
Noncommutative geometry and path integrals

Mikhail Kapranov

Department of Mathematics, Yale University, 10 Hillhouse Avenue, New Haven,
CT, 06520 USA
mikhail.kapranov@yale.edu

To Yuri Ivanovich Manin on his 70th birthday

Introduction

(0.1) A monomial in noncommutative variables X and Y , say, XiY jXkY l...,
can be visualized as a lattice path in the plane, starting from 0, going i steps
in the horizontal direction, j steps in the vertical one, then again k steps in the
horizontal one, and so on. Usual commutative monomials are often visualized
as lattice points, for example xayb corresponds to the point (a, b). To lift such
a monomial to the noncommutative domain, is therefore the same as to choose
a “history” for (a, b), i.e., a lattice path originating at 0 and ending at (a, b).

This correspondence between paths and noncommutative monomials can
be extended to more general piecewise smooth paths, if we deal with ex-
ponential functions instead. Let us represent our commutative variables as
x = ez, y = ew, then a monomial will be replaced by the exponential eaz+bw

and we are free to take a and b to be any real numbers. To lift this ex-
ponential to the noncommutative domain, i.e. to a series in Z,W where
X = eZ , Y = eW , one needs to choose a path γ in R2 joining 0 with (a, b).
One can easily see this by approximating γ by lattice paths with step 1/M ,
M →∞, and working with monomials in X1/M = eZ/M and Y 1/M = eW/M .
Denote this exponential series Eγ(Z,W ).

This suggests the possibility of a “noncommutative Fourier transform”
(NCFT) identifying appopriate spaces of functions of noncommuting variables
(say, of matrices of intederminate size) with spaces of ordinary functions or
measures on the space of paths. For example, to a measure µ on the space Π
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of paths (or some completion of it) we want to associate the function F(µ) of
Z,W given by

(0.1.1) F(µ)(Z,W ) =
∫
γ∈Π

Eγ(Z,W )dµ(γ),

The basic phenomenon here seems to be that the two types of functional
spaces (noncommutative functions of n variables vs. ordinary commutative
functions but on the space of paths in Rn), have, on some fundamental level,
the same size.

The goal of this paper and the ones to follow [K1-2] is to investigate this
idea from several points of view.

(0.2) The concept of NCFT seems to implicitly underlie the very foundations
of quantum mechanics such as the equivalence of the Lagrangian and Hamil-
tonian approaches to the theory. Indeed, the Lagrangian point of view deals
with path integrals while the Hamiltonian one works with noncommuting op-
erators. Further, it is very close to the concept of the “Wilson loop” functional
(trace of the holonomy) in Yang-Mills theory [Po]. Note that the exponential
Eγ , being itself the holonomy of a certain formal connection, is invariant un-
der reparametrization of the path. Quantities invariant under reparametriza-
tion are particularly important in string theory, and the reparametrization
invariance of the Wilson loop led to conjectural relations between strings and
N →∞ limit of Yang-Mills theory [Po].

As the integral transform F should, intuitively, act between spaces of the
same size, it does not lead to any loss of information and can therefore be
viewed as “path integration without integration”. The actual integration oc-
curs when we restrict the function F(µ) to the commutative locus, i.e., make
Z and W commute. Alternatively, instead of allowing Z,W to be arbitrary
matrices, we take them to be scalars. Then all paths having the same end-
point will contribute to make up a single Fourier mode of the commutativized
function. We arrive at the following conclusion: the natural homomorphism
R → Rab of a noncommutative ring to its maximal commutative quotient is
the algebraic analog of path integration.

(0.3) The idea that the space of paths is related to the free group and to its
various versions has been clearly enunciated by K.-T. Chen [C1] in the 1950’s
and can be traced throughout almost all of his work [C0]. Apparently, a lot
more can be said about this classical subject. Thus, the universal connection
with values in the free Lie algebra (known to Chen and appearing in (2.1)
below) leads to beautiful non-holonomic geometry on the free nilpotent Lie
groups Gn,d, which is still far from being fully understood, see [G].

Well known examples of measures on path spaces are provided by prob-
ability theory and we spend some time in §4 below to formulate various re-
sults from probabilistic literature in terms of NCFT. Most importantly, the
Fourier transform of the Wiener measure on paths in Rn is the noncommuta-
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tive Gaussian series exp
(
−
∑n
i=1 Z

2
j

)
where Zi are considered as noncommut-

ing variables. We should mention here the recent book by Baudoin [Ba] who
considered the idea of associating a noncommutative series to a stochastic
process. It is clearly the same type of construction as our NCFT except in the
framework of probability theory: parametrized paths, positive measures etc.

(0.4) I would like to thank R. Beals, E. Getzler, H. Koch, Y.I. Manin and
M. A. Olshanetsky for useful discussions. I am also grateful to the referee for
several remarks that helped improve the exposition. This paper was written
during my stay at the Max-Planck-Institute für Mathematik in Bonn and I
am grateful to the Institute for support and excellent working conditions. This
work was also partially supported by an NSF grant.

1 Noncommutative monomials and lattice paths.

(1.1) Noncommutative polynomials and the free semigroup. Con-
sider n noncommuting (free) variables X1, ..., Xn and form the algebra of
noncommutative polynomials in these variables. This algebra will be denoted
by C〈X1, ..., Xn〉. It is the same as the tensor algebra

T (V ) =
∞⊕
d=1

V ⊗d, V = Cn =
n⊕
i=1

C ·Xi.

A noncommutative monomial inX = (X1, ..., Xn) is, as described in the Intro-
duction, the same as a monotone lattice path in Rn starting at 0. We denote
by F+

n the set of all such paths and write Xγ for the monomial corresponding
to a path γ. The set F+

n is a semigroup with the following operation. If γ, γ′

are two monotone paths as above starting at 0, then γ ◦ γ′ is obtained by
translating γ so that its beginning meets the end of γ′ and then forming the
composite path. It is clear that F+

n is the free semigroup on n generators.
Thus a typical noncommutative polynomial is written as

(1.1.1) f(X1, ...Xn) = f(X) =
∑
γ∈F+

n

aγX
γ .

Along with C〈X1, ..., Xn〉 we will consider the algebra C[x1, ..., xn] of usual
(commutative) polynomials in the variables x1, ..., xn. A typical such polyno-
mial will be written as

(1.1.2) g(x1, ..., xn) = g(x) =
∑
α∈Zn

+

bαx
α, xα = xα1

1 ...xαn
n .

The two algebras are related by the commutativization homomorphism

(1.1.3) c : C〈X1, ..., Xn〉 → C[x1, ..., xn],
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which takes Xi to xi. For a path γ ∈ Γn let e(γ) ∈ Zn+ denote the end point
of γ. Then we have

(1.1.4) c(Xγ) = xe(γ).

This means that at the level of coefficients the commutativization homo-
morphism is given by the summation over paths with given endpoints: if
g(x) = c(f(X)), then

(1.1.5) bα =
∑

e(γ)=α

aγ .

(1.2) Noncommutative power series. Let I ⊂ C〈X1, ..., Xn〉 be the span
of monomials of degree ≥ 1. Then clearly I is a 2-sided ideal and Id is the
span of monomials of degree ≥ d. We define the algebra C〈〈X1, ..., Xn〉〉 as
the completion of C〈X1, ..., Xn〉 in the I-adic topology. Explicitly, elements of
C〈〈X1, ..., Xn〉〉 can be seen as infinite formal linear combinations of noncom-
mutative monomials, i.e., expressions of the form

∑
γ∈F+

N
aγX

γ . For example,

(1.2.1) eX1 · eX2 =
∞∑

i,j=0

Xi
1X

j
2

i!j!
,

1
1− (X1 +X2)

=
∑
γ∈F+

2

Xγ

are noncommutative power series. We will be also interested in convergence of
noncommutative series. A series f(X) =

∑
γ∈F+

n
aγX

γ will be called entire, if

(1.2.2) lim
γ→∞

Rl(γ)|aγ | = 0, ∀R > 0.

Here l(γ) is the length of the path γ and the limit is taken over the countable
set F+

n (so no ordering of this set is needed). We denote by C〈〈X1, ..., Xn〉〉ent

the set of entire series. It is clear that this set is a subring.

(1.2.3) Proposition. The condition (1.2.2) is equivalent to the property that
for any N and for any square matrices X0

1 , ..., X
0
n of size N the series of

matrices
∑
aγ(X0)γ obtained by specializing Xi → X0

i , converges absolutely.

(1.3) Noncommutative Laurent polynomials. By a noncommutative
Laurent monomial in X1, ..., Xn we will mean a monomial in positive and
negative powers of the Xi such as, e.g., X1X2X

−1
1 X5

2 . In other words, this
is an element of Fn, the free noncommutative group on the generators Xi. A
noncommutative Laurent polynomial is then a finite formal linear combina-
tion of such monomials i.e., an element of the group algebra of Fn. We will
denote this algebra by

(1.3.1) C〈X±1
1 , ..., X±1

n 〉 = C[Fn].
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As before, a noncommutative Laurent monomial corresponds to a lattice path
in Rn beginning at 0 but not necessarily monotone. These paths are defined
up to cancellation of pieces consisting of a sub-path and the same sub-path
run in the opposite direction immediately afterwards.

We retain the notation Xγ for the monomial corresponding to a path γ.
We also write (−γ) for the path inverse to γ, so X−γ = (Xγ)−1.

(1.4) Noncommutative Fourier transform: discrete case. The usual
(commutative) Fourier transform relates the spaces of functions on a locally
compact abelian group G and its Pontryagin dual Ĝ. The “discrete” case
G = Zn, Ĝ = (S1)n corresponds to the theory of Fourier series.

In the algebraic formulation, the discrete Fourier transform identifies the
space of finitely supported functions

(1.4.1) b : Zn → C, α 7→ bα, |Supp(b)| <∞,

with the space C[x±1
1 , ..., x±1

n ] of Laurent polynomials. It is given by the well
known formulas

(1.4.2) (bα) 7→ f, f(x) =
∑
α∈Zn

bαx
α,

(1.4.3) f 7→ (bα), bα =
∫
|x1|=...=|xn|=1

f(x)x−αd∗x1...d
∗xn,

where d∗x is the Haar measure on S1 with volume 1. Our goal in this sec-
tion is to give a generalization of these formulas for noncommutative Laurent
polynomials.

Instead of (1.4.1) we consider the space of finitely supported functions

(1.4.4) a : Fn → C, γ 7→ aγ , |Supp(a)| <∞.

The discrete noncommutative Fourier transform is the identification of this
space with C〈X±1

1 , ..., X±1
n 〉 via

(1.4.5) (aγ) 7→ f, f(X) =
∑
γ∈Fn

aγX
γ .

