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Introduction and an example

These notes grew from an attempt to interpret a formula of Drinfeld (see [3])
enumerating the absolutely irreducible local systems of rank 2 on algebraic
curves over finite fields, obtained as a corollary of the Langlands correspon-
dence for GL(2) in the functional field case, and of the trace formula.

Let C be a smooth projective geometrically connected curve defined over
a finite field Fq, with a base point v ∈ C(Fq). The geometric fundamental
group πgeom

1 (C, v) := π1(C ×Spec Fq SpecFq, v) is a profinite group on which
the Galois group Ẑ = Gal(Fq/Fq) (with the canonical generator Fr := Frq)
acts. In what follows we will omit the base point from the notation.

Theorem 1. (Drinfeld) Under the above assumptions, for any integer n ≥ 1
and any prime l 6= char(Fq) the set of fixed points

X(l)
n :=

(
IrrRep (π1(C ×Spec Fq SpecFq) → GL(2, Ql))/conjugation

)Frn

is finite. Here IrrRep (. . . ) denotes the set of conjugacy classes of irreducible
continuous 2-dimensional representations of πgeom

1 (C) defined over finite ex-
tensions of Ql. Moreover, there exists a finite collection (λi) ∈ Q×

of algebraic
integers, and signs (εi) ∈ {−1,+1} depending only on C, such that for any
n, l one has an equality

#X(l)
n =

∑
i

εiλ
n
i .

From the explicit formula which one can extract from [3] one can see that
numbers λi are q-Weil algebraic integers whose norm for any embedding Q ↪→
C belongs to q

1
2 Z≥0 . Therefore, the number of elements of X

(l)
n , n = 1, 2, . . .
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looks like the number of Fqn-points on some variety over Fq. The largest
exponent is q4g−3, which indicates that this variety has dimension 4g − 3.
A natural guess is that it is closely related to the moduli space of stable
bundles of rank 2 over C. At least the dimensions coincide, and Weil numbers
which appear are essentially the same, they are products of the eigenvalues of
Frobenius acting on the motive defined by the first cohomology of C.

The Langlands correspondence identifies X
(l)
n with the set of Ql-valued

unramified cuspidal automorphic forms for the adelic group GL(2, AFq(C)).
These forms are eigenvectors of a collection of commuting matrices (Hecke
operators) with integer coefficients. Therefore, for a given n ≥ 1 one can
identify1 all sets X

(l)
n for various primes l with one set Xn endowed with an

action of the absolute Galois group Gal(Q/Q), extending the obvious actions
of Gal(Ql/Ql) on X

(l)
n .

These days the Langlands correspondence in the functional field case is
established for all the groups GL(N) by L. Lafforgue. To my knowledge, al-
most no attempts were made to extend Drinfeld’s calculation to the case of
higher rank, or even to the GL(2) case with non-trivial ramification.

It is convenient to take the inductive limit X∞ := lim−→Xn, Xn1 ↪→ Xn1n2

which is an infinite countable set endowed with an action of the product2

Gal(Q/Q)×Gal(Fq/Fq) .

The individual set Xn can be reconstructed from this datum as the set of
fixed points of Frn ∈ Gal(Fq/Fq).

In spite of the numerical evidence, it would be too naive to expect a natural
identification of X∞ with the set of Fq-points of an algebraic variety defined
over Fq, as there is no obvious mechanism producing a non-trivial Gal(Q/Q)-
action on the latter.

The main question addressed here is

Question 2. Does there exist some alternative way to construct the set X∞
with the commuting action of two Galois groups?

In the present notes I will offer three different hypothetical constructions.
The first construction comes from the analogy between the Frobenius act-
ing on πgeom

1 (C) and an element of the mapping class group acting on the
fundamental group of a closed oriented surface, the second one is almost tau-
tological and arises from the contemplation on the shape of explicit formulas
for Hecke operators (see an example in Section 0.1), the third one is based on
an analogy with lattice models in statistical physics.

1It is expected that all representations from X
(l)
n are motivic, i.e. they arise from

projectors with coefficients in Q acting on l-adic cohomology of certain projective
varieties defined over the field of rational functions Fqn(C).

2One can replace Gal(Q/Q) by its quotient Gal(Qq−Weil/Q) where Qq−Weil ⊂ Q
is CM-field generated by all q-Weil numbers.
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I propose several conjectures, which should be better considered as guesses
in the first and in the third part, as there is almost no experimental evidence
in their favor. In a sense, the first and the third part should be regarded as
science fiction, but even if the appropriate conjectures are wrong (as I strongly
suspect), there should be some grains of truth in them.

On the contrary, I feel quite confident that the conjectures made in the
second part are essentially true, the output is a higher-dimensional generaliza-
tion of the Langlands correspondence in the functional field case. At the end
of the second part I will show how to make a step in the arithmetic direction,
extending the formulas to the case of an arbitrary local field.

In the fourth part I will describe briefly a similarity between a modification
of the category of motives based on non-commutative geometry, and two other
categories introduced in the second and the third part. Also I will make a link
between the proposal based on polynomial dynamics and the one based on
lattice models.

Finally, I apologize to the reader that the formulas in Sections 0.1 and 1.3
are given without explanations, this is the result of my poor knowledge of the
representation theory. The formulas were polished with the help of computer.

Acknowledgements: I am grateful to many people for useful discussions,
especially to Vladimir Drinfeld (on the second part of this paper), to Laurent
Lafforgue who told me about [3] and explained some basic stuff about au-
tomorphic forms, to Vincent Lafforgue who proposed an argument for the
Conjecture 5 based on lifting, to James Milne for consultations about the cat-
egory of motives over a finite field, to Misha Gromov who suggested the idea
to imitate Dwork’s methods in the third part, also to Mitya Lebedev, Sasha
Goncharov, Dima Grigoriev, Dima Kazhdan, Yan Soibelman and Don Zagier.
Also I am grateful to the referee for useful remarks and corrections.

0.1 An explicit example

Here we will show explicit formulas for the tower (Xn)n≥1 in the simplest
truly non-trivial case. Consider the affine curve C = P1

Fq
\ {0, 1, t,∞} for

a given element t ∈ Fq \ {0, 1}. We are interested in motivic local SL(2)-
systems on C with tame non-trivial unipotent monodromies around all punc-
tures {0, 1, t,∞}.

A lengthy calculation lead to the following explicit formulas3 for the Hecke
operators for cuspidal representations. In what follows we assume char Fq 6= 2.
The Hecke operators act on the spaces of functions on certain double coset
space for the adelic group, which can be identified with the set of equiva-
lence classes of vector bundles of rank 2 over P1

Fq
together with a choice of

3I was informed by V. Drinfeld that a similar calculation for the case of SL(2)
local systems on P1

Fq
\ {4 points}, with tame non-trivial semisimple monodromy

around punctures was performed few years ago by Teruji Thomas.
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one-dimensional subspaces of fibers at {0, 1, t,∞}. This double coset space is
infinite, but the eigenfunctions of Hecke operators corresponding to cuspidal
representations have finite support which one can bound a priori.

For any x ∈ Fq the Hecke operator Tx (on cuspidal forms) can be written
as an integral q × q matrix whose rows and columns are labelled by elements
of Fq, (i.e. Tx ∈ Mat(Fq × Fq; Z)). Coefficients of Tx are given by the formula

(Tx)yz := 2−#{w ∈ Fq|w2 = ft(x, y, z)}+ (correction term)

where ft(x, y, z) is the following universal polynomial with integral coeffi-
cients:

ft(x, y, z) := (xy + yz + zx− t)2 + 4xyz(1 + t− (x + y + z)) .

The correction term is equal to

−


q + 1 x = y ∈ {0, 1, t}
1 x = y /∈ {0, 1, t}
0 x 6= y

+


q if x /∈ {0, 1, t} and


y =

t

x
, z = 0

y =
t− x

1− x
, z = 1

y =
t(1− x)
t− x

, z = t

0 otherwise

Operators (Tx)x∈Fq
satisfy the following properties:

1. [Tx1 , Tx2 ] = 0,
2.
∑

x∈Fq
Tx = 1 = idZFq ,

3. T 2
x = 1 for x ∈ {0, 1, t}, moreover {1, T0, T1, Tt} form a group under the

multiplication, isomorphic to Z/2Z⊕ Z/2Z,
4. for any x /∈ {0, 1, t} the spectrum of Tx is real and belongs to [−2

√
q, +2

√
q],

any element of Spec(Tx) can be written as λ+λ where |λ| = √
q is a q-Weil

number,
5. for any ξ = λ + λ ∈ Spec(Tx) and any integer n ≥ 1 the spectrum of the

matrix T
(n)
x corresponding to x ∈ Fq ⊂ Fqn (if we pass to the extension

Fqn ⊃ Fq) contains the element ξ(n) := λn + λ
n
,

6. the vector space generated by {Tx}x∈Fq is closed under the product, the
multiplication table is

Tx · Ty =
∑
z∈Fq

cxyzTz where cxyz = (Tx)yz .

Typically (for “generic” t, x) the characteristic polynomial of Tx splits
into the product of 4 irreducible polynomials of almost the same degree. The
splitting is not surprising, as we have a group4 of order 4 commuting with

4This is the group of automorphisms of P1\{4 points} for the generic cross-ratio.
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all operators Tx (see property 3). Computer experiments indicate that the
Galois groups of these polynomials (considered as permutation groups) tend
to be rather large, typically the full symmetric groups if q is prime, and the
corresponding number fields have huge factors in the prime decomposition of
the discriminant.

