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Introduction

The present article was motivated by a question raised independently by Barry
Mazur and Nick Katz. The articles [CHT,HST,T] contain a proof of the Sato-
Tate conjecture for an elliptic curve E over a totally real field whose j-invariant
j(E) is not an algebraic integer. The Sato-Tate conjecture for E is an assertion
about the equidistribution of Frobenius angles of E, or equivalently about the
number of points |E(Fp)| on E modulo p as p varies. The precise statement
of the conjecture, which is supposed to hold for any elliptic curve without
complex multiplication, is recalled in §5. Now suppose E and E′ are two
elliptic curves without complex multiplication, and suppose E and E′ are not
isogenous. The question posed by Mazur and Katz is roughly the following:
are the distributions of the Frobenius angles of E and E′, or equivalently of
the numbers p+ 1− |E(Fp)| and p+ 1− |E′(Fp)|, independent?

The Sato-Tate conjecture, in the cases considered in [CHT,HST,T], is a
consequence of facts proved there about L-functions of symmetric powers of
the Galois representation on the Tate module T`(E) of E, following a strategy
elaborated by Serre in [S]. These facts in turn follow from one of the main
theorems of [CHT,HST,T], namely that, if n is even, the (n − 1)st symmet-
ric power of T`(E) is potentially automorphic, in that it is associated to a
cuspidal automorphic representation of GL(n) over some totally real Galois
extension of the original base field. The restriction to even n is inherent in
the approach to potential modularity developed in [HST], which applies only
to even-dimensional representations. The necessary properties of all symmet-
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ric power L-functions follow from this result for even-dimensional symmetric
powers, together with basic facts about Rankin-Selberg L-functions proved by
Jacquet-Shalika-Piatetski-Shapiro and Shahidi. In a similar way, the Mazur-
Katz question can be resolved affirmatively if we can prove potential auto-
morphy for all symmetric power L-functions of E and E′ over the same field.

The main purpose of the present article is to explain how to prove potential
automorphy for odd-dimensional symmetric power L-functions, thus provid-
ing a response to the question of Mazur and Katz. The principal innovation
is a tensor product trick that converts an odd-dimensional representation to
an even-dimensional representation. Briefly, in §§2 and 3 one tensors with a
two-dimensional representation. One has to choose a two-dimensional repre-
sentation of the right kind, which is not difficult. The challenge is then to
recover the odd-dimensional symmetric power unencumbered by the extrane-
ous two-dimensional factor; this is the subject of §4. I say “explain how to
prove” rather than “prove” because the proofs of the main results of this arti-
cle make use of stronger modularity theorems than those proved in [CHT] and
[T], and are thus conditional. I explain in §1 how I expect these modularity
results to result from a strengthening of known theorems associating compat-
ible families of `-adic Galois representations to certain kinds of automorphic
representations. These stronger theorems, stated as Expected Theorems 1.2
and 1.4, are the subject of work in progress by participants in the Paris au-
tomorphic forms seminar, and described in [H]. This work has progressed to
a point where it seems legitimate to admit these Expected Theorems. Never-
theless, the present article should be viewed as a promissory note which will
not be negotiable until the project outlined in [H] has been completed.

One can of course generalize the question and ask whether the distributions
of the Frobenius angles of n pairwise non-isogenous elliptic curves without
complex multiplication are independent. For n ≥ 3 this seems completely
inaccessible by current techniques in automorphic forms.

The article concludes with some speculations regarding additional appli-
cations of the tensor product trick.

I met Yuri Ivanovich Manin briefly near the beginning of my career. Later,
as a National Academy of Sciences exchange fellow I had the remarkable good
fortune of spending a year as his guest in Moscow, and as a (mostly passive
but deeply appreciative) participant in his seminar at Moscow State University
during what may well have been its final year, and saw first-hand what the
Moscow mathematical community owed to his insight and personality. The
influence of Yuri Ivanovich on my own work is pervasive, and the present
work is no exception: though it is not apparent in what follows, the article
[HST], on which all the results presented here are based, can be read as an
extended meditation on the Gauss-Manin connection as applied to a particular
family of Calabi-Yau varieties. It is an honor to dedicate this article to Yuri
Ivanovich Manin.

I thank Barry Mazur and Nick Katz for raising the question that led to
this paper. Apart from the tensor product trick, practically all the ideas in this
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paper are contained in [CHT], [HST], and [T]; I thank my coauthors – Laurent
Clozel, Nick Shepherd-Barron, and Richard Taylor – for their collaboration
over many years. I thank Richard Taylor specifically for his help with the proof
of the crucial Lemma 4.2. Finally, I thank the referee for a careful reading,
and for helping me to clarify a number of important points.

1. Reciprocity for n-dimensional Galois representations

All finite-dimensional representations of Galois groups are assumed to be con-
tinuous. When E is a number field, contained in a fixed algebraic closure Q
of Q, we let ΓE denote Gal(Q/E). Let ρ be a (finite-dimensional) `-adic rep-
resentation of ΓE . Say ρ is pure of weight w if for all but finitely many primes
v of E the restriction ρv of ρ to the decomposition group Γv is unramified
and if the eigenvalues of ρv(Frobv) are all algebraic numbers whose absolute
values equal q

w
2
v ; here qv is the order of the residue field kv at v and Frobv is

geometric Frobenius. If ρ is pure of weight w, the normalized L-function of ρ
is

Lnorm(s, ρ) = L(s+
w

2
, ρ);

here we assume we have a way to define the local Euler factors at primes
dividing ` (for example, ρ belongs to a compatible system of λ-adic represen-
tations). Then Lnorm(s, ρ) converges absolutely for Re(s) > 1.

Let F be a CM field, F+ ⊂ F its maximal totally real subfield, so that
[F : F+] ≤ 2. Let c ∈ Gal(F/F+) be complex conjugation; by transport of
structure it acts on automorphic representations of GL(n, F ). The following
theorem is the basis for many of the recent results on reciprocity for Galois
representations of dimension > 2. For the purposes of the following theorem, a
unitary Harish-Chandra module σ for GL(n,C) will be called “cohomological”
if σ ⊗ ||det ||n−1

2 || is cohomological in the usual sense, i.e. if there is a finite-
dimensional irreducible representation W of GL(n,C) such that

H•(Lie(GL(n,C)), U(n);σ ⊗ ||det ||
n−1

2 || ⊗W ) 6= 0.

The half-integral twist is required by the unitarity.

Theorem 1.1 ([C2], [Ko], [HT], [TY]). In what follows, Π denotes a cus-
pidal automorphic representation of GL(n, F ), and {ρ•,λ} denotes a compat-
ible family of n-dimensional λ-adic representations of ΓF .

