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0 Introduction

0.1

Let F be a totally real number field of degree d. It is well known that one
can associate to any cuspidal Hilbert eigenform f over F of parallel weight 2
a compatible system of two-dimensional l-adic Galois representations Vl(f) of
ΓF = Gal(Q/F ) over Ql (having fixed embeddings Q ↪→ C and Q ↪→ Ql).

0.2

On the other hand, the Shimura variety X associated to RF/QGL(2)F has
reflex field Q, which means that its étale cohomology groups give rise to l-
adic representations of ΓQ = Gal(Q/Q). The action of ΓQ on the intersection
cohomology of the Baily-Borel compactification X∗ of X was determined, up
to semi-simplification, by Brylinski and Labesse [BL84]: non-primitive coho-
mology (into which we include IH0) occurs in even degrees and decomposes
as

IH2j
et (X∗ ⊗Q Q,Ql)non−prim

∼−→
⊕

χ

χ(−j),

where each χ is a finite order character of ΓQ. Primitive cohomology occurs
only in degree d; it decomposes as

IHd
et(X

∗ ⊗Q Q,Ql)prim
∼−→

⊕
f

π(f)⊗Wl(f),
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where f is as above, π(f) is the (non-archimedean part of the) automorphic
representation of GL(2,AF ) associated to f , and Wl(f) is a 2d-dimensional
l-adic representation of ΓQ whose semi-simplification Wl(f)ss is isomorphic to
the tensor induction of Vl(f) ⊗

IndF/QVl(f),

which is defined as follows. A choice of coset representatives

ΓQ =
d∐

i=1

giΓF (0.2.1)

defines an injective group homomorphism (see §1.1 below)

ΓQ ↪→ Sd n Γ d
F , g 7→ (σ, (h1, . . . , hd)), ggi = gσ(i)hi, (0.2.2)

and
⊗

IndF/QVl(f) is obtained from the (Sd n Γ d
F )-module Vl(f)⊗d by pull-

back via the map (0.2.2).

0.3

In particular, the action of ΓQ on IHd
et(X

∗ ⊗Q Q,Ql)ssprim extends to an ac-
tion of Sd n Γ d

F . The same should be true for the action on IHd
et(X

∗ ⊗Q

Q,Ql)prim, since general conjectures predict that ΓQ should act semi-simply
on IH∗

et(Y ⊗Q Q,Ql), for any proper scheme Y over Spec(Q).
The representations χ(−j) of ΓQ occurring in the non-primitive cohomology
of X∗ do not extend to representations of Sd n Γ d

F , but they extend to repre-
sentations of the group (Sd n Γ d

F )0, which is defined as the fibre product

(Sd n Γ d
F )0 −→ Sd n Γ d

F

↓ ↓
Γ ab

Q

VF/Q−→ Γ ab
F ,

(0.3.1)

where the right vertical arrow is trivial on Sd and is given by the product
map on Γ d

F . As the field F is totally real, the transfer map VF/Q is injective
(see 1.2.5 below), which means that we can (and will) consider (Sd n Γ d

F )0
as a subgroup of Sd n Γ d

F . The inclusion (0.2.2) factors through an inclusion
ΓQ ↪→ (Sd n Γ d

F )0.

Question 0.4 To sum up: the results of [BL84] combined with the semi-
simplicity conjecture imply that the action of ΓQ on IH∗

et(X
∗⊗QQ,Ql) should

extend to an action of (Sd n Γ d
F )0. Is there a geometric explanation of this

hidden symmetry of IH∗
et(X

∗ ⊗Q Q,Ql)?
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0.5

This question admits a more invariant formulation. Recall that the inclusion
(0.2.2) depends on the choice of coset representatives (0.2.1). The same choice
defines an isomorphism of F -algebras

F ⊗Q Q ∼−→ F
d
, a⊗ b 7→ (a⊗ g−1

i (b))i,

hence a group isomorphism

Sd n Γ d
F

∼−→ AutF−alg(F ⊗Q Q), (0.5.1)

the composition of which with (0.2.2) coincides with the canonical injective
map

ΓQ = AutQ−alg(Q) ↪→ AutF−alg(F ⊗Q Q), g 7→ idF ⊗ g. (0.5.2)

The subgroup AutF−alg(F ⊗Q Q)0 of AutF−alg(F ⊗Q Q) corresponding to
(SdnΓ d

F )0 under the isomorphism (0.5.1) is independent of any choices, which
means that we should restate Question 0.4 as follows.

Question 0.6 Is there a geometric explanation of the fact that the action of
ΓQ on IH∗

et(X
∗ ⊗Q Q,Ql) extends to an action of AutF−alg(F ⊗Q Q)0? For

example, does X∗⊗QQ (or a related space) admit an action of AutF−alg(F⊗Q

Q)0?

0.7 Idle speculation

The recipe (0.2.2) defines an inclusion

G ↪→ Sd n Hd (0.7.1)

(depending on chosen coset representatives of H in G) whenever H is a sub-
group of index d of a group G.
If p : Y −→ Z is an unramified covering of degree d between “nice” connected
topological spaces and H = π1(Y, y), G = π1(Z, p(y)), then there are at least
two geometric incarnations of (0.7.1).