This identification ceases to look like a tautology if we regard a noncommu-
tative Laurent polynomial as a function f which to any n invertible elements
X0

1 , ..., X
0
n of any associative algebra A associates an element f(X0

1 , ..., X
0
n) ∈

A. We want then to recover the coefficients aγ in terms of the values of
f on various elements of various A. Most importantly, we will consider
A = MatN (C), the algebra of matrices of size N and let N be arbitrary.
To get a generalization of (1.4.3) we replace the unit circle |x| = 1 by the
group of unitary matrices U(N) ⊂ MatN (C). Let d∗X be the Haar measure
on U(N) of volume 1.
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The following result is a consequence of the so-called “asymptotic freedom
theorem for unitary matrices” due to Voiculescu [V], see also [HP] for a more
elementary exposition.

(1.4.6) Theorem. If f(X) =
∑
γ∈Fn

aγX
γ is a noncommutative Laurent

polynomial, then we have

aγ = lim
N→∞

1
N

tr
∫
X1,...,Xn∈U(N)

f(X1, ..., Xn)X−γ d∗X1...d
∗Xn.

As for the commutative case, the theorem is equivalent to the following
orthogonality relation. It is this relation that is usually called the “asymptotic
freedom” in the literature.

(1.4.7) Reformulation. Let γ ∈ Fn be a nontrivial lattice path. Then

lim
N→∞

1
N

tr
∫
X1,...,Xn∈U(N)

Xγ d∗X1...d
∗Xn = 0.

Note that for γ = 0 the integral is equal to 1 for any N .

Passing to the N → ∞ limit is unavoidable here since for any given N
there exist nonzero noncommutative polynomials which vanish identically on
MatN (C). An example is provided by the famous Amitsur-Levitsky polyno-
mial

f(X1, ..., X2N ) =
∑
σ∈S2N

sgn(σ)Xσ(1) · ... ·Xσ(2N).

2 Noncommutative exponential functions.

(2.1) The universal connection and noncommutative exponentials.
Let us introduce the “logarithmic” variables Z1, ..., Zn, so that we have the
embedding

(2.1.1) C〈X1, ..., Xn〉 ⊂ C〈〈Z1, ..., Zn〉〉, Xi 7→ eZi .

The algebra C〈〈Z1, ..., Zn〉〉 is a projective limit of finite-dimensional algebras,
namely

(2.1.2) C〈〈Z1, ..., Zn〉〉 = lim
←− d

C〈Z1, ..., Zn〉/Id,

where the ideal I is as in (1.2).
Consider the space Rn with coordinates y1, ..., yn. On this space we have

the following 1-form with values in C〈〈Z1, ..., Zn〉〉:

(2.1.3) Ω =
∑
i

Zi · dyi ∈ Ω1(Rn)⊗ C〈〈Z1, ..., Zn〉〉.
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We consider the form as a connection on Rn. One can see it as the universal
translation invariant connection on Rn, an algebraic version of the connection
of Kobayashi on the path space, see [Si], §3.

Let γ be any piecewise smooth path in Rn. We define the noncommutative
exponential function corresponding to γ to be the holonomy of the above
connection along γ:

(2.1.4) Eγ(Z) = Eγ(Z1, ..., Zn) = P exp
∫
γ

Ω ∈ C〈〈Z1, ..., Zn〉〉.

The holonomy can be understood by passing to finite-dimensional quotients
as in (2.1.2) and solving an ordinary differential equation with values in each
such quotient.

It is clear that Eγ(Z) becomes unchanged under parallel translations of γ,
since the form Ω is translation invariant. So in the following we will always
assume that γ begins at 0.

Further, Eγ(Z) is invariant under reparametrizations of γ: this is a general
property of the holonomy of any connection. So let us give the following
definition.

(2.1.5) Definition. Let M be a C∞-manifold. An (oriented) unparametrized
path in M is an equivalence class of pairs (I, γ : I →M) where I is a smooth
manifold with boundary diffeomorhic to [0, 1] and γ is a piecewise smooth
map I → M . Two such pairs (I, γ) and (I ′, γ′) are equivalent if there is an
orientation preserving piecewise smooth homeomorphism φ : I → I ′ such that
γ = γ′ ◦ φ.

We will denote an unparametrized path simply by γ.

(2.1.6) Example. Let γ be a straight segment in R2 joining (0,0) and (1,1).
Let also δ be the path consisting of the horizontal segment [(0, 0), (0, 1)] and
the vertical segment [(0, 1), (1, 1)]. Let σ be the path consisting of the vertical
segment [(0, 0), (1, 0)] and the horizontal segment [(1, 0), (1.1)]. Then

Eγ(Z1, Z2) = eZ1+Z2 , Eδ(Z1, Z2) = eZ1eZ2 , Eσ(Z) = eZ2eZ1 .

More generally, if γ is a lattice path corresponding to the integer lattice Zn,
then Eγ(Z) = Xγ is the noncommutative monomial in Xi = eZi associated
to γ as in §1.

Let γ, γ′ be two unparametrized paths in Rn starting at 0. Their product
γ ◦ γ′ is the path obtained by translating γ so that its beginning meets the
end of γ′ and then forming the composite path. The set of γ’s with this op-
eration forms a semigroup. For a path γ we denote by γ−1 the path obtained
by translating γ so that its end meets 0 and then taking it with the opposite
orientation. Finally, we denote by Πn the set of paths as above modulo cancel-
lations, i.e., forgetting sub-paths of a given path consisting of a segment and
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then immediately of the same segment run in the opposite direction. Clearly
the set Πn forms a group which we will call the group of paths in Rn.

The standard properties of the holonomy of connections imply the follow-
ing:

(2.1.7) Proposition. (a) We have

Eγ◦γ′(Z) = Eγ(Z) · Eγ′(Z), Eγ−1(Z) = Eγ(Z)−1

(equalities in C〈〈Z1, ..., Zn〉〉).
(b) The series Eγ(Z) is entire, i.e., it converges for any given N by N matrices
Z0

1 , ..., Z
0
n.

(c) If Z0
1 , ..., Z

0
n are Hermitian, then Eγ(iZ0

1 , ..., iZ
0
n) is unitary.

The property (a) implies that Eγ(Z) depends only on the image of γ in
the group Πn. Further, let us consider the commutativisation homomorphism

(2.1.8) c : C〈〈Z1, ..., Zn〉〉 → C[[z1, ..., zn]].

The following is also obvious.

(2.1.9) Proposition. If a = (a1, ..., an) is the endpoint of γ, then

c(Eγ(Z)) = e(a,z)

is the usual exponential function.

Thus there are as many ways to lift e(a,z) into the noncommutative domain
as there are paths in Rn joining 0 and a.

(2.2) Idea of a noncommutative Fourier transform. The above observa-
tions suggest that there should be a version of Fourier transform which would
identify an appropriate space of measures on Πn with an appropriate space
of functions of n noncommutative variables Z1, ..., Zn, via the formula

(2.2.1) µ 7→ f(Z1, ..., Zn) =
∫
γ∈Πn

Eγ(iZ1, ..., iZn)Dµ(γ).

The integral in (2.2.1) is thus a path integral. The concept of a “function
of noncommuting variables” is of course open to interpretation. Several such
interpretations are currently being considered in Noncommutative Geometry.

In the present paper we adopt a loose point of view that a function of n
noncommutative variables is an element of an algebra R equipped with a ho-
momorphism C〈Z1, ..., Zn〉 → R. We will assume that this homomorphism re-
alizes R as some kind of completion, or localization (or both) of C〈Z1, ..., Zn〉.
In other words, that R does not have “superfluous” elements, independent of
the images of the Zi. See [Ta] for an early attempt to define noncommutative
functions in the analytic context.
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(2.2.2) Examples. We can take R = C〈〈Z1, ..., Zn〉〉ent, the algebra of entire
power series. Alternatively we can take R to be the skew field of “noncom-
mutative rational functions” in Z1, ..., Zn constructed by P. Cohn [Coh]. Thus
expressions such as

exp(Z2
1 + Z2

2 ),
(
Z2

1 + Z2
2

)−1
, (Z1Z2 − Z2Z1)−1 + Z−2

3 Z1

are considered as noncommutative functions.

It will be important for us to be able to view a “function” f(Z1, ..., Zn) as
above as an actual function defined on appropriate subsets of n-tuples of N
by N matrices for each N and taking values in matrices of the same size.

Similarly, the group Πn can also possibly be replaced by various related
objects (completions). In this paper we will consider several approaches such
as completion by a pro-algebraic group or completion by continuous paths.

Alternatively, functions on Πn should correspond to “noncommutative
measures”, or distributions on the space of noncommutative functions. Ex-
amples of such “measures” are being studied in Free Probability Theory [HP]
[NS] [VDN]. See §6 below.

Note that we have a surjective homomorphism of groups

(2.2.3) e : Πn → Rn, γ 7→ e(γ).

Here e(γ) is the endpoint of γ. One important property of the NCFT is the
following principle which is just a consequence of Proposition 2.1.9: under the
Fourier transform the integration over paths with given beginning and end,
i.e., the pushdown of measures on Πn to measures on Rn, corresponds to a
simple algebraic operation: the commutativization homomorphism

(2.2.4) c : R→ R/([R,R]),

where R is a noncommutative algebra and the RHS is the maximal commu-
tative quotient of R.

(2.3) Relation to Chen’s iterated integrals. Let us recall the main points
of Chen’s theory. Let M be a smooth manifold, γ an unparametrized path and
ω a smooth 1-form on M .

Along with the ”definite integral”
∫
γ
ω, we can consider the ”indefinite

integral” which is a function “on γ”, or, more precisely, on the abstract interval
I such that γ is a map I →M . For any t ∈ I we have the sub-path γ≤t going
from the beginning of I until t and we have the function∫

(γ)

ω : I → C, t 7→
∫
γ≤t

ω.

If now ω1 and ω2 are two smooth 1-forms on M , we can form a new 1-form
on γ by multiplying (the restriction of) ω2 and the function

∫
(γ)

ω1. Then this
form can be integrated along γ. The result is called the iterated integral
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γ

ω1 · ω2 =
∫
γ

(
ω2 ·

∫
(γ)

ω1

)
.

Note that if we think of γ as a map γ : I → M , then the iterated integral is
equal to ∫

t1≤t2∈I
γ∗(ω1)(t1)γ∗(ω2)(t2).

Note that integration over all t1, t2 ∈ I would give the product
(∫
γ
ω1

)
·
(∫
γ
ω2

)
.

Similarly, one defines the d-fold iterated integral of d smooth 1-forms
ω1, ..., ωd on M by induction:∫ →

γ

ω1 · ... · ωd =
∫
γ

(
ωd ·

∫ →
(γ)

ω1 · ... · ωd−1

)
,

where the (d− 1)-fold indefinite iterated integral is defined as the function on
I of the form

t→
∫ →
γ≤t

ω1 · ... · ωd−1.