There is an arrow Π 7→ {ρΠ,λ}, where λ runs through non-archimedean
completions of a certain number field E(Π), under the following hypotheses:

(1) The factor Π∞

is cohomological
(2) Π ◦ c ∼= Π∨

(3) ∃v0,Πv0

discrete series


⇒



(a) ρ = ρΠ,λ geometric,
HT regular

(b) ρ⊗ ρ ◦ c → Q`(1− n)
(c) local condition

at v0
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This correspondence has the following properties:

(i) For any finite place v prime to the residue characteristic ` of λ,

[ρΠ,λ |WDv ]Frob−ss = L(Πv ⊗ | • |
1−n

2
v ).

Here WDv is the local Weil-Deligne group at v, L is the normalized local
Langlands correspondence, and Frob− ss denotes Frobenius semisimplifi-
cation;

(ii)The representation ρΠ,λ |Gv is potentially semistable, in Fontaine’s sense,
for any v dividing `, and the Hodge-Tate weights at v are explicitly deter-
mined by the infinitesimal character of the Harish-Chandra module Π∞.

The local Langlands correspondence is given the unitary normalization.
This means that the correspondence identifies L(s,Π) and Lnorm(s, ρΠ,λ), so
that the functional equations always exchange values at s and 1− s.

The term “geometric” is used in the sense of Fontaine-Mazur: each ρΠ,λ
is unramified outside a finite set of places of F , in addition to the poten-
tial semistability mentioned in the statement of the theorem. The condition
“HT regular” (Hodge-Tate) means that the Hodge-Tate weights at v have
multiplicity at most one.

For the local condition (c), we can take the condition that the representa-
tion of the decomposition group at v0 is indecomposable as long as v0 is prime
to the residue characteristic of λ, or equivalently that this representation of
the decomposition group at v0 corresponds to a discrete series representation
of GL(n, Fv0). The conditions on both sides of the diagram match: (1) ↔ (a),
(2) ↔ (b), (3) ↔ (c).

When Π is a base change of a representation Π+ of GL(n, F+), condition
(2) just means that Π is self-dual.

In what follows, we will admit the following extension of Theorem 1.1:

Expected Theorem 1.2. The assertions of Theorem 1.1 remain true pro-
vided Π satisfies conditions (1) and (2); then ρΠ,λ satisfies conditions (a) and
(b), as well as (i) and (ii).

Here “Expected Theorem” means something more than conjecture. The
claim of Expected Theorem 1.2 is a very special case of the general Langlands
conjectures, in the version for Galois representations developed in Clozel’s
article [C1]. This specific case is the subject of work in progress on the part
of participants in the Paris automorphic forms seminar and others, and an
outline of the various steps in the proof can be found in [H]. There are quite
a lot of intermediate steps, the most difficult of which involve analysis of the
stable trace formula, twisted or not, but I would ”expect” that they will all
have been verified, and the theorem completely proved, by 2010 at the latest.

I single out one of the intermediate steps. By a unitary group over F+ I will
mean the group of automorphisms of a vector space V/F preserving a non-
degenerate hermitian form. The group is denoted U(V ), the hermitian form
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being understood. We will consider a hermitian vector space V of dimension
n with the following properties:

(1.3.1) For every real place σ of F+, the local group U(Vσ) is compact (the
hermitian form is totally definite);

(1.3.2) For every finite place v of F+, the local group U(Vv) is quasi-split and
split over an unramified extension.

We write G0 = U(V ). Such a unitary group always exists when n is odd,
provided F/F+ is everywhere unramified. When n is even, there is a sign
obstruction that can be removed by replacing F+ by a totally real quadratic
extension. Such restrictions are harmless for applications (see [H]).

We let K =
∏
vKv ⊂ G0(Af ) be an open compact level subgroup. Hy-

pothesis (1.3.2) guarantees that G0(F+
v ) contains a hyperspecial maximal

compact subgroup for all finite v. If v is split then any maximal compact
subgroup is hyperspecial and conjugate to GL(n,Ov). We assume

Hypothesis 1.3.3. Kv is hyperspecial maximal compact for all v that remain
inert in F .

For any ring R, let

MK(G0, R) = C(G0(F+)\G0(A)/G0(R) ·K,R),

where for any topological spaceX, C(X,R) means theR-module of continuous
functions from X to R, the latter endowed with the discrete topology. The
Hecke algebra HK(R) of double cosets of K in G0(Af ) with coefficients in R
acts on MK(G0, R). It contains a subring Hhyp

K (R) generated by the double
cosets ofKv in G0(F+

v ) where v runs over primes that split in F at whichKv is
hyperspecial maximal compact. We denote by TK(R) the image of Hhyp

K (R)
in EndR(MK(G0, R)). The algebra TK(R) is reduced if R is a semisimple
algebra flat over Z (cf. [CHT], Corollary 2.3.3).

We can also consider M(G0, R), the direct limit of MK(G0, R) over all K,
including those not satisfying (1.3.3). This is a representation of G0(Af ) and
decomposes as a sum of irreducible representations when R is an algebraically
closed field of characteristic zero. Let π ⊂ M(G0,C) be an irreducible sum-
mand. Write π = π∞ ⊗ πf , πf = ⊗′vπv, the restricted tensor product over
finite primes v of F+ of representations of G0(F+

v ). With our hypotheses π∞
is the trivial representation of G0,R =

∏
σ U(Vσ), where σ is as in (1.3.1).

Suppose πK 6= {0} for some K satisfying (1.3.3). Then for every finite v
one can define the local base change Πv = BCFv/F

+
v
πv, a representation of

G0(F+
v )∼→−→

∏
w|v GL(n, Fw). If v is inert, then by (1.3.3) we know that πv is

an unramified representation, and so is Πv. If not, then πv is a representation
of GL(n, F+

v ) and Πv
∼→−→πv⊗π∨v , with the appropriate normalization. Thus

Lemma 1.3.4. The local factor πv is uniquely determined by Πv.
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Expected Theorem 1.4. There is a cohomological representation Π∞ of
GL(n, F∞) = GL(n, F ⊗Q R) such that the formal base change

Π = BCF/F+π = Π∞ ⊗
′⊗
v

Πv

is an automorphic representation of GL(n, F ). Moreover, there is a parti-
tion n = a1 + a2 + · · · + ar and an automorphic representation

⊗
j Πj of

the group
∏
j GL(aj ,AF ) such that each Πj is in the discrete automorphic

spectrum of GL(aj , F ) and Π, as a representation of GL(n,AF ), is paraboli-
cally induced from the inflation of

⊗
j Πj to the standard parabolic subgroup

P (A) ⊂ GL(n,AF ) associated to the partition. Moreover, each Πj satisfies
conditions (1) and (2) of Theorem 1.1, where “cohomological” is understood
as in loc. cit..

We say π is F/F+-cuspidal if Π is cuspidal, in which case it follows from
the classification of generic cohomological representations that Π∞ is neces-
sarily tempered and is uniquely determined by the condition that π∞ is trivial.
This representation is denoted Π∞,0, or Π∞,0(n, F ) when this is necessary.