Firstly, if Z̃ is the universal covering of Z, then

G
∼−→ Aut(Z̃/Z), Sd n Hd ∼−→ Aut(Y ×Z Z̃/Y )

and (0.7.1) comes from the canonical map

Aut(Z̃/Z) −→ Aut(Y ×Z Z̃/Y ), g 7→ idY × g. (0.7.2)

In our situation, the rôle of p (resp., by Z̃) is played by the structure map
Spec(F ) −→ Spec(Q) (resp., by Spec(Q)), and (0.7.2) is nothing but (0.5.2).
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Secondly, Sd n Hd is closely related to π1(Y d/Sd, p
−1(p(y))), and there is a

canonical map

Z −→ Y d/Sd, z 7→ p−1(z). (0.7.3)

In other words, the map induced by (0.7.3)

π1(Z, z) −→ π1(Y d/Sd, p
−1(z))

is an approximate version of (0.7.1).
In our situation, in which the rôle of Y (resp., of Z) is played by Spec(F ) (resp.,
by Spec(Q)), we are confronted with the fact that the analogue of Y d/Sd

should be the d-th symmetric power of Spec(F ) over the elusive absolute point
Spec(F1). A Grothendieckean approach to Question 0.6 would then involve

• making sense of the d-th symmetric power Symd(F/F1) of Spec(F ) over
Spec(F1);
• extending X∗ to an object X̃∗ defined over (a desingularisation of)
Symd(F/F1);
• relating l-adic intersection cohomology groups 1 of X∗ and X̃∗.
At present, this seems beyond reach, but as A. Genestier pointed out to us,
everything makes sense for Drinfeld modular varieties over global fields of
positive characteristic.

0.8

Leaving speculations aside, in the present article we test Question 0.6 by
studying the action of ΓQ on the set of CM points. It is convenient to replace
RF/QGL(2)F by the group G defined as the fibre product

G −→ RF/Q(GL(2)F )y ydet

Gm,Q −→ RF/Q(Gm,F ),

since the corresponding Shimura variety is a moduli space for polarised
Hilbert-Blumenthal abelian varieties (HBAV) equipped with adelic level struc-
tures.
The first main result of the present article (see 2.2.5 below) is the following.

Theorem 0.9 The group AutF−alg(F⊗QQ)0 acts naturally on the set of CM
points of the Shimura variety Sh(G, X ) associated to G. This action extends
the natural action of ΓQ and commutes with the action of G(Af ) = G(Q̂) on
Sh(G, X ).

1Establishing a relation between de Rham cohomology of X∗ and eX∗ would
also be of interest, in view of potential applications to period relations for Hilbert
modular forms.
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The key point in the proof is to show that the (reverse) 1-cocycle fΦ : ΓQ −→
K̂∗/K∗ (“the Taniyama element”), which describes the Galois action on the
set of CM points by K, naturally extends to a 1-cocycle f̃Φ : AutF−alg(F ⊗Q

Q)0 −→ K̂∗/K∗ (above, K is a totally imaginary quadratic extension of F , K̂
is the ring of finite adèles of K and Φ is a CM type of K). In fact, fΦ extends
to a 1-cocycle f̃Φ defined on a slightly bigger subgroup AutF−alg(F ⊗Q Q)1
of AutF−alg(F ⊗Q Q), which corresponds to the fibre product

(Sd n Γ d
F )1 −→ Sd n Γ d

Fy y(1,prod)

Γ ab
Q /〈c〉

V F/Q

↪→ Γ ab
F /〈c1, . . . , cd〉,

where c ∈ Γ ab
Q (resp., c1, . . . , cd ∈ Γ ab

F ) is the complex conjugation (resp., are
the complex conjugations at the infinite primes of F ). We have

AutF−alg(F ⊗Q Q)1/AutF−alg(F ⊗Q Q)0
∼−→ (Z/2Z)d−1,

but only the elements of AutF−alg(F ⊗Q Q)0 preserve the positivity of the
polarisations.

0.10

A more abstract formulation of this result (§2.4) involves a generalisation of
the Taniyama group T and its finite level quotients KT . More precisely, in
the special case when K is a Galois extension of Q, the maps f̃Φ factor through
AutF−alg(F ⊗QKab)1 = Im

(
AutF−alg(F ⊗Q Q)1 −→ AutF−alg(F ⊗Q Kab)

)
and can be put together, yielding a 1-cocycle

f̃ : AutF−alg(F ⊗Q Kab)1 −→ KS (K̂)/KS (K), (0.10.1)

where KS is the Serre torus associated to K (see §1.5).

Our second main result (see 2.4.2-3 below) states that the coboundary of f̃
gives rise to an exact sequence of affine group schemes over Q

1 −→ KS
eı−→ KT̃

eπ−→ AutF−alg(F ⊗Q Kab)′1 −→ 1, (0.10.2)

where AutF−alg(F ⊗Q Kab)′1 is a certain F/Q-form of the constant group
scheme AutF−alg(F ⊗Q Kab)1. Moreover, there is a group homomorphism
s̃p : AutF−alg(F ⊗Q Kab)1 −→ KT̃ (F̂ ) satisfying π̃ ◦ s̃p = id. The pull-
back of (0.10.2) to AutQ−alg(Kab) = Gal(Kab/Q) is the level K Taniyama
extension

1 −→ KS
i−→ KT

π−→ Gal(Kab/Q) −→ 1.
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For varying K, the 1-cocycles f̃ are compatible. When put together, they give
rise to an exact sequence of affine group schemes over Q

1 −→ S −→ T̃ −→ lim−→F
AutF−alg(F ⊗Q Q)′1 −→ 1 (0.10.3)

(where S is the inverse limit of the tori KS with respect to the norm maps,
and the direct limit is taken with respect to the transition maps idF ′ ⊗F −,
for F ⊆ F ′), whose pull-back to ΓQ coincides with the Taniyama extension

1 −→ S −→ T −→ ΓQ −→ 1.

Question 0.11 As shown in [Del82], the Taniyama group T has a natural
Tannakian interpretation. Does T̃ , or its subgroup scheme T̃0 ⊂ T̃ sitting in
the exact sequence

1 −→ S −→ T̃0 −→ lim−→F
AutF−alg(F ⊗Q)′0 −→ 1,

have a similar interpretation?

0.12

If A is a polarised HBAV over Q, then H1
dR(A/Q) is a free F ⊗Q Q-module

of rank 2, and for each prime p the F ⊗Q Q⊗Q Qp-module H1
dR(A/Q)⊗Q Qp

has an additional crystalline structure. The comparison theorems between
étale and crystalline cohomology together with Faltings’s isogeny theorem
imply that the F -linear isogeny class of A is determined by H1

dR(A/Q) with
this additional structure. It is very likely (even though we have not checked
this) that the action (0.9) of AutF−alg(F ⊗Q Q)0 on the set of CM points of
Sh(G, X ) is compatible, via the functor A 7→ H1

dR(A/Q), with the natural
action of AutF−alg(F ⊗Q Q) on the category of F ⊗Q Q-modules.