Notice that in the theory of automorphic forms one usually deals with
infinitely many commuting Hecke operators corresponding to all places of the
global field, i.e. to closed points of C (in other words, to orbits of Gal(Fq/Fq)
acting on C(Fq)). Here we are writing formulas only for the points defined
over Fq. The advantage of our example is that the number these operators
coincides with the size of Hecke matrices, hence one can try to write formulas
for structure constants, which by luck turn out to coincide with the matrix
coefficients of matrices Tx (property 6).

1 First proposal: algebraic dynamics

As was mentioned before, it is hard to imagine a mechanism for a non-trivial
action of the absolute Galois group of Q on the set of points of a variety over
a finite field. One can try to exchange the roles of fields Q and Fq. The first
proposal is the following one:

Conjecture 3. For a tower (Xn)n≥1 arising from automorphic forms (or
from motivic local systems on curves), as defined in the Introduction, there
exists a variety X defined over Q and a map F : X → X such that there is a
family of bijections

Xn ' (X(Q))F n

, n ≥ 1

covariant with respect to Gal(Q/Q) × Z/nZ actions, and with respect to in-
clusions Xn1 ⊂ Xn1n2 for integers n1, n2 ≥ 1.

1.1 The case of GL(1)

Geometric class field theory gives a description of the sets (Xn)n≥1 in terms
of the Jacobian of C:

Xn = (JacC(Fqn))∨(Q) = Hom(JacC(Fqn), Q×
) .

The number of elements of this set is equal to

# JacC(Fqn) = det(Frn
H1(C)−1)

where FrH1(C) is the Frobenius operator acting on, say, l-adic first cohomology
group of C.

One can propose a blatantly non-canonical candidate for the corresponding
dynamical system (X, F ). Namely, let us choose a semisimple (2g×2g) matrix
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A = (Ai,j)1≤i,j≤2g (where g is the genus of C) with coefficients in Z, whose
characteristic polynomial is equal to the characteristic polynomial of FrH1(C).
Define X/Q to be the standard 2g-dimensional torus G2g

m = Hom(Z2g, Gm),
and the map F to be the dual to the map A : Z2g → Z2g:

F (z1, . . . , z2g) = (
∏

i

z
Ai,1
i , . . . ,

∏
i

z
Ai,2g

i ) .

Moreover, one can choose A in such a way that

F ∗ω = qω where ω =
g∑

i=1

dzi

zi
∧ dzg+i

zg+i
.

On the set of fixed points of Fn act simultaneously Gal(Q/Q) (via the
cyclotomic quotient) and Z/nZ (by powers of F ). Nothing contradicts to the
existence of an equivariant isomorphism between two towers of finite sets.

1.2 Moduli of local systems on surfaces

One can interpret the scheme G2g
m as the moduli space of rank 1 local systems

on a oriented closed topological surface S of genus g, the form ω is the natural
symplectic form on this moduli space.

In general, for any N ≥ 1, one can make an analogy between the action of
Frobenius Fr on the the set of l-adic irreducible representations of πgeom

1 (C) of
rank N , and the action of the isotopy class of a homeomorphism ϕ : S → S on
the set of irreducible complex representations of π1(S) of the same rank. Sets
of representations are similar to each other, as it is known that the maximal
quotient of πgeom

1 (C) coprime to q is isomorphic to the analogous quotient
of the profinite completion π̂1(S) of π1(S). Also, if we assume that there are
only finitely many fixed points of ϕ acting on

IrrRep(π1(S) → GL(2, C))/conjugation

then the sets

X(l) :=
(
IrrRep(π̂1(C ×Spec Fq SpecFq) → GL(2, Ql))/conjugation

)ϕ
do not depend on the prime l for l large enough.

All this leads to the following conjecture (which is formulated a bit slop-
pily), a strengthening of Conjecture 1:

Conjecture 4. For any smooth compact geometrically connected curve C/Fq

of genus g ≥ 2 there exists an endomorphism ΦC of the tensor category of
finite-dimensional complex local systems on S such that

• ΦC is algebraic and defined over Q, in the sense that it acts on the moduli
stack of irreducible local systems of any given rank N ≥ 1 by a rational
map defined over Q,
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• ΦC multiplies the natural symplectic form on the moduli space of irreducible
local systems of rank N by the constant q,

• for every n, N ≥ 1 there exists an identification of the set of isomorphism
classes of irreducible motivic local systems of rank N on C×SpecFq SpecFq

invariant under Frn, with the set of isomorphism classes of Q-local systems
of rank N on S invariant under Φn

C , compatible with the relevant Galois
symmetries and tensor constructions.

One can not expect that ΦC comes from an actual endomorphism ϕ of
the fundamental group π1(S), as it is known that for g ≥ 2 any such ϕ is
necessarily an automorphism. That is a rationale for replacing a putative en-
domorphism of π1(S) by a more esoteric endomorphism of the tensor category
of its finite-dimensional representations.

Example: SL(2)-local systems on sphere with 3 punctures

A generic SL(2, C)-local system on CP 1 \ {0, 1,∞} is uniquely determined
by 3 traces of monodromies around punctures. A similar statement holds for
l-adic local systems with tame monodromy in the case of finite characteristic.
Motivic local systems correspond to the case when all the eigenvalues of the
monodromies around punctures are roots of unity, i.e. when the traces of
monodormies are twice cosines of rational angles. This leads to the following
prediction:

X = A3, F (x1, x2, x3) = (Tq(x1), Tq(x2), Tq(x3))

where Tq ∈ Z[x] is the q-th Chebyshev polynomial,

Tq(λ + λ−1) = λq + λ−q .

In this case the identifications between the fixed points of F and motivic local
systems on P1

Fq
\ {0, 1,∞} exist, and can be extracted form the construction

of these local systems (called hypergeometric) as summands in certain direct
images of abelian local systems (analogous the classical integral formulas for
hypergeometric functions). The identification is ambiguous, it depends on a
choice of a group embedding F×q ↪→ Q/Z.

1.3 Equivariant bundles and Ruelle-type zeta-functions

The analogy with an element of the mapping class group acting on surface S
suggest the following addition to the Conjecture 1. Let us fix the curve C/Fq

and the rank N ≥ 1 of local systems under the consideration. For a given
point x ∈ C(Fq) we have a sequence of Hecke operators T

(n)
x associated with

curves C ×Spec Fq SpecFqn . The spectrum of T
(n)
x is a Q-valued function on

Xn, i.e. according to Conjecture 1, a function on the set of fixed points of Fn.
We expect that the collection of these functions for n = 1, 2 . . . comes from a
F -equivariant vector bundle on X.
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Conjecture 5. Using the notations of Conjecture 1, for given x ∈ C(Fq)
there exists a pair (E , g) where E is a vector bundle on X of rank N together
with an isomorphism g : F ∗E → E (defined over Q), such that the eigenvalue
of T

(n)
x at the point of its spectrum corresponding to z ∈ Xn coincides with

Trace(Ez = EF n(z) → · · · → EF (z) → Ez)

where arrows are isomorphisms of fibers of E coming from g.

In particular, one can ask for an explicit formula for the F -equivariant
bundle E in the case of SL(2)-local systems on the sphere with 3 punctures
where we have an explicit candidate for (X, F ).

In the limiting most simple non-abelian case when the monodromy is
unipotent around 2 punctures, and arbitrary semisimple around the third
puncture, one can make the above question completely explicit:

Question 6. For a given x ∈ Fq \ {0, 1}, does there exist a rational function
R = Rx on CP 1 with values in q1/2SL(2, C) ⊂ Mat(2 × 2, C) which has no
singularities on the set(

∪n≥1{z ∈ C|zqn−1 = 1}
)
\ {1}

such that for any n ≥ 1 two sets of complex numbers (with multiplicities):

Xn :=

 ∑
y∈Fqn\{0,1,x}

χ

(
y(1− xy)

1− y

) ∣∣ χ : F×qn → C×, χ 6= 1


where χ runs through all non-trivial multiplicative characters of Fqn , and

X ′
n :=

{
Trace

(
R(z)R(zq) . . . R(zqn−1

)
)
| zqn−1 = 1, z 6= 1

}
coincide?

Elements of the set Xn are real numbers of the form λ + λ where λ ∈ Q is
a q-Weil number with |λ| = q1/2. Therefore it is natural to expect that R(z)
belongs to q1/2SU(2) if |z| = 1.

The Galois symmetry does not forbid for the function R (as a rational
function with values in (2×2)-matrices) to be defined over Q, after the conju-
gation by a constant matrix. Moreover, the existence of such a function over
Q leads to certain choice of generators of the multiplicative groups

(
F×qn

)
for

all n ≥ 1, well-defined modulo the action of Frobenius Frq (the Galois group
Gal(Fqn/Fq) = Z/nZ), as in a sense we identify roots of unity in C and multi-
plicative characters of Fqn . In particular, there will be a canonical irreducible
polynomial over Fq of degree n for every n ≥ 1. This is something almost too
good to be true.
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Reminder: Trace formula and Ruelle-type zeta-function

Let X be now a smooth proper variety (say, over C), endowed with a map
F : X → X, and E be a vector bundle on X together with a morphism (not
necessarily invertible) g : F ∗E → E . Let us assume that for any n ≥ 1 all fixed
points z of Fn : X → X are isolated and non-degenerate, i.e. the tangent map

(Fn)′z : TzX → TzX

has no nonzero invariant vectors (in other words, all eigenvalues of (Fn)′z are
not equal to 1). Then one has the following identity (Atiyah-Bott fixed point
formula): ∑

v∈X:F n(z)=z

Trace(Ez = EF n(z) → · · · → Ez)
det(1− (Fn)′z)

=

= Trace((g∗ ◦ F ∗)n : H•(X, E) → H•(X, E))

The trace in the r.h.s. is understood in the super sense, as the alternating sum
of the ordinary traces in individual cohomology spaces.