Fix a prime ` and let O be the ring of integers in a finite extension of
Q`. The ring TK(O) is semilocal and TK(O ⊗ Q̄`) is a product of fields. Let
m ⊂ TK(O) be a maximal ideal and let I ⊂ TK(O ⊗ Q̄`) be any prime ideal
whose intersection with TK(O) is contained in m. Then I determines an ir-
reducible G0(Af )-summand π0 of M(G0, Q̄`), or equivalently of M(G0,C), if
one identifies the algebraic closures of Q in C and in Q̄`, as in [HT], p. 20.
More precisely, I only determines π0,v locally at v for which Kv is hyperspe-
cial, but this includes all inert primes. Let S be the set at which Kv is not
hyperspecial. By Expected Theorem 1.4, I determines a collection of coho-
mological automorphic representations Π of GL(n, F ) which are isomorphic
outside the finite set S. By strong multiplicity one, Π is in fact unique; we
denote it ΠI . Then π is unique by Lemma 1.3.4.

Combining Expected Theorems 1.4 and 1.2, we thus obtain an n-dimensional
representation ρΠ,` = ρI,` of ΓF . We say I is Eisenstein at ` if the reduction
mod `, denoted ρ̄Π,`, is not absolutely irreducible. It follows in the usual way
from property (i) of the correspondence between ρΠ,` and Π that if I is Eisen-
stein at ` then every prime ideal of TK(O ⊗ Q̄`) lying above m is Eisenstein.
In that case we say m is Eisenstein at `.

Lemma 1.5. Admit Expected Theorems 1.4 and 1.2. Fix a prime `, and
suppose m ⊂ TK(O) is not an Eisenstein ideal at `. Then any prime ideal
I ⊂ TK(O ⊗ Q̄`) lying above m has the property that ΠI is cuspidal (in that
case we say m and I are F/F+ − cuspidal).

Sketch of proof. This follows from the classification of automorphic represen-
tations of GL(n) and from properties of base change. Suppose I corresponds
to π ⊂M(G0,C). If the base change Π of π belongs to the discrete spectrum
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of GL(n, F ) – that is, if the partition in Expected Theorem 1.4 is a singleton
– then it is either cuspidal or in the non-tempered discrete spectrum. In the
latter case, the Moeglin-Waldspurger classification implies that n factors as
ab, with a > 1, b > 1, and Π is the Speh representation attached to a cuspidal
automorphic representation Π1 of GL(b, F ). Clozel has checked in [C3] that
Π1 satisfies properties (1) and (2) of Expected Theorem 1.2 for GL(b), hence
is associated to a b-dimensional `-adic representation ρ1 of ΓF . It follows from
condition (i) of Expected Theorem 1.2 that the semisimple representation ρΠ,`
decomposes as a sum of a constituents, each of which is an abelian twist of
ρ1.

Suppose Π does not belong to the discrete spectrum of GL(n, F ). Then
π is endoscopic, hence is associated to a partition n =

∑
aj , with each

aj > 0, and an automorphic representation ⊗jΠaj in the discrete spectrum of∏
j GL(aj , F ), such that each Πaj , satisfies properties (1) and (2) of Expected

Theorem 1.2. Then ρΠ,` decomposes as a sum of r > 1 pieces of dimensions
aj . ut

I recall the main modularity lifting theorem of [T], whose proof builds on
and completes the main results of [CHT].

1.6. Modularity lifting theorem. Let ` > n be a prime unramified in F+

(resp. and such that every divisor of ` in F+ splits in F ) and let

r : ΓF+ → GL(n, Q̄`) (resp. r : ΓF → GL(n, Q̄`))

be a continuous irreducible representation satisfying the following properties:

(a) r ramifies at only finitely many primes, is crystalline at all primes dividing
`, and is Hodge-Tate regular;

(b) r ' r∨(1 − n) · χ (resp. rc ' r∨(1 − n)) where (1 − n) is the Tate twist
and χ is a character whose value is constant on all complex conjugations
(resp. c denotes complex conjugation);

(c) At some finite place v not dividing `, rv corresponds to a square-integrable
representation of GL(n, F+

v ) under the local Langlands correspondence,
and satisfies the final “minimality” hypotheses of [CHT, 4.3.4 (5)] or [T,
5.2 (5)]

In addition, we assume that r̄

(d) has “big” image in the sense of Definition 3.1 below;
(e) is absolutely irreducible;
(f) is of the form ρ̄Π,` for some cuspidal automorphic representation Π of

GL(n, F+) satisfying conditions (1)-(3) of Theorem 1.1.

Then r is of the form ρΠ′,` for some cuspidal automorphic representation
Π ′ of GL(n, F+) satisfying conditions (i)-(iii) of Theorem 1.1.

I have not written out the last part of hypothesis (c) in detail, because it
will be dropped in the remainder of the article. More precisely, if we admit
Expected Theorems 1.2 and 1.4, then we obtain the
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1.7. Expected modularity lifting theorem. Let ` and r be as in 1.6, but
we no longer assume condition (c), and in (f) we drop condition (3). Then
r is of the form ρΠ′,` for some cuspidal automorphic representation Π ′ of
GL(n, F+) satisfying properties (i)-(ii) of Expected Theorem 1.2.

I Expect the arguments of [CHT] and [T] will apply without change to yield
this Expected Theorem. The various rings of deformations of r̄ are defined
exactly as in [CHT] and [T], and the target Hecke algebra is the localization
of TK(O) at the maximal ideal m associated to r̄. Hypothesis (e) guarantees
that m is not Eisenstein at `, and the remaining arguments should go through
unchanged. However, there are many steps to the proof of Theorem 1.6, and
it is necessary to check carefully that, as I believe, Expected Theorems 1.2
and 1.4 eliminate all dependence on the local condition (c).

In the remainder of the paper, I draw consequences from 1.7.

2. Potential modularity of a Galois representation

Let F and F+ be as in §1. The article [HST] develops a method for proving
that certain n-dimensional `-adic representations ρ of ΓF+ (resp. ΓF ) that
look like they arise from automorphic representations via the correspondence
of Theorem 1.1, are potentially automorphic in the following sense: there exists
a totally real Galois extension F ′/F+ such that ρ |ΓF ′ (resp. ρ |ΓF ·F ′ )
does correspond to a cuspidal automorphic representation of GL(n, F ′) (resp.
GL(n, F · F ′)). The relevant result is Theorem 3.1 of [HST], which is in turn
based on Theorem 1.6. Although the latter theorem is valid for representations
of arbitrary dimension n, Theorem 3.1 only applies to an even-dimensional
representation of ΓF+ endowed with an alternating form that is preserved by
ΓF+ up to a multiplier.

If we admit the expected results of §1, then Theorem 3.1 of [HST] admits
the following simplification. The constant C(ni) is a positive number intro-
duced in [HST], Corollary 1.11; its precise definition is irrelevant to the ap-
plications. For a finite prime w, Gw denotes a decomposition group, Iw ⊂ Gw
the inertia group.