Question 0.13 What happens for non-CM points? In other words, for what
g ∈ AutF−alg(F ⊗Q Q)0 is there a polarised HBAV A′ over Q such that

H1
dR(A′/Q) = g∗ H1

dR(A/Q),

with all the additional structure?

1 Background material

In §1.4-1.7 of this chapter we recall the main results of the theory of complex
multiplication. In §1.1-1.3 we collect some elementary background material.
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Notation and conventions: An action of a group on a set always means a
left action. We write A⊗B instead of A⊗Z B and denote by Q the algebraic
closure of Q in C. By a number field we always understand a subfield of
Q of finite degree over Q. The ring of integers of a number field k will be
denoted by Ok. For each subfield L of Q we put ΓL = Gal(Q/L) and X(L) =
HomQ−alg(L,Q). The restriction map g 7→ g|L defines an isomorphism of left
ΓQ-sets ΓQ/ΓL

∼−→ X(L). Denote by c ∈ ΓQ the complex conjugation. For
any abelian group A, put Â = A⊗ Ẑ. If A is a ring, so is Â (if k is a number
field, then k̂ is the ring of finite adèles of k).

1.1 Wreath products and Galois theory

1.1.1 Notation

If X and Y are sets, we denote by Y X = {f : X −→ Y } the set of maps from
X to Y . If Y is a group, so is Y X . The group of permutations of the set X,
denoted by SX = {bijective maps σ : X −→ X}, acts on Y X by σf = f ◦σ−1.
For any group H, the semi-direct product of HX and SX (with respect to this
action of SX on HX) is equal to

SX nHX = {(σ, h) | σ ∈ SX , h : X −→ H}, (σ, h)(σ′, h′) = (σσ′, (h◦σ′)h′).

If Y is a left H-set, then Y X is a left (SX n HX)-set via the action

(σ, h)(y) = (hy) ◦ σ−1, h ∈ HX , y ∈ Y X , (hy)(x) = (h(x))(y(x)).
(1.1.1.1)

1.1.2 Basic construction

Let H be a subgroup of a group G. Fix a section s : X = G/H −→ G of
the natural projection G −→ G/H. Left multiplication by g ∈ G defines a
permutation σ = (x 7→ gx) ∈ SX . For each x ∈ X,

gs(x) = s(gx)h(x), h(x) ∈ H,

and the map

g 7→ (σ, h) = ((x 7→ gx), (x 7→ s(gx)−1gs(x))) ∈ SX n HX

is an injective group homomorphism

ρs : G ↪→ SX n HX (X = G/H). (1.1.2.1)

If s′ : X = G/H −→ G is another section, then s′ = st, t ∈ HX , and
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∀g ∈ G ρs′(g) = (1, t)−1ρs(g)(1, t). (1.1.2.2)

If (G : H) <∞, then the diagram

G
ρs−→ SX n HXy y(1,prod)

Gab V−→ Hab

(1.1.2.3)

is commutative, where prod is the product map h 7→
∏

x∈X h(x) (mod [H,H])
and V is the transfer. The map ρs factors through an injective group homo-
morphism

G ↪→ (SX n HX)0,

where (SX n HX)0 is the group defined as the fibre product

(SX n HX)0 −→ SX n HXy y(1,prod)

Gab V−→ Hab.

(1.1.2.4)

If V is injective, we can (and will) identify (SX n HX)0 with its image in
SX n HX .

Proposition 1.1.3 Let k′/k be a Galois extension (not necessarily finite)
and X a finite set. The action of Γk′/k = Gal(k′/k) = Autk−alg(k′) on k′

gives rise, as in (1.1.1.1), to an action of SX n ΓX
k′/k on (k′)X by k-algebra

automorphisms, and each k-algebra automorphism of (k′)X arises in this way:

SX n ΓX
k′/k = Autk−alg((k′)X), (σ, h) 7→ (a 7→ (ha) ◦ σ−1).

Proof. Any k-algebra automorphism f of (k′)X must permute the set of ir-
reducible idempotents {1x | x ∈ X} of (k′)X : f(1x) = 1σ(x), σ ∈ SX . This
implies that (σ, 1)◦f preserves the decomposition (k′)X =

∏
x∈X k′ ·1x, hence

(σ, 1) ◦ f ∈ Autk−alg(k′)X = ΓX
k′/k, which implies that f ∈ SX n ΓX

k′/k.

Proposition 1.1.4 Let k′/k be as in Proposition 1.1.3. Let F/k be a finite
subextension of k′/k; put X = Homk−alg(F, k′). Fix a section s : X −→ Γk′/k

of the restriction map Γk′/k −→ Γk′/k/Γk′/F = X, g 7→ g|F . The chosen
section induces an isomorphism of k-algebras

s : (k′)X −→ (k′)X , u 7→ (x 7→ s(x)(u(x))).

(i) The map

α : F ⊗k k′ −→ (k′)X , a⊗ b 7→ (x 7→ x(a)b)

is an isomorphism of k-algebras.
(ii) The map
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βs : F ⊗k k′
α−→ (k′)X s←− (k′)X , a⊗ b 7→ (x 7→ as(x)−1(b))

is an isomorphism of F -algebras.
(iii) The map βs satisfies

∀g ∈ Autk−alg(k′) = Γk′/k βs ◦ (idF ⊗ g) = ρs(g)βs,

hence induces a group isomorphism

βs∗ : AutF−alg(F⊗kk′) ∼−→ AutF−alg((k′)X) = SX nΓX
k′/F , f 7→ βs◦f ◦β−1

s

satisfying βs∗(idF ⊗ g) = ρs(g), for all g ∈ Γk′/k.
(iv) If s′ = st : X −→ Γk′/k is another section of the restriction map g 7→ g|F
(t : X −→ Γk′/F ), then

∀g ∈ AutF−alg(F ⊗k k′) βs′∗(g) = (1, t)−1 βs∗(g) (1, t),

i.e., βs∗ = Ad(1, t) ◦ βs′∗.