As before the iterated integral is equal to the integral over the d-simplex:∫ →
γ

ω1 · ... · ωd =
∫
t1≤...≤td∈I

γ∗ω1(t1)...γ∗ωd(td).

The concept of iterated integrals extends in an obvious way to 1-forms
with values in any associative (pro-)finite-dimensional C-algebra R. The well
known Picard series for the holonomy of a connection consists exactly of such
iterated integrals. We state this as follows.

(2.3.1) Proposition. Let R be any (pro-)finite-dimensional associative C-
algebra, and A be a smooth 1-form on M with values in R considered as a
connection form. Then the parallel transport along an unparametrized path γ
has the form

P exp
∫
γ

A =
∞∑
d=0

∫ →
γ

A · ... ·A.

Here the term corresponding to d = 0 is set to be equal to 1.

Let us specialize this to M = Rn, R = C〈〈Z1, ..., Zn〉〉 and Ω =
∑
Zidyi.

We obtain:

(2.3.2) Corollary. The coefficient of the series Eγ(Z1, ..., Zn) at any non-
commutative monomial Zi1 ...Zid is equal to the iterated integral∫ →

γ

dyi1 · ... · dyid .
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Thus Eγ is the generating function for all the iterated integrals involving
constant 1-forms on Rn.

(2.3.3) Example. By the above

Eγ(Z) = 1 +
∑

aiZi +
∑

bijZiZj + ...

where ai =
∫
γ
dyi is the ith coordinate of the endpoint of γ and

bij =
∫
γ

(
dyi ·

∫
(γ)

dyj

)
=
∫
γ

yjdyi.

Suppose that γ is closed, so ai = 0. Then bii = 0 and for i 6= j we have that
bij is the oriented area encirlced by γ after the projection to the (i, j)-plane.

The following was proved by Chen [C2].

(2.3.4) Theorem. The homomorphism Πn → C〈〈Z1, ..., Zn〉〉∗ sending γ to
Eγ is injective. In other words, if a path γ has all iterated integrals as above
equal to 0, then γ is (equivalent modulo cancellations to) a constant path
(situated at 0).

(2.4) Group-like and primitive elements. Let FL(Z1, ..., Zn) be the free
Lie algebra generated by Z1, ..., Zn. It is characterized by the obvious universal
property, see [R] for background. This property implies that we have a Lie
algebra homomorphism

(2.4.1) h : FL(Z1, ..., Zn) → C〈Z1, ..., Zn〉,

and this homomorphism identifies C〈Z1, ..., Zn〉 with the universal enveloping
algebra of FL(Z1, ..., Zn). Further, let us consider the Hopf algebra structure
on C〈Z1, ..., Zn〉 given on the generators by

(2.4.2) ∆(Zi) = Zi ⊗ 1 + 1⊗ Zi.

The following result, originally due to K. Friedrichs, is a particular case of a
general property of enveloping algebras.

(2.4.3) Theorem. The image of h consists precisely of all primitive ele-
ments, i.e., of elements f such that ∆(f) = f ⊗ 1 + 1⊗ f .

We will also use the term Lie elements for primitive elements of C〈Z1, ..., Zn〉.

Further, consider the noncommutative power series algebra C〈〈Z1, ..., Zn〉〉.
It is naturally a topological Hopf algebra with respect to the comultiplication
given by (2.4.2) on generators and extended by additivity, multiplicativity and
continuity.

The free Lie algebra is graded:
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(2.4.4) FL(Z1, ..., Zn) =
⊕
d≥1

FL(Z1, ..., Zn)d,

where FL(Z1, ..., Zn)d is the span of Lie monomials containing exactly d let-
ters. We denote by

(2.4.4) gn =
∏
d≥1

FL(Z1, ..., Zn)d

its completion, i.e., the set of formal Lie series. This is a complete topological
Lie algebra. We clearly have an embedding of gn into C〈〈Z1, ..., Zn〉〉 induced
by the embedding of the graded components as above. Further, degree-by-
degree considerations and Theorem 2.4.3 imply the following:

(2.4.5) Corollary. A noncommutative power series f ∈ C〈〈Z1, ..., Zn〉〉 lies
in gn if and only if it is primitive, i.e., ∆(f) = f ⊗ 1 + 1⊗ f with respect to
the topological Hopf algebra structure defined above.

Along with primitive (or Lie) series in Z1, ..., Zn we will consider group-like
elements of C〈〈Z1, ..., Zn〉〉, i.e., series Φ satisfying

(2.4.6) ∆(Φ) = Φ⊗ Φ.

The completed tensor product C〈〈Z1, ..., Zn〉〉⊗̂C〈〈Z1, ..., Zn〉〉 consists of se-
ries in 2n variables Z ′i = Zi ⊗ 1 and Z ′′i = 1 ⊗ Zi which satisfy [Z ′i, Z

′′
j ] = 0

and no other relations. Thus a series Φ(Z1, ..., Zn) is group-like if it satisfies
the exponential property:
(2.4.7)
F (Z ′1+Z

′′
1 , ..., Z

′
n+Z

′′
n) = F (Z ′1, ..., Z

′
n)·F (Z ′′1 , ..., Z

′′
n), provided [Z ′i, Z

′′
j ] = 0, ∀i, j.

We denote by Gn the set of primitive elements in C〈〈Z1, ..., Zn〉〉. Elemen-
tary properties of cocommutative Hopf algebras and elementary convergence
arguments in the adic topology imply the following:

(2.4.8) Proposition. (a) Gn is a group with respect to the multiplication.
(b) The exponential series defines a bijection

exp : gn → Gn,

with the inverse given by the logarithmic series.
(c) The image of any series Φ ∈ Gn under the commutativization homomor-
phism (2.1.8) is a formal series of the form e(a,z) for some a ∈ Cn.
(d) If Φ ∈ Gn, then

Φ(−Z1, ...,−Zn) = Φ(Z1, ..., Zn)−1

(equality of power series).
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(2.4.9) Example. The above proposition implies that the series

log(eZ1 · eZ2) ∈ C〈〈Z1, Z2〉〉

is in fact a Lie series. It is known as the Campbell-Hausdorff series and its
initial part has the form

log(eZ1 · eZ2) = Z1 + Z2 +
1
2
[Z1, Z2] + ...

Let Gn(R) ⊂ Gn be the set of group-like series with real coefficients. Fur-
ther, the Lie algebra FL(Z1, ..., Zn) is in fact defined over rational numbers.
In particular, it makes sense to speak about its real part. By taking the com-
pletion as above, we define the real part of the completed free algebra gn(R).
It is clear that the exponential series establishes a bijection between gn(R)
and Gn(R).

The following fact was also pointed out by Chen [C2].

(2.4.9) Theorem. If γ ∈ Πn is a path in Rn as above, then Eγ(Z) is group-
like. Moreover, it lies in the real part Gn(R).

Note that a typical element Φ = Φ(Z1, ..., Zn) ∈ Gn is a priori just a
formal power series and does not have to converge for any given matrix values
of the Zi (unless they are all 0). At the same time, series of the form Φ = Eγ ,
γ ∈ Πn, converge for all values of the Zi. This leads to the proposal, formulated
by Chen [C3] to view series from Gn with good covergence properties as
corresponding to “generalized paths”, i.e., paths perhaps more general than
piecewise C∞ ones. The theory of stochastic integrals, see below, provides a
step in a similar direction.

(2.5) Finite-dimensional approximations to Gn and gn. Let us recall
a version of the Malcev theory for nilpotent Lie algebras. Let k be a field of
characteristic 0. A Lie algebra g over k is called nilpotent of degree d if all
d-fold iterated commutators in g vanish. Let U(g) be the universal enveloping
algebra of g. It is a Hopf algebra with the comultiplication given by ∆(x) =
x ⊗ 1 + 1 ⊗ x for x ∈ g. The subspace I in U(g) generated by all nontrivial
Lie monomials in elements of g, is an ideal, with U(g)/I = k.

(2.5.1) Lemma. If g is nilpotent of some degree, then
⋂
In = 0.

Thus the I-adic completion

(2.5.2) Û(g) = lim
←−

U(g)/In

is a complete topological algebra containing U(g). As before, the standard
Hopf algebra structure on U(g) gives rise to a topological Hopf algebra struc-
ture on Û(g). We then have the following fact.
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(2.5.3) Theorem. (a) g is the set of primitive elements of Û(g)
(b) The set G of group-like elements in Û(g) is the nilpotent group associated,
via the Malcev theory, to the Lie algebra g.
(c) If k = R or C, then G is the simply connected real or complex Lie group
with Lie algebra g.
(d) The exponential map establishes a bijection between g and G.

Let now k = C and

(2.5.4) gn,d = FL(X1, ..., Xn)/FL(X1, ..., Xn)≥d+1.

This is a finite-dimensional Lie algebra known as the free nilpotent Lie algebra
of degree d generated by n elements. It satisfies the obvious universal property.
Then

gn = lim
←− n

gn,d.

So gn is the free pro-nilpotent Lie algebra on n generators.

Let Rn,d be the quotient of Rn = C〈〈Z1, ..., Zn〉〉 by the closed ideal
generated by all the (d + 1)-fold commutators of the Zi. For example,
Rn,1 = C[[Z1, ..., Zn]] is the usual (commutative) power series algebra.

The topological Hopf algebra structure on Rn descends to Rn,d, and we
easily see the following:

(2.5.5) Proposition. Rn,d is isomorphic to Û(gn,d) as a topological Hopf
algebra.

We denote by Gn,d ⊂ R∗n,d the group of group-like elements of Rn,d. Then
the above facts imply:

(2.5.6) Theorem. (a) Gn,d is the simply connected complex Lie group with
Lie algebra gn,d.
(b) Gn is the projective limit of Gn,d.

Thus Gn,d is the “free unipotent complex algebraic group of degree d with
n generators” while Gn is the free prounipotent group with n generators.

As above, taking k = R, we get the real parts Gn,d(R) and gn,d(R). The
homomorphism E : Πn → Gn(R) gives rise, for any d ≥ 1 to the homomor-
phism

(2.5.7) εn,d : Πn → Gn,d(R)

whose target is a finite-dimensional Lie group.

(2.5.8) Proposition. For any d ≥ 1 the homomorphism εn,d is surjective.
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In other words, the group Gn can be seen as a (pro-)algebraic completion
of the path group Πn.
Proof: Let Πrect

n ⊂ Πn be the subgroup of rectangular paths, i.e., paths con-
sisting of segments each going in the direction of some particular coordinate.
As a group, Πrect

n is the free product of n copies of R. Let Zi,d ∈ gn,d be the
image of Zi. Then the image of Πrect

n in Gn,d(R) is the subgroup generated by
the 1-parameter subgroups exp(t · Zi,d), t ∈ R, i = 1, ..., n. As the Zi,d gener-
ate gn,d as a Lie algebra, the corresponding 1-parameter subgroups generate
Gn,d(R) as a group. Therefore εn,d(Πrect

n ) = Gn,d(R).

