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Summary. We prove a generalization of the Capelli identity. As an application
we obtain an isomorphism of the Bethe subalgebras actions under the (glN , glM )
duality.

To Yuri Manin on the occasion of 70-th birthday, with admiration.

1 Introduction

Let A be an associative algebra over complex numbers. Let A = (aij)n
i,j=1 be

an n × n matrix with entries in A. The row determinant of A is defined by
the formula:

rdet(A) :=
∑

σ∈Sn

sgn(σ)a1σ1 . . . anσn .

Let xij , i, j = 1, . . . ,M , be commuting variables. Let ∂ij = ∂/∂xij ,

Eij =
M∑

a=1

xia∂ja. (1)

Let X = (xij)M
i,j=1 and D = (∂ij)M

i,j=1 be M ×M matrices.
The classical Capelli identity [C1] asserts the following equality of differ-

ential operators:
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rdet
(
Eji + (M − i)δij

)M

i,j=1
= det(X) det(D). (2)

This identity is a “quantization” of the identity

det(AB) = det(A) det(B)

for any matrices A,B with commuting entries.

The Capelli identity has the following meaning in the representation the-
ory. Let C[X] be the algebra of complex polynomials in variables xij . There
are two natural actions of the Lie algebra glM on C[X]. The first action
is given by operators from (1) and the second action is given by opera-
tors Ẽij =

∑M
a=1 xai∂aj . The two actions commute and the corresponding

glM ⊕ glM action is multiplicity free.
It is not difficult to see that the right hand side of (2), considered as a

differential operator on C[X], commutes with both actions of glM and there-
fore lies in the image of the center of the universal enveloping algebra UglM
with respect to the first action. Then the left hand side of the Capelli identity
expresses the corresponding central element in terms of UglM generators.

Many generalizations of the Capelli identity are known. One group of gen-
eralizations considers other elements of the center of UglM , called quantum
immanants, and then expresses them in terms of glM generators, see [C2],
[N1],[O]. Another group of generalizations considers other pairs of Lie alge-
bras in place of (glM , glM ), e.g. (glM , glN ), (sp2M , gl2), (sp2M , soN ), etc, see
[MN], [HU]. The third group of generalizations produces identities correspond-
ing not to pairs of Lie algebras, but to pairs of quantum groups [NUW] or
superalgebras [N2].

In this paper we prove a generalization of the Capelli identity which seem-
ingly does not fit the above classification.

Let z = (z1, . . . , zN ), λ = (λ1, . . . , λM ) be sequences of complex numbers.
Let Z = (ziδij)N

ij=1, Λ = (λiδij)M
ij=1 be the corresponding diagonal matrices.

Let X and D be the M ×N matrices with entries xij and ∂ij , i = 1, . . . ,M ,
j = 1, . . . , N , respectively. Let C[X] be the algebra of complex polynomials
in variables xij , i = 1, . . . ,M , j = 1, . . . , N . Let E

(a)
ij = xia∂ja, where i, j =

1, . . . ,M, a = 1, . . . , N .
In this paper we prove that

N∏
a=1

(u− za) rdet
(
(∂u − λi)δij −

N∑
a=1

E
(a)
ji

u− za

)M

i,j=1
= rdet

(
u− Z Xt

D ∂u − Λ

)
.(3)

The left hand side of (3) is an M ×M matrix while the right hand side is an
(M + N)× (M + N) matrix.

Identity (3) is a “quantization” of the identity
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det
(

A B
C D

)
= det(A) det(D − CA−1B)

which holds for any matrices A,B, C, D with commuting entries, for the case
when A and D are diagonal matrices.

By setting all zi, λj and u to zero, and N = M in (3), we obtain the
classical Capelli identity (2), see Section 2.4.

Our proof of (3) is combinatorial and reduces to the case of 2×2 matrices.
In particular, it gives a proof of the classical Capelli identity, which may be
new.

We invented identity (3) to prove Theorem 6 below, and Theorem 6 in its
turn was motivated by results of [MTV2]. In Theorem 6 we compare actions
of two Bethe subalgebras.