Theorem 2.1 [HST]. Assume the Expected Theorems of §1. Let F+/F 0,+

be a Galois extension of totally real fields and let n1, . . . , nr be even positive
integers. Suppose that ` > max{C(ni), ni} is a prime which is unramified in
F and which splits in Q(ζni+1), i = 1, . . . , r. Let L be a finite set of primes
of F+ not containing primes above ` and let M be a finite extension of F .

Suppose that for i = 1, . . . , r

ri : ΓF+ → GSp(ni,Z`)

is a continuous representation with the following properties.

• ri has multiplier ω1−ni

` , where ω` is the `-adic cyclotomic character.
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• ri ramifies at only finitely many primes.
• The image r̄i(ΓF+(ζ`)) is big, in the sense of Definition 3.1 below, where

ζ` is a primitive `-th root of 1.
• The fixed field Fi of ker ad(r̄i) ⊂ ΓF+ does not contain F (ζ`).
• ri is unramified at all primes in L.
• If w | ` is a prime of F then ri |Gw is crystalline with Hodge-Tate weights

0, 1, . . . , ni − 1, with the conventions of [HST]. Moreover,

r̄i |Iw
'
ni−1⊕
j=0

ω−j` .

Then there is a totally real field F ′,+/F+, Galois over F+
0 and linearly

disjoint from the compositum of the Fi with M over F+, with the property
that each ri,F ′,+ = ri |Γ ′,+F

corresponds to an automorphic representation
Πi of GL(ni, F ′,+). If F ′/F ′,+ is a CM quadratic extension, then the base
change Πi,F ′ has archimedean constituent isomorphic to Π∞,0(ni, F ′) (cf. the
remarks after 1.4). Finally, all primes of L and all primes of F dividing ` are
unramified in F ′.

Apart from a few slight changes in notation, this theorem is practically
identical to Theorem 3.1 of [HST]. There is no field M in [HST] but the
proof yields an F ′,+ linearly disjoint over F+ from any fixed extension. Only
condition (7) of Theorem 3.1 of [HST], corresponding to condition (3) of The-
orem 1.1, has been eliminated. The proof is identical but simpler: references
to Theorem 1.6 are replaced by references to Expected Theorem 1.7, and all
arguments involving the primes q and q′ in [HST] are no longer necessary.

Let E be an elliptic curve over F+, and let ρE,` : ΓF+ → GL(2,Q`) denote
the representation on H1(EQ,Q`), i.e. the dual of the `-adic Tate module. For
n ≥ 1 let

ρnE,` = Symn−1ρE,` : ΓF+ → GL(n,Q`).

We will always assume E has no complex multiplication. Then ρnE,` is irre-
ducible by a theorem of Serre, for all n, and for almost all ` > n, Im(ρ̄)
contains the image of SL(2,F`) under the symmetric power representation,
and hence is absolutely irreducible. When F+ = Q it was proved in the se-
ries of papers initiated by Wiles and Taylor-Wiles and completed by Breuil,
Conrad, Diamond, and Taylor that L(s, ρE,`) is automorphic, which in this
case means is attached to a classical new form of weight 2. The prototype
for Theorem 2.1 is the theorem proved by Taylor in [T02], which shows that
L(s, ρE,`) is potentially automorphic for any F+.

In [HST] and [T], Theorem 2.1 is notably applied to show that L(s, ρnE,`)
is potentially automorphic for any even n, provided E has non-integral j-
invariant. One can hardly hope to apply Theorem 2.1 as such when n is odd,
given that symplectic groups are only attached to even integers. Moreover,
when n is odd ρnE,` has an orthogonal polarization rather than a symplectic
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polarization. These two related flaws – the oddness of n and the orthogonality
of ρn – can be cured simultaneously by tensoring ρnE,` by a two-dimensional
representation τ : ΓF+ → GL(2,Z`). Such a representation is necessarily
symplectic, with multiplier det τ . We suppose τ has determinant ω−n` . In
order to preserve the hypotheses of Theorem 2.1, specifically 2.1 (6), we need
to assume

Hypothesis 2.2. If w | ` is a prime of F then τ |Gw
is crystalline with

Hodge-Tate weights 0, n, with the conventions of [HST]. Moreover,

τ̄ |Iw' 1⊕ ω−n` .

For example, let f be a classical new form of weight n + 1 for Γ0(N),
for some integer N . Associated to f is a number field Q(f), generated by
the Fourier coefficients of f , and a compatible system of 2-dimensional λ-adic
representations τf,λ of ΓQ as λ varies over the primes of Q(f). We choose a
prime ` that splits completely in Q(f) and such that ` - N . Fix λ dividing
`, and write τ = τf,λ. Then τ takes values in GL(2,Z`); since f has trivial
nebentypus, the determinant of τ is indeed ω−n` . The hypothesis regarding
τ̄ |Iw is in general a serious restriction, but we will find explicit examples.

(2.3)

We say the residual representation τ̄ is “big enough” if its image contains
a non-commutative subgroup of the normalizer N(T ) of a maximal torus
T ⊂ SL(2,F`), and more specifically that Im(τ̄) contains an element h of T
with distinct eigenvalues that acts trivially on the cyclotomic field Q(ζ`), and
an element w of order 2 that does not commute with h.

Here are the representations we will use. Let L be an imaginary quadratic
field not contained in F , and let ηL be the corresponding quadratic Dirichlet
character, viewed as an idèle class character of Q. Let χ be a Hecke character
of (the idèles of) L whose restriction to the idèles of Q is the product |•|−nA ·ηL,
where |•|A is the idèle norm. Choose an isomorphism L∞ = L⊗QR ∼→−→C, let
z be the corresponding coordinate function on L∞, and assume χ∞(z) = z−n.
Then χ is an algebraic Hecke character and is associated to a compatible
system of `-adic characters χλ : ΓL → Q(χ)+λ , where Q(χ) is the field of
coefficients of χ, a finite extension of Q, and λ runs through the places of
Q(χ). Choose a prime ` > 2n+ 1 that splits in L and in Q(χ); then for any λ
dividing ` we can view χλ as a Q×

` -valued character of ΓL; we write χ` = χλ.
For such an `, we define the monomial induced representation

τ` = Ind
ΓQ
ΓL
χ` : ΓQ → GL(2,Q`).

Lemma 2.4. Under the above hypotheses, τ̄` is “big enough” in the sense of
(2.3).
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Proof. Let v, v′ be the two primes of L dividing `. Let k(v), k(v′) denote the
corresponding residue fields; then the product of the respective Teichmüller
characters defines an inclusion

k(v)× × k(v′)× ↪→ O×
v ×O×

v′ ⊂ A×
L .

