\relax \immediate\closeout\minitoc \let \MiniTOC =N \citation{C1} \@writefile{toc}{\contentsline {title}{A generalization of the Capelli identity}{375}} \@writefile{toc}{\contentsline {author}{E. Mukhin\unskip {}, V. Tarasov\unskip {}, and A. Varchenko\unskip {}}{375}} \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{375}} \newlabel{left act}{{1}{375}} \citation{C2} \citation{N1} \citation{O} \citation{MN} \citation{HU} \citation{NUW} \citation{N2} \newlabel{capelli}{{2}{376}} \newlabel{new}{{3}{376}} \citation{MTV2} \citation{FFR} \citation{T} \citation{R} \citation{MTV} \citation{KS} \citation{GR} \newlabel{Gaudin}{{4}{377}} \@writefile{toc}{\contentsline {section}{\numberline {2}Identities}{378}} \newlabel{identity sec}{{2}{378}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.1}The main identity}{378}} \newlabel{isom}{{5}{378}} \newlabel{G}{{6}{379}} \newlabel{main}{{1}{379}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2}A presentation as a row determinant of size $M+N$}{379}} \newlabel{m+n}{{2}{379}} \newlabel{gauss}{{7}{380}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.3}A relation between determinants of sizes $M$ and $N$}{380}} \newlabel{H}{{8}{380}} \newlabel{duality rel}{{3}{381}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.4}A relation to the Capelli identity}{381}} \newlabel{cap}{{2.4}{381}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.5}Proof of Theorem 1\hbox {}}{382}} \newlabel{proof}{{2.5}{382}} \newlabel{expand}{{9}{382}} \newlabel{no action}{{4}{382}} \newlabel{move}{{10}{382}} \newlabel{first}{{11}{383}} \newlabel{second}{{12}{383}} \@writefile{toc}{\contentsline {section}{\numberline {3}The $(\@mathfrak {gl}_M,\@mathfrak {gl}_N)$ duality and the Bethe subalgebras}{383}} \newlabel{bethe sec}{{3}{383}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Bethe subalgebra}{383}} \citation{T} \citation{MTV} \citation{MTV} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}The $(\@mathfrak {gl}_M,\@mathfrak {gl}_N)$ duality}{385}} \citation{TV} \newlabel{Miso}{{13}{386}} \newlabel{duality isom}{{14}{386}} \newlabel{dual}{{6}{387}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Scalar differential operators}{387}} \citation{MTV2} \citation{MV1} \citation{MTV2} \citation{MTV3} \citation{MTV4} \citation{MTV2} \citation{MTV3} \citation{R} \newlabel{eigen dual}{{7}{388}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.4}The simple joint spectrum of the Bethe subalgebra}{388}} \newlabel{simple}{{9}{388}} \bibcite{C1}{C1} \bibcite{C2}{C2} \bibcite{FFR}{FFR} \bibcite{GR}{GR} \bibcite{HU}{HU} \bibcite{KS}{KS} \bibcite{MN}{MN} \bibcite{N1}{N1} \bibcite{N2}{N2} \bibcite{NUW}{NUW} \bibcite{MV1}{MV1} \bibcite{MTV}{MTV1} \bibcite{MTV2}{MTV2} \bibcite{MTV3}{MTV3} \bibcite{MTV4}{MTV4} \bibcite{O}{O} \bibcite{R}{R} \bibcite{T}{T} \bibcite{TV}{TV} \@writefile{toc}{\contentsline {section}{References}{389}} \@mtwritefile{\contentsline {mtchap}{References}{389}} \immediate\closeout\minitoc