Namely, consider C[X] as a tensor product of evaluation modules over the
current Lie algebras glM [t] and glN [t] with evaluation parameters z and λ,
respectively. The action of the algebra glM [t] on C[X] is given by the formula

Eij ⊗ tn =
N∑

a=1

xia∂jazn
i ,

and the action of the algebra glN [t] on C[X] is given by the formula

Eij ⊗ tn =
M∑

a=1

xai∂ajλ
n
i .

In contrast to the previous situation, these two actions do not commute.
The algebra UglM [t] has a family of commutative subalgebras G(M,λ)

depending on parameters λ and called the Bethe subalgebras. For a given λ,
the Bethe subalgebra G(M,λ) is generated by the coefficients of the expansion
of the expression

rdet
(
(∂u − λi)δij −

N∑
a=1

∞∑
s=1

(E(a)
ji ⊗ ts)u−s−1

)M

i,j=1
(4)

with respect to powers of u and ∂u, cf. Section 3. For different versions of
definitions of Bethe subalgebras and relations between them, see [FFR], [T],
[R], [MTV1].

Similarly, there is a family of Bethe subalgebras G(N,z) in UglN [t] de-
pending on parameters z.

For fixed λ and z, consider the action of the Bethe subalgebras G(M,λ)
and G(N,z) on C[X] as defined above. In Theorem 6 we show that the actions
of the Bethe subalgebras on C[X] induce the same subalgebras of endomor-
phisms of C[X].
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The paper is organized as follows. In Section 2 we describe and prove
formal Capelli-type identities and in Section 3 we discuss the relations of the
identities to the Bethe subalgebras.

Acknowledgment. We thank the referee for bringing to our attention
the papers [KS] and [GR] which relate the Capelli identity to Jordan algebras
and “quasideterminants”, respectively.

Research of E.M. is supported in part by NSF grant DMS-0601005. Re-
search of A.V. is supported in part by NSF grant DMS-0555327.

2 Identities

2.1 The main identity

We work over the field of complex numbers, however all results of this paper
hold over any field of characteristic zero.

Let A be an associative algebra. Let A = (aij)n
i,j=1 be an n × n matrix

with entries in A. Define the row determinant of A by the formula:

rdet(A) :=
∑

σ∈Sn

sgn(σ)a1σ1 . . . anσn ,

where Sn is the symmetric group on n elements.
Fix two natural numbers M and N and a complex number h ∈ C. Consider

noncommuting variables u, pu, xij , pij , where i = 1, . . . ,M , j = 1, . . . , N , such
that the commutator of two variables equals zero except

[pu, u] = h, [pij , xij ] = h,

i = 1, . . . ,M , j = 1, . . . , N .
Let X, P be two M ×N matrices given by

X : = (xij)
j=1,...,N
i=1,...,M , P : = (pij)

j=1,...,N
i=1,...,M .

Let A(MN)
h be the associative algebra whose elements are polynomials in

pu, xij , pij , i = 1, . . . ,M , j = 1, . . . , N, with coefficients that are rational
functions in u.

Let A(MN) be the associative algebra of linear differential operators in
u, xij , i = 1, . . . ,M , j = 1, . . . , N , with coefficients in C(u)⊗ C[X].

We often drop the dependence on M,N and write Ah, A for A(MN)
h and

A(MN), respectively.
For h 6= 0, we have the isomorphism of algebras

ιh : Ah → A , (5)
u, xij 7→ u, xij ,

pu, pij 7→ h
∂

∂u
, h

∂

∂xij
.
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Fix two sequences of complex numbers z = (z1, . . . , zN ) and λ = (λ1, . . . , λM ).
Define the M×M matrix Gh = Gh(M,N, u, pu,z,λ, X, P ) by the formula

Gh : =
(

(pu − λi) δij −
N∑

a=1

xjapia

u− za

)M

i,j=1
. (6)

Theorem 1. We have
N∏

a=1

(u−za) rdet(Gh) =
∑

A,B,|A|=|B|

(−1)|A|
∏
a6∈B

(u−za)
∏
b 6∈A

(pu−λb) det(xab)b∈B
a∈A det(pab)b∈B

a∈A,

where the sum is over all pairs of subsets A ⊂ {1, . . . ,M}, B ⊂ {1, . . . , N}
such that A and B have the same cardinality, |A| = |B|. Here the sets A,B in-
herit the natural ordering from the sets {1, . . . ,M}, {1, . . . , N}. This ordering
determines the determinants in the formula.