(2.6) Complex exponentials. Consider the complexification Cn of the space
Rn from (2.1). The form Ω from (2.1.3) is then a holomorphic form on Cn
with values in C〈〈Z1, ..., Zn〉〉. In particular, we have the noncommutative
exponential function

Eγ(Z) ∈ Gn ⊂ C〈〈Z1, ..., Zn〉〉

for any unparametrized path γ in Cn starting at 0. Because Ω is holomor-
phic, Eγ(Z) is, in addition to invariance under cancellations, also invariant
under deformations of sub-paths of γ inside holomorphic curves. Let ΠC

n be
the quotient of Π2n, the group of paths in Cn = R2n by the equivalence re-
lation generated by such deformations. Obviously, ΠC

n is a group, and the
correspondence γ 7→ Eγ gives rise to a homomorphism

(2.6.1) E : ΠC
n → Gn.

Unlike the real case, it seems to be unknown whether (2.6.1) is injective. As
before, we see that the composite homomorphism

(2.6.2) εCn,d : ΠC
n → Gn,d

is surjective.

(2.6.3) Example. Let C be a complex analytic curve, c0 ∈ C be a point, and
φ : C → Cn a holomorphic map such that φ(c0) = 0. Denote by p : C̃ → C the
universal covering of C corresponding to the base point c0. In other words, C̃
is ths space of pairs (c, γ), where c ∈ C and γ is a homotopy class of paths
joinig c0 and c. Then, by the above, φ induces a map φ̃ : C̃ → ΠC

n . The
composition

$d = εCn,d ◦ φ̃ : C̃ → Gn,d

can be called the period map of degree d. The restriction of $d to p−1(c0) =
π1(C, c0) is a homomorphism

md : π1(C, c0) → Gn,d

called the monodromy homomorphism of degree d. We get then the “Albanese
map”
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αd : C → Gn,d/Im(md).

The particular case when C is the maximal Abelian covering of a smooth
projective curve of genus n, and φ is the Abel-Jacobi map, corresponds to the
setting of Parshin [Pa]. Iterated integrals of modular forms were studied by
Manin [Ma].

In the subsequent paper [K1] we will use complex noncommutative expo-
nentials to construct invariants of degenerations of families of curves in an
algebraic variety.

3 Generalities on NCFT.

(3.0) Formal FT on nilpotent groups. Let us start with the general
situation of (2.5) with k = R. Thus g is a finite dimensional nilpotent real
Lie algebra and G is the corresponding simply connected Lie group. Then G
is realized inside Û(g) as the set of group-like elements. In general, we can
think of elements of Û(g) as some kind of formal series (infinite formal linear
combinations of elements of a Poincare-Birkhoff-Witt basis of U(g)).

To keep the notation straight, we denote by Eg ∈ Û(g) the element corre-
sponding to g ∈ G.

(3.0.1) Example. Let G = Rn with coordinates y1, ..., yn, then Û(g) is the
ring C[[z1, ..., zn]] of formal Taylor series. If g = (y1, ..., yn) ∈ G, then Eg =
Eg(z) = exp (

∑
i yizi) is the exponential series with the vector of exponents

(y1, ..., yn).

The above example motivates the following definition. Let µ be a measure
on G, or, more generally, a distribution (understood as a generalized measure,
i.e., as a functional on the space of C∞-functions). Its formal Fourier transform
is the element (formal series) given by

(3.0.2) F̂(µ) =
∫
g∈G

Egdµ ∈ Û(g),

whenever the integral is defined.
Recall that for two distributions µ, ν on a Lie group G their convolution

is defined by

(3.0.4) µ ∗ ν = m∗(µ� ν),

where m : G × G → G is the multiplication, and µ � ν is the Cartesian
product of µ and ν. Here we assume that the pushdown under m is defined.
The following is then straightforward.

(3.0.5) Proposition. For two (generalized) measures µ, ν on G we have

F̂(µ ∗ ν) = F̂(µ) · F̂(ν),

(product in Û(g)).
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(3.1) Pro-measures and formal NCFT. We now specialize the above to
the case when G = Gn,d(R). In other words, we consider the projective system
of Lie groups

(3.1.1) · · · → Gn,3(R) → Gn,2(R) → Gn,1(R) = Rn

with projective limit Gn(R). For d ≥ d′ let

(3.1.2) pdd′ : Gn,d(R) → Gn,d′(R)

be the projection. By a pro-measure on Gn(R) we will mean a compatible
system of measures on the Gn,d(R). In other words, a pro-measure is a system
µ• = (µd) such that each µd is a measure on Gn,d(R) such that for any d ≥ d′

the pushdown (pdd′)∗(µd) is defined as a measure on Gn,d′(R) and is equal to
µd′ . Equivalently, this means that for any continuous function f on Gn,d′(R)
we have

(3.1.3)
∫
Gn,d′ (R)

f · dµd′ =
∫
Gn,d(R)

(f ◦ pdd′) · dµd,

whenever the LHS is defined.

More generally, by a pro-distribution we mean a system of distributions
on the Gn,d(R) (understood as generalized measures, i.e., as functionals on
C∞-functions) compatible in the similar sense, i.e., satisfying (3.1.3) for C∞-
functions f .

For Φ = Φ(Z1, ..., Zn) ∈ Gn we denote by Φi1,...,ip the coefficient of Φ at
Zi1 · · ·Zip . It is clear that Φi1,...,ip depends only on the image of Φ in Gn,p, so
it makes sense to speak about Ψi1,...,ip for Ψ ∈ Gn,d, d ≥ p.

Let µ• be a pro-distribution on Gn(R). Its formal Fourier transform is the
formal series F̂(µ•) ∈ C〈〈Z1, ..., Zn〉〉 defined as follows:

(3.1.4) F̂(µ•) =
∞∑
p=0

∑
i1,...,ip

(∫
Ψ∈Gn,d(R)

Ψi1...ip · dµd
)
Zi1 · · ·Zip .

Here for each p the number d is any integer greater or equal to p, and we
assume that all the integrals converge.

The convolution operation extends, in an obvious way, to pro-distributions
on Gm(R) and we get:

(3.1.6) Proposition 1. If µ•, ν• are two pro-distributions, then

F̂(µ• ∗ ν•) = F̂(µ•) · F̂(ν•)

(product in C〈〈Z1, ..., Zn〉〉).
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(3.2) Delta-functions. In classical analysis the Fourier transform of δ(m),
the mth derivative of the delta function, is the monomial zm. We now give a
noncommutative analog of this fact.

First of all, let δd be the delta function on Gn,d(R) supported at 1. Then
δ• = (δd) is a pro-distribution, and

(3.2.1) F̂(δ•) = 1 ∈ C〈〈Z1, ..., Zn〉〉.

Next, first derivatives of the delta function at a point on a C∞ manifold
correspond to elements of the complexified tangent space to the manifold at
this point. This, if ξ ∈ FL(Z1, ..., Zn), and ξd is the image of ξ in gn,d =
T1Gn,d(R) ⊗ C, then we have the distribution ∂ξd

(δd) on Gn,d(R), and these
distributions form a pro-distribution ∂ξ(δ•).

Further, for any Lie group G with Lie algebra g the iterated derivatives
of the delta function at 1 correspond to elements of U(g ⊗ C), the universal
enveloping algebra. Thus for any ψ ∈ U(gn,d) we have a punctual distribution
Dψ(δd) on Gn,d(R).

Let now f ∈ C〈Z1, ..., Zn〉 be a noncommutative polynomial. Recall that
C〈Z1, ..., Zn〉 is the enveloping algebra of FL(Z1, ..., Zd). Thus for any d we
have the image of f in U(gn,d), which we denote by fd. As before, the distri-
butions Dfd

(δd) form a pro-distribution which we denote Df (δ•).

(3.2.2) Theorem. We have F̂(Df (δ•)) = f . In other words, F̂ takes iterated
derivatives of the delta function into (noncommutative) polynomials.

Let Lf,d be the left invariant differential operator on Gn,d(R) correspond-
ing to fd ∈ U(gn,d)). Similarly, let Rf,d be the right invariant differential
operator corresponding to fd. Recall that distributions (volume forms) form
a right module over the ring of differential operators. In other words, if P is a
differential operator acting on functions by φ 7→ Pφ, then we write the action
of the adjoint operator on volume forms by ω 7→ ωP . Thus, if µ• = (µd)
is a pro-distribution, and f ∈ C〈Z1, ..., Zn〉, then we have pro-distributions
µ•Lf = (µdLf,d) and µ•Rf = (µdRf,d). Since applying Rf,d or Lf,d to a dis-
tribution is the same as the right or left convolution with Dfd

(δd), Proposition
3.1.6 implies the following.

(3.2.3) Proposition. If φ ∈ C〈〈Z1, ..., Zn〉〉 is the Fourier transform of µ•,
then for any f ∈ C〈Z1, ..., Zn〉 the product f · φ is the Fourier transform of
µ•Lf , and φ · f is the Fourier transform of µ•Rf .

(3.3) Measures and convergent NCFT. Let pd : Gn(R) → Gn,d(R) be
the projection. By a cylindric open set in Gn(R) we mean a set of the form
p−1
d (U), where d ≥ 1 and U ⊂ Gn,d(R) is an open set. These sets form thus a

basis of the projective limit topology on Gn(R). We denote by S the σ-algebra
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of sets in Gn(R) generated by cylindric open sets. Its elements will be simply
called Borel subsets in Gn(R).

(3.3.1) Example. Let

Gn(R)ent = Gn(R) ∩ C〈〈Z1, ..., Zn〉〉ent

be the subgroup formed by entire series, see (1.2.2). Since for Φ ∈ Gn(R) each
given coefficient of f depends on the image of Φ in some Gn,d(R), the condition
(1.2.2) implies that Gn(R)ent is a Borel subset. Note further that for Φ ∈
Gn(R)ent and any Hermitian matrices Z0

1 , ..., Z
0
n (of any size N) the matrix

Φ(iZ0
1 , ..., iZ

0
n) is unitary. This follows from the reality of the coefficients in Φ

and from Proposition 2.4.8(d).

By a measure on Gn(R) we mean a complex valued, countably additive
measure on the σ-algebra S. If µ is such a measure, we define its Fourier
transform to be the function of indeterminate Hermitian N by N matrices
Z1, ..., Zn (with indeterminate N) given by

(3.3.2) F(µ)(Z1, ..., Zn) =
∫
Φ∈Gn(R)ent

Φ(iZ1, ..., iZn)dµ(Φ).