Let b and b′ denote generators of the images of the cyclic groups k(v)× and
k(v′)× in O×

v and O×
v′ , respectively, and let s(b), s(b′) denote their images

in Gal(Lab/L) under the reciprocity map. Our hypotheses imply that s(b)
acts on τ̄ with eigenvalues bn, 1, and likewise for s(b′). Moreover, the trivial
eigenspace for s(b) is the non-trivial eigenspace for s(b′), and vice versa. We
identify b and b′ with roots of unity in Q`

×. The element h = τ̄(s(b) · s(b′)−1)
then belongs to SL(2,F`) and has eigenvalues b±n. Since ` − 1 > 2n, these
eigenvalues are distinct; in particular, h does not commute with the image
w of complex conjugation in Im(τ̄). Since the action of O×

v × O×
v′ on Q(ζ`)

factors through the norm to Z×` , we see that h acts trivially on Q(ζ`). This
completes the proof of Lemma 2.4. ut

Corollary 2.5. Let τ = τf,λ be as in the preceding paragraph and satisfy
Hypothesis 2.2. We continue to admit the Expected Theorems of §1. We use
the same notation for τ |ΓF+ . Let E be an elliptic curve over F . Let n be an
odd positive integer, and suppose there is a prime ` > 2n + 1, unramified in
F+, such that

(i) E has good ordinary reduction at all primes w dividing `
(ii)` does not divide the conductor N of f , and

τ̄ |Iw' 1⊕ ω−n` .

(iii)̀ splits in Q(ζ2i+1), i = 1, . . . , n − 1; in particular, ` ≡ 1 (mod n) (take
i = n−1

2 ).
(iv)`−1

n > 2.

Suppose τ̄ is “big enough” in the sense of (2.3). Let M be an arbitrary
extension of F+. For every integer i ≤ n, let ri = ρ2i

E,`; let rτ = ρnE,`⊗τ . Then
there is a totally real Galois extension F ′,+/F+, linearly disjoint from M over
F+, with the property that for i = 1, . . . , n, ri,F ′,+ = ri |Γ ′,+F

corresponds to an
automorphic representation Πi of GL(2i, F ′,+), and such that rτ corresponds
to an automorphic representation Πτ of GL(2n, F ′,+). If F ′/F ′,+ is a CM
quadratic extension, then the base change Πi,F ′ (resp. Πτ,F ′) has archimedean
constituent isomorphic to Π∞,0(2i, F ′) (resp. Π∞,0(2n, F ′)).

Proof. Under our hypotheses on ` and the image of τ̄ , r̄τ is absolutely irre-
ducible. We first prove the corollary under the hypothesis that for each w
dividing `,

ρ̄E,` |Iw
' 1⊕ ω−1

` . (2.5.1)
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Conditions (1), (2), and (6) of Theorem 2.1 are clearly satisfied. Since `
is unramified in F+, F+ and Q(ζ`) are linearly disjoint over Q. By condition
(1), the intersection of Im(r̄i) with the center of GSp(ni,F`) maps onto the
subgroup of Gal(Q(ζ`)/Q) generated by 2(1 − ni)-th powers, which implies
condition (4) for all ri, and for rτ as well.

Condition (5) is irrelevant. It remains to verify condition (3). For r̄i, i =
1, . . . , n, this is Lemma 3.2 of [HST]; the case of r̄τ is Lemma 3.2.

This completes the proof under hypothesis (2.5.1). We reduce to this case
as in the proof of Theorem 3.3 of [HST], replacing ` by a second prime `′ >
2n+1 also split in L and in Q(χ), τ̄` by τ̄`′ , and E by a curve E′ (unfortunately
denoted E in [loc. cit.]) such that ρE′,`

∼→−→ρE,` but ρE′,`′ satisfies hypothesis
(2.5.1) at `′. ut

Remark 2.6. Recall that the results of this section are all conditional on
the Expected Theorems of §1. In particular, we are not assuming that E has
potentially multiplicative reduction at some place. If we do assume j(E) is
not integral, then the automorphic representations Πi are constructed uncon-
ditionally in [CHT, HST, T]. However, the local condition on j(E) does not
suffice to impose a strong enough local condition on rτ (corresponding to a
discrete series representation on the automorphic side).

3. A lemma about certain residual representations

Definition 3.1. Let V/F̄` be a finite dimensional vector space. Let ad0(V ) ⊂
ad(V ) = Hom(V, V ) be the subspace of trace 0 endomorphisms. A subgroup
∆ ⊂ GL(V ) is big if the following hold:

(a) Hi(∆, ad0V ) = (0) for i = 0, 1.
(b) For all irreducible F̄`[∆]-submodules W ⊂ Hom(V, V ) we can find h ∈ ∆

and α ∈ F̄` with the following properties. The α-generalized eigenspace Vh,α
of h on V is one-dimensional. Let

πh,α : V → Vh,α; ih,α : Vh,α ↪→ V

denote, respectively, the h-equivariant projection and the h-equivariant in-
clusions of the indicated spaces. Then πh,α ◦W ◦ ih,α 6= (0).

Remark. It is not the case that if ∆ contains a subgroup ∆′ which is big
in the above sense, then ∆ itself is necessarily big (bigger than big is not
necessarily big). This is because condition (a) is not preserved under passage
to a bigger group. To check condition (b), on the other hand, it clearly suffices
to show that it holds for some subgroup ∆′ ⊂ ∆.

Lemma 3.2. Let F+, τ , ρn = ρnE,`, and rτ be as in the statement of Corollary
2.5, with τ as in the proof of Lemma 2.4. Suppose ` > 4n−1. Then r̄τ (ΓF+(ζ`))
is big in the sense of Definition 3.1.
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Proof. We begin by establishing notation. Write ρ̄n = ρ̄nE,`. We define ad0 as
in Definition 3.1, and write

ad ρ̄n = ad0 ρ̄n ⊕ 1, ad τ̄ = ad0 τ̄ ⊕ 1,

where 1 denotes the trivial representation. Then

ad0 r̄τ = ad0 ρ̄n ⊗ ad0 τ̄ ⊕ ad0 ρ̄n ⊕ ad0 τ̄ . (3.2.1)

Let ∆ = r̄τ (ΓF+(ζ`)), and define

∆̃ = ρ̄n(ΓF+(ζ`))× τ̄((ΓF+(ζ`)).

