a ≤ 0. Then applying the lemma we get

κ~
|i|(µk)Li′(X ′

i ⊗ 1) = κ~(µk)ex∨i = exi+aφ~k (xk) =

=
exi

2πia~k
exp

(∫ xk+2πi~ka

xk

aφ~k(z)dz

)
=

=
exi

2πi~k
exp

(∫ xk

−∞

(
φ~k(z + 2πi~ka)− φ~k(z)

)
dz

)
A5=

A5=
exi

2πi~k
exp

(∫ xk

−∞

a∑
b=1

2πi~k

e−z−iπ(2b−1)~k + 1
dz

)
=

exi

a∏
b=1

(1 + q2a−1
k exk) = Li

(
Xi

a∏
b=1

(1 + q2a−1
k Xk)

)
=

= Li(η
q
|i|(µk)⊗ ηq∨

|i∨|(µk))(X ′
i ⊗ 1).

The calculation in the case εik = a ≥ 0 is similar. The proposition is proved.

Claim. The collection of homomorphisms {Li} provides a morphism of func-
tors

L~ : ηq
|i| ⊗ ηq∨

|i∨| −→ κ~
|i|. (11)

Justification. Is given by Proposition 6.

Representations of the quantized X+
|i|-space. The following definition

serves as a motivation of the construction of intertwiners presented below.

Definition 7. A projective ∗-representation of the quantized X+
|i|-space is the

following data:
i) A projective functor

L|i| : G|i| −→ the category of Hilbert spaces.

It includes for each object i of G|i| a Hilbert spaces Li, and for every mutation
µk : i → i′ a unitary operator, defined up to a scalar of absolute value 1:
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Ki,i′ : Li −→ Li′ .

ii) A ∗-representation ρi of the Heisenberg algebra H~
i in the Hilbert space

Li.
iii) The operators Ki,i′ intertwine the representations ρi and ρi′ :

ρi(s) = K−1
i,i′ρi′

(
κ~(µk)(s)

)
Ki,i′ , s ∈ H~

i .

The morphisms of the representations of the quantum X+
|i|-space are defined

in an obvious way.

Representations of the mapping class group Γ|i|. Restricting the functor
ρ|i| to the group of automorphisms of an object of the groupoid G|i| we get a
projective unitary representation of Γ|i|.

The Heisenberg algebra H~
i has a family of irreducible ∗-representation by

operators in a Hilbert space. These representations are characterized by the
central character χ.

The collection of the Hilbert spaces {Li} and representations {ρi} is by no
means canonical: it depends, for example, on the choice of polarization of the
Heisenberg algebra. Once choosen, it determines the intertwiners Ki,i′ . Below
we introduce a canonical representation of the chiral double of the quantized
space X+

|i|, defined by using the Hilbert spaces L2(A+
i ).

3 The intertwiner

3.1 A bimodule structure on functions on the A–space

Let X be an algebra. Recall that M is a bimodule over X if X acts on M from
the left as well as from the right, and these two actions commute. So M is an
X ⊗Xopp-module, where Xopp is the algebra with the product x ∗ y := yx.

Let us choose a seed i. Recall the algebra Q[Ai] of regular functions on the
seed torus Ai. We assume that q ∈ C∗. For each i ∈ I let us define commuting
algebra homomorphisms

t±i : Q[Ai] −→ Q[Ai]; t±i :
{

Ai 7−→ q
± bdiAi

Aj 7−→ Aj j 6= i.

Since εii = 0, Ai does not appear in the monomial p∗Xi, and so the operator
of multiplication by p∗Xi commutes with t±i . Let us define an T q

i -bimodule
structure on Q[Ai]. The left and right actions of the generator Xi on f ∈ Q[Ai]
are given by

Xi ◦ f := p∗Xi · t−i (f), f ◦Xi := p∗Xi · t+i (f), (12)
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Lemma 8. The operators (12) provide Q[Ai] with a structure of a bimodule
over the algebra T q

i .

Proof. Observe that one has

t+j (p∗Xi) · p∗Xj = t−i (p∗Xj) · p∗Xi = qbεij p∗Xip
∗Xj .

Indeed, the first term equals to qεijdj p∗Xi·p∗Xj , and the second is q−εjidip∗Xi·
p∗Xj . One has

q−bεij XiXj ◦ f = q−bεij p∗Xi · t−i (p∗Xj) · t−i t−j (f) = p∗Xi · p∗Xj · t−i t−j (f).

f ◦ q−bεij XiXj = q−bεij p∗Xj · t+j (p∗Xi) · t+j t+i (f) = p∗Xi · p∗Xj · t+i t+j (f).