As usual, by a probability measure on Gn(R) we mean a real, nonnegative-
valued measure on S of total volume 1.

Given a pro-measure µ• = (µd) on Gn(R), the correspondence

(3.3.3) p−1
d (U) 7→ µd(U), U ∈ Gn,d(R),

defines a finite-additive function on cylindric open sets in Gn(R). The follow-
ing fact is a version of the basic theorem of Kolmogoroff ( [SW], Thm. 1.1.10)
that a stochastic process is uniquely determined by its finite-dimensional dis-
tributions.

(3.3.4) Theorem. If µ• is a probability pro-measure (i.e., each µd is a proba-
bility measure), then the correspondence (3.3.3) extends to a unique probability
measure µ = lim

←−
µd on Gn(R), so that µd = pd∗(µ).

Thus, probability measures and probability pro-measures are in bijection.

Proof: The original theorem of Kolmogoroff is about probability measures on
an infinite product of measure spaces. Now, the projective limit Gn(R) is a
closed subset in the infinite product

∏
dGn,d(R). We can then apply Kol-

mogoroff’s theorem to this product and get a probability measure supported
on this subset.

4 Noncommutative Gaussian and the Wiener measure.

(4.1) Informal overview. By the noncommutative Gaussian we mean the
following noncommutative power series
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(4.1.1) Ξ(Z) = exp
(
−1

2

n∑
i=1

Z2
i

)
∈ C〈〈Z1, ..., Zn〉〉ent.

As the series is entire, we will denote by the same symbol Ξ(Z1, ..., Zn) its
value on any given square matrices Z1, ..., Zn. In the classical (commutative)
analysis the Fourier transform of a Gaussian is another Gaussian. In this
section we present a noncommutative extension of this fact. Informally the
answer can be formulated as follows.

(4.1.2) Informal theorem. “The” measure on the space of paths whose
Fourier transform gives Ξ(Z) is the Wiener measure.

We write “the” in quotes because so far there is no uniqueness result for
NCFT, so (4.1.2) can be read in one direction: that the NCFT of the Wiener
measure is Ξ(Z). Still, there are two more issues one has to address in order to
make (4.1.2) into a theorem. First, the Wiener measure (see below for a sum-
mary) is defined on the space of parametrized paths, while NCFT is defined
for measures on the space of unparametrized paths. This can be addressed
by considering the pushdown of the Wiener measure (i.e., by performing the
integration over the space of parametrized paths).

Second, and more importantly, the Wiener measure is defined on the space
of continuous paths, and piecewise smooth paths form a subset of measure 0.
On the other hand, the series Eγ(Z) is a solution of a differential equation
involving the time derivatives of γ and so is a priori not defined if γ is just a
continuous path. This difficulty is resolved by using the theory of stochastic
integrals and stochastic differential equations which indeed provides a way of
associating Eγ(Z) to all continuous γ except those forming a set of Wiener
measure 0.

Once these two modifications are implemented, (4.1.2) becomes an in-
stance of the familiar principle in the theory of stochastic differential equa-
tions: that the direct image of the Wiener measure under the map given by
the solution of a stochastic differential equation, is the heat measure for the
corresponding (hypo)elliptic operator, see [Bel] [Ok] [Bi1].

(4.2) The hypo-Laplacians and their heat kernels. Let Zi,d be the
image of Zi in gn,d, and Li,d be the left invariant vector field on Gn,d(R)
corresponding to Zi,d. We consider Li,d as a first order differential operator
on functions. The dth hypo-Laplacian is the operator

(4.2.1) ∆d =
n∑
i=1

L2
i,d

in functions on Gn,d(R). For d ≥ d′ the operators ∆d and ∆d′ are compatible:

(4.2.2) ∆d(p∗dd′f) = p∗dd′(∆d′f), ∀f ∈ C2(Gd′(R)),
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where the projection pdd′ is as in (3.1.2). This follows because a similar com-
patibility holds for each Li,d and Li,d′ .

For d > 1 the number of summands in (4.2.1) is less than the dimension
of Gn,d(R), so ∆d is not elliptic. However, ∆d is hypoelliptic [Ho], i.e., every
distribution solution of ∆du = 0 is real analytic. This follows from Theorem
1.1 of Hörmander [Ho], since the Zi,d generate gn,d as a Lie algebra. Further,
it is obvious that ∆d is positive:

(4.2.3) (∆du, u) ≥ 0, u ∈ C∞0 (Gn,d(R)).

General properties of positive hypoelliptic operators [Ho] imply that the heat
operator exp(−t∆d), t > 0, is given by a positive C∞ kernel. Because this
operator is left invariant, we get part (a) of the following theorem:

(4.2.4) Theorem. (a) The operator exp(∆d/2) is given by convolution with
a uniquely defined probability measure θd on Gn,d(R). This measure is in-
finitely differentiable with respect to the Haar measure.
(b) For d ≥ d′ the measures θd and θd′ are compatible: (pdd′)∗(θd) = θd′ .

Part (b) above follows from (4.2.2).

Thus we obtain a probability pro-measure θ• = (θd) on Gn(R) and hence
a probability measure θ = lim

←−
θd.

(4.2.5) Examples. (a) the group Gn,1 is identified with the space Rn from
(2.1) with coordinates y1, ..., yn, and Zi,1 = ∂/∂yi. Therefore ∆1 is the stan-
dard Laplacian on Rn, and

θ1 =
dy1...dyn
(2π)n/2

exp
(
−1

2

n∑
i=1

y2
i

)
is the usual Gaussian measure on Rn. Each θd, d > 1 is thus a lift of this
measure to Gn,d.

(b) For d = 2 an explicit formula for θ2 was obtained by Gaveau in [G].
Here we consider the case n = 2 where the formula was also obtained by
Hulanicki [Hu]. In this case g2,2 is the Heisenberg Lie algebra with basis con-
sisting of Z1,2, Z2,2 and the central element h = [Z1,2, Z2,2]. Denoting y1, y2, v
the corresponding exponential coordinates on G2,2, we have

θ2 =
dy1dy2dv

(2π)2

∫ ∞
τ=−∞

2τ
sinh(2τ)

· exp
(
iτv − (y2

1 + y2
2)

2τ
tanh(2τ)

)
dτ.

In fact, all known formulas in the literature (see [BGG] for a survey) involve
integration over auxuliary parameters.

(4.2.6) Theorem. The formal Fourier transform of the pro-measure θ• is
equal to the noncommutative Gaussian Ξ(Z).
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Proof: This follows from the fact that the delta-pro-distribution DZi(δ•) cor-
responding to the generator Zi ∈ gn is taken by F into the monomial Zi. For
each d the corresponding distribution takes a function f on Gn,d(R) into the
value of Li(f) at the unit element of Gn,d(R). Further, convolution of such
pro-distributions corresponds to composition of left invariant differential op-
erators in the spaces of functions of the Gn,d(R). So the system of the heat
kernel operators on the Gn,d(R), d ≥ 1, given by exp

(
− 1

2

∑
L2
i

)
has, as a

pro-distribution, the Fourier transform equal to exp
(
− 1

2

∑
Z2
i

)
. ut

(4.3) The Wiener measure. Let Pn be the space of continuous parametrized
paths γ : [0, 1] → Rn such that γ(0) = 0. The Wiener measure w on
Pn is first defined on cylindrical open sets C(t1, ..., tm, U1, ..., Um), where
0 < t1 < ..., < tm < 1 and Ui ⊂ Rn is open. By definition,

C(t1, ..., tm, U1, ..., Um) =
{
γ : γ(ti) ∈ Ui, i = 1, ...,m

}
,

and

(4.3.1) w
(
C(t1, ..., tm, U1, ..., Um)

)
=

=
∫

(y(1),...,y(m))∈U1×...×Um

m∏
i=0

exp
(
−‖y(i+1) − y(i)‖2/2(ti+1 − ti)

)(
2π(ti+1 − ti)

)1/2 dy(1)...dy(m).

Here we put t0 = 0, tm+1 = 1 and y(0) = 0. Further, it is proved that w
extends to a probability measure on the σ-algebra generated by the above
subsets.

The Brownian motion is the family of Rn-valued functions (random vari-
ables) on Pn parametrized by t ∈ [0, 1]:

(4.3.2) b(t) = (b1(t), ..., bn(t)), b(t) : Pn → Rn, b(t)(γ) = γ(t).

let P sm
n ⊂ Pn be the subset of piecewuse smooth paths. Then it is well known

that w(P sm
n ) = 0.

As well known, the Wiener measure has the following intuitive interpreta-
tion

(4.3.3) dw(γ) = exp
(
−
∫ 1

0

‖γ′(t)‖2dt
)
Dγ, Dγ =

1∏
t=0

dγ(t).

In other words, Dγ is the (nonexistent) Lebesgue measure on the infinite-
dimensional vector space of all paths, while the integral in the exponential is
the action of a free particle.

(4.5) Reminder on stochastic integrals. Let ω =
∑n
i=1 φi(y)dyi be a 1-

form on Rn with (complex valued) C∞ coefficients. If γ : [0, 1] → Rn is a
piecewise smooth path, then we can integrate ω along γ, getting a number
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(4.5.1)
∫
γ

ω =
∫ 1

0

γ∗(ω) =
∫ 1

0

∑
i

φi(γ(t))γ′i(t)dt.

This gives a map (function)

(4.5.2)
∫

(ω) : P sm
n −→ C.

If γ(t) is just a continuous path without any differentiability assumptions,
then (4.5.1) is not defined, so there is no immediate extension of the map
(4.5.2) to the space Pn. The theory of stochastic integrals provides several
(a priori different) ways to construct such an extension. The two best known
approaches are the Ito and Stratonovich integrals over the Brownian motion,
see [SW] [KW]. They are functions

(4.5.3)
∫ Ito

(ω),
∫ Str

(ω) : Pn → C,

defined everywhere outside some subset of Wiener measure 0, and measurable
with respect to this measure.

To construct them, see [Ok], p. 14-16, one has to consider Riemann sum
approximations to the integral but restrict to Riemann sums of some partic-
ular type. For a piecewise smooth path γ the integral is the limit of sums

(4.5.4)
n∑
i=1

m∑
ν=1

φi(γ(ξν))
(
(γi(tν)− γi(tν−1)

)
,

where 0 = t0 < t1 < ... < tm = 1 is a decomposition of [0, 1] into intervals,
and ξν ∈ [tν−1, tν ] are some chosen points. In the smooth case the limit exists
provided max(tν−tν−1) goes to 0 (in particular, the choice of ξν is inessential).

Now, to obtain
∫ Ito(ω), one chooses the class of Riemann sums with

(4.5.5) tν = ν/m, ξν = tν−1, m = 2q, q →∞.

In other words, for each q the above sum defines a function SIto
q (ω) : Pn → C,

and

(4.5.6)
∫ Ito

(ω) = lim
q→∞

SIto
q (ω).