The tensor product defines an exact sequence

1 → C → ∆̃→ ∆→ 1

where the kernel C maps injectively to the center of GL(2,F`), viewed as the
group of linear transformations of the space of τ̄ . In particular, the order of
C is prime to `. (In fact, as the referee pointed out, under our hypotheses
one checks easily that C is trivial, but this makes no difference in the sequel.)
Finally, let ∆ρ denote the image of ρ̄n(ΓF+(ζ`)) ⊂ ∆̃ in ∆. This is a normal
subgroup of ∆ isomorphic to the simple finite group PSL(2,F`), since n is
odd and ` > 2n+ 1. Moreover, ∆τ := ∆/∆ρ is of order prime to `, since the
image of τ̄ is contained in the normalizer of a maximal torus. It follows from
the inflation-restriction sequence that

H1(∆,W )∼→−→H0(∆τ ,H
1(∆ρ,W )) (3.2.2)

for any summand W of (3.2.1).
Proof of (a): We first note that∆ acts irreducibly on r̄τ , henceH0(∆, ad0 r̄τ ) =
(0). We apply (3.2.2) to show that H1(∆,W ) = 0 for each summand W
of (3.2.1). Indeed, it suffices to show that H1(PSL(2,F`),W ) = 0 for each
W . But as a representation of PSL(2,F`), each W is a direct sum of copies
of i-dimensional symmetric powers Symi−1 of the standard representation
PSL(2,F`), where i runs through (odd) integers at most equal to 2n − 1.
Since ` > 2n + 1, it is well known that H1(PSL(2,F`), Symi−1) = 0 for
i ≤ 2n− 1.
Proof of (b): Let b denote a generator of the cyclic group k(v)× ' µ`−1, as
in the proof of Lemma 2.4. As remarked above, if ∆′ ⊂ ∆ is a subgroup
that satisfies 3.1(b) for a given summand W of (3.2.1), then ∆ also satistifes
this property for the given W . We may thus assume Im(τ̄) is contained in
the normalizer of a maximal torus T in SL(2,F`) and contains an element
t0 ∈ T with the two distinct eigenvalues bn, b−n on τ̄ , with corresponding
eigenvectors v1 and v2, as well as the element w /∈ T with eigenvalues 1
and −1. With appropriate normalizations, we can assume the corresponding
eigenvectors are v1 + v2 and v1− v2, respectively. Write k = F`. We can write
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ad τ̄ = k+ ⊕ k− ⊕ U,

where U = Ind
ΓF+

ΓL·F+ χ̄`/χ̄
c
` and k+ and k− are representations of ΓF+ that

factor through Gal(L · F+/F+), with the non-trivial element acting by the
indicated sign. We thus have

Hom(r̄τ , r̄τ ) = ad ρ̄n ⊗ [k+ ⊕ k− ⊕ U ]. (3.2.3)

For i, j ∈ {1, 2}), let pi,j ∈ End(τ̄) be the endomorphism that takes vi to vj
and vanishes on vk if k 6= i. Then k+ (resp. k−) is spanned by p1,1 +p2,2 (resp.
p1,1 − p2,2, whereas U is spanned by p1,2 and p2,1.

Let t ∈ Im(ρ̄n) be the image of an element of a split maximal torus of
SL(2,F`), with n distinct eigenvalues under ρ̄n, as in the proof of Lemma 3.2 of
[HST]. More precisely, we can take t to be the diagonal element diag(b, b−1), so
that ρ̄n(t) has eigenvalues bn−1, bn−3, . . . , b1−n. The formula (3.2.3) expresses
Hom(r̄τ , r̄τ ) as a sum of four copies of ad ρ̄n, as representation of t. Let
h0, resp hw denote the image in ∆ of (t, t0) ∈ ∆̃, resp. the image of (t, w).
Since ` > 4n − 1, bi 6= 1 for any i < 4n − 1, hence no ratio of eigenvalues
of ρ̄n(t) equals a ratio of eigenvalues of τ̄(t0), nor of ¯τ(w). It follows that
all the generalized eigenspaces of h0 and hw in r̄τ are of dimension 1. It
was shown in the proof of Lemma 3.2 of [HST] that ad ρ̄n satisfies 3.1(b),
with ∆ replaced by Im(ρ̄n) and with t playing the role of h; here we use
the hypothesis that ` > 2n + 1. It thus follows that, if W is an irreducible
summand of ad ρ̄n⊗ [k+⊕k−], then 3.1(b) is satisfied for this W with h = h0.
On the other hand, if W is an irreducible summand of ad ρ̄n⊗U , then 3.1(b)
is satisfied for this W with h = hw. Indeed, it suffices to observe that the
element (p1,2 + p2,1) ∈ U takes the eigenvector v1 + v2 to itself. ut

4. Removing τ

We fix an odd number n as above. The hypotheses of the earlier sections
remain in force; in particular, we admit the Expected Theorems of §1.

Corollary 4.1. Let F+(ρ̄E,`) denote the splitting field of ρ̄E,` and M =
L · F+(ρ̄E,`). Then there is a totally real Galois extension F ′,+/F+, lin-
early disjoint from M over F+, with the property that for i = 0, . . . , n,
ri,F ′,+ = ri |Γ ′,+F

corresponds to a cuspidal automorphic representation Πi

of GL(2i, F ′,+), and such that rτ,F ′,+ = rτ |Γ ′,+F
corresponds to a cuspidal

automorphic representation Πτ of GL(2n, F ′,+).

Let E be a number field, and let ρ be an `-adic representation of ΓE . We
assume ρ to be pure of some weight w, as in §1; thus we can define Lnorm(s, ρ).
We say L(s, ρ) (or Lnorm(s, ρ) is invertible if it extends to a meromorphic
function on C and if Lnorm(s, ρ) has no zeroes for Res ≥ 1 and no poles for
Res ≥ 1 except for a possible pole at s = 1.
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Let L′ = L · F ′,+, and let c ∈ Gal(L′/F ′,+) denote complex conjugation
The proof of the following lemma was devised with a great deal of help from
Richard Taylor.

Lemma 4.2. The representation Πτ of GL(2n, F ′,+) is isomorphic to the
automorphic induction from L′ of some cuspidal automorphic representation
Π1(τ) of GL(n,L′). After possibly replacing Π1(τ) by its Galois conjugate
Π1(τ)c, the tensor product Π1(τ)⊗ χ is isomorphic to its c-conjugate, hence
descends to a cuspidal automorphic representation π of GL(n, F ′,+).

Proof. Let ηL′ be the quadratic character of F ′,+ associated to the extension
L′. By construction, τ` |ΓF ′,+

⊗ηL′
∼→−→τ` |ΓF ′,+

, hence

Πτ ⊗ ηL′
∼→−→Πτ . (4.2.1)

It follows from [AC, Chapter 3, Theorem 4.2 (b)] that there exists a cuspidal
automorphic representation Π1(τ) of GL(n,L′) such that Πτ is isomorphic to
the automorphic induction of Π1(τ) from L′ to F ′,+. This means in particular
that

Π1(τ)c 6' Π1(τ),

and
L(s, ρτ,L′) = L(s,Πτ,L′) = L(s,Π1(τ))L(s,Π1(τ)c) (4.2.2)

It follows from Corollary 2.5 that L(s, ρmE,F ), and more generally L(s, ρmE,F ⊗
ξ`), is entire for all even m ≤ 2n, F = F ′,+ or F = L′, when ξ` is the `-adic
Galois avatar of an algebraic Hecke character ξ of A×

F . The proof of Theorem
4.2 of [HST] shows that L(s, ρmE,F ⊗ ξ`) is invertible for all m ≤ 2n and for all
algebraic Hecke characters ξ, for F = F ′,+ or F = L′. Of course L(s, ρτ,F ′,+)
is also entire and L(s, ρτ,L′) is entire unless n = 1, which gives rise to the only
possible pole at s = 1.