If one wants to eliminate the determinant factor in the denominator in the
l.h.s., one should replace E by the superbundle E ⊗ ∧•(T ∗X).

The trace formula implies that the series in t

exp

−∑
n≥1

tn

n

∑
z∈X:F n(z)=z

Trace(Ez = EF n(z) → · · · → Ez)
det(1− (Fn)′z)


is the Taylor expansion of a rational function in t. It seems that in many cases
for non-compact varieties X a weaker form of rationality holds as well, when
no equivariant compactification can be found. Namely, the above series (called
the Ruelle zeta-function in general, not necessarily algebraic case) admits a
meromorphic continuation to C; also the zeta-function in the version without
the denominator is often rational in the non-compact case.

Rationality conjecture for motivic local systems

In the case hypothetically corresponding to motivic local systems on curves (in
the setting of Conjecture 3), one can make a natural a priori guess about the
denominator in the l.h.s. of the trace formula. Namely, for a fixed point z of
the map Fn corresponding to a fixed point [ρ] in the space of representations
of π1(C ×Spec Fq SpecFq) in GL(N, Ql), we expect that the vector space TzX
together with the automorphism (Fn)′z should be isomorphic (after the change
of scalars) to

H1(C ×Spec Fq
SpecFq,End(ρ)) = Ext1(ρ, ρ)

endowed with the Frobenius operator.
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Eigenvalues of Frn in this case have norm qn/2 by the Weil conjecture,
hence not equal to 1, and the denominator in the Ruelle zeta-function does
not vanish (meaning that the fixed points are non-degenerate).

In our basic example from Section 0.1 one can propose an explicit formula
for the denominator term. Define (in notation from Section 0.1) for given
t ∈ Fq \ {0, 1} a matrix Ttan ∈ Mat(Fq × Fq, Q) by the formula

Ttan := −1
q

∑
x∈Fq

(Tx)2 + (q − 3− 1/q) · idQFq .

This matrix satisfies the same properties as Hecke operators5. Namely,
all eigenvalues of Ttan belong to [−2

√
q, +2

√
q], any element of Spec(Ttan)

can be written as λ + λ where |λ| =
√

q is a q-Weil number, and for any
ξ = λ + λ ∈ Spec(Tx) and any integer n ≥ 1 the spectrum of the matrix T

(n)
tan

corresponding to x ∈ Fq ⊂ Fqn (if we pass to the extension Fqn ⊃ Fq) contains
the element ξ(n) := λn + λ

n
.

We expect that the eigenvalue of Ttan at the point of the spectrum cor-
responding to motivic local system ρ is equal to the trace of Frobenius in
a two-dimensional submotive of the motive H1(C,End(ρ)), corresponding to
the deformations of ρ preserving the unipotency of the monodromy around
punctures.

Notice that any motivic local system ρ on C can be endowed with a non-
degenerate skew-symmetric pairing with values in the Tate motive. This ex-
plains the main term of the formula:

• the sum of squares of Hecke operators means that we are using the trace
formula for Frobenius in the cohomology of C with coefficients in the tensor
square of ρ,

• the factor 1/q comes from the Tate twist,
• the minus sign comes from the odd (first) cohomology.

The candidate for the denominator term in the putative Ruelle zeta-
function is the following operator commuting with the Hecke operators (we
write the formula only for the first iteration, n = 1), considered as a function
on the spectrum:

D := (q + 1− Ttan)−1
.

The reason is that the eigenvalue of D at the eigenvector corresponding to
motivic local system ρ is equal to

1
(1− λ)(1− λ)

=
1

1 + q − ξ

where λ, λ are Weil numbers, eigenvalues of Frobenius in H1(C,End(ρ)) sat-
isfying equations

5The only difference is that eigenvalues of operators Tx are algebraic integers
while eigenvalues of Ttan are algebraic integers divided by q.
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λ + λ = ξ, λ + λ = q .

The l.h.s. of the putative trace formula for the equivariant vector bundle
Ex1 ⊗ · · · ⊗ Exk

(here Ex is the F -equivariant vector bundle corresponding to
point x ∈ C(Fq), see Conjecture 3), is given (for the n-th iteration) by the
formula

Trace
(
T (n)

x1
. . . T (n)

xk
D(n)

)
.

It looks that in order to achieve the rationality of the putative Ruelle
zeta-function one has to add by hand certain contributions corresponding to
“missing fixed points”. For example, for any x ∈ Fq \ {0, 1, t} one has

Trace(TxD) =
q

(q − 1)2

and the corresponding zeta-function

exp

−∑
n≥1

tn

n

qn

(qn − 1)2

 =
∏
m≥1

(1− q−mt)m ∈ Q[[t]]

is meromorphic but not rational. The above zeta-function looks like the contri-
bution of just one6 fixed point z0 on an algebraic dynamical system z 7→ F (z)
on a two-dimensional variety, with the spectrum of (F ′)z0 equal to (q, q), and
the spectrum of the map on the fiber Ez0 → Ez0 equal to (q, 0). Here is the
precise conjecture coming from computer experiments:

Conjecture 7. For any x1, . . . , xk ∈ Fq \ {0, 1, t}, k ≥ 1 the series

exp

−∑
n≥1

tn

n

{
Trace

(
T (n)

x1
. . . T (n)

xk
D(n)

)
+ Corr(n, k)

}
where

Corr(n, k) := − (−1− qn)k

(1− q−n) (1− q2n)
,

is a rational function.

The rational function in the above conjecture should be an L-function of
a motive over Fq, all its zeroes and poles should be q-Weil numbers.

Finally, if one considers Ruelle zeta-functions without the denominator
term, then rationality is elementary, as will become clear in the next section.

6Maybe the complete interpretation should be a bit more complicated as one can

check numerically that Trace(D) = q2(q−2)

(q−1)2(q+1)
.
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2 Second proposal: formalism of motivic function spaces
and higher-dimensional Langlands correspondence

The origin of this section is property 6 (the multiplication table) of Hecke
operators in our example from Section 0.1.

2.1 Motivic functions and the tensor category Ck

Let S be a noetherian scheme.

Definition 8. The commutative ring Funpoor(S) of poor man’s motivic func-
tions7 on S is the quotient of the free abelian group generated by equivalence
classes of schemes of finite type over S, modulo relations

[X → S] = [Z → S] + [(X \ Z) → S]

where Z is a closed subscheme of X over S. The multiplication on Funpoor(S)
is given by the fibered product over S.

In the case when S is the spectrum of a field k, we obtain the standard
definition8 of the Grothendieck ring of varieties over k. Any motivic function
on S gives a function on the set of points of S with values in the Grothendieck
rings corresponding to the residue fields.

For a given field k let us consider the following additive category Ck. Its
objects are schemes of finite type over k, the abelian groups of homomorphisms
are defined by

HomCk(X, Y ) := Funpoor(X × Y ) .

The composition of two morphisms represented by schemes is given by the
fibered product as below:

[B → Y × Z] ◦ [A → X × Y ] := [A×Y B → X × Z]

and extended by additivity to all motivic functions. The identity morphism
idX is given by the diagonal embedding X ↪→ X ×X.

One can start from the beginning from constructible sets over k instead
of schemes. The category of constructible sets over k is a full subcategory of
Ck, the morphism in Ck corresponding to a constructible map f : X → Y is

given by [X
(idX ,f)−→ X × Y ], the graph of f .

Finite sums (and products) in Ck are given by the disjoint union.
We endow category Ck with the following tensor structure on objects:

7The name was suggested by V. Drinfeld.
8Usually one extends the Grothendieck ring of varieties by inverting the class

[A1
k] of the affine line, which is the geometric counterpart of the inversion of the

Lefschetz motive L = H2(P1
k) in the construction of Grothendieck pure motives.

Here also we can do the same thing.
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X ⊗ Y := X × Y

and by a similar formula on morphisms. The unit object 1Ck is the point
Spec(k). The category Ck is rigid, i.e. for every object X there exists another
object X∨ together with morphisms δX : X ⊗ X∨ → 1, εX : 1 → X∨ ⊗ X
such that both compositions:

X
idX⊗εX−→ X ⊗X∨ ⊗X

δX⊗idX−→ X, X∨ εX⊗idX∨−→ X∨ ⊗X ⊗X∨ idX∨⊗δX−→ X∨

are identity morphisms. The dual object X∨ in Ck coincides with X, the
duality morphisms δX , εX are given by the diagonal embedding X ↪→ X2.

As in any tensor category, the ring EndCk(1Ck) is commutative, and the
whole category is linear over this ring, which is nothing but the Grothendieck
ring of varieties over k.

Fiber functors for finite fields

If k = Fq is a finite field then there is an infinite chain (φn)n≥1 of tensor
functors from Ck to the category of finite-dimensional vector spaces over Q.
It is defined on objects by the formula

φn(X) := QX(Fqn ) .