To obtain
∫ Str(ω), one chooses the class of Riemann sums with

(4.5.7) tν = ν/m, ξν = (tν−1 + tν)/2, m = 2q, q →∞.

Each such sum gives a function SStr
q (ω) : Pn → C, and

(4.5.8)
∫ Str

(ω) = lim
q→∞

SStr
q (ω).
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It is known that
∫ Str(ω) is invariant under smooth reparametrizations of

the path considered as transformations acting on Pn as well as satisfies a
transparent change of variables formula.

The more common notation for the stochastic integrals (considered as
random variables on Pn) is:

(4.5.9)
∫ Ito

(ω) =
∫ 1

0

ω(b(t))db(t)),
∫ Str

(ω) =
∫ 1

0

ω(b(t)) ◦ db(t)),

where b(t) is the Brownian motion (4.3.2). Thus db(t) and ◦db(t) stand for the
two ways (due to Ito and Stratonovich) of regularizing the (a priori divergent)
differential of the Brownian path b(t). See [Ok] for the relation between the
two regularization schemes. By restricting to the truncated path [0, s], s ≤ 1,
one defines the stochastic integrals

∫ s
0

in each of the above setting.

(4.6) Stochastic holonomy. Let G be a Lie group which we suppose to be
embedded as a closed subgroup of GLN (C) for some N and let g ⊂ MatN (C)
be the Lie algebra of G. Let A =

∑
Ai(y)dyi be a smooth g-valued 1-form

on Rn, which we consider as a connection in the trivial G-bundle over Rn. If
γ : [0, 1] → Rn is a piecewise smooth path, then we have the holonomy of A
along γ:

(4.6.1) Holγ(A) = P exp
∫
γ

A ∈ G.

It is the value at t = 1 of the solution U(t) ∈ GLN (C) of the differential
equation

(4.6.2)
dU

dt
= U(t)

(∑
i

Ai(γ(t)) · γ′i(t)
)
, U(0) = 1.

The holonomy defines thus a map

(4.6.3) Hol(A) : P smn → G.

As before, (4.6.2) and thus Holγ(A) have no immediate sense without some
differentiability assumptions on A.

The theory of stochastic differential equations [Ok] [KW] resolves this
difficulty by replacing the above differential equation by an integral equation
and understanding the integral in a regularized sense as in (4.5). Thus, one
defines the Ito and Stratonovich stochastic holonomies which are measurable
maps

(4.6.3) HolIto(A), HolStr(A) : Pn → G,

defined outside a subset of Wiener measure 0. For example, HolStr(A) is de-
fined as the value at t = 1 of the G-valued stochastic process U(t) satisfying
the Stratonovich integral equation
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(4.6.4) U(t) = 1 +
∫ t

0

U(s)
(∑

i

Ai(b(s)) ◦ dbi(s)
)
.

We will be particularly interested in the case when Ai are constant, i.e., our
connection is translation invariant. In this case B(t) =

∑
Aibi(t) is a (possibly

degenerate) Brownian motion on g and U(t) is the corresponding left invariant
Brownian motion on G as studied by McKean, see [McK], §4.7, and also [HL].
In particular, the Stratonovich holonomy can be represented as a “product
integral” in the sense of McKean:
(4.6.5)

HolStr(A) =
∏
t∈[0,1]

exp(dB(t)) := lim
q→∞

2q∏
ν=1

exp
(
B
( ν

2q
)
−B

(
ν − 1

2q

))
,

see [HL], Thm.2. Here the product is taken in the order of increasing ν. In
the sequel we will work with HolStr(A).

(4.7) The Malliavin calculus and the Feynman-Kac-Bismut formula.
We now specialize (4.6) to the case when G = Gn,d(R), g = gn,d(R) and
A = Ω(d) is the constant 1-form Ω(d) =

∑n
i=1 Zi,ddyi. We get the stochastic

holonomy map

(4.7.1) HolStr(Ω(d)) : Pn → Gn,d(R).

(4.7.2) Theorem. The probability measure θd on Gn,d(R) is equal to

HolStr(Ω(d))∗(w),

the push-down of the Wiener measure under the holonomy map.

Proof: This is a fundamental property of (hypo)elliptic diffusions holding for
any vector fields ξ1, ..., ξn on a manifold M such that iterated commutators
of the ξi span the tangent space at every point. In this case the operator
∆ =

∑
Lie2

ξi
is hypoelliptic and has a uniquely defined, smooth heat ker-

nel Θ(x, y), x, y ∈ M which is a function in x and a volume form in y and
represents the operator exp(−∆/2). Further, the heat equation

(4.7.3) ∂u/∂t = −∆(u)/2

is the “Kolmogoroff backward equation” for the M -valued stochastic process
U(t) satisfying the Stratonovich differential equation

(4.7.4) dU =
∑

Lξi(U) ◦ dbi

with the bi(t) being as before. This means that the fundamental solution of
(4.7.3) is the pushforward of the Wiener measure under the process U(t). See
[Ok], Th. 8.1. Our case is obtained by specializing to M = Gn,d(R), ξi = Zi,d.

ut
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Further, let θ be the probability measure on Gn(R) = lim
←− d

Gn,d(R) cor-

responding to the pro-measure (θd) by Theorem 3.3.5. Note that the maps
HolStr(Ω(d)) for various d unite into a map

(4.7.4) HolStr(Ω) : Pn → Gn(R), Ω =
∑

Zidyi.

We get the following corollary.

(4.7.5) Corollary. The measure θ is the pushdown of the Wiener measure
under HolStr(Ω).

(4.7.6) Theorem. (a) The support of the measure θ is contained in Gn(R)ent,
the set of entire group-like power series.
(b) The convergent Fourier transform of θ is equal to Ξ(Z). In other words
(taking into account part (a) and (4.7.5)), for any given Hermitian matrices
Z0

1 , ..., Z
0
n of any given size N we have

exp
(
−1

2

n∑
j=1

(Z0
j )

2

)
=
∫
γ∈Pn

HolStr
γ (A)(iZ0

1 , ..., iZ
0
n)dw(γ).

(4.8) Stochastic iterated integrals and the proof of Theorem 4.7.6. In
the situation of (4.5), assume given d smooth 1-forms ω1, ..., ωd on Rn. We then
define, following Fliess and Normand-Cyrot [FN], the iterated Stratonovich
integral

(4.8.1)
∫ →Str

(ω1 · ... · ωd) : Pn → C

by the same iterative procedure as in (2.3). Like the ordinary Stratonovich
integral, it is reparametrization invariant. This definition extends to the case
when each ωi takes values in a (pro-)finite-dimensional associative C-algebra R
(with unity). As before, we define the empty iterated integral (corresponding
to d = 0) to be equal to 1. We will need some extensions of Proposition 2.3.1
to the stochastic case. The first statement deals with the nilpotent case.

(4.8.2) Proposition. Let I ⊂ R be a nilpotent ideal, i.e., Im = 0 for some
m. Let A be a smooth 1-form on Rn with values in I. Consider A as a con-
nection form with coefficients in R. Then

HolStr(A) =
∞∑
d=0

∫ →Str

(A · ... ·A),

the series on the right being terminating.

Proof: This is a consequence of Theorem 2 of [FN].
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(4.8.3) Corollary. The random variable HolStr(Ω) from (4.7.4), considered
as a R〈〈Z1, ..., Zn〉〉-valued random variable on Pn, has the form

HolStr(Ω) =
∞∑
m=0

∑
J=(j1,...,jm)

Zj1 ...Zjm

∫ →Str

(dyj1 · ... · dyjm).

Next, we look at convergence of the series in (4.8.3). Questions of this
nature (“convergence of stochastic Taylor series”) were studied by Ben Arous
[Be], and we recall some of his results. Denote by

(4.8.4) BJ =
∫ →Str

(dyj1 · ... · dyjm) =
∫
dbj1 ◦ ... ◦ dbjm

the coefficient in the series (4.8.3) corresponding to the multiindex J . Here
the right hand side is the notation of [Be]. Let |J | =

∑
jν be the degree of

the monomial corresponding to J .

(4.8.5) Theorem. Let (xJ) be a collection of real numbers given for each
J = (j1, ..., jm), m ≥ 0, and satisfying the condition

|xJ | ≤ KJ , for some K > 0.

Then the series ∑
m

∑
|J|=m

|xJBJ |

of random variables on Pn converges almost surely.

This is Corollary 1 of [Be] (with the parameter α from loc. cit. taken to
be 0).

We now deduce Theorem 4.7.6 from the above results. Let Z0
1 , ..., Z

0
n be

fixed matrices of any given size N . For a matrix B denote by

‖B‖ = max
v 6=0

‖B(v)‖
‖v‖

the matrix norm of B. Let us apply Theorem 4.8.5 to

xJ = ‖(Z0)J‖ = ‖Z0
j1 ...Z

0
jm‖.

Take K = max(‖Z0
i ‖). Then |xJ | ≤ KJ , so (4.8.5) gives that the series∑

J BJ(Z0)J converges absolutely almost surely. This establishes part (a) of
Theorem 4.7.6. Part (b) follows from (a) and from Theorem 4.2.6 about the
formal Fourier transform.
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5 Futher examples of NCFT.

(5.1) Near-Gaussians. In classical analysis, a near-Gaussian is a function
of the form f(z) ·e−‖z‖2/2 where f(z), z = (z1, ..., zn), is a polynomial. In that
setting, the Fourier transform of a near-Gaussian is another near-Gaussian.

A natural noncommutative analog of a near-Gaussian is a function of the
form

(5.1.1) F (Z) ·Ξ(Z) ·G(Z), F,G ∈ C〈Z1, ..., Zn〉.

It can be represented as a (formal) Fourier transform using Proposition 3.2.3:

(5.1.2) F (Z) ·Ξ(Z) ·G(Z) = F̂
(
θ•LFRG),

where LF is the system of left invariant differential operators on the Gn,d(R),
d ≥ 1, corresponding to F , while RG is the system of right invariant differen-
tial operators corresponding to G.

It seems difficult to realize the measures θdLFRG, d ≥ 1, in terms of
some transparent measures on the space Pn, as it requires using group trans-
lations on Πcont

n , the group of continuous paths obtained by quotienting Pn
by reparametrizations and cancellations.

(5.2) The Green pro-measure. Let gd be the fundamental solution of the
dth hypo-Laplacian on Gn,d(R) centered at 1, the unit element, i.e.,

(5.2.1) ∆d(gd) = δ1.

By the general properties of hypoelliptic operators, gd is a measure (volume
form) on Gn,d(R) smooth away from 1. In fact, if we denote by θd,t the kernel
of exp(−t∆d/2), t > 0, i.e., the heat kernel measure at time t, then

(5.2.2) gd =
∫ ∞
t=0

θd,tdt.

