\begin{thebibliography}{10} \bibitem{AtkinLehner70} {\sc Atkin A.O.L., Lehner J.} \newblock Hecke operators on {$\Gamma_0(m)$}. \newblock {\em Math. Ann.}, 185:134--160, 1970. \bibitem{AtkinLi78a} {\sc Atkin A.O.L., Li W. C. W.} \newblock Twists of newforms and pseudo-eigenvalues of {$W$}-operators. \newblock {\em Invent. Math.}, 48(3):221--243, 1978. \bibitem{BreuilConradDiamondTaylor01a} {\sc Breuil C., Conrad B., Diamond F., Taylor, R.} \newblock On the modularity of elliptic curves over {$\bf Q$}: wild 3-adic exercises. \newblock {\em J. Amer. Math. Soc.}, 14(2):489--549, 2000. \bibitem{Brunault95a} {\sc Brunault F.} \newblock {\em Sur la valeur en {$s=2$} de la fonction {$L$} d'une courbe elliptique}. \newblock Th¸se. Universitˇ Denis Diderot, 2005. \bibitem{Cremona92b} {\sc Cremona J.} \newblock {\em Computations of modular elliptic curves and the Birch-Swinnerton-Dyer conjecture}. \newblock Cambridge University Press, 1992. \bibitem{Kato04a} {\sc Kato K.} \newblock {$p$}-adic hodge theory and values of zeta functions of modular forms. \newblock In {\em Cohomologies {$p$}-adiques et applications arithmˇtiques. III}, number 295 in Astˇr’sque, pages 117--290. Sociˇtˇ Mathˇmatiques de France, 2004. \bibitem{Lewis97a} {\sc Lewis J.} \newblock Spaces of holomorphic functions equivalent to the even {Maass} cusp forms. \newblock {\em Invent. Math.}, 127(2):271--306, 1997. \bibitem{Li81a} {\sc Li W. C. W.} \newblock On converse theorems for {${\rm GL}(2)$} and {${\rm GL}(1)$}. \newblock {\em Amer. J. of Math.}, 103(5):851--885, 1981. \bibitem{LuoRamakrishnan97a} {\sc Luo W., Ramakrishnan D.} \newblock Determination of modular forms by twists of critical {$L$}-values. \newblock {\em Invent. Math.}, 130(2):371--398, 1997. \bibitem{Manin72a} {\sc Manin Y.} \newblock Parabolic points and zeta-functions of modular curves. \newblock {\em Math. USSR Izvestija}, 6(1):19--64, 1972. \bibitem{Manin73a} {\sc Manin Y.} \newblock Explicit formulas for the eigenvalues of {Hecke} operators. \newblock {\em Acta arithmetica}, XXIV:239--249, 1973. \bibitem{Manin91a} {\sc Manin Y.} \newblock Mathematics as metaphor. \newblock In {\em Proceedings of the International Congress of Mathematicians (Kyoto, 1990)}, volume~II, pages 1665--1671. Math. Soc. Japan, Tokyo, 1991. \bibitem{Martin01a} {\sc Martin F.} \newblock {\em Pˇriodes des formes modulaires de poids $1$}. \newblock Th¸se. Universitˇ Denis Diderot, 2001. \bibitem{Merel91} {\sc Merel L.} \newblock Op\'erateurs de {Hecke} pour {$\Gamma_0(N)$} et fractions continues. \newblock {\em Ann. Inst. Fourier}, 41(3), 1991. \bibitem{Merel94a} {\sc Merel L.} \newblock Universal fourier expansions of modular forms. \newblock In Gerhard Frey, editor, {\em {On {Artin}'s conjecture for 2-dimensional, odd {Galois} representations}}, number 1585 in Lecture Notes in Mathematics, pages 59--94. Springer Verlag, 1994. \bibitem{Shimura76a} {\sc Shimura G.} \newblock The special values of the zeta functions associated with cusp forms. \newblock {\em Comm. Pure Appl. Math.}, 29(6):783--804, 1976. \bibitem{Weil67a} {\sc Weil A.} \newblock {\"Uber die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen}. \newblock {\em {Math. Ann.}}, 168:149--156, 1967. \end{thebibliography}