The operator corresponding by φn to a morphism [A → X × Y ] has the
following matrix coefficient with indices (x, y) ∈ X(Fqn)× Y (Fqn):

#{a ∈ A(Fqn) | a 7→ (x, y)} ∈ Z≥0 ⊂ Q

The functor φn is not canonically defined for n ≥ 2, the ambiguity is the
cyclic group Z/nZ = Gal(Fqn/Fq) ⊂ Aut(φn).

Extensions and variants

The abelian group Funpoor(S) of poor man’s motivic functions can (and prob-
ably should) be replaced by the K0 group of the triangulated category MotS,Q
of “constructible motivic sheaves” (with coefficients in Q) on S. Although the
latter category is not yet rigorously defined, one can envision a reasonable
candidate for the elementary description of K0(MotS,Q). This group should
be generated by equivalence classes of families of Grothendieck motives (with
coefficients in Q) over closed subschemes of S, modulo a suitable equivalence
relation. Moreover, group K0(MotS,Q) should be filtered by the dimension of
support, the associated graded group should be canonically isomorphic to the
direct sum over all points x ∈ S of K0 groups of categories of pure motives
(with coefficients in Q) over the residue fields9.

9I do not know how to fill all the details in the above sketch.
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Similarly, one can extend the coefficients of the motives from Q to any
field of zero characteristic. This change will affect the group K0 and give a
different algebra of motivic functions.

Finally, one can add formally images of projectors to the category Ck.

Question 9. Are there interesting non-trivial projectors in Ck?

I do not know at the moment any example of an object in the Karoubi
closure of Ck which is not isomorphic to a scheme. Still, there are interesting
non-trivial isomorphisms between objects of Ck, for example the following
version of the Radon transform.

Example: motivic Radon transform

Let X = P(V ) and Y = P(V ∨) be two dual projective spaces over k. We
assume that n := dim V is at least 3.

The incidence relation gives a subvariety Z ⊂ X × Y , which can be inter-
preted as a morphism in Ck in two ways:

f1 := [Z ↪→ X × Y ] ∈ HomCk(X, Y )

f2 := [Z ↪→ Y ×X] ∈ HomCk(Y, X)

The composition f2 ◦ f1 is equal to

[An−2] · idX + [Pn−3] · [X → pt → X] .

The reason is that the scheme of hyperplanes passing through points x1, x2 ∈
X is either Pn−3 if x1 6= x2, or Pn−2 if x1 = x2. On the level on constructible
sets one has Pn−2 = Pn−3 t An−2.

The first term is the identity morphism multiplied by the (n−2)-nd power
of the Tate motive, while the second term is in a sense a rank 1 operator. It
can be killed after passing to the quotient of X by pt which is in fact a direct
summand in Ck:

X ' pt⊕ (X \ pt) .

Here we have to choose a point pt ∈ X. Similar arguments work for Y , and
as the result we obtain an isomorphism (inverting the Tate motive)

X \ pt ' Y \ pt

in the category Ck which is not a geometric isomorphism of constructible sets.
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2.2 Commutative algebras in Ck

By definition, a unital commutative associative algebra A in the tensor cate-
gory Ck is given by a scheme of finite type X/k, and two elements

1A ∈ Funpoor(X), mA ∈ Funpoor(X3)

(the unit and the product in A) satisfying the usual constraints of unitality,
commutativity and associativity.

The formula for the structure constants cxyz = (Tx)yz of the algebra of
Hecke operators in our basic example (see 0.1) is given explicitly by counting
points on constructible sets depending constructibly on a point (x, y, z) ∈ X3

where X = A1, for any t ∈ k \ {0, 1} (one should replace factors q by bundles
with fiber A1). Hence we obtain a motivic function on X3 which gives the
structure of a commutative algebra on X for any t ∈ k \ {0, 1}, for arbitrary
field k. A straightforward check (see Proposition 1 in Section 2.4 below for a
closely related statement) shows that this algebra is associative.

Elementary examples of algebras

The first example of a commutative algebra is given by an arbitrary scheme
X (or a constructible set) of finite type over k. The multiplication tensor is
given by the diagonal embedding X ↪→ X3, the unit is given by the identity
map X → X. If k = Fq is finite then for any n ≥ 1 the algebra φn(X) is
the algebra of Q-valued functions on the finite set X(Fqn), with the pointwise
multiplication.

The next example corresponds to the case when X is an abelian group
scheme (e.g. Ga, Gm, or an abelian variety). We define the multiplication
tensor mA ∈ Funpoor(X3) as the graph of the multiplication morphism X ×
X → X. Again, if k is finite then the algebra φn(X) is the group algebra
with coefficients in Q of the finite abelian group X(Fqn). Its points in Q are
additive (resp. multiplicative) characters of k if X = Ga (resp. X = Gm).

Also, one can see that the algebra in Ck corresponding to the group scheme
Ga is isomorphic to the direct sum of 1Ck (corresponding to the trivial additive
character of k) and another algebra A′ which can be thought as parameterizing
non-trivial additive characters of the field, with the underlying scheme A1\{0}.

Finally, one can make “quotients” of abelian group schemes by finite groups
of automorphisms. For example, for Ga endowed with the action of the an-
tipodal involution x → −x, the formula for the product for the corresponding
algebra is the sum of the following “main term”

[Z ↪→ (A1)3], Z = {(x, y, z)| x2 + y2 + z2 − 2(xy + yz + zx) = 0}

(the latter equation means that
√

x +
√

y =
√

z), and of certain correction
terms. Similarly, for the antipodal involution (x,w) → (x,−w) on the elliptic
curve E ⊂ P1 × P1 given by w2 = x(x − 1)(x − t) (with (∞,∞) serving as
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zero for the group law), the quotient is P1 endowed with the multiplication
law similar to one from the example 0.1. The main term is given by the
hypersurface ft(x, y, z) = 0 in the notation from Section 0.1. The spectrum
of the corresponding algebra is rather trivial, in comparison to our example.
The difference is that in Section 0.1 we consider the two-fold cover of (A1)3

ramified at the hypersurface ft(x, y, z) = 0.

Categorification

One may wonder whether a commutative associative algebra A in Ck (for gen-
eral field k, not necessarily finite) is in fact a materialization of the structure
of a symmetric (or only braided) monoidal category on a triangulated cate-
gory, i.e. whether the multiplication morphism is the class in K0 of a bifunctor
defining the monoidal structure. The category under consideration should be
either the category of constructible mixed motivic sheaves on the underlying
scheme of A, or some small modification of it not affecting the group K0 (e.g.
both categories could have semi-orthogonal decompositions with the same
factors).

2.3 Algebras parameterizing motivic local systems

As we noticed already, the Example 0.1 can be interpreted as a commutative
associative algebra in Ck parameterizing in a certain sense (via the chain of
functors (φn)n≥1) motivic local systems on a curve over k = Fq. Here we will
formulate a general conjecture, which goes beyond the case of curves.

Preparations on ramification and motivic local systems

Let Y be a smooth geometrically connected projective variety over a finitely
generated field k. Let us denote by K the field of rational functions on X and
by K ′ the field of rational functions on Y ′ := Y ×Speck Speck. We have an
exact sequence

1 → Gal(K/K ′) → Gal(K/K) → Gal(k/k) → 1

For a continuous homomorphism

ρ : Gal(K/K ′) → GL(N, Ql)

where l 6= char(k), which factorizes through the quotient πgeom
1 (U) for some

open subscheme U ⊂ Y ′ one can envision some notion of ramification divisor
(similar to the notion of the conductor in one-dimensional case) which should
be an effective divisor on Y ′.

One expects that for a pure motive of rank N over K with coefficients in
Q, the ramification divisor of the corresponding l-adic local system does not
depend on prime l 6= char(k), at least for large l.



Notes on motives in finite characteristic 225

Denote by IrrRepY ′,N,l the set of conjugacy classes of irreducible represen-
tations ρ : Gal(K/K) → GL(N, Ql) factorizing through πgeom

1 (U) for some
open subscheme U ⊂ Y ′ as above. The Galois group Gal(k/k) acts on this
set.

Denote by IrrRepmot,geom
Y,N the set of equivalence classes of pure motives in

the sense of Grothendieck (defined using the numerical equivalence) of rank
N over K, with coefficients Q, which are absolutely simple (i.e. remain simple
after the pullback to K ′), modulo the action of the Picard group of rank 1
motives over k with coefficients in Q. This set is endowed with a natural action
of Gal(Q/Q). The superscript geom indicates that we are interested only in
representations of the geometric fundamental group.

One expects that the natural map from IrrRepmot,geom
Y,N to the set of fixed

points (IrrRepY ′,N,l)Gal(k/k) is a bijection. In particular, it implies that one
can define the ramification divisor for an element of IrrRepmot,geom

Y,N . Presum-
ably, one can give a purely geometric definition of it, without referring to
l-adic representations.

Conjecture on algebras parameterizing motivic local systems

Conjecture 10. For a smooth projective geometrically connected variety Y
over a finite field k = Fq, an effective divisor D on Y , and a positive integer
N , there exists a commutative associative unital algebra A = AY,D,N in the
category Ck satisfying the following property:

For any n ≥ 1 the algebra φn(A) over Q is semisimple (i.e. it is a
finite direct sum of number fields) and for any prime l, (l, q) = 1 there
exists a bijection between HomQ−alg(φn(A), Q) and the set of elements of
IrrRepmot,geom

Y×Spec Fq Spec Fqn ,N for which the ramification divisor is D. Moreover, the

above bijection is equivariant with the respect to the natural Gal(Q/Q)×Z/nZ-
action.