Proof. (i) This is a well-known fact from Galois theory.
(ii) The map βs is an isomorphism of k-algebras, by (i). For each a ∈ F , we
have βs(a) : x 7→ a, which means that βs is a morphism of F -algebras.
(iii) Let a ∈ F , b ∈ k′, g ∈ Γk′/k = G, H = Γk′/F ; put ρs(g) = (σ, h). For
each x ∈ X we have σ(x) = gx and

h(x) = s(gx)−1gs(x) = s(σ(x))−1gs(x) ∈ H, βs(a⊗ b)(x) = as(x)−1(b),

hence

βs ◦ (idF ⊗ g)(a⊗ b) = βs(a⊗ g(b)) : x 7→ as(x)−1(g(b)).

On the other hand,

(σ, h) ◦ βs(a⊗ b) : x 7→ h(σ−1(x))
(
a s(σ−1(x))−1(b)

)
= a

(
s(x)−1g

)
(b),

which proves that βs ◦ (idF ⊗ g) = ρs(g) ◦ βs, as claimed.
(iv) We have βs′ = t−1βs, as

∀x ∈ X βs′(a⊗ b)(x) = at(x)−1 ◦ s(x)−1(x) = t(x)−1
(
as(x)−1(b)

)
=

= t(x)−1 (βs(a⊗ b)(x)) ,

in the notation of the proof of (iii). It follows that

βs′∗(g) = βs′ ◦ g ◦ β−1
s′ = t−1βs ◦ g ◦ β−1

s t = t−1βs∗(g)t,

as claimed.
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1.1.5

To sum up the discussion from 1.1.3-4, the natural map

(idF ⊗−) : Γk′/k = Autk−alg(k′) −→ AutF−alg(F ⊗k k′), g 7→ idF ⊗ g

is a canonical incarnation of the morphism ρs : Γk′/k ↪→ SX n ΓX
k′/F , as

βs∗ ◦ (idF ⊗−) = ρs.

Proposition 1.1.6 Let k ⊂ F ⊂ k′ and s : X −→ Γk′/k be as in Proposition
1.1.4. Given ũ ∈ Γk′/k, put u = ũ|F , F ′ = u(F ) and X ′ = Homk−alg(F ′, k′).
The bijection X

∼−→ X ′ (x 7→ x′ = xu−1) gives rise to a section s′ : X ′ −→
Γk′/k of the restriction map g 7→ g|F ′ , given by s′(x′) = s(x)ũ−1.
(i) The map

ũ∗ : SX n ΓX
k′/F −→ SX′ n ΓX′

k′/F ′ , (σ, h) 7→ (σ′, h′),

σ′(x′) = σ(x)′ (⇐⇒ σ′(xu−1) = σ(x)u−1),
h′(x′) = ũh(x)ũ−1 (⇐⇒ h′(xu−1) = ũh(x)ũ−1)

is a group isomorphism satisfying ũ∗ ◦ ρs = ρs′ .
(ii) ∀ũ, ũ′ ∈ Γk′/k ũ′∗ũ∗ = (ũ′ũ)∗.

Proof. Easy calculation.

Proposition 1.1.7 In the situation of Proposition 1.1.6,
(i) the map

[u] : AutF−alg(F ⊗k k′) −→ AutF ′−alg(F ′ ⊗k k′)
g 7→ (u⊗ idk′) ◦ g ◦ (u−1 ⊗ idk′)

is a group isomorphism satisfying [u′u] = [u′] ◦ [u] and

∀g ∈ Γk′/k [u](idF ⊗ g) = idF ′ ⊗ g.

(ii) The following diagram is commutative.

AutF−alg(F ⊗k k′)
βs∗−→ SX n ΓX

k′/Fy[u]

yeu∗
AutF ′−alg(F ′ ⊗k k′)

βs′∗−→ SX′ n ΓX′

k′/F ′

(iii) If F ′ = F , then the group automorphism

βs∗ ◦ [u] ◦ β−1
s∗ : SX n ΓX

k′/F −→ SX n ΓX
k′/F

is given by the formula (σ, h) 7→ (σu, hu), where, for each x ∈ X,

σu(x) = σ(xu)u−1, hu(x) = s (σu(x))−1
s (σu(x)u) h(xu)s(xu)−1s(x).

(iv) If F is a Galois extension of k, then the maps [u] define an action of ΓF/k

on AutF−alg(F ⊗k k′), the set of fixed points of which is equal to idF ⊗Γk′/k.
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Proof. (i) Straightforward. (ii) Let g ∈ AutF−alg(F ⊗k k′); put (σ, h) = βs∗(g)
and (σ′, h′) = ũ∗(σ, h). For a⊗ b ∈ F ⊗k k′, write g(1⊗ b) =

∑
ai ⊗ bi; then

g(a⊗ b) =
∑

aai ⊗ bi. As βs(a⊗ b)(x) = as(x)−1(b), the equalities

βs(g(a⊗ b))(x) = ((σ, h)βs(a⊗ b))(x) (x ∈ X)

read as

∑
aais(x)−1(bi) = ah(σ−1(x))s(σ−1(x))−1(b) (x ∈ X). (1.1.7.1)

As ([u](g))(1⊗ b) =
∑

u(ai)⊗ bi, the statement to be proved, namely

∀x′ ∈ X ′ ∀a′ ∈ F ′ ∀b ∈ k′ βs′(([u](g))(a′⊗b))(x′) ?= ((σ′, h′)βs′(a′⊗b))(x′),

reads as ∑
a′u(ai)s′(x′)−1(bi)

?= a′h′(σ′−1(x′))s′(σ′−1(x′))−1(b),

which is obtained from (1.1.7.1) (with x = x′u) by applying u, since

s′(x′)−1 = ũs(x)−1, s′(σ′−1(x′))−1 = ũs(σ−1(x))−1,

h′(σ′−1(x′)) = ũh(σ−1(x))ũ−1.