Theorem 1 is proved in Section 2.5.

2.2 A presentation as a row determinant of size M + N

Theorem 1 implies that the row determinant of G can be written as the row
determinant of a matrix of size M + N .

Namely, let Z be the diagonal N × N matrix with diagonal entries
z1, . . . , zN . Let Λ be the diagonal M × M matrix with diagonal entries
λ1, . . . , λM :

Z : = ( ziδij )N
i,j=1 , Λ : = ( λiδij )M

i,j=1 .

Corollary 2. We have

N∏
a=1

(u− za) rdet G = rdet
(

u− Z Xt

P pu − Λ

)
,

where Xt denotes the transpose of the matrix X.

Proof. Denote

W : =
(

u− Z Xt

P pu − Λ

)
,

The entries of the first N rows of W commute. The entries of the last M rows
of W also commute. Write the Laplace decomposition of rdet(W ) with respect
to the first N rows. Each term in this decomposition corresponds to a choice of
N columns in the N× (N +M) matrix (u−Z,XT ). We label such a choice by
a pair of subsets A ⊂ {1, . . . ,M} and B ⊂ {1, . . . , N} of the same cardinality.
Namely, the elements of A correspond to the chosen columns in XT and the
elements of the complement to B correspond to the chosen columns in u−Z.
Then the term in the Laplace decomposition corresponding to A and B is
exactly the term labeled by A and B in the right hand side of the formula in
Theorem 1. Therefore, the corollary follows from Theorem 1. �
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Let A,B, C, D be any matrices with commuting entries of sizes N ×N,N ×
M,M ×N and M ×M , respectively. Let A be invertible. Then we have the
equality of matrices of sizes (M + N)× (M + N):(

A B
C D

)
=

(
A 0
C D − CA−1B

) (
1 A−1B
0 1

)
and therefore

det
(

A B
C D

)
= det(A) det(D − CA−1B) . (7)

The identity of Corollary 2 for h = 0 turns into identity (7) with diagonal
matrices A and D. Therefore, the identity of Corollary 2 may be thought of
as a “quantization” of identity (7) with diagonal A and D.

2.3 A relation between determinants of sizes M and N

Introduce new variables v, pv such that [pv, v] = h.
Let Āh be the associative algebra whose elements are polynomials in

pu, pv, xij , pij , i = 1, . . . ,M , j = 1, . . . , N, with coefficients in C(u)⊗ C(v).
Let e : Āh → Āh be the unique linear map which is the identity map on

the subalgebra of Āh generated by all monomials which do not contain pu and
pv and which satisfy

e(apu) = e(a)v, e(apv) = e(a)u,

for any a ∈ Āh.
Let Ā be the associative algebra of linear differential operators in u, v, xij ,

i = 1, . . . ,M , j = 1, . . . , N , with coefficients in C(u)⊗C(v)⊗C[xij ]. Then for
h 6= 0, we have the isomorphism of algebras extending the isomorphism (5):

ῑh : Āh → Ā,

u, v, xij 7→ u, v, xij ,

pu, pv, pij 7→ h
∂

∂u
, h

∂

∂v
, h

∂

∂xij
.

For a ∈ Ā and a function f(u, v) let a·f(u, v) denotes the function obtained
by the action of a considered as a differential operator in u and v on the
function f(u, v).