Consider the automorphic L-function

L(s) = L(s,Πτ,L′ ×Π∨
τ,L′ ⊗ (χ/χc)) (4.2.3)

Comparing this to (4.2.2) we find that

L(s) = L(s, [ρnE,L′ ⊗ (χ⊕ χc)]⊗ [ρn,∨E,L′ ⊗ (χ−1 ⊕ χc,−1)]⊗ [χ/χc])

= L(s, (ρnE,L′ ⊗ ρn,∨E,L′)⊗ [(χ/χc)⊕ (χ/χc)⊕ (χ/χc)2]) · L(s, ρnE,L′ ⊗ ρn,∨E,L′)
(4.2.4)

Writing
ρnE,L′ ⊗ ρn,∨E,L′ = ⊕n−1

i=0 ρ
2i+1
E,L′ ⊗ ω−i`

we see that the first factor of the last line of (4.2.4) is a product of invertible
L-functions without poles at s = 1; the final factor of the last line has a
simple pole at s = 1. Thus L(s) has a simple pole at s = 1. But L(s) is an
automorphic L-function for GL(n)×GL(n). We rewrite L(s) using (4.2.2):
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L(s) = L(s,Π1(τ)×Π1(τ)∨ ⊗ (χ/χc)) · L(s,Π1(τ)c ×Π1(τ)c,∨ ⊗ (χ/χc))
·L(s,Π1(τ)×Π1(τ)c,∨ ⊗ (χ/χc)) · L(s,Π1(τ)c ×Π1(τ)∨ ⊗ (χ/χc))

Applying the Jacquet-Shalika classification theorem we see that exactly one
of the factors has a simple pole, and in that case the factor is necessarily of
the form L(s,Π ×Π∨). Since (χ/χc)∞ is a character of infinite order, neither
of the first two factors can have a pole; we must therefore either have

Π1(τ)∨
∼→−→Π1(τ)c,∨ ⊗ (χ/χc)

or
Π1(τ)c,∨

∼→−→Π1(τ)∨ ⊗ (χ/χc).

In other words, up to exchanging Π1(τ) with Π1(τ)c, we have

Π1(τ)⊗ χ
∼→−→(Π1(τ)⊗ χ)c;

henceΠ1(τ)⊗χ descends to a cuspidal automorphic representation ofGL(n, F ′,+).
This completes the proof. ut

Now (Πτ )∞ is cohomological, hence (Πτ )L′,∞ is also cohomological. But
(Πτ )L′,∞ is represented as a subquotient of the representation of GL(2n,L′∞)
induced from the representation (Π1(τ))∞ ⊗ (Π1(τ)c)∞ of the Levi factor
GL(n,L′∞)×GL(n,L′∞) of the relevant maximal parabolic, and it follows that
Π1(τ)∞ is also cohomological. Thus Π1(τ) satisfies condition (1) of Expected
Theorem 1.2.

On the other hand, ρτ has a symplectic polarization with multiplier ω1−2n
` ,

by construction. It follows that the associated automorphic representation Πτ

is self dual. This property is preserved under base change to L′. It thus follows
from (4.2.2) and the Jacquet-Shalika classification theorem that

{Π1(τ),Π1(τ)c} = {Π1(τ)∨,Π1(τ)c,∨}

as sets. Thus either (a) Π1(τ) satisfies condition (2) of Expected Theorem 1.2,
or (b) Π1(τ)

∼→−→Π1(τ)∨.
Assume (a) holds. Then Π1(τ) satisfies both conditions of Expected The-

orem 1.2, hence is associated to an n-dimensional Galois representation ρ1(τ)
of ΓL′ . It follows from (4.2.2) that

ρ1(τ)⊕ ρ1(τ)c
∼→−→ρnE,` ⊗ χ` ⊕ ρnE,` ⊗ χc` (4.3)

Since ρnE,` is irreducible, it follows that it must be equal to either ρ1(τ)⊗χ` or
ρ1(τ)⊗ χc`. In either case, ρnE,` is associated to a cuspidal automorphic repre-
sentation Πn,L′ of GL(n,L′). Since ρnE,` descends to a representation of ΓF ′,+ ,
Πn,L′ descends to a cuspidal automorphic representation Πn of GL(n, F ′,+).
Thus ρnE,` is automorphic over F ′,+.
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Assume (b) holds. Then the central character ξ of Π1(τ) is also self-dual,
i.e. ξ = ξ−1. It follows from Lemma . that

Π1(τ)⊗ χ
∼→−→Π1(τ)c ⊗ χc.

Combining this with (b), we have

ξ · χ ◦ det = ξc · χc ◦ det;

This implies that χ/χc is self-dual, ie.

(χc)2 = χ2.

But this is already false for the archimedean components. Thus (b) is impos-
sible.

We have thus proved that ρnE,` is automorphic over F ′,+. More generally,
Theorem 2.1 allows us to add new rτ ’s of different dimensions 2ni, with ni
odd, to the list in Corollary 2.5. By adding ρ2i+1

E,` ⊗ τi to the list – we are free
to vary the 2-dimensional τi if we like, we thus obtain our main theorem:

Theorem 4.4. Assume the Expected Theorems of §1. Let F+ be a totally
real field, and let E be an elliptic curve over F+. Let n be a positive integer.
Then there is a finite totally real Galois extension F ′,+/F and, for each pos-
itive integer i ≤ n, a cuspidal automorphic representation Πi of GL(i, F ′,+),
satisfying conditions (a) and (b) of Expected Theorem 1.2, such that

ρiE,` |ΓF ′,+
= ρΠi,`.

In particular, if i > 1, Lnorm(s, ρiE,`,F ′,+) = L(s,Πi) is an entire function.

I repeat that we are not assuming that E have non-integral j-invariant;
however, all statements are conditional on the Expected Theorems of §1.

5. Applications and generalizations

We continue to admit the Expected Theorems of §1. Let E and E′ be two
elliptic curves over F+ without complex multiplication. Assume E and E′ are
not isogenous. It then follows from Faltings’ isogeny theorem that ρE,` and
ρE′,` are not isomorphic as representations of ΓF+ for all `. Since the traces
of Frobv, for primes v of good reduction for E and E′, are integers that
determine ρE,` and ρE′,` up to isomorphism, it follows that ρ̄E,` and ρ̄E′,` are
not isomorphic for sufficiently large `. By Serre’s theorem, if ` is sufficiently
large, Im(ρ̄E,`) = Im(ρ̄E′,`) = GL(2,F`).