This expresses the fact that the Green measure of a domain is equal to the
amount of time a diffusion path spends in the domain. It is clear therefore
that g• = (gd) is a pro-measure on Gn(R).

(5.2.3) Examples. (a) For d = 1 we have the Green function of the usual
Euclidean Laplacian in Rn which has the form

g1(y) =
1
4π

ln(y2
1 + y2

2)dy1dy2, n = 2,

g1(y) = − ((n/2)− 2)!
4πn/2

(∑
y2
i

)1−n/2
dy1...dyn.

(b) Consider the case n = 2, d = 2 corresponding to the Heisenberg group,
and let us use the exponential coordinates y1, y2, v as in Example 4.2.5(b).
Then
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g2(y1, y2, v) =
1
π

1√
(y2

1 + y2
2) + v2

dy1dy2dv,

as was found by Folland [Fo], see also [G], p. 101.

(5.3) The method of kernels. More generally, if F (Z1, ..., Zn) is a “non-
commutative function” such that the operator F (L1,d, ..., Ln,d) in functions
on Gn,d(R) makes sense and posesses a distribution kernel Kd(x, y)dy, then
the distribution µd = Kd(1, y)dy is precisely the dth component of the pro-
distribution whose Fourier transform is F .

For example, hypoelliptic calculus allows us to consider F (Z) = φ
(∑n

i=1 Z
2
i

)
where φ : R → R is any C∞ function decaying at infinity such as φ(u) = e−u

2/2

or φ(u) = 1/u, or 1/(u2 + 1). This leads to a considerable supply of pro-
distributions.

(5.4) Probabilistic meaning. An idea in probability theory very similar to
our NCFT, viz. the idea of associating a noncommutative power series to a
stochastic process, was proposed by Baudoin [Ba], who called this series “ex-
pectation of the signature” and emphasized its importance. From the general
viewpoint of probability theory one can look at this series (the Fourier trans-
form of a probability measure on the space of paths) as being rather an analog
of the characteristic function of n random variables. Indeed, if x1, ..., xn are
random variables, then their joint distribution is a probability measure on
Rn, and the characteristic function is the (usual) Fourier transform of this
measure:

(5.4.1) f(z1, ..., zn) = E
[
ei(z,x)

]
which is an entire function of n variables. Each time when we have a natural
lifting of the characteristic function to the noncommutative domain, we can
therefore expect some n-dimensional stochastic process lurking in the back-
ground.

6 Fourier transform of noncommutative measures.

(6.1) Nomcommutative measures. Following the general approach of
Noncommutative Geometry [Con], we consider a possibly noncommutative
C-algebra R (with unit) as a replacement of a “space” (Spec(A)). A measure
on R is then simply a linear functional (“integration map”) τ : I → C defined
on an appropriate subspace I ⊂ R whose elements have the meaning of inte-
grable functions. We will call a measure τ finite, if I = R, and normalized,
if it is finite and τ(1) = 1. If R has a structure of a ∗-algebra, then a finite
measure τ is called positive if τ(aa∗) ≥ 0 for any a ∈ R. A (noncommutative)
probability measure on a ∗-algebra A is a normalized, positive measure.

(6.1.1) Examples. (a) Let R = MatN (C) with the ∗-algebra structure given
by the Hermitian conjugation. Then τ(a) = 1

N Tr(a) is a probability measure.
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(b) Let R = C〈Z1, ..., Zn〉 with the ∗-algebra structure given by Z∗i = Zi.
Let HermN be the space of Hermitian N by N matrices. We denote by dZ =∏N
i,j=1 dZij the standard volume form on HermN . Let µ = µN be a volume

form on (HermN )n of exponential decay at infinity. Then we have a finite
measure on R given by

τ(f) =
1
N

Tr
∫
Z1,...,Zn∈HermN

f(Z1, ..., Zn)dµ(Z1, ..., Zn).

If µN is a normalized (resp. probability) measure in the usual sense, then τ
is a normalized (resp. probability) measure in the noncommutative sense. An
important example is

µN = exp (−S(Z1, ..., Zn)) dZ1...dZn,

where the “action” S(Z1, ..., Zn) ∈ C〈Z1, ..., Zn〉 is a noncommutative poly-
nomial with appropriate growth conditions at the infinity of Hermn

N .
(c) Let R = C〈X±1

1 , ..., X±1
n 〉 with the ∗-algebra structure given by X∗i =

X−1
i . If µ = µN is a finite measure on U(N)n, then we have a finite measure

τ on R given by

τ(f) =
1
N

Tr
∫
X1,...,Xn∈U(N)

f(X1, ..., Xn)dµ(X1, ..., Xn),

which is normalized (resp. probability) if µN is so in the usual sense.

(6.2) Free products. Let R1, ..., Rn be algebras with unit. Then we have
their free product R1 ? .. ? Rn. This is an algebra containing all the Ri and
characterized by the following universal property: for any algebra B and any
homomorphisms fi : Ri → B there is a unique homomorphism f : R1 ? ... ?
Rn → B restricting to fi on Ri for each i. Explicitly, R1 ? ... ? Rn is obtained
as the quotient of the free (tensor) algebra generated by the vector space
R1 ⊕ ... ⊕ Rn by the relations saying the products of elements from each Ri
are given by the existing multiplication in Ri. We will also use the notation
Fn
i=1Ri.

(6.2.1) Example. If each Ri = C[Zi] is the polynomial algebra in one vari-
able, then R1 ? ... ? Rn = C〈Z1, ..., Zn〉 is the algebra of noncommutative
polynomials. If each Ri = C[Xi, X

−1
i ] us the algebra of Laurent polynomials,

then R1?...?Rn = C〈X±1
1 , ..., X±1

n 〉 is the algebra of noncommutative Laurent
polynomials.

The following description of the free product follows easily from definition
(see [VDN]).

(6.2.2) Proposition. Suppose that for each i we chose a subspace R◦i ⊂ Ri
which is a complement to C · 1. Then as a vector space

R1 ? ... ? Rn = C · 1⊕
⊕
k>0

⊕
i1 6=i2 6=...6=ik

R◦i1 ⊗ ...⊗R◦ik .
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The following definition of the free product of (noncommutative) measures
is due to Voiculescu, see [VDN].

(6.2.3) Proposition-Definition 1. Let Ri, i = 1, ..., n be associative alge-
bras with 1, and τi : Ri → C be finite normalized measures. Then there exists
a unique finite normalized measure τ = Fτi on Fn

i=1Ri with the following
properties:
(1) τ |Ri

= τi.
(2) If i1 6= ... 6= ik and aν ∈ Rν are such that τiν (aν) = 0, then τ(ai1 ...aik) =
0.
If the Ri are ∗-algebras, and each τi is a probability measure, then so is τ .

Both the existence and the uniqueness of τ follow at once from (6.2.2), if
we take R◦i = Ker(τi). The problem of finding τ(a1...ak) for arbitrary elements
aν ∈ Riν is clearly equivalent to that of writing a1...ak in the normal form
(6.2.2). To do this, one writes

(6.2.4) aν = τiν (aν) · 1 + a◦ν ,

with a◦ν defined so as to satisfy (6.2.4) and we have φiν (a◦ν) = 0. Then one
uses the conditions (1) and (2) to distribute.

(6.2.5) Examples. Suppose we have two algebras A and B and normalized
measures φ : A → C and ψ : B → C. Let χ : A ? B → C be the free product
of φ and ψ. Then for a, a′ ∈ A and b, b′ ∈ B we have, after some calculations:

χ(ab) = φ(a)ψ(b), χ(aba′) = φ(aa′)ψ(b),

χ(aba′b′) = φ(aa′)ψ(b)ψ(b′) + φ(a)φ(a′)ψ(bb′)− φ(a)φ(a′)ψ(b)ψ(b′).

See [NS], Thm. 14.4, for a general formula for χ(a1b1...ambm), ai ∈ A, bi ∈ B.

(6.2.6) Examples. (a) Let Ri = C[x±1], i = 1, ..., n and let τi be given by
the integration over the normalized Haar measure d∗x on the unit circle. Thus

τi

(
f(x) =

∑
m

amx
m

)
=
∫
|x|=1

f(x)d∗x = a0.

The free product of these measures is the functional on C〈X±1
1 , ..., X±1

n 〉 given
by

τ

f(X) =
∑
γ∈Fn

aγX
γ

 = a0,

the constant term of a noncommutative Laurent polynomial. The asymptotic
freedom theorem for unitary matrices (1.4.7) says that this functional is the
limit, as N →∞, of the functionals from Example 6.1.1(c) with µN , for each
N , being the normalized Haar measure on U(N)n.



78 Mikhail Kapranov

(b) Let Ri = C[z], i = 1, ..., n, and let τi = δ(z − ai) be the Dirac delta-
function situated at a point ai ∈ C, i.e., τi(f) = f(ai). Then the free product
τ = τ1 ? ... ? τn is given by:

τ(f(Z1, ..., Zn)) = f(a1 · 1, ..., an · 1),

in other words, it depends only on the image of f in the ring of commutative
polynomials C[z1, ..., zn]. This can be seen from the procedure (6.2.4) using
the fact that each τi : C[z] → C is a ring homomorphism.

(c) Let Ri = C[z], i = 1, ..., n, and let τi be the integration over the
standard Gaussian probability measure

τi(f) =
1√
2π

∫ ∞
−∞

f(z)e−z
2/2dz.

Their free product is a probability measure on C〈Z1, ..., Zn〉 denoted by ξn
and called the free Gaussian measure. The asymptotic freedom for Hermitian
Gaussian ensembles [V] can be formulated as follows.

(6.2.7) Theorem. The measure ξn is the limit, as N → ∞, of the mea-
sures from Example 6.1.1(b) where, for each N , we take for µN the Gaussian
probability measure on the vector space (HermN )n corresponding to the scalar
product

∑
Tr(AiBi) on this vector space:

µ = µN =
1

(2π)nN2/2
exp

(
−1

2

n∑
i=1

Z2
i

)
dZ1...dZn.

(6.3) The Fourier transform of noncommutative measures. In classical
analysis, Fourier transform is defined for measures on Rn, not on an arbitrary
curved manifold. We will call a measure on RnNC (“noncommutative Rn”) a
datum consisting of a ∗-algebra R, a ∗-homomorphism C〈Z1, ..., Zn〉 → R
(i.e., a choice of self-adjoint elements in R which we will still denote Zi), and
a measure τ on R. Elements of R for which τ is defined, will be thought of
as functions integrable with respect to the measure. This concept is thus very
similar to that of n noncommutative random variables in noncommutative
probability theory, except we do not require any positivity or normalization.