Since the right hand sides are evidently symmetric in i, j we have the desired
relations, and hence the left and right actions of the quantum algebra torus.
Further, the two actions commute:

Xi ◦ (f ◦Xj) = Xi ◦
(
t+j (f)p∗Xj

)
= p∗Xit

−
i (p∗Xj)t−i t+j (f).

(Xi ◦ f) ◦Xj = (p∗Xit
−
i (f)) ◦Xj = p∗Xjt

+
j (p∗Xi)t+j t−i (f).

The lemma is proved.

The logarithmic version of the bimodule structure. Since the coordinate
functions Ai are positive on the space A+, one can introduce new coordinates
aj := log Aj . They provide an isomorphism αi : A+

i
∼−→ RI . Set da :=

da1 ∧ · · · ∧ da|I|. There is a Hilbert space L2(A+
i ) with a scalar product

(f, g) :=
∫
A+

i

f(a)g(a)da.

Apparently the form da changes the sign under a mutation i → i′. So the
Hilbert spaces L2(A+

i ) for different seeds i are naturally identified. Consider
the following operators in L2(A+

i ):

x̂−j := −πi~d̂j
∂

∂aj
+
∑

k

εjkak, x̂+
j := πi~d̂j

∂

∂aj
+
∑

k

εjkak.

Lemma 9. The operators {x̂±j } provide the Hilbert space L2(A+
i ) with a struc-

ture of a bimodule over the ∗–algebra H~
i .

Proof. These operators are selfadjoint and one has

[x̂−j , x̂−k ] = 2πi~ε̂jk; [x̂+
j , x̂+

k ] = −2πi~ε̂jk, [x̂−j , x̂+
k ] = 0

for any j, k ∈ I.
The lemma is proved.

Remark. There is an automorphism xj 7−→ −xj of the Heisenberg algebra
Hi. Similarly there is an automorphism Xj 7−→ X−1

j of the quantum torus
algebra T q

i .
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3.2 The intertwiner via the quantum dilogarithm

Let µk : i → i′ be a mutation. By Lemma 9 for each seed i the Hilbert space
L2(A+

i ) has a natural H~
i -bimodule structure. According to Lemma 1, this is

the same as the Hh
i ⊗H~

io -module structure. Our goal is to define an operator

Ki→i′ : L2(A+
i ) −→ L2(A+

i′ ) (13)

intertwining the H~
i ⊗ H~

io - and H~
i′ ⊗ H~

i′o-module structures. By this we
mean only that the operator Ki→i′ intertwines the action of the generators of
H~

i ⊗H~
io withthe action of their images under the gluing map map κ~

|i|(i → i′).

The function G. Let us introduce our key function

G(a1, . . . , an) =

∫
Φ~k(d̂kc−

∑
j

εkjaj)−1Φ~k(−d̂kc−
∑

j

εkjaj) exp

c

∑
j|εkj<0

εkjaj + ak

πi~

 dc.

(14)
Substituting the explicit integral expression for the function Φ~k(z) one gets

G(a1, . . . , an) =

=
∫

exp

∫
Ω

exp(it
∑

j εkjaj) sin(td̂kc)
2it sh(πt)sh(π~kt)

dt + c

∑
j|εkj<0

εkjaj + ak

πi~

 dc.

We denote by (a1, ..., an) the logarithmic coordinates corresponding to v,
and by (a1, ..., a

′
k, ..., an) the ones corresponding to i′. Recall that only the

coordinate ak changes under the mutation µk. Let us define the operator
Ki→i′ by

(Ki→i′f)(a1, . . . , a
′
k, . . . , an) :=∫
G(a1, . . . , a

′
k + ak, . . . , an)f(a1, . . . , ak, . . . , an)dak, (15)

where a′k + ak and ak are on the k-th places.

Theorem 10. The operators Ki→i′ intertwine the H~
i ⊗H~

io-module structures
on L2(A+

i ) provided by Lemma 9.

Remark. We prove in [FG3] that the collection of Hilbert space L2(A+
i )

and operators Ki→i′ provide a unitary projective representation of the group-
oid G|i|. This implies that the operators Ki→i′ give rise to a unitary projective
representation of the cluster modular group Γ|i| in L2(A+

i ).
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Proof. We present a computation which allows to find the function G as
a unique up to a scalar function such that the corresponding integral trans-
formation intertwines the H~

i - and H~
i′ -bimodule structures on L2(A+

i ) and
L2(A+

i′ ). Recall that εo
ij = −εij , so we may write ε±ij := ±εij and denote by

x±i the xi-coordinates for the seeds i and io.
So we have to find G such that the integral transformation (15) induces a

map of operators:

x̂
′±
i 7−→

{
x̂±i − ε±ikφ~k(−sgn(ε±ik)x̂±k ) if i 6= k
−x̂±k if i = k.