One can also try to formulate a generalization of the above conjecture, al-
lowing not an individual variety Y but a family, i.e. a smooth projective mor-
phism Y → B to a scheme of finite type over k, with geometrically connected
fibers, together with a flat family of ramification divisors. The corresponding
algebra should parameterize choices of a point b ∈ B(Fqn) and a irreducible
motivic system of given rank and a given ramification on the fiber Yb. This
algebra should map to the algebra of functions with the pointwise product
(see 2.2) associated with the base B.

In the above conjecture we did not describe how to associate a tower of
finite sets to the algebra A, as a priori we have just a sequence of finite sets
Xn := HomQ−alg(φn(A), Q) without no obvious maps between them. This
leads to the following

Question 11. Which property of an associative commutative algebra A in
CFq gives naturally a chain of embeddings
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HomQ−alg(φn1(A), Q) ↪→ HomQ−alg(φn1n2(A), Q)

for all integers n1, n2 ≥ 1 ?

It looks that this holds automatically, by a kind of trace morphism.

Arguments in favor, and extensions

First of all, there is a good reason to believe that Conjecture 5 holds for
curves. Also, it would be reasonable to consider local systems with an arbitrary
structure group G instead of GL(N). The algebra parameterizing motivic local
system on curve Y = C with structure group G should be (roughly) equal to
some finite open part of the moduli stack BunGL of GL-bundles on C, where
GL is the Langlands dual group. The multiplication should be given by the
class of a motivic constructible sheaf on

(BunGL)3 = BunGL ×BunGL×GL

which should be a geometric counterpart to the lifting of automorphic forms
corresponding to the diagonal embedding

GL → GL ×GL .

Presumably, the multiplication law from Example 0.1 corresponds to the lift-
ing.

If we believe in the Conjecture 5 in the case of curves, then it is very natural
to believe in it in general. The reason is that for a higher-dimensional variety
Y (not necessarily compact) there exists a curve C ⊂ Y such that πgeom

1 (Y )
is a quotient of πgeom

1 (C). Such a curve can be e.g. a complete intersection of
ample divisors, the surjectivity is a particular case of the Lefschetz theorem
on hyperplane sections. Therefore, the set of equivalence classes of absolutely
irreducible motivic local systems on Y ×Spec Fq SpecFqn should be a subset of
the corresponding set for C for any n ≥ 1, and invariant under Gal(Q/Q)-
action as well. It looks very plausible that such a collection of subsets should
arise from a quotient algebra in CFq .

From the previous discussion it looks that the motivic local systems in
higher-dimensional case are “less interesting”, the 1-dimensional case is the
richest one. Nevertheless, there is definitely a non-trivial higher-dimensional
information about local systems which can not be reduced to 1-dimensional
data. Namely, for any motivic local system ρarith on Y and an integer i ≥ 0
the cohomology space

Hi(Y ′, ρ)

where ρ is the pullback of ρarith to Y ′, is a motive over the finite field k = Fq.
We can calculate the trace of N -th power of Frobenius on it for a given N ≥ 1,
and get a Q-valued function10 on the set

10Here there is a small ambiguity which should be resolved somehow, as one can
multiply ρarith by a one-dimensional motive over k with coefficients in Q.
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Xn := HomQ−alg(φn(A), Q)

for each n ≥ 1. This leads to a natural addition to Conjecture 5. Namely,
we expect that systems of Q-valued functions on Xn associated with higher
cohomology spaces arise from elements in HomCFq

(1, A) (i.e. from motivic
functions on the constructible set underlying algebra A).

More generally, one can expect that the motivic constructible sheaves with
some kind of boundedness will be parametrized by commutative algebras.

Formulas from the example from Section 0.1 make sense and give an alge-
bra in Ck for arbitrary field k. This leads to

Question 12. Can one construct algebras AY,D,N for arbitrary ground field
k, not necessarily finite? In what sense will these algebras “parameterize”
motivic local system?

In general, it seems that the natural source of commutative algebras in Ck is
not the representation theory, but (quantum) algebraic integrable systems.

2.4 Towards integrable systems over local fields

Here we will describe briefly an analog of commutative algebras of integral
operators as above for arbitrary local fields, i.e. R, C, or finite extensions of Qp

or Fp((x)). Let us return to our basic example. The check of the associativity
of the multiplication law given by formula from Section 0.1 in the case of finite
fields is reduced to an identification of certain varieties. The most non-trivial
part is the following

Proposition 13. For generic parameters t, x1, x2, x3, x4 the two elliptic curves

E : ft(x1, x2, y) = w2
12, ft(y, x3, x4) = w2

34

Ẽ : ft(x1, x3, ỹ) = w̃2
13, ft(ỹ, x2, x4) = w̃2

24

given by equations in variables (y, w12, w34) and (ỹ, w̃13, w̃24) respectively, are
canonically isomorphic over the ground field. Moreover, one can choose such
an isomorphism which identifies the abelian differentials

dy

w12w34
and

dỹ

w̃13, w̃24
.

In fact, it is enough to check the proposition over an algebraically closed field
and observe that the curves E, Ẽ have points over the ground field11.

Let now k be a local field. For a given t ∈ k \ {0, 1} we define a (non-
negative) half-density ct on k3 by the formula

ct := π∗

(
|dx1|1/2|dx2|1/2|dx3|1/2

|w|

)
11Curve E has 16 rational points with coordinate y ∈ {0, 1, t,∞}, same for Ẽ.
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where
π : Z(k) → A3(k), π(x1, x2, x3, w) = (x1, x2, x3)

is the projection of the hypersurface

Z ⊂ A4
k : ft(x1, x2, x3) = w2 .

We will interpret ct as a half-density on (P1(k))3 as well.
One can deduce from the above Proposition the following

Theorem 14. The operators Tx, x ∈ k \ {0, 1, t} on the Hilbert space of half-
densities on P1(k), given by

Tx(φ)(y) =
∫

z∈P1(k)

ct(x, y, z) φ(z)

are commuting compact self-adjoint operators.

Moreover, in the non-archimedean case one can show that the joint spec-
trum of commuting operators as above is discrete and consists of densities
locally constant on P1(k) \ {0, 1, t,∞}. In particular, all eigenvalues of op-
erators Tx are algebraic complex numbers. Passing to the limit over finite
extensions of k we obtain a countable set upon which acts

Gal(Q/Q)×Gal(k/k) .

Also notice that in the case of local fields the formula is much simpler then
the motivic one, there is no correction terms. On the other hand, one has a
new ingredient, the local density of an integral operator. In general, one can
imagine a new formalism12 where the structure of an algebra is given by data
(X, Z, π, ν) where X is a (birational type of) variety over a given field k, Z
is another variety, π : Z → X3 is a map (defined only at the generic point of
Z), and ν is a rational section of line bundle K⊗2

Z ⊗ π∗(K⊗−1
X3 ). If k is a local

field then the pushdown by π of |ν|1/2 is a half-density on X3. The condition
of the associativity would follow from a property of certain data formulated
purely in terms of birational algebraic geometry.

Presumably, the spectrum for the case of the finite field is just a “low
frequency” part of much larger spectrum for p-adic fields, corresponding to
some mysterious objects13.

The commuting integral operators in the archimedean case k = R, C are
similar to ones found recently in the usual quantum algebraic integrable sys-
tems, see [5].

12A somewhat similar formalism was proposed by Braverman and Kazhdan (see
[1], who had in mind orbital integrals in the usual local Langlands correspondence.

13It looks that all this goes beyond motives, and on the automorphic side is
related to some kind of Langlands correspondence for two (or more)-dimensional
mixed local-global fields.
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3 Third proposal: lattice models

3.1 Traces depending on two indices

Let X be a constructible set over Fq and M be an endomorphism of X in the
category CFq (like e.g. a Hecke operator). What kind of object can be called
the “spectrum” of M?

Applying the functors φn for n ≥ 1 we obtain an infinite sequence of
finite matrices, of exponentially growing size. We would like to understand the
behavior of spectra of operators φn(M) as n → +∞. A similar question arises
in some models in quantum physics where one is interested in the spectrum
of a system with finitely many states, with the dimension of the Hilbert space
depending exponentially on the “number of particles”.

Spectrum of an operator acting on a finite-dimensional space can be recon-
structed from traces of all positive powers. This leads us to the consideration
of the following collection of numbers

ZM (n, m) := Trace((φn(M))m)

where n ≥ 1 and m ≥ 0 are integers. It will be important later to restrict
attention only to strictly positive values of m, which mean that we are inter-
ested only in non-zero eigenvalues of matrices φn(M), and want to ignore the
multiplicity of the zero eigenvalue.

Observation 1. For a given n ≥ 1 there exists a finite collection of non-
zero complex numbers (λi) such that for any m ≥ 1 one has

ZM (n, m) =
∑

i

λm
i .

Observation 2. For a given m ≥ 1 there exists a finite collection of non-
zero complex numbers (µj) and signs (εj ∈ {−1,+1}), such that for any n ≥ 1
one has

ZM (n, m) =
∑

j

εjµ
n
j .

The symmetry between parameters n and m (modulo a minor difference
with signs) is quite striking.

The first observation is completely trivial. For a given n the numbers (λi)
are all non-zero eigenvalues of the matrix φn(M).

Let us explain the second observation. By functoriality we have

ZM (n, m) = Trace(φn(Mm)) .