(iii) The assumption F ′ = F implies that s′ = st, where t : X −→ Γk′/F is
given by t(x) = s(x)−1s(xu)ũ−1. It follows from (ii) and Proposition 1.1.4(iv)
that

βs∗ ◦ [u] ◦ β−1
s∗ = βs∗ ◦ β−1

s′∗ ◦ ũ∗ = Ad(1, t) ◦ ũ∗,

hence

(σu, hu) = (1, t)(σ′, h′)(1, t)−1 = (σ′, (t◦σ′)h′t−1), σu(x) = σ′(x) = σ(xu)u−1,

hu(x) = t(σu(x))h′(x)t(x)−1 = s (σu(x))−1
s (σu(x)u) h(xu)s(xu)−1s(x).

Proposition 1.1.8 In the situation of Proposition 1.1.4, let F ′/F be a subex-
tension of k′/F ; put X ′ = Homk−alg(F ′, k′) and fix a section s′ : X ′ −→ Γk′/k

of the restriction map g 7→ g|F ′ . For each x′ ∈ X ′, define t(x′) ∈ Γk′/F by the
relation s′(x′) = s(x′|F )t(x′).
(i) The map

ρs,s′ : SX n ΓX
k′/F −→ SX′ n ΓX′

k′/F ′ , (σ, h) 7→ (σ′, h′),

σ′(x′) = s(σ(x))h(x)s(x)−1x′, h′(x′) = t(σ′(x′))−1h(x)t(x′), x = x′|F

is a group homomorphism satisfying
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σ′(x′)|F = σ(x), s′(σ′(x′))h′(x′)s′(x′)−1 = s(σ(x))h(x)s(x)−1.

(ii) The following diagram is commutative.

AutF−alg(F ⊗k k′)
βs∗−→ SX n ΓX

k′/Fy(idF ′⊗F−)

yρs,s′

AutF ′−alg(F ′ ⊗k k′)
βs′∗−→ SX′ n ΓX′

k′/F ′

Proof. (i) Easy calculation. (ii) As in the proof of Proposition 1.1.7, fix a⊗b ∈
F ⊗k k′, g ∈ AutF−alg(F ⊗k k′) and put (σ, h) = βs∗(g). Writing g(1 ⊗ b) =∑

ai ⊗ bi, then (1.1.7.1) (for σ(x) instead of x) reads as

∑
ais(σ(x))−1(bi) = h(x)s(x)−1(b) (x ∈ X). (1.1.8.1)

Define (σ′, h′) := ρs,s′(σ, h); we must show that, for all x′ ∈ X ′, a′ ∈ F ′, b ∈ k′,

βs′ ((idF ′ ⊗F g)(a′ ⊗ b)) (x′) ?= ((σ′, h′)βs′(a′ ⊗ b))(x′),

which can be rewritten (again using (1.1.7.1) and replacing x′ by σ′(x′)) as
follows:

∑
a′ais

′(σ′(x′))−1(bi)
?= a′h′(x′)s′(x′)−1(b) (x′ ∈ X ′). (1.1.8.2)

As σ′(x′)|F = σ(x′|F ), the equality (1.1.8.2) is obtained by multiplying
(1.1.8.1) (for x = x′|F ) by t(σ′(x′))−1 on the left.

1.2 Class Field Theory

1.2.1

Let k be a number field. Denote by

k∗+ = Ker (k∗ −→ π0((k ⊗R)∗)) , O∗
k,+ = O∗

k ∩ k∗+

the set of totally positive elements and the set of totally positive units of k,
respectively. Let Ak be the adèle ring of k and Ck = A∗

k/k∗ the idèle class
group of k. The reciprocity map

reck : Ck −→ Γ ab
k

will be normalised by letting local uniformisers correspond to geometric
Frobenius elements. As reck induces an isomorphism π0(Ck) ∼−→ Γ ab

k , its
restriction to the group of finite idèles gives rise to a surjective continuous
morphism

rk : k̂∗/k∗+ −→ Γ ab
k .
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1.2.2

It follows from the structure of the connected component of Ck [AT68, ch. 9,
Thm. 3] that the kernel of rk is isomorphic, as an Aut(k/Q)-module, to O∗

k,+⊗
(Ẑ/Z) = O∗

k,+ ⊗ (Q̂/Q).

1.2.3

For k = Q, the map rQ is an isomorphism, and its composition with the
canonical isomorphism Ẑ∗ ∼−→ Q̂∗/Q∗

+ (induced by the inclusion of Ẑ into Q̂)
is inverse to the cyclotomic character

χ : Γ ab
Q

∼−→ Ẑ∗, g(ζ) = ζχ(g) (∀ζ a root of unity in Q).

1.2.4

If k′/k is a finite extension of number fields, then the inclusion k ↪→ k′ and
the norm Nk′/k : k′∗ −→ k∗ induce commutative diagrams

k̂∗/k∗+
ik′/k−→ k̂′∗/k′∗+

↓ rk ↓ r′k

Γ ab
k

Vk′/k−→ Γ ab
k′

k̂′∗/k′∗+
Nk′/k−→ k̂∗/k∗+

↓ r′k ↓ rk

Γ ab
k′

jk′/k−→ Γ ab
k ,

(1.2.4.1)

where Vk′/k is the transfer map and jk′/k is given by the restriction map
g 7→ g|kab .

Proposition 1.2.5 For any number field L,

Ker
(
VL/Q : Γ ab

Q −→ Γ ab
L

)
=

{
{1, c}, if L is totally complex
{1}, otherwise.