(16)

This means that we should have (changing x̂−i to −x̂−i for convenience) for
i 6= k:

πihd̂i
∂

∂ai
±
∑
j 6=k

ε′ijaj ± ε′ika′k 7→ πi~d̂i
∂

∂ai
±

∑
j 6=k

εijaj ± εik

ak − φ~k

−sgn(±εik)(πi~d̂k
∂

∂ak
±
∑

j

εkjaj)

 , (17)

and
πi~d̂k

∂

∂a′k
±
∑

j

ε′kjaj 7→ −
(
πi~d̂k

∂

∂ak
±
∑

j

εkjaj

)
. (18)

Here we use the following conventions. The signs ± in our formulas always
use either + everywhere, or − everywhere, so ∓ := −±. Thus we have one
set of the equations corresponding to the upper signs and another one to the
lower signs.

Observe that εkk = 0. The relation (18) is satisfied by (15) if and only if

−ε′kj = εkj , and
∂

∂a′k
7−→ − ∂

∂ak
.

Since these two conditions are evidently valid, we have the relation (18).
Substituting (17) into (15) one gets the identities:∫

(πi~d̂i
∂G

∂ai
f + πi~d̂iG

∂f

∂ai
±
∑
j 6=k

ε′ijajGf ± ε′ika′kGf)dak =

=
∫

πi~d̂iG
∂f

∂ai
±
∑
j 6=k

εijajGf±

±Gεik

ak − φ~k

sgn(εik)(∓πi~d̂k
∂

∂ak
−
∑

j

εkjaj)

 f

 dak.
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Since these identities should be valid for any f one gets the equations for the
function G:πi~d̂i

∂

∂ai
±
∑
j 6=k

(ε′ij − εij)aj ∓ εikak±

±εikφ~k

sgn(εik)(±πi~d̂k
∂

∂ak
−
∑

j

εkjaj)

G = 0.

Let us introduce the function Ĝ related to G by the Fourier transform:

Ĝ(c) =
∫

e−
akc

πi~ G(ak)dak; G(ak) =
1

2π2~

∫
e

akc

πi~ Ĝ(c)dc

(we omit the variables a1, . . . , ak−1, ak+1, . . . , . . . , an both G and Ĝ depends
on). Taking into account the relations

πi~
∂̂G

∂ak
= cĜ, âkG = −πi~

∂Ĝ

∂c

one can get the equation for the function Ĝ:πi~d̂i
∂

∂ai
±
∑
j 6=k

(ε′ij − εij)aj ± εikπi~
∂

∂c
±

±εikφ~k

sgn(εik)(±d̂kc−
∑

j

εkjaj)

 Ĝ = 0. (19)

Taking sum and difference of the equations corresponding to the upper and
lower signs one obtains:2πi~d̂i

∂

∂ai
+ εikφ~k

sgn(εik)(d̂kc−
∑

j

εkjaj)

 −

−εikφ~k

sgn(εik)(−d̂kc−
∑

j

εkjaj)

 Ĝ = 0

and



664 V.V.Fock and A.B.Goncharov2
∑
j 6=k

(ε′ij − εij)aj + 2εikπih
∂

∂c
+

+εikφ~k

sgn(εik)(d̂kc−
∑

j

εkjaj)

+

+εikφ~k

sgn(εik)(−d̂kc−
∑

j

εkjaj)

 Ĝ = 0.

Observe that these are the system of 2n− 2 equations on a function of n
variables. So it is an overdetermined system if n > 2. Using the identities

φ~k(sgn(a)b) = φ~k(b) + (sgn(a)− 1)b/2; d̂iεji = −d̂jεij

they can be transformed to the form

2πi~
∂ log Ĝ

∂ai
= d̂−1

k εki×

×

φ~k(d̂kc−
∑

j

εkjaj)− φ~k(−d̂kc−
∑

j

εkjaj) + d̂kc(sgn(εik)− 1)


(20)

and

2πi~
∂ log Ĝ

∂c
= 2(εik)−1

∑
j 6=k

(εij − ε′ij)aj (21)

−φ~k(d̂kc−
∑

j

εkjaj)− φ~k(−d̂kc−
∑

j

εkjaj) + (sgn(εik)− 1)
∑

j

εkjaj

Taking into account that

ε′ij − εij =
|εik|εkj + εik|εkj |

2
, i, j 6= k

we have the following identity:

2(εik)−1(εij − ε′ij) + (sgn(εik)− 1)εkj = (sgn(εjk)− 1)εkj

Multiplying it by aj and taking the sum over j 6= k we get

2(εik)−1
∑
j 6=k

(εij − ε′ij)aj + (sgn(εik)− 1)
∑

j

εkjaj =
∑

j

(sgn(εjk)− 1)εkjaj ,

Thus (21) is equivalent to
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2πi~
∂ log Ĝ

∂c
= −φ~k(d̂kc−

∑
j

εkjaj)−

− φ~k(−d̂kc−
∑

j

εkjaj) + (sgn(εjk)− 1)
∑

j

εkjaj

Therefore the solution of the equations (20) and (21) is given by the formula

Ĝ = CΦ~k(d̂kc−
∑

j

εkjaj)−1Φ~k(−d̂kc−
∑

j

εkjaj)ec
P

j(sgn(εjk)−1))εkjaj/2πi~,

where C is an arbitrary constant. Taking C = 2π2~, one obtains the desired
formula (14). The statement is proved.

Lemma 11. An integral operator given by the formula (15) for certain func-
tion G intertwines the operators (16) if and only if the standard formula for
the mutation of the function εij holds.

Proof. The proof of the theorem shows that this formula, as well as the
formula for mutations of the A-coordinates follow from the anzatz (15) and
the mutation formulas for the quantized X-coordinates.

Representation of the modular double of the chiral double of X|i|,q. Com-
bining Claim 2.2 and Theorem 10 we see that the collection of Hilbert spaces
{L2(A+

i )} should provide a projective unitary ∗-representation of the modular
double of the chiral double of X|i|,q, defined as

X|i|,q ×X|io|,q ×X|i∨|,q∨ ×X|io∨|,q∨ .

According to [FG3], the collection of Hilbert spaces {L2(A+
i )} should pro-

vide a representation of the modular double D|i|,q × D|i∨|,q∨ of the cluster
double of the quantum cluster X -variety X|i|,q. Since there is a canonical map
of quantum spaces D|i|,q −→ X|i|,q ×X|io|,q, this implies the above claim.

4 The quantum logarithm and dilogarithm functions

The proofs of all results listed above can be found in [FG3].

Recall the dilogarithm function

Li2(x) := −
∫ x

0

log(1− t)dt.

The quantum logarithm function. It is the following function:

φ~(z) := −2π~
∫

Ω

e−ipz

(eπp − e−πp)(eπ~p − e−π~p)
dp; (22)

where the contour Ω goes along the real axes from −∞ to ∞ bypassing the
origin from above.
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Proposition 12. The function φ~(x) enjoys the following properties.

(A1) lim
~→0

φ~(z) = log(ez + 1).

(A2) φ~(z)− φ~(−z) = z.

(A3) φ~(z) = φ~(z).

(A4) φ~(z)/~ = φ1/~(z/~).

(A5)

φ~(z+iπ~)−φ~(z−iπ~) =
2πi~

e−z + 1
, φ~(z+iπ)−φ~(z−iπ) =

2πi

e−z/~ + 1
.

(A6) The form φ~(z)dz is meromorphic with poles at the points {πi((2m −
1) + (2n − 1)~)|m,n ∈ N} with residues 2πi~ and at the points {−πi((2m −
1) + (2n− 1)~)|m,n ∈ N} with residues −2πi~.

The quantum dilogarithm. Recall the quantum dilogarithm function:

Φ~(z) := exp
(
−1

4

∫
Ω

e−ipz

sh(πp)sh(π~p)
dp

p

)
.

It goes back to Barnes [Ba], and was used by Baxter [Bax], Faddeeev [Fad],
and others.

Proposition 13. The function Φ~(x) enjoys the following properties.

(B) 2πi~ d log Φ~(z) = φ~(z)dz

(B0) lim
<z→−∞

Φ~(z) = 1.

Here the limit is taken along a line parallel to the real axis.

(B1) lim
~→0

Φ~(z)/ exp
−Li2(−ez)

2πi~
= 1.

(B2) Φ~(z)Φ~(−z) = exp
(

z2

4πi~

)
e−

πi
12 (~+~−1).

(B3) Φ~(z) = (Φ~(z))−1. In particular |Φ~(z)| = 1 for z ∈ R.

(B4) Φ~(z) = Φ1/~(z/~).

(B5) Φ~(z + 2πi~) = Φ~(z)(1 + qez), Φ~(z + 2πi) = Φ~(z)(1 + q∨ez/~).

(B6) The function Φ~(z)dz is meromorphic with poles at the points

{πi((2m− 1) + (2n− 1)~)|m,n ∈ N}

and zeroes at the points

{−πi((2m− 1) + (2n− 1)~)|m,n ∈ N}
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