Let us assume first that M is given by a constructible set Y which maps to
X ×X:

Y → X ×X, y 7→ (π1(y), π2(y)) .

Then Mm is given by the consecutive fibered product
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Y (m) = Y ×X Y ×X · · · ×X Y ⊂ Y × · · · × Y

of m copies of Y :

Y (m)(Fq) = {(y1, . . . , ym) ∈ (Y (Fq))m|π2(y1) = π1(y2), . . . , π2(ym−1) = π1(ym)}

The projection to X×X is given by (y1, . . . , ym) 7→ (π1(y1), π2(ym)). To take
the trace we should intersect Y (m) with the diagonal. The conclusion is that
ZM (n, m) is equal to the number of Fqn-points of the constructible set

Ỹ (m) := Y (m) ×X×X X ,

Ỹ (m)(Fq) = {(y1, . . . , ym) ∈ Y (m)(Fq)|π1(y1) = π2(ym)} .

The second observation is now an immediate corollary of the Weil conjecture
on numbers of points of varieties over finite fields14. The general case when
M is given by a formal integral linear combination

∑
α nα[Yα → X ×X] can

be treated in a similar way.

3.2 Two-dimensional translation invariant lattice models

There is another source of numbers depending on two indices with a similar
behavior with respect to each of indices when another one is fixed. It comes
from the so-called lattice models in statistical physics. A typical example is
the Ising model. There is a convenient way to encode Boltzmann weights of a
general lattice model on Z2 in terms of linear algebra.

Definition 15. Boltzmann weights of a 2-dimensional translation invariant
lattice model are given by a pair V1, V2 of finite-dimensional vector spaces
over C and a linear operator

R : V1 ⊗ V2 → V1 ⊗ V2 .

Such data give a function (called the partition function) on a certain set
of graphs. Namely, let Γ be a finite oriented graph whose edges are colored
by {1, 2} in such a way that for every vertex v there are exactly two edges
colored by 1 and 2 with head v, and also there are exactly two edges colored
by 1 and 2 with tail v. Consider the tensor product of copies of R labelled by
the set V ert(Γ ) of vertices of Γ . It is an element vR,Γ of the vector space

(V ∨
1 ⊗ V ∨

2 ⊗ V1 ⊗ V2)⊗V ert(Γ ) .

The structure of an oriented colored graph gives an identification of the above
space with

(V1 ⊗ V ∨
1 )⊗Edge1(Γ ) ⊗ (V2 ⊗ V ∨

2 )⊗Edge2(Γ )

14Here we mean only the fact that the zeta-function of a variety over is rational
in qs, and not the more deep statement about the norms of Weil numbers.
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where Edge1(Γ ), Edge2(Γ ) are the sets of edges of Γ colored by 1 and by 2.
The tensor product of copies of the standard pairing gives a linear functional
uΓ on the above space. We define the partition function of the lattice model
on Γ as

ZR(Γ ) = uΓ (vR,Γ ) ∈ C .

An oriented colored graph Γ as above is the same as a finite set with
two permutations τ1, τ2. The set here is V ert(Γ ), and permutations τ1, τ2

correspond to edges colored by 1 and 2 respectively.
In the setting of translation invariant 2-dimensional lattice models we are

interested in the values of the partition function only on graphs corresponding
to pairs of commuting permutations. Such a graph (if it is non-empty and
connected) corresponds to a subgroup Λ ⊂ Z2 of finite index. We will denote
the partition function15 of the graph corresponding to Λ by Zlat

R (Λ).
Finally, Boltzmann data make sense in an arbitrary rigid tensor category

C. The partition function of a graph takes values in the commutative ring
EndC(1). In particular, one can speak about super Boltzmann data for the
category SuperC of finite-dimensional complex super vector spaces.

Transfer matrices

Let us consider a special class of lattices Λ ⊂ Z2 depending on two parameters.
Namely, we set

Λn,m := Z · (n, 0)⊕ Z · (0,m) ⊂ Z2 .

Proposition 16. For any Boltzmann data (V1, V2, R) and a given n ≥ 1 there
exists a finite collection of non-zero complex numbers (λi) such that for any
m ≥ 1 one has

Zlat
R (Λn,m) =

∑
i

λm
i .

The proof is the following. Let us introduce a linear operator (called the
transfer matrix) by formula:

T(2),n := TraceV ⊗n
1

((σn ⊗ idV ⊗n
2

) ◦R⊗n) ∈ End(V ⊗n
2 )

where σn ∈ End(V ⊗n
1 ) is the cyclic permutation. Here we interpret R⊗n as

an element of

(V ∨
1 )⊗n ⊗ (V ∨

2 )⊗n ⊗ V ⊗n
1 ⊗ V ⊗n

2 = End(V ⊗n
1 )⊗ End(V ⊗n

2 ) .

It follows from the definition of the partition function that

Zlat
R (Λn,m) = Trace

(
T(2),n

)m
15In physical literature it is called the partition function with periodic boundary

conditions.
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for all m ≥ 1. The collection (λi) is just the collection of all non-zero eigen-
values of T(2),n taken with multiplicities.

Similarly, one can define transfer matrices T(1),m such that Zlat
R (Λn,m) =

Trace
(
T(1),m

)n for all n, m ≥ 1. We see that the function (n, m) 7→ Zlat
R (Λn,m)

has the same two properties as the function (n, m) 7→ ZM (n, m) from Section
3.1. For super Boltzmann data one obtains sums of exponents with signs.

3.3 Two-dimensional Weil conjecture

Let us return to the case of an endomorphism M ∈ EndCFq
(X). In Section

3.1 we have defined numbers ZM (n, m) for n, m ≥ 1. Results of 3.2 indicate
that one should interpret pairs (n, m) as parameters for a special class of
“rectangular” lattices in Z2. A general lattice Λ ⊂ Z2 depends on 3 integer
parameters

Λ = Λn,m,k = Z · (n, 0)⊕ Z · (k, m), n,m ≥ 1, 0 ≤ k < n .

Here we propose an extension of function ZM to all lattices in Z2:

ZM (Λn,m,k) := Trace((φn(M))m(φn(FrX))k)

where FrX ∈ EndCFq
(X) is the graph of the Frobenius endomorphism of the

scheme X. Notice that φn(FrX) is periodic with period n for any n ≥ 1.

Proposition 17. Function ZM on lattices in Z2 defined as above, satisfy the
following property: for any two vectors γ1, γ2 ∈ Z2 such that γ1 ∧ γ2 6= 0 there
exists a finite collection of non-zero complex numbers (λi) and signs (εi) such
that for any n ≥ 1 one has

ZM (Z · γ1 ⊕ Z · nγ2) =
∑

i

εiλ
n
i .

In other words, the series in formal variable t

exp

−∑
n≥1

ZM (Z · γ1 ⊕ Z · nγ2) · tn/n


is rational.

The proof is omitted here, we’ll just indicate that it follows from the
consideration of the action of the Frobenius element and of cyclic permutations
on the (étale) cohomology of spaces Ỹ (m) introduced in Section 3.1.

Also, it is easy to see that the same property holds for the partition func-
tion Zlat

R (Λm,n,k) for arbitrary (super) lattice models.16 The analogy leads to
a two-dimensional analogue of the Weil conjecture (the name will be explained
in the next section):

16In general, one can show that for any lattice model given by operator R, and
for any matrix A ∈ GL(2, Z) there exists another lattice model with operator R′

such that for any lattice Λ ⊂ Z2 one has Zlat
R (Λ) = Zlat

R′ (A(Λ)).
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Conjecture 18. For any endomorphism M ∈ EndCFq
(X) there exists super

Boltzmann data (V1, V2, R) such that for any Λ ⊂ Z2 of finite index one has

ZM (Λ) = Zlat
R (Λ) .

Up to now there is no hard evidence for this conjecture, there are just a
few cases where one can construct a corresponding lattice model in an ad hoc
manner. For example, it is possible (and not totally trivial) to do that for the
case when X = A1

Fq
and M is the graph of the map x → xc where c ≥ 1 is an

integer.
The above conjecture means that one can see matrices φn(M) as analogs of

transfer matrices17. In the theory of integrable models people are interested in
systems where the Boltzmann weights R depends non-trivially on a parameter
ρ (spaces V1, V2 do not vary), and the horizontal transfer matrices commute
with each other

[T(2),n(ρ1), T(2),n(ρ2)] = 0

because of Yang-Baxter equation. Theory of automorphic forms seems to pro-
duce families of commuting endomorphisms in category CFq

, which is quite
analogous to the integrability in lattice models. There are still serious dif-
ferences. First of all, commuting operators in the automorphic forms case
depend on discrete parameters whereas in the integrable model case they
depend algebraically on continuous parameters. Secondly, the spectrum of a
Hecke operator in its n-th incarnation (like T

(n)
x in Section 0.1) has typically

n-fold degeneracy, which does not happen in the case of the usual integrable
models with period n.

3.4 Higher-dimensional lattice models and a higher-dimensional
Weil conjecture

Let d ≥ 0 be an integer.

Definition 19. Boltzmann data of a d-dimensional translation invariant lat-
tice model are given by a collection V1, . . . , Vd of finite-dimensional vector
spaces over C and a linear operator

R : V1 ⊗ · · · ⊗ Vd → V1 ⊗ · · · ⊗ Vd .