We have
ῑh(e(a)) = exp(−uv/h)ῑh(a) · exp(uv/h)

for any a ∈ Āh such that a does not depend on either pu or pv.
Define the N ×N matrix Hh = Hh(M,N, v, pv,z,λ, X, P ) by

Hh :=
(
(pv − zi)δij −

M∑
b=1

xbjpbi

v − λb

)N

i,j=1
, (8)

cf. formula (6).
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Corollary 3. We have

e
( N∏

a=1

(u− za) rdet(Gh)
)

= e
( M∏

b=1

(v − λb) rdet(Hh)
)
.

Proof. Write the dependence on parameters of the matrix G: Gh = Gh(M,N, u, pu,z,λ, X, P ).
Then

Hh = Gh(N,M, v, pv,λ,z, XT , PT ).

The corollary now follows from Theorem 1. �

2.4 A relation to the Capelli identity

In this section we show how to deduce the Capelli identity from Theorem 1.
Let s be a complex number. Let αs : Ah → Ah be the unique linear map

which is the identity map on the subalgebra of Ah generated by all monomials
which do not contain pu, and which satisfies

αs(aupu) = sαs(a)

for any a ∈ Āh.
We have

ῑh(αs(a)) = u−s/hῑh(a) · us/h

for any a ∈ Āh.
Consider the case z1 = · · · = zN = 0 and λ1 = · · · = λM = 0 in Theorem

1.
Then it is easy to see that the row determinant rdet(G) can be rewritten

in the following form

uM rdet(Gh) = rdet
(
h(upu −M + i)δij −

N∑
a=1

xjapia

)M

i,j=1
.

Applying the map αs, we get

αs(uM rdet(Gh)) = rdet
(
h(s−M + i)δij −

N∑
a=1

xjapia

)M

i,j=1
.

Therefore applying Theorem 1 we obtain the identity

rdet
(
h(s−M+i)δij−

N∑
a=1

xjapia

)M

i,j=1
=

∑
A,B,|A|=|B|

(−1)|A|
M−|A|−1∏

b=0

(s−bh) det(xab)b∈B
a∈A det(pab)b∈B

a∈A.

In particular, if M = N , and s = 0, we obtain the famous Capelli identity:
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rdet
( M∑

a=1

xjapia + h(M − i)δij

)M

i,j=1
= detX det P.

If h = 0 then all entries of X and P commute and the Capelli identity reads
det(XP ) = det(X) det(P ). Therefore, the Capelli identity can be thought
of as a “quantization” of the identity det(AB) = det(A) det(B) for square
matrices A,B with commuting entries.

2.5 Proof of Theorem 1

We denote
Eij,a := xjapia/(u− za).

We obviously have

[Eij,a, Ekl,b] = δab(δkj(Eil,a)′ − δil(Ekj,a)′),

where the prime denotes the formal differentiation with respect to u.
Denote also F 1

jk,a = −Ejk,a and F 0
jj,0 = (pu − λj).

Expand rdet(G). We get an alternating sum of terms,

rdet(Gh) =
∑
σ,a,c

(−1)sgn(σ)F
c(1)
1σ(1),a(1)F

c(2)
2σ(2),a(2) . . . F

c(M)
Mσ(M),a(M), (9)

where the summation is over all triples σ, a, c such that σ is a permuta-
tion of {1, . . . ,M} and a, c are maps a : {1, . . . ,M} → {0, 1, . . . , N},
c : {1, . . . ,M} → {0, 1} satisfying: c(i) = 1 if σ(i) 6= i; a(i) = 0 if and
only if c(i) = 0.

Let m be a product whose factors are of the form f(u), pu, pij , xij where
f(u) are some rational functions in u. Then the product m will be called
normally ordered if all factors of the form pu, pij are on the right from all
factors of the form f(u), xij . For example, (u − 1)−2x11pup11 is normally
ordered and pu(u− 1)−2x11p11 is not.

Given a product m as above, define a new normally ordered product : m :
as the product of all factors of m in which all factors of the form pu, pij

are placed on the right from all factors of the form f(u), xij . For example,
: pu(u− 1)−2x11p11 := (u− 1)−2x11pup11.