Proof. Let L′ be the Galois closure of L over Q. As

Im
(
iL/Q

)
∩Ker(rL) ⊆

(
O∗

L′,+ ⊗ Q̂/Q
)Gal(L′/Q)

= Z∗+ ⊗ Q̂/Q = {1},

the first commutative diagram (1.2.4.1) for L/Q implies that i−1
L/Q (Ker(rL)) =

Ker(rL ◦ iL/Q) is equal to

Ker
(
iL/Q

)
=

(
Q∗ ∩ L∗+

)
/Q∗

+ =
{

Q∗/Q∗
+ = {±1}, L totally complex

{1}, otherwise.

As rQ is an isomorphism and rQ(−1) = c, the statement follows.
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1.3 CM fields

Let K be a CM number field; let F be its maximal totally real subfield (in
other words, c(K) = K, τc = cτ 6= τ for all τ ∈ X(K), and F = Kc=1). Put
X = X(F ).

1.3.1 Complex conjugations

Fix a section s : X −→ ΓQ of the restriction map g 7→ g|F . For each x ∈ X,
the image of the element s(x)−1cs(x) ∈ ΓF in Γ ab

F is independent of the chosen
section; denote it by cx ∈ Γ ab

F (this is the complex conjugation defined by the
real place x of F ). Denote by 〈cX〉 the subgroup of Γ ab

F generated by all cx

(x ∈ X). The signs at the real places induce an isomorphism

(sgn ◦ x)x∈X : F ∗/F ∗
+

∼−→ {±1}X .

Compatibility of the local and global reciprocity maps implies that

∀a ∈ F ∗ rF (aF ∗
+) =

∏
x∈X

cax
x , (−1)ax = sgn(x(a)).

As Ker(rF ) is a Q-vector space, we have Ker(rF )∩F ∗/F ∗
+ = {1}, which means

that rF induces an isomorphism F ∗/F ∗
+

∼−→ 〈cX〉.

1.3.2 Transfer maps

If we denote by

R : ΓF −→ ΓK , g, cg 7→ g (g ∈ ΓK)

the “retraction map” from ΓF to ΓK , then

∀h ∈ ΓF VK/F (h|F ab) = VK/F (ch|F ab) = hchc|Kab = 1+c (R(h)|Kab) .
(1.3.2.1)

As noted in 1.2.5,

Ker
(
VK/Q : Γ ab

Q −→ Γ ab
K

)
= rQ

(
Ker(iK/Q)

)
= rQ

(
Q∗/Q∗

+

)
= {1, c} = 〈c〉.

(1.3.2.2)
The equality Ker(rF ) = O∗

F,+⊗Q̂/Q = O∗
K⊗Q̂/Q = Ker(rK) implies, thanks

to (1.2.4.1), that

Ker
(
VK/F : Γ ab

F −→ Γ ab
K

)
= rF

(
Ker(iK/F )

)
= rF

(
F ∗/F ∗

+

)
= 〈cX〉.

(1.3.2.3)
As a result, the map
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V F/Q : Γ ab
Q /〈c〉 ↪→ Γ ab

F /〈cX〉 (1.3.2.4)

induced by VF/Q is injective and

{h ∈ Γ ab
F | VK/F (h) ∈ VK/Q(Γ ab

Q )} = 〈cX〉VF/Q(Γ ab
Q ). (1.3.2.5)

It also follows that

VF/Q(Γ ab
Q ) ∩ 〈cX〉 = 〈VF/Q(c)〉 (1.3.2.6)

is the cyclic group of order 2 generated by VF/Q(c) =
∏

x∈X cx.

1.3.3

As observed in [Tat81, Lemma 1], the finiteness of O∗
K/O∗

F,+ implies that c
(resp., 1 + c) acts trivially (resp., invertibly) on the Q-vector space Ker(rK).

Proposition 1.3.4 (i) The continuous homomorphism (induced by rK)

{a ∈ K̂∗ | 1+ca ∈ Ẑ∗K∗}/K∗ −→ {g ∈ Γ ab
K | g|F ab ∈ 〈cX〉VF/Q(Γ ab

Q )}

is bijective. Denote by `K its inverse; then 1+c`K(g) = χ(u(g))K∗, where
u(g) ∈ Γ ab

Q /〈c〉 is the (unique) element satisfying V F/Q (u(g)) = 〈cX〉g|F ab

(equivalently, VK/Q (u(g)) = 1+cg).
(ii) More precisely, if g ∈ Γ ab

K satisfies

g|F ab = VF/Q(u(g))
∏
x∈X

cax
x (u(g) ∈ Γ ab

Q , ax ∈ Z/2Z),

then NK/F (`K(g)) = χ(u(g))αF ∗
+ ∈ F̂ ∗/F ∗

+, where α ∈ F ∗ and

∀x ∈ X sgn(x(α)) = (−1)ax .

(iii) The canonical morphism (induced by the inclusion ÔK ↪→ K̂)

{x ∈ Ô∗
K | 1+cx ∈ Ẑ∗} −→ {a ∈ K̂∗ | 1+ca ∈ Ẑ∗K∗}/K∗

has finite kernel and cokernel.
(iv) The morphism `K defined in (i) admits a lift

˜̀
K : {g ∈ Γ ab

K | g|F ab ∈ 〈cX〉VF/Q(Γ ab
Q )} −→ {a ∈ K̂∗ | 1+ca ∈ Ẑ∗K∗}

which is a homomorphism when restricted to a suitable open subgroup.
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Proof. (i) In the following commutative diagram the right column is exact and
rQ is an isomorphism.

0
↓

Ker(rK)
↓

Ẑ∗ −→ K̂∗/K∗

↓ rQ ↓ rK

Γ ab
Q

VK/Q−→ Γ ab
K

↓
0

As 1+c acts invertibly on Ker(rK), the Snake Lemma implies that rK induces
an isomorphism between Ker

(
1 + c : K̂∗/K∗ −→ K̂∗/K∗Ẑ∗

)
and

Ker
(
1 + c = VK/F ◦ jK/F : Γ ab

K −→ Γ ab
K /VK/Q(Γ ab

Q )
)
;

by (1.3.2.5), the latter group is equal to {g ∈ Γ ab
K | g|F ab ∈ 〈cX〉VF/Q(Γ ab

Q )}.
The remaining statement follows from the fact that

rK

(
1+c`K(g)

)
= 1+cg = VK/F ◦ jK/F (g) = VK/F (g|F ab) =

= VK/F ◦VF/Q (u(g)) = VK/Q (u(g)) = rK ◦ iK/Q ◦r−1
Q (u(g)) = rK (χ(u(g))) .