Similarly, one can define d-dimensional lattice model in an arbitrary rigid
tensor category. The partition function is a function on finite sets endowed
with the action of the free group with d generators. In particular, for abelian
actions, it gives a function Λ 7→ Zlat

R (Λ) ∈ C on the set of subgroups of finite

17At least if one is interested in the non-zero part of spectra. In general, the size
of the transfer matrix depends on n as an exact exponent, while the size of φn(M)
is a finite alternating sum of exponents.
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index in Zd. Also, for any lattice Λd−1 ⊂ Zd of rank (d − 1) and a vector
γ ∈ Zd such that γ /∈ Q⊗ Λd−1, the function

n ≥ 1 7→ Zlat
R (Λd−1 ⊕ Z · nγ)

is a finite sum of exponents. Analogously, for any d-dimensional lattice model
R and any integer n ≥ 1 there exists its dimensional reduction, periodic with
period n in d-th coordinate, which is a (d− 1)-dimensional lattice model R(n)

satisfying the property

ZR(n)(Λd−1) = ZR(Λd−1 ⊕ Z · n ed) , ∀Λd−1 ⊂ Zd−1

where ed = (0, . . . , 0, 1) ∈ Zd = Zd−1 ⊕ Z is the last standard basis vector.

Conjecture 20. For any (d−1)-dimensional lattice model (X1, . . . , Xd−1,M),
d ≥ 1, in the category CFq , there exists a d-dimensional super lattice model
(V1, . . . , Vd, R) in SuperC such that for any n ≥ 1 the numerical (d − 1)-
dimensional model φn(M) gives the same partition function on the set of
subgroups of finite index in Zd−1 as the dimensional reduction R(n).

In the case d = 1 this conjecture follows from the usual Weil conjecture.
Namely, a 0-dimensional Boltzmann data in CFk

is just an element

M ∈ EndCFq
(1) = EndCFq

(⊗i∈∅Xi)

of the Grothendieck group of varieties over Fk (or of K0 of the category of
pure motives over Fk with rational coefficients). The corresponding numerical
lattice models φn(M) are just numbers, counting Fqn-points in M . By the
usual Weil conjecture these numbers are traces of powers of an operator in
a super vector space, i.e. values of the partition function for 1-dimensional
super lattice model.

Similarly, for d = 2 one gets the 2-dimensional Weil conjecture from the
previous section.

Evidence: p-adic Banach lattice models

Let K be a complete non-archimedean field (e.g. a finite extension of Qp).
We define a d-dimensional contracting Banach lattice model as follows. The
Boltzmann data consists of

• 2d countable generated K-Banach spaces V in
1 , . . . , V in

d , V out
1 , . . . , V out

d ,
• a bounded operator Rvertices : V in

1 ⊗̂ . . . ⊗̂V in
d → V out

1 ⊗̂ . . . ⊗̂V out
d ,

• a collection of compact operators Redges
i : V out

i → V in
i , i = 1, . . . , d.

Such data again give a function on oriented graphs with colored edges, in the
definition one should insert operator Redges

i for each edge colored by index
i, i = 1, . . . , d. In the case of finite-dimensional spaces (V in

i , V out
i )i=1,...,d we
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obtain the same partition function as for a usual finite-dimensional lattice
model. Namely, one can set

R :=
(
⊗d

i=1R
edges
i

)
◦Rvertices, Vi = V in

i , ∀i = 1, . . . , d

or, alternatively,

R̃ := Rvertices ◦
(
⊗d

i=1R
edges
i

)
, Ṽi := V out

i , ∀i = 1, . . . , d .

In particular, for any contracting Banach model one get a function Λ 7→
Zlat

R (Λ) ∈ K on the set of sublattices of Zd. This function satisfies the property
that for any lattice Λd−1 ⊂ Zd of rank (d− 1) and a vector γ ∈ Zd such that
γ /∈ Q⊗ Λd−1, one has

Zlat
R (Λn−1 ⊕ Z · nγ) =

∑
α

λn
α, ∀n ≥ 1

where (λα) is a (possibly) countable Gal(K/K)-invariant collection of non-
zero numbers in K (eigenvalues of transfer operators) whose norms tend to
zero. Similarly, one can define super Banach lattice models.

Here we announce a result supporting Conjecture 7, the proof is a straight-
forward extension of the Dwork method for the proving of the rationality of
zeta-function of a variety over a finite field.

Theorem 21. The Conjecture 7 holds if one allows contracting Banach super
lattice models over a finite extension of Qp where p is the characteristic of the
finite field Fq.

3.5 Tensor category A and the Master Conjecture

Let us consider the following rigid tensor category A. Objects of A are finite-
dimensional vector spaces over C. The set of morphisms HomA(V1, V2) is
defined as the group K0 of the category of finite-dimensional representations
of the free (tensor) algebra

T (V1 ⊗ V ∨
2 ) :=

⊕
n≥0

(V1 ⊗ V ∨
2 )⊗n .

A representation of the free algebra by operators in a vector space U is the
same as an action of its generators on U , i.e. a linear map

V1 ⊗ V ∨
2 ⊗ U → U .

Using duality we interpret it as a map

V1 ⊗ U → V2 ⊗ U .
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The composition of morphisms is defined by the following formula on gener-
ators:

[V1 ⊗ U → V2 ⊗ U ] ◦ [V2 ⊗ U ′ → V3 ⊗ U ′]

is equal to
[V1 ⊗ (U ⊗ U ′) → V3 ⊗ (U ⊗ U ′)]

where the expression in the bracket is the obvious composition of linear maps

V1 ⊗ U ⊗ U ′ → V2 ⊗ U ⊗ U ′ → V3 ⊗ U ⊗ U ′ .

The tensor product in A coincides on objects with the tensor product
in V ectC, the same for the duality. The formula for the tensor product on
morphisms is an obvious one, we leave details to the reader.

Like in Section 2.1 (Question 3), we can ask the following

Question 22. Are there interesting non-trivial projectors in A?18

We denote by Akar the Karoubi closure of A.
There exists an infinite chain of tensor functors (φAn )n≥1 from A to the

category of finite-dimensional vector spaces over C given by

φAn (V ) := V ⊗n

on objects, and by

[f : V1⊗U → V2⊗U ]
φn7−→ TraceU⊗n((σn⊗idV ⊗n

2
f⊗n) ∈ HomV ectC(V ⊗n

1 , V ⊗n
2 )

on morphisms, where σn : U⊗n → U⊗n is the cyclic permutation. The cyclic
group Z/nZ acts by automorphisms of φAn . Moreover, the generator of the
cyclic group acting on V ⊗n = φAn (V ) is the image under φAn of a certain central
element FrV in the algebra of endomorphisms EndA(V ). This “Frobenius”
element is represented by the linear map σ : V ⊗ U → V ⊗ U where U := V
and σ = σ2 is the permutation. As in the case of CFq

, for any V the operator
φAn (FrV ) is periodic with period n.

Let us introduce a small modification A′ of the tensor category A. Namely,
it will have the same objects (finite-dimensional vector spaces over C), the
morphism groups will be the quotients

HomA′(V1, V2) := K0(T (V1 ⊗ V ∨
2 )−mod)/Z · [triv]

where triv is the trivial one-dimensional representation of T (V1 ⊗ V ∨
2 ) given

by zero map
V1 ⊗ 1 0→ V2 ⊗ 1

All the previous considerations extend to the case of A′.
Amazing similarities between categories CFq and A′ suggests the following

18A similar question about commuting endomorphisms in A is almost equivalent
to the study of finite-dimensional solutions of the Yang-Baxter equation.
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Conjecture 23. For any prime p there exists a tensor functor

Φp : CFp
→ A′kar

and a sequence of isomorphisms of tensor functors from CFp to V ectC for all
n ≥ 1

ison,p : φA
′

n ◦ Φp ' iV ectQ→V ectC ◦ φn

where iV ectQ→V ectC is the obvious embedding functor from the category of vec-
tor spaces over Q to the one over C. Moreover, for any X ∈ CFp the functor
Φp maps the Frobenius element FrX ∈ EndCFp

(X) to FrΦp(V ).

This conjecture we call the Master Conjecture because it implies simulta-
neously all higher-dimensional versions of the Weil conjecture at once, as one
has the bijection (essentially by definition)

{(d− 1)-dimensional super lattice models in A′} '

' {d-dimensional super lattice models in V ectC} .

Remark 24. One can consider a larger category Asuper adding to objects
of A super vector spaces as well. The group K0 in the super case should be
defined as the naive K0 modulo the relation

[V1 ⊗ U → V2 ⊗ U ] = −[V1 ⊗Π(U) → V2 ⊗Π(U)]

where Π is the parity changing functor.

It suffices to verify the Master Conjecture only on the full symmetric
monoidal subcategory of CFp consisting of powers

(
An

Fp

)
n≥0

of the affine line.

The reason is that any scheme of finite type can be embedded (by a con-
structible map) in an affine space An

Fp
, and the characteristic function of the

image of such an embedding as an idempotent in EndCFp
(An

Fp
).

Machine modelling finite fields

Let us fix a prime p. The object A := A1
Fp

of CFp is a commutative algebra
(as well as any scheme of finite type, see 2.2.1), with the product given by
the diagonal in its cube. The category Aff(CFp

) of “affine schemes” in CFp

(i.e. the category opposite to the category of commutative associative unital
algebras in CFp) is closed under finite products. In particular, it makes sense to
speak about group-like etc. objects in Aff(CFp). Affine line A is a commutative
ring-like object in Aff(CFp), with the operations of addition and multiplication
corresponding to the graphs of the usual addition and multiplication on A1

Fp
.