If all variables pu, pij are moved to the right in the expansion of rdet(G)
then we get terms obtained by normal ordering from the terms in (9) plus
new terms created by the non-trivial commutators. We show that in fact all
new terms cancel in pairs.

Lemma 4. For i = 1, . . . ,M , we have

rdet(Gh) =
∑
σ,a,c

(−1)sgn(σ)F
c(1)
1σ(1),a(1) . . . F

c(i−1)
(i−1)σ(i−1),a(i−1)

(
: F

c(i)
iσ(i),a(i) . . . F

c(M)
Mσ(M),a(M) :

)
,(10)

where the sum is over the same triples σ, a, c as in (9).
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Proof. We prove the lemma by induction on i. For i = M the lemma is a
tautology. Assume it is proved for i = M,M − 1, . . . , j, let us prove it for
i = j − 1.

We have

F 1
(j−1)r,a : F

c(j)
jσ(j),a(j) . . . F

c(M)
M,σ(M),a(M) := (11)

: F 1
(j−1)r,aF

c(j)
jσ(j),a(j) . . . F

c(M)
Mσ(M),a(M) : +

∑
k

: F
c(j)
jσ(j),a(j) . . . (−Ekr,a)′ . . . F c(M)

Mσ(M),a(M) : ,

where the sum is over k ∈ {j, . . . , M} such that a(k) = a, σ(k) = j − 1 and
c(k) = 1.

We also have

F 0
(j−1)(j−1),0 : F

c(j)
jσ(j),a(j) . . . F

c(M)
Mσ(M),a(M) := (12)

: F 0
(j−1)(j−1),0F

c(j)
jσ(j),a(j) . . . F

c(M)
Mσ(M),a(M) : +

∑
k

: F
c(j)
jσ(j),a(j) . . . (−Ekσ(k),a(k))′ . . . F

c(M)
Mσ(M),a(M) : ,

where the sum is over k ∈ {j, . . . , M} such that c(k) = 1.
Using (11), (12), rewrite each term in (10) with i = j. Then the k-th term

obtained by using (11) applied to the term labeled by σ, c, a with c(j− 1) = 0
cancels with the k-th obtained by using (12) applied to the term labeled by
σ̃, c̃, ã defined by the following rules.

σ̃(i) = σ(i) (i 6= j − 1, k), σ̃(j − 1) = j − 1, σ̃(k) = σ(j − 1),

c̃(i) = c(i) (i 6= j − 1), c̃(j − 1) = 0,

ã(i) = a(i) (i 6= j − 1), ã(j − 1) = 0.

After this cancellation we obtain the statement of the lemma for i = j−1. �

Remark 5. The proof of Lemma 4 implies that if the matrix σGh is obtained
from Gh by permuting the rows of Gh by a permutation σ then rdet(σGh) =
(−1)sgn(σ) rdet(Gh).

Consider the linear isomorphism φh : Ah → A0 which sends any normally
ordered monomial m in Ah to the same monomial m in A0.

By (10) with i = 1, the image φh(rdet(Gh)) does not depend on h and
therefore can be computed at h = 0. Therefore Theorem 1 for all h follows
from Theorem 1 for h = 0. Theorem 1 for h = 0 follows from formula (7).

3 The (glM , glN) duality and the Bethe subalgebras

3.1 Bethe subalgebra

Let Eij , i, j = 1, . . . ,M , be the standard generators of glM . Let h be the
Cartan subalgebra of glM ,
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h = ⊕M
i=1C · Eii.

We denote UglM the universal enveloping algebra of glM .
For µ ∈ h∗, and a glM module L denote by L[µ] the vector subspace of L

of vectors of weight µ,

L[µ] = {v ∈ L | hv = 〈µ, h〉 v for any h ∈ h}.

We always assume that L = ⊕µL[µ].
For any integral dominant weight Λ ∈ h∗, denote by LΛ the finite-

dimensional irreducible glM -module with highest weight Λ.
Recall that we fixed sequences of complex numbers z = (z1, . . . , zN ) and

λ = (λ1, . . . , λM ). From now on we will assume that zi 6= zj and λi 6= λj if
i 6= j.