Let m,m′ be two positive integers. Applying Theorem 2.1, we obtain the
analogue of Corollary 2.5 for the collection of representations ri = ρ2i

E,`, r
′
j =

ρ2j
E′,`, 1 ≤ i ≤ m, 1 ≤ j ≤ m′, together with rτ = ρmE,` ⊗ τ and r′τ ′ = ρm

′ ⊗ τ ′

if m or m′ is odd, provided τ̄ and τ̄ ′ are “big enough”. Bearing in mind the
results of §3, we have the following statement:
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Proposition 5.1. Let L be as in §3, and define

τ` = Ind
ΓQ
ΓL
χ`; τ ′` = Ind

ΓQ
ΓL
χ′`

where χ (resp. χ′) is a Hecke character with χ∞(z) = z−m, (resp. χ′∞(z) =
z−m

′
) if m (resp. m′) is odd. We assume

χ |A×
Q
= | • |−mA · ηL; χ′ |A×

Q
= | • |−m

′

A · ηL

Suppose there is a prime ` > sup(2m + 1, 2m′ + 1), unramified in F+, such
that

(i) E has good ordinary reduction at all primes w dividing `
(ii) ` splits in L;
(iii) ` splits in Q(ζ2i+1), i = 1, . . . , sup(m − 1,m′ − 1); in particular, ` ≡ 1

(mod mm′).
(iv) `−1

m > 2, `−1
m′ > 2.

Let M be an arbitrary extension of F+. Define ri, r′j rτ and rτ ′ as above.
Then there is a totally real Galois extension F ′,+/F+, linearly disjoint from
M over F+, with the property that for i = 1, . . . ,m, (resp. j = 1, . . . ,m′)
ri,F ′,+ = ri |Γ ′,+F

(resp. r′j,F ′,+) corresponds to an automorphic representation
Πi of GL(2i, F ′,+) ((resp. Π ′

j of GL(2j, F ′,+)) and such that rτ (resp. r′τ ′) cor-
responds to an automorphic representation Πτ of GL(2m,F ′,+) (resp. Π ′

τ ′ of
GL(2m′, F ′,+). If F ′/F ′,+ is a CM quadratic extension, then the base change
Πi,F ′ (resp. Πτ,F ′) has archimedean constituent isomorphic to Π∞,0(2i, F ′)
(resp. Π∞,0(2n, F ′)), and likewise for Π ′

j,F ′ , Π ′
τ ′,F ′ .

The discussion of §4 applies to both Πτ and Π ′
τ , and we obtain the fol-

lowing strengthening of Theorem 4.4.

Theorem 5.2. Assume the Expected Theorems of §1. Let F+ be a totally real
field, let E and E′ be elliptic curves over F+, and assume E and E′ do not
become isogenous over an abelian extension of F+. Let m and m′ be positive
integers. Then there is a finite totally real Galois extension F ′,+/F and, for
each positive integer i ≤ m, (resp. j ≤ m′) a cuspidal automorphic represen-
tation Πi of GL(i, F ′,+) (resp. Π ′

j of GL(j, F ′,+)) satisfying conditions (a)
and (b) of Expected Theorem 1.2, such that

ρiE,` |ΓF ′,+
= ρΠi,`; ρ

j
E′,` |ΓF ′,+

= ρΠ′
j ,`

In particular, if m ·m′ > 1,

Lnorm(s, ρmE,`,F ′,+ ⊗ ρm
′

E′,`,F ′,+) = L(s,Πm ×Π ′
m′)

is an entire function.
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The Rankin-Selberg L-function has no poles if m 6= m′; if m = m′ it has a
pole if and only if Π ′

m′
∼→−→ Π∨

m. which implies that the corresponding Galois
representations ρmE,` and ρmE′,` are isomorphic. The kernel of the map of the
standard 2-dimensional representation of GL(2) to its mth symmetric power
is finite and contained in the center. If ρmE,`

∼→−→ρmE′,`, it thus follows that
the corresponding adjoint representations ad ρE,` and ad ρE′,` are isomor-
phic, hence that there exists an abelian character η, necessarily finite, such
that ρE′,`

∼→−→ρE,` ⊗ η. Thus ρE′,` and ρE,` become isomorphic over a finite
extension of F+, hence E and E′ are isogenous by Faltings’ theorem.

Using Brauer’s theorem, as in the proof of Theorem 4.2 of [HST], we then
obtain:

Theorem 5.3. Assume the Expected Theorems of §1. Let F+ be a totally real
field, let E and E′ be elliptic curves over F+, and assume E and E′ do not
become isogenous over an abelian extension of F+. Let m and m′ be positive
integers. Then the L-function L(s, ρmE,` ⊗ ρm

′

E′,`) is invertible and satisfies the
expected functional equation.

Proof. This is obtained from Theorem 5.2 by applying Brauer’s theorem, as
in the proof of Theorem 4.2 of [HST]. It suffices to mention that the non-
vanishing of the Rankin-Selberg L-function along the line Re(s) = 1 of a pair
of cuspidal automorphic representations (with unitary central characters) is
due in general to Shahidi [Sh]. ut

Finally, here is the precise statement of the question of Mazur and Katz
mentioned in the introduction, together with the affirmative response. Recall
the notation kv and qv of §1.

Theorem 5.4. Assume the Expected Theorems of §1. Let F+ be a totally real
field, let E and E′ be elliptic curves over F+, and assume E and E′ do not
become isogenous over an abelian extension of F+. For any prime v of F+

where E and E′ both have good reduction, we let

|E(kv)| = (1− q
1
2
v e

iφv )(1− q
1
2
v e

−iφv )

|E′(kv)| = (1− q
1
2
v e

iψv )(1− q
1
2
v e

−iψv )

where φv, ψv ∈ [0, π].
Then the pairs (φv, ψv) ∈ [0, π] × [0, π] are uniformly distributed with re-

spect to the measure
4
π2
sin2φ sin2ψ dφdψ.

Proof. Theorem 5.4 follows directly from Theorem 5.3 by the argument in [S],
Appendix to §I. ut
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6. Concluding remarks

The author and Richard Taylor have independently noticed that tensoring
with an induced representation from a Hecke character may be useful in
other situations. For example, let f be an elliptic modular form of weight k,
ρf,` : ΓQ → GL(2, Q̄`) the associated two-dimensional Galois representation,
and let ρnf,` = Symn−1ρf,`. There is no hope of applying the potential modu-
larity technique of [HST] to ρnf,` if k > 2: the series of Hodge-Tate weights at
` has gaps for all n, and Griffiths transversality implies it is impossible to ob-
tain families of positive dimension of motives with such Hodge-Tate numbers.
However, if k is odd, one can choose a Hecke character χ of an abelian CM
extension L/Q of degree k−1 with infinity type so chosen that ρnf,`⊗Ind

ΓQ
ΓL
χ`

has an unbroken series of Hodge-Tate weights. (If k is even one takes L of
degree 2(k − 1).)

Two serious obstacles remain. In the first place, the constructions in §4
require that we know in advance that the symmetric power L-functions are
invertible, and this information is not available a priori for k > 2. In the
second place, the arguments for finding rational points on moduli spaces over
number fields unramified at ` break down in higher weights.
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