(ii) Let a ∈ K̂∗ be a lift of `K(g) such that 1+ca = bα′, where b ∈ Ẑ∗, α′ ∈ K∗;
then α′ ∈ (K∗)c=1 = F ∗. As

g|F ab = rF (NK/F (a)) = rF (b)rF (α′) = VF/Q(rQ(b))
∏
x∈X

c
a′x
x ,

where (−1)a′x = sgn(x(α′)), it follows from (1.3.2.6) that there is t ∈ Z/2Z
such that

u(g) = rQ(b)ct, ∀x ∈ X a′x = ax + t.

This implies that χ(u(g)) = b(−1)t and

NK/F (`K(g)) = 1+caF ∗
+ = χ(u(g))αF ∗

+

with α = α′(−1)t, hence

∀x ∈ X sgn(x(α)) = sgn(x(α′))(−1)t = (−1)a′x+t = (−1)ax .

(iii) This follows from the finiteness of the groups Ker,Coker(1 + c : O∗
K −→

O∗
K) and ClK = K̂∗/Ô∗

KK∗, combined with the Snake Lemma applied to the
diagrams
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0 −→ O∗
K −→ Ô∗

K −→ Ô∗
K/O∗

K −→ 0y1+c

y1+c

y1+c

0 −→ O∗
K/Z∗ −→ Ô∗

K/Ẑ∗ −→ Ô∗
K/Ẑ∗O∗

K −→ 0

and

0 −→ Ô∗
K/O∗

K −→ K̂∗/K∗ −→ ClK −→ 0y1+c

y1+c

y1+c

0 −→ Ô∗
K/Ẑ∗O∗

K −→ K̂∗/Ẑ∗K∗ −→ ClK −→ 0.

Above, Ô∗
K is a shorthand for (ÔK)∗. Note also that Ẑ∗ ∩ O∗

K = Z∗ inside
Ô∗

K .
(iv) By (i) and (iii), rK induces a continuous homomorphism of pro-finite
abelian groups

f : A = {x ∈ Ô∗
K | 1+cx ∈ Ẑ∗} −→ B = {g ∈ Γ ab

K | g|F ab ∈ 〈cX〉VF/Q(Γ ab
Q )}

with finite kernel and cokernel. This implies that there exists an open subgroup
(= a compact subgroup of finite index) A′ ⊂ A such that A′ ∩Ker(f) = {1}.
Then B′ = f(A′) is a compact subgroup of finite index (= an open subgroup)
of B, and f induces a topological isomorphism f ′ : A′ ∼−→ B′. Fix coset
representatives B =

⋃
i biB

′ (disjoint union) and lifts ãi ∈ K̂∗ of `K(bi) ∈
K̂∗/K∗ such that bi0 = 1 and ãi0 = 1; the map

˜̀
K : B −→ K̂∗, bif

′(a′) 7→ ãia
′ (a′ ∈ A′)

has the required properties.

1.4 Tate’s construction

Let Φ be a CM type of K, i.e., a subset Φ ⊂ X(K) such that X(K) = Φ∪ cΦ
(disjoint union).

1.4.1 Tate’s half transfer

Tate’s half transfer [Tat81] is the continuous map FΦ : ΓQ −→ Γ ab
K defined

by the formula

FΦ(g) =
∏
ϕ∈Φ

w(gϕ)−1gw(ϕ) (mod ΓKab), (1.4.1.1)



408 Jan Nekovář

where w : X(K) −→ X(Q) = ΓQ is any section of the restriction map g 7→ g|K
satisfying w(cy) = cw(y), for all y ∈ X(K).
The restriction map g 7→ g|F defines a bijection Φ

∼−→ X(F ). Composing its
inverse with w, we obtain a section t : X(F ) −→ X(Q) = ΓQ of the restriction
map to F , which implies that

FΦ(g)|F ab =
∏

x∈X(F )

t(gx)−1ca(g,x)gt(x) (mod ΓF ab) ∈ 〈cX〉VF/Q(g) (1.4.1.2)

(for some a(g, x) ∈ Z/2Z). The maps FΦ satisfy

FΦ(gg′) = Fg′Φ(g)FΦ(g′) (g, g′ ∈ ΓQ) (1.4.1.3)

and

u ◦ FΦ(g) ◦ u−1 = FΦu−1(g) (g ∈ ΓQ), (1.4.1.4)

for any isomorphism of CM number fields u : K
∼−→ K ′. In addition, if K ′ is

a CM number field containing K and Φ′ = {y ∈ X(K ′) | y|K ∈ Φ} is the CM
type of K ′ induced from Φ, then

FΦ′(g) = VK′/K (FΦ(g)) (g ∈ ΓQ). (1.4.1.5)

1.4.2 The Taniyama element

The Taniyama element is the map fΦ : ΓQ −→ K̂∗/K∗ defined as

fΦ(g) = `K (FΦ(g)) , (1.4.2.1)

where

`K : {g ∈ Γ ab
K | g|F ab ∈ 〈cX〉VF/Q(Γ ab

Q )} ∼−→ {a ∈ K̂∗ | 1+ca ∈ Ẑ∗K∗}/K∗

is the morphism from 1.3.4(i). It follows that

1+cFΦ(g) = VK/F (FΦ(g)|F ab) = VK/F ◦ VF/Q(g) = VK/Q(g) =

= rK ◦ iK/Q ◦ r−1
Q

(
g|Qab

)
= rK(χ(g)).