For i, j = 1, . . . ,M,, a = 1, . . . , N , let E
(a)
ji = 1⊗(a−1) ⊗ Eji ⊗ 1⊗(N−a) ∈

(UglM )⊗N .
Define the M ×M matrix G̃ = G̃(M,N,z,λ, u) by

G̃(M,N,z,λ, u) :=
(
(

∂

∂u
− λi)δij −

N∑
a=1

E
(a)
ji

u− za

)M

i,j=1
.

The entries of G̃ are differential operators in u whose coefficients are rational
functions in u with values in (UglM )⊗N .

Write

rdet(G̃(M,N,z,λ, u)) =
∂M

∂uM
+G̃1(M,N,z,λ, u)

∂M−1

∂uM−1
+· · ·+G̃M (M,N,z,λ, u).

The coefficients G̃i(M,N,z,λ, u), i = 1, . . . ,M , are called the transfer ma-
trices of the Gaudin model. The transfer matrices are rational functions in u
with values in (UglM )⊗N .

The transfer matrices commute:

[G̃i(M,N,z,λ, u), G̃j(M,N,z,λ, v)] = 0,

for all i, j, u, v, see [T] and Proposition 7.2 in [MTV1].
The transfer matrices clearly commute with the diagonal action of h on

(UglM )⊗N .
For i = 1, . . . ,M , it is clear that G̃i(M,N,z,λ, u)

∏N
a=1(u−za)i is a poly-

nomial in u whose coefficients are pairwise commuting elements of (UglM )⊗N .
Let G(M,N,z,λ) ⊂ (UglM )⊗N be the commutative subalgebra generated by
the coefficients of polynomials G̃i(M,N,z,λ, u)

∏N
a=1(u− za)i, i = 1, . . . ,M .

We call the subalgebra G(M,N,z,λ) the Bethe subalgebra.
Let G(M,λ) ⊂ UglM [t] be the subalgebra considered in the introduction.

Let UglM [t] → (UglM )⊗N be the algebra homomorphism defined by Eij ⊗
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tn 7→
∑N

a=1 E
(a)
ij zn

a . Then the subalgebra G(M,N,z,λ) is the image of the
subalgebra G(M,λ) under that homomorphism.

The Bethe subalgebra clearly acts on any N -fold tensor products of glM
representations.

Define the Gaudin Hamiltonians, Ha(M,N,z,λ) ⊂ (UglM )⊗N , a =
1, . . . , N , by the formula

Ha(M,N,z,λ) =
N∑

b=1,b 6=a

Ω(ab)

za − zb
+

M∑
b=1

λbE
(a)
bb ,

where Ω(ab) :=
∑M

i,j=1 E
(a)
ij E

(b)
ji .

Define the dynamical Hamiltonians H∨
a (M,N,z,λ) ⊂ (UglM )⊗N , a =

1, . . . ,M , by the formula

H∨
a (M,N,z,λ) =

M∑
b=1, b 6=a

(
∑N

i=1 E
(i)
ab )(

∑N
i=1 E

(i)
ba )−

∑N
i=1 E

(i)
aa

λa − λb
+

N∑
b=1

zb E(b)
aa .

It is known that the Gaudin Hamiltonians and the dynamical Hamiltonians
are in the Bethe subalgebra, see e.g. Appendix B in [MTV1]:

Ha(M,N,z,λ) ∈ G(M,N,z,λ), H∨
b (M,N,z,λ) ∈ G(M,N,z,λ),

a = 1, . . . , N , b = 1, . . . ,M .

3.2 The (glM , glN) duality

Let L
(M)
• = C[x1, . . . , xM ] be the space of polynomials of M variables. We

define the glM -action on L
(M)
• by the formula

Eij 7→ xi
∂

∂xj
.

Then we have an isomorphism of glM modules

L
(M)
• =

∞⊕
m=0

L(M)
m

the submodule L
(M)
m being spanned by homogeneous polynomials of degree

m. The submodule L
(M)
m is the irreducible glM module with highest weight

(m, 0, . . . , 0) and highest weight vector xm
1 .