In plain terms, this means that besides the commutative algebra structure on
A

m : A⊗A → A
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we have two coproducts (for the addition and for the multiplication)

co− a : A → A⊗A, co−m : A → A⊗A

which are homomorphisms of algebras, and satisfy the usual bunch of rules
for commutative associative rings, including the distributivity law.

If the Master Conjecture 8 is true then it gives an object Vp := Φp(A) ∈
A′kar, with one product and two coproducts. One can expect that it is just Cp

as a vector space. For any n ≥ 1 the A′-product on Vp defines a commutative
algebra structure on V ⊗n

p . Its spectrum should be a finite set consisting of pn

elements. Two coproducts give operations of addition and multiplication on
this set, and we will obtain a canonical construction19 of the finite field Fpn

uniformly for all n ≥ 1.
Even in the case p = 2 the construction of such Vp is a formidable task:

one should find 3 finite-dimensional super representations of the free algebra
in 8 generators, satisfying 9 identities in various K0 groups.

3.6 Corollaries of the Master Conjecture

Good sign: Bombieri-Dwork bound

One can deduce easily from the Master Conjecture that for any given p and
any system of equations in arbitrary number of variables (xi) where each
of equations is of an elementary form like xi1 + xi2 = xi3 , or xi1xi2 = xi3 or
xi = 1, the number of solutions of this system over Fpn is an alternating sum of
exponents in n, with the total number of terms bounded by CN where C = Cp

is a constant depending on p, and N is the number of equations. In fact, it is
a well-known Bombieri-Dwork bound (and C is an absolute constant20), see
[2].

Bad sign: cohomology theories for motives over finite fields

Any machine modelling finite field should be defined over a finitely generated
commutative ring. In particular, there should be a machine defined over a
number field Kp depending only on the characteristic p. A little thinking
shows that the enumeration of the number of solutions of any given system
of equations in the elementary form as above, will be expressed as a super
trace of an operator in a finite-dimensional super vector space defined over
Kp. On the other hand, it looks very plausible that the category of motives
over any finite field Fq does not have any fiber functor defined over a number
field, see [9] for a discussion. I think that this is a strong sign indicating that
the Master Conjecture is just wrong!

19Compare with question 2 in Section 1.3, and remarks afterwards.
20A straightforward application of [2] gives the upper bound C ≤ 174 which is

presumably very far from the optimal one.
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4 Categorical afterthoughts

4.1 Decategorifications of 2-categories

Two categories, Ck and A introduced in this paper have a common feature
which is also shared (almost) by the category of Grothendieck motives. The
general framework is the following.

Let B be a 2-category such that for any two objects X, Y ∈ B the category
of 1-morphisms HomB(X, Y ) is a small additive category, and the composition
of 1-morphisms is a bi-additive functor. In practice we may ask for categories
HomB(X, Y ) to be triangulated categories (enriched in their turn by spectra,
or by complexes of vector spaces). Moreover, the composition could be only a
weak functor (e.g. A∞-functor), and the associativity of the composition could
hold only up to (fixed) homotopies and higher homotopies. The rough idea is
that objects of B are “spaces” (non-linear in general), whereas objects of the
category HomB(X, Y ) are linear things on the “product” X × Y interpreted
as kernels of some additive functors transforming some kind of sheaves from
X to Y , by taking the pullback from X, the tensor product with the kernel
on X × Y , and then the direct image with compact supports to Y .

In such a situation one can define a new (1-)category Ktr(B) which is in
fact a triangulated category. This category will be called the decategorification
of B.

The first step is to define a new 1-category K(B) enriched by spectra. It
has the same objects as B, the morphism spectrum HomK(B)(X, Y ) is defined
as the spectrum of K-theory of the triangulated category HomB(X, Y )21.

The second step is to make a formal triangulated envelope of this category.
This step needs nothing, it can be performed for arbitrary category enriched
by spectra. Objects of the new category are finite extensions of formal shifts
of the objects of K(B), like e.g. twisted complexes by Bondal and Kapranov.

At the third step one adds formally direct summands for projectors. The
resulting category Ktr(B) is the same as the full category of compact objects
in the category of exact functors from K(B)opp to the triangulated category
of spectra (enriched by itself).

Finally, one can define a more elementary pre-additive22 category K0(B) by
defining HomK0(B)(X, Y ) to be K0 group of triangulated category HomB(X, Y ).
Then we add formally to it finite sums and images of projectors. The result-
ing additive Karoubi-closed category will be denoted by Kkar

0 (B) and called
K0-decategorification of B. In what follows we list several examples of decat-
egorifications.

21It is well-known that in order to define a correct K-theory one needs either
an appropriate enrichment on HomB(X, Y ), or a model structure in the sense of
Quillen, see e.g. [10].

22Enriched by abelian groups in the plain sense (without higher homotopies).
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Non-commutative stable homotopy theory

R. Meyer and R. Nest introduced in [8] a non-commutative analog of the tri-
angulated category of spectra. Objects of their category are not necessarily
unital C∗-algebras, the morphism group from A to B is defined as the bivari-
ant Kasparov theory KK(A,B). One of main observations in [8] is that this
gives a structure of a triangulated category on C∗-algebras. Obviously this
construction has a flavor of the K0-decategorification.

Elementary algebraic model of bivariant K-theory

One can define a toy algebraic model of the construction by Meyer and Nest.
For a given base field k consider the pre-additive category whose objects
are unital associative k-algebras, and the group of morphisms from A to B is
defined as K0 of the exact category consisting of bimodules (Aop⊗B-modules)
which are projective and finitely generated as B-modules. This is obviously a
K0-decategorification of a 2-category.

Non-commutative pure and mixed motives

Let us consider the quotient of the category of Grothendieck Chow motives
Motk,Q over given field k with rational coefficients, by an autoequivalence
given by the invertible functor Q(1)⊗·. The set of morphisms in this category
between motives of two smooth projective schemes X, Y is given by

HomMotk,Q/ZQ(1)⊗·(X, Y ) =
⊕
n∈Z

HomMotk,Q(X, Q(n)⊗ Y ) =

=

(
Q⊗Z

⊕
n∈Z

Cyclesn(X × Y )

)
/( rational equivalence ) =

= Q⊗Z
⊕
n∈Z

CHn(X × Y ) = Q⊗Z K0(X × Y )

because the Chern character gives an isomorphism modulo torsion between
the sum of all Chow groups and K0(X) = K0(Db(Coh X)), the K0 group of
the bounded derived category D(X) := Db(Coh X) of coherent sheaves on X.
Finally, the category D(X×Y ) can be interpreted as the category of functors
D(Y ) → D(X).

Triangulated categories of type D(X) where X is a smooth projective va-
riety over k belong to a larger class of smooth proper triangulated k-linear
dg-categories (another name is “saturated categories”), see e.g. [7],[12]. We
see that the above quotient category of pure motives is a full subcategory of
K0-decategorification (with Q coefficients) of the 2-category of smooth proper
k-linear dg-categories. This construction was described recently (without men-
tioning the relation to motives) in [11].



Notes on motives in finite characteristic 241

Analogously, if one takes the quotient of the Voevodsky triangulated cate-
gory of mixed motives by the endofunctor Q(1)[2]⊗·, the resulting triangulated
category seems to be similar to a full subcategory of the full decategorification
of the 2-category of smooth proper k-linear dg-categories.

Motivic integral operators

We mentioned already in Section 2.1 that the category Ck should be considered
as a K0-decategorification of a 2-category of motivic sheaves. A similar 2-
category was considered in [6] in the relation to questions in integral geometry
and calculus of integral operators with holonomic kernels.

Correspondences for free algebras

The category A is a K0-decategorification by definition.

4.2 Trace of an exchange morphism

Let G1, G2 be two endofunctors of a triangulated category C, and an exchange
morphism (a natural transformation)

α : G1 ◦G2 → G2 ◦G1

is given23. Under the appropriate finiteness condition (e.g. when C is smooth
and proper) one can define the trace of α, which can be calculated in two
ways, as the trace of endomorphism of Tor(G1, idC) associated with G2 and
α, and as a similar trace with exchanged G1 and G2 (see [4] for a related
stuff). Passing to powers and natural exchange morphisms constructed from
nm copies of α:

α(n,m) : Gn
1 ◦Gm

2 → Gm
2 ◦Gn

1

we obtain a collection of numbers Zα(n, m) := Trace(α(n,m)) for n, m ≥ 1.
It is easy to see that these numbers come from a 2-dimensional super lattice
model.

Let C = D(X) for smooth projective X, and functors are given by F ∗ and
by E ⊗ · where F : X → X is a map, and E is a vector bundle endowed with a
morphism g : F ∗E → E (as in Section 1.3). In this case Zα(n, m) is the trace
(without the denominator) associated with the map Fn and the bundle E⊗m.
For example, one can construct a 2-dimensional super lattice model with the
partition function

Zlat
R (Λn,m) =

∑
x∈C:F n(x)=x

xm

23We do not assume that α is an isomorphism.
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where F : C → C is a polynomial map24, e.g. F (x) = x2 + c.
The conclusion is that two different proposals concerning motivic local

systems in positive characteristic: the first (algebraic dynamics) and the third
one (lattice models) are ultimately related. It is enough to find the dynamical
realization, and then the lattice model will pop out. As it was mentioned
already, most probably these two proposals would fail, but they still can serve
as sources of analogies.
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