Let τ be a measure on RnNC. Its Fourier transform is the complex valued
function F(τ) on the group Πn of piecewise smooth paths in Rn defined as
follows:

(6.3.1) F(τ)(γ) = τ(Eγ(iZ1, ..., iZn)), γ ∈ Πn.

Here we assume that the “entire function” Eγ(iZ1, ..., iZn) lies in the do-
main of definition of τ . In physical terminology, F(τ)(γ) is the “Wilson loop
functional” (defined here for non-closed paths as well).
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(6.3.2) Example: delta-functions. (a) For every J = (j1, ..., jm) we have
the measure δ(J) on C〈〈Z1, ..., Zn〉〉 given by

δ(J)

∑
m

∑
I=(i1,...,im)

aIZi1 ...Zim

 = aJ .

The Fourier transform of δ(J) is the function WJ : Πn → C which associates
to a path γ the iterated integral along γ labelled by J :

WJ(γ) =
∫ →
γ

dyj1 ...dyjm .

We will call these functions monomial functions on Πn

(b) If we take for τ the free product of (underived) delta-functions δa1 ?
... ? δan , as in Example 6.2.6(b), then

F(τ)(γ) = exp
(
i(e(γ), a)

)
,

where e(γ) ∈ Rn is the endpoint of γ. This follows from the fact that τ
is supported on the commutative locus, i.e., τ(Eγ(iZ)) depends only on the
image of Eγ(iZ) in the commutative power series ring, which is exp

(
ie(γ), z

)
).

(6.4) Convolution and product. Let τ, σ be two measures on RnNC, so we
have homomorphisms

α : C〈Z1, ..., Zn〉 → R, β : C〈Z1, ..., Zn〉 → S

and τ is a linear functional on R while σ is a linear functional on S. Their
(tensor) convolution is the measure τ ∗ σ which corresponds to the homomor-
phism

(6.4.1) C〈Z1, ..., Zn〉 → R⊗ S, Zi 7→ α(Zi)⊗ 1 + 1⊗ β(Zi),

and the linear functional

τ ∗ σ : R⊗ S → C, r ⊗ s 7→ τ(r)⊗ σ(s).

For commutative algebras this corresponds to the usual convolution of mea-
sures with respect to the group structure on Rn.

(6.4.2) Proposition. The Fourier transform of the convolution of measures
is the product of their Fourier transforms:

F(τ ∗ σ) = F(τ) · F(σ).
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Proof: This is a consequence of the fact that the elements Eγ(iZ1, ..., iZn) of
C〈〈Z1, ..., Zn〉〉 are group-like, see the exponential property (2.4.7). ut

(6.5) Formal Fourier transform of noncommutative measures. The
product of two monomial functions on Πn is a linear combination of monomial
functions. This expresses Chen’s shuffle relations among iterated integrals:

(6.5.1) Wj1,...,jmWjm+1,...,jm+p
=
∑
s

Wjs(1),...,js(m+p) ,

the sum being over the set of (m, p)-shuffles. An identical formula holds for the
convolution of the measures δ(j1,...,jm) and δ(jm+1,...,jm+p), as both formulas
describe the Hopf algebra structure on C〈〈Z1, ..., Zn〉〉.

The C-algebra with basis WJ = Wj1,...,jm and multiplication law (6.5.1) is
nothing but the algebra

(6.5.2) C[Gn] = lim
−→

C[Gn,d]

of regular functions on the group scheme Gn = lim
←−

Gn,d. The multiplication
in Gn corresponds to the Hopf algebra structure given by

(6.5.3) ∆(Wj1,...,jm) =
m+1∑
ν=0

Wj1...jν ⊗Wjν+1,...,jm .

Elements of C[Gn] can be called polynomial functions on Πn.
Note that formal infinite linear combinations (series)

∑
J cJWJ still form a

well defined algebra via (6.5.1), which we denote C[[Gn]]. This is the algebra of
functions on the formal completion of Gn at 1. The rule (6.5.3) makes C[[Gn]]
into a topological Hopf algebra.

Let τ be a measure on RnNC. We will call the formal Fourier transform of
τ the series

(6.5.4) F̂(τ) =
∑

J=(j1,...,jm)

τ(Zi1 ...Zjm) ·WJ ∈ C[[Gn]].

As before, we see that convolution of measures is taken into the product in
C[[Gn]].

7 Towards the inverse NCFT.

(7.0) In this section we sketch a possible approach to the problem of finding
the inverse to the NCFT F from (2.2). In other words, given a “noncommu-
tative function” f = f(Z1, ..., Zn), how to find a measure µ on (possibly some
completion of) Πn such that F(µ) = f? Note that unlike in classical analysis,
the dual Fourier transform F (from noncommutative measures to functions
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on Πn) does not provide even a conjectural answer, since there is no natural
identification of functions and measures.

So we take as our starting point the case of discrete NCFT (1.4.5) where
Theorem 1.4.6 provides a neat inversion formula.

(7.1) Fourier series and Fourier integrals. We recall the classical proce-
dure expressing Fourier integrals as scaling limits of Fourier series, see [W],
§5. Let f(x) be a piecewise continuous, C-valued function on R of sufficiently
rapid decay. We can restrict f to the interval [−π, π] which is a fundamental
domain for the exponential map z 7→ exp(iz), R → S1, and then represent
f on this interval as a Fourier series in einz, n ∈ Z.

Next, let us scale the interval to [−A,A] instead. Then the orthonormal
basis of functions is formed by

(7.1.1)
1√
2A

exp
(
nπiz

A

)
, n ∈ Z,

so on the new interval we have

(7.1.2) f(z) =
1

2A

∑
n∈Z

exp
(
nπiz

A

)∫ A

−A
f(w) exp

(
−nπiw
A

)
dw.

If we associate the Fourier coefficients to the scaled lattice points, putting

(7.1.3) g
(nπ
A

)
=

1√
2π

∫ A

−A
f(z) exp

(
−nπiz
A

)
dz,

then

(7.1.4) f(z) =
1√
2π

∑
n∈Z

g
(nπ
A

)
exp

(
nπiz

A

)
∆
(nπ
A

)
, z ∈ [−A,A],

where ∆
(
nπ
A

)
= π

A is the step of the dual lattice. So when A → ∞, the
formulas (7.1.3-4) “tend to” the formulas for two mutually inverse Fourier
transforms for functions on R. In other words, the measures on R (with coor-
dinate y) given by infinite combinations of shifted Dirac delta functions:

(7.1.5)
1√
2π

π

A

∑
n∈Z

g
(nπ
A

)
δ
(
y − nπ

A

)
,

converge, as A→∞, to a measure whose Fourier transform is f .

(7.2) Matrix fundamental domains. We now consider the analog of the
above formalism for Hermitian matrices instead of elements of R and unitary
matrices instead of those of S1. Let Herm≤AN be the set of Hermitian N by N
matrices whose eigenvalues all lie in [−A,A]. Then Herm≤πN is a fundamental
domain for the exponential map
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(7.2.1) Z 7→ X = exp(iZ), HermN → U(N).

Note that the Jacobian of the map (7.2.1) is given by
(7.2.2)

J(Z) = detN2×N2
ead(Z) − 1

Z
=
∏
j,k

ei(λj−λk) − 1
λj − λk

=
∏
j<k

2
1− cos(λj − λk)

(λk − λk)2
.

Here λ1, ..., λN are the eigenvalues of Z, see [Hel], p. 255. Using the formula
for the volume of U(N), see, e.g., [Mac], we can write the normalized Haar
measure on U(N) transferred into Herm≤πN , as

(7.2.3) d∗X =
J(Z)dZ
VN

, VN =
N−1∏
m=0

2πm+1

m!
.

Let f(Z1, ..., Zn) be a “good” noncommutative function (for example an
entire function or a rational function defined for all Hermitian Z1, ..., Zn and
having good decay at infinity). Then we can restrict f to (Herm≤πN )n and
transfer it, via the map (7.2.1), to a matrix function on U(N)n. This matrix
function is clearly nothing but

(7.2.4) f(−i log(X1), ...,−i log(Xn)),

where −i log : U(N) → Herm≤πN is the branch of the logarithm defined using
our choice of the fundamental domain. Although (7.2.4) is far from being a
noncommutative Laurent polynomial (indeed, it is typically discontinuous),
one can hope to use the procedure of Theorem 1.4.6 to expand it into a
noncommutative Fourier series. In other words, assuming that for each γ ∈ Fn
the limit
(7.2.5)

aγ = lim
N→∞

1
N

Tr
∫
X1,...,Xn∈U(N)

f(−i log(X1), ...,−i log(Xn))X−γ
n∏
j=1

d∗Xj =

= lim
N→∞

1
N

Tr
∫
Z1,...,Zn∈Herm

≤π
N

f(Z1, ..., Zn)Eγ−1(iZ1, ..., iZn))
n∏
j=1

J(Zj)dZj
VN

exists, we can form the series

(7.2.6)
∑
γ

aγX
γ =

∑
γ

aγ Eγ(iZ1, ..., iZn), Zj ∈ Herm≤πN .

By analogy with the classical case one can expect that this series converges
to f |

(Herm
≤π
N )n away from the boundary.

(7.3) Scaling the period. In the situation of (7.2) let us choose A > 0
and restrict f to (Herm≤AN )n. The same procedure would then expand the
restriction into a series in
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(7.3.1) X
π/A
j = exp

(
i
π

A
Zj

)
, j = 1, ..., n.

Let Fπ/An ⊂ Gn(R) be the group generated by the Xπ/A
j . We can think of

elements of Fπ/An as rectangular paths in Rn with increments being integer
multiples of π/A. The coefficients of the series for the restriction given then a
function

gA : Fπ/An → C,

so the series will have the form

f(Z) =
∑

γ∈Fπ/A
n

gA(γ)Eγ(iZ), Z = (Z1, ..., Zn), Zj ∈ Herm≤AN .

Now, as A → ∞, we would like to say that the gA, considered as linear
combinations of Dirac measures on Πn (or some completion) tend to a limit
measure. Although Πn is not a manifold, we can pass to finite dimensional
approximations

Πn ⊂ Gn(R)
pd−→ Gn,d(R).

Let Fπ/An,d = pd(F
π/A
n ). This is a free nilpotent group of degree d on generators

pd(X
π/A
j ), and is a discrete subgroup (“lattice”) in Gn,d(R). As A → ∞,

these lattices are getting dense in Gn,d(R). Supposing that the direct image
(summation over the fibers) pd∗(gA) exists as a function on Fπ/An,d or, what is

the same, a measure on Gn,d(R) supported on the discrete subgroup F
π/A
n,d ,

we can then ask for the existence of the limit

µd = lim
A→∞

pd∗(gA) ∈ Meas(Gn,d(R)).

These measures, if they exist, would then form a pro-measure µ• which is the
natural candidate for the inverse Fourier transform of f . The author hopes to
address these issues in a future paper.
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