Let L
(M,N)
• = C[x11, . . . , x1N , . . . , xM1, . . . , xMN ] be the space of polyno-

mials of MN commuting variables.
Let π(M) : (UglM )⊗N → End(L(M,N)

• ) be the algebra homomorphism
defined by
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E
(a)
ij 7→ xia

∂

∂xja
.

In particular, we define the glM action on L
(M,N)
• by the formula

Eij 7→
N∑

a=1

xia
∂

∂xja
.

Let π(N) : (UglN )⊗M → End(L(M,N)
• ) be the algebra homomorphism

defined by

E
(a)
ij 7→ xai

∂

∂xaj
.

In particular, we define the glN action on L
(M,N)
• by the formula

Eij 7→
M∑

a=1

xai
∂

∂xaj
.

We have isomorphisms of algebras,(
C[x1, . . . , xM ]

)⊗N→ L
(M,N)
• , 1⊗(j−1) ⊗ xi ⊗ 1⊗(N−j) 7→ xij ,(

C[x1, . . . , xN ]
)⊗M→ L

(M,N)
• , 1⊗(i−1) ⊗ xj ⊗ 1⊗(M−i) 7→ xij . (13)

Under these isomorphisms the space L
(M,N)
• is isomorphic to (L(M)

• )⊗N as a
glM module and to (L•(N))⊗M as a glN module.

Fix n = (n1, . . . , nN ) ∈ ZN
≥0 and m = (m1, . . . ,mM ) ∈ ZM

≥0 with∑N
i=1 ni =

∑M
a=1 ma. The sequences n and m naturally correspond to in-

tegral glN and glM weights, respectively.
Let Lm and Ln be glN and glM modules, respectively, defined by the

formulas
Lm = ⊗M

a=1L
(N)
ma

, Ln = ⊗N
b=1L

(M)
nb

.

The isomorphisms (13) induce an isomorphism of the weight subspaces,

Ln[m] ' Lm[n]. (14)

Under the isomorphism (14) the Gaudin and dynamical Hamiltonians in-
terchange,

π(M)Ha(M,N,z,λ) = π(N)H∨
a (N,M,λ,z) ,

π(M)H∨
b (M,N,z,λ) = π(N)Hb(N,M,λ,z) ,

for a = 1, . . . , N , b = 1, . . . ,M , see [TV].
We prove a stronger statement that the images of glM and glN Bethe

subalgebras in End(L(M,N)
• ) are the same.
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Theorem 6. We have

π(M)(G(M,N,z,λ)) = π(N)(G(N,M,λ,z)).

Moreover, we have

N∏
a=1

(u− za)π(M) rdet(G̃(M,N,z,λ, u)) =
N∑

a=1

M∑
b=1

A
(M)
ab ua ∂b

∂ub
,

M∏
b=1

(v − λb)π(N) rdet(G̃(N,M,λ,z, v)) =
N∑

a=1

M∑
b=1

A
(N)
ab vb ∂a

∂va
,

where A
(M)
ab , A

(N)
ab are linear operators independent on u, v, ∂/∂u, ∂/∂v and

A
(M)
ab = A

(N)
ab .

Proof. We obviously have

π(M)(G̃(M,N,z,λ, u)) = īh=1(Gh=1),

π(N)(G̃(N,M,λ,z, v)) = īh=1(Hh=1),

where Gh=1 and Hh=1 are matrices defined in (6) and (8). Then the coef-
ficients of the differential operators

∏N
a=1(u− za)π(M) rdet(G̃(M,N,z,λ, u))

and
∏M

b=1(v − λb)π(N) rdet(G̃(N,M,λ,z, v)) are polynomials in u and v of
degrees N and M , respectively, by Theorem 1. The rest of the theorem fol-
lows directly from Corollary 3. �

3.3 Scalar differential operators

Let w ∈ Ln[m] be a common eigenvector of the Bethe subalgebra G(M,N,z,λ).
Then the operator rdet(G̃(M,N,z,λ, u)) acting on w defines a monic scalar
differential operator of order M with rational coefficients in variable u.
Namely, let Dw(M,N,λ,z) be the differential operator given by

Dw(M,N,z,λ, u) =
∂M

∂uM
+G̃w

1 (M,N,z,λ, u)
∂M−1

∂uM−1
+· · ·+G̃w

M (M,N,z,λ, u),

where G̃w
i (M,N,z,λ, u) is the eigenvalue of the ith transfer matrix acting on

the vector w:

G̃i(M,N,z,λ, u)w = G̃w
i (M,N,z,λ, u)w.

Using isomorphism (14), consider w as a vector in Lm[n]. Then by Theo-
rem 6, w is also a common eigenvector for algebra G(N,M,λ,z). Thus, sim-
ilarly, the operator rdet(G̃(N,M,λ,z, v)) acting on w defines a monic scalar
differential operator of order N , Dw(N,M,λ,z, v).



388 E. Mukhin, V. Tarasov, and A. Varchenko

Corollary 7. We have

N∏
a=1

(u− za)Dw(M,N,z,λ, u) =
N∑

a=1

M∑
b=1

A
(M)
ab,w ua ∂b

∂ub
,

M∏
b=1

(v − λb)Dw(N,M,λ,z, v) =
N∑

a=1

M∑
b=1

A
(N)
ab,w vb ∂a

∂va
,

where A
(M)
ab,w, A

(N)
ab,w are numbers independent on u, v, ∂/∂u, ∂/∂v. Moreover,

A
(M)
ab,w = A

(N)
ab,w.

Proof. The corollary follows directly from Theorem 6. �

Corollary 7 was essentially conjectured in Conjecture 5.1 in [MTV2].

Remark 8. The operators Dw(M,N,z,λ) are useful objects, see [MV1],
[MTV2], [MTV3]. They have the following three properties.

(i) The kernel of Dw(M,N,z,λ) is spanned by the functions pw
i (u)eλiu, i =

1, . . . ,M , where pw
i (u) is a polynomial in u of degree mi.

(ii) All finite singular points of Dw(M,N,z,λ) are z1, . . . , zN .
(iii) Each singular point zi is regular and the exponents of Dw(M,N,z,λ) at

zi are 0, ni + 1, ni + 2, . . . , ni + M − 1.

A converse statement is also true. Namely, if a linear differential operator of
order M has properties (i-iii), then the operator has the form Dw(M,N,z,λ)
for a suitable eigenvector w of the Bethe subalgebra. This statement may be
deduced from Proposition 9 below.

We discuss the properties of such differential operators in [MTV4], cf. also
[MTV2] and Appendix A in [MTV3].

3.4 The simple joint spectrum of the Bethe subalgebra

It is proved in [R], that for any tensor product of irreducible glM modules and
for generic z,λ the Bethe subalgebra has a simple joint spectrum. We give
here a proof of this fact in the special case of the tensor product Ln.

Proposition 9. For generic values of λ, the joint spectrum of the Bethe sub-
algebra G(M,N,z,λ) acting in Ln[m] is simple.

Proof. We claim that for generic values of λ, the joint spectrum of the Gaudin
Hamiltonians Ha(M,N,z,λ), a = 1, . . . , N , acting in Ln[m] is simple. In-
deed fix z and consider λ such that λ1 � λ2 � · · · � λM � 0. Then
the eigenvectors of the Gaudin Hamiltonians in Ln[m] will have the form
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v1 ⊗ · · · ⊗ vN + o(1), where vi ∈ Lni [m
(i)] and m =

∑N
i=1 m(i). The corre-

sponding eigenvalue of Ha(M,N,z,λ) will be
∑M

j=1 λjm
(a)
j + O(1).

The weight spaces L
(M)
ni [mi] all have dimension at most 1 and therefore

the joint spectrum is simple in this asymptotic zone of parameters. Therefore
it is simple for generic values of λ. �
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