\providecommand{\bysame}{\leavevmode\hbox to3em{\hrulefill}\thinspace} \providecommand{\MR}{\relax\ifhmode\unskip\space\fi MR } % \MRhref is called by the amsart/book/proc definition of \MR. \providecommand{\MRhref}[2]{% \href{http://www.ams.org/mathscinet-getitem?mr=#1}{#2} } \providecommand{\href}[2]{#2} \begin{thebibliography}{Mer06b} \bibitem[Gan03]{G} W.~L. Gan, \emph{Koszul duality for dioperads}, Math. Res. Lett. \textbf{10} (2003), no.~1, 109--124. \bibitem[Kon93]{Ko1} M.~Kontsevich, \emph{Formal (non)commutative symplectic geometry}, Gel'fand mathematical seminars, 1990-1992, Birkhauser, 1993, pp.~173--187. \bibitem[Kon02]{Ko2} \bysame, Letter to M.\ Markl, 2002. \bibitem[Kon03]{Ko} \bysame, \emph{Deformation quantization of {P}oisson manifolds}, Lett. Math. Phys. \textbf{66} (2003), no.~3, 157--216. \bibitem[Lod98]{Lo} J.-L. Loday, \emph{Cyclic homology}, Springer-Verlag, Berlin, 1998. \bibitem[McL65]{Mc} S.~McLane, \emph{Categorical algebra}, Bull.\ Amer.\ Math.\ Soc. \textbf{71} (1965), 40--106. \bibitem[Mer05]{Me2} S.A. Merkulov, \emph{Nijenhuis infinity and contractible dg manifolds, math.ag/0403244}, Compositio Mathematica (2005), no.~141, 1238--1254. \bibitem[Mer06a]{Me4} \bysame, \emph{Deformation quantization of strongly homotopy lie algebras}, 2006. \bibitem[Mer06b]{Me1} \bysame, \emph{Prop profile of poisson geometry, math.dg/0401034}, Commun. Math. Phys. (2006), no.~262, 117--135. \bibitem[MMS]{MMS} M.~Markl, S.~Merkulov, and S.~Shadrin, \emph{{Wheeled PROPs, graph complexes and the master equation}}. \bibitem[MV03]{MV} M.~Markl and A.~Voronov, \emph{{PROPped up graph cohomology}}, \texttt{arXiv:math.QA/0307081} (2003). \bibitem[Val03]{V} B.~Vallette, \emph{A koszul duality for props}, To appear in Trans. of Amer. Math. Soc. (2003). \end{thebibliography}