As in the proof of 1.3.4(i), this implies that

1+cfΦ(g) = χ(g)K∗, rK (fΦ(g)) = FΦ(g). (1.4.2.2)

In Tate’s original definition, the properties (1.4.2.2) were used to characterise
fΦ(g).
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The identities (1.4.1.3-5) imply that

fΦ(gg′) = fg′Φ(g)fΦ(g′) (g, g′ ∈ ΓQ), (1.4.2.3)

ufΦ(g) = fΦu−1(g) (g ∈ ΓQ, u : K
∼−→ K ′) (1.4.2.4)

and

fΦ′(g) = iK′/K (fΦ(g)) (K ⊂ K ′, Φ′ induced from Φ). (1.4.2.5)

1.4.3

Tate [Tat81] conjectured that the idèle class fΦ(g) determines the action of
g ∈ ΓQ on abelian varieties with complex multiplication and on their torsion
points (this was, essentially, the zero-dimensional case of an earlier conjecture
of Langlands [Lan79] about conjugation of Shimura varieties). Building upon
earlier results of Shimura and Taniyama, Tate proved his conjecture up to an
element of F̂ ∗ of square 1. The full conjecture was subsequently proved by
Deligne [Lan83, ch. 7,§4].
More precisely, if A is a CM abelian variety of type (K, Φ, a, t) in the sense of
[Lan83, ch. 7,§3] (see 2.2.5 below), then gA is of type (K, gΦ, af, tχ(g)/1+cf),
where f ∈ K̂∗ is any lift of fΦ(g). Furthermore, for each complex uniformisa-
tion

θ : CΦ/a
∼−→ A(C)

there is a unique uniformisation

θ′ : CgΦ/af
∼−→ gA(C)

such that the action of g on A(Q)tors = A(C)tors is given by

g : A(Q)tors
θ−1

−→ K/a
[×f ]−→ K/af

θ′−→ gA(Q)tors.

This implies that, for each full level structure η : (F/OF )2 ∼−→ A(Q)tors, the
level structure gη is equal to

gη : (F/OF )2
η−→ A(Q)tors

θ−1

−→ K/a
[×f ]−→ K/af

θ′−→ gA(Q)tors. (1.4.3.1)

1.5 The Serre torus

Let K be as in 1.3.
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1.5.1

The torus KT = RK/Q (Gm) represents the functor A 7→ KT (A) = (K ⊗Q A)∗

on Q-algebras A. The ΓQ-equivariant bijections

(
K ⊗Q Q

)∗ ∼−→ HomSets(X(K),Q
∗
) ∼−→ HomZ(Z[X(K)],Q

∗
)

a⊗ b 7→ (y 7→ y(a)b) (y ∈ X(K))

imply that the character group of KT is equal to

X∗(KT ) = Z[X(K)] = {
∑

y∈X(K)

ny[y] | ny ∈ Z},

with g ∈ ΓQ acting on X∗(KT ) by

λ =
∑

ny[y] 7→ gλ =
∑

ny[gy] =
∑

ng−1y[y]. (1.5.1.1)

1.5.2

The Serre torus of K is the quotient KS of KT (defined over Q) whose
character group is equal to

X∗(KS ) = {λ ∈ X∗(KT ) | 1+cλ ∈ Z ·NK/Q} (NK/Q =
∑

y∈X(K)

[y]).

Each CM type Φ of K defines a character λΦ ∈ X∗(KS ): λΦ(y) = 1 (resp.,
= 0) if y ∈ Φ (resp., if y ∈ cΦ). Moreover, the abelian group X∗(KS ) is
generated by the characters λΦ ([Sch94, 1.3.2]), and

∀g ∈ ΓQ
gλΦ = λgΦ.

1.5.3

Tate’s half transfer satisfies the following identity: if n is a function

n : {CM types of K} −→ Z, Φ 7→ nΦ,

such that
∑

Φ nΦλΦ = 0, then

∀g ∈ ΓQ

∏
Φ

FΦ(g)nΦ = 1 ∈ Γ ab
K . (1.5.3.1)

Applying `K , we deduce from (1.5.3.1) that

∀g ∈ ΓQ

∏
Φ

fΦ(g)nΦ = 1 ∈ K̂∗/K∗. (1.5.3.2)
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1.5.4

In the special case when K is a Galois extension of Q, the action (1.5.1.1) of
ΓQ factors through Gal(K/Q), which implies that the tori KT and KS are
split over K.
In addition, the action of Gal(K/Q) on K induces an action of Gal(K/Q) on
the Q-group scheme KT , which will be denoted by t 7→ g ∗ t (g ∈ Gal(K/Q)).
The corresponding action on the character group

(h ∗ λ)(t) = λ(h−1 ∗ t) (λ ∈ X∗(KT )) (1.5.4.1)

is given by

λ =
∑

ny[y] 7→ h ∗ λ =
∑

ny[yh−1] =
∑

nyh[y].

The two actions are related by

ι(hλ) = h ∗ ι(λ) (h ∈ Gal(K/Q), λ ∈ X∗(KT )), (1.5.4.2)

where

ι : X∗(KT ) −→ X∗(KT ),
∑

ny[y] 7→
∑

ny[y−1] =
∑

ny−1 [y]
(1.5.4.3)

is the involution induced by the inverse map g 7→ g−1 on Gal(K/Q) = X(K).
As ι(λΦ) = λΦ−1 , the involution ι and the action (1.5.4.1) preserve X∗(KS ),
and we have

h ∗ λΦ = λΦh−1 . (1.5.4.4)

We denote by

ι : KSK = KS ⊗Q K −→ KSK

the morphism corresponding to ι.

1.6 Universal Taniyama elements ([Mil90], [Sch94])

In this section we assume that K is a CM number field which is a Galois
extension of Q.

1.6.1

The two actions of Gal(K/Q) on X∗(KS ) correspond to two actions of
Gal(K/Q) on KS (K̂):
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the Galois action t 7→ gt and the algebraic action t 7→ h ∗ t, which commute
with each other and satisfy

(gλ)(gt) = g(λ(t)), (h ∗ λ)(h ∗ t) = λ(t) (λ ∈ X∗(KS ), t ∈ KS (K̂)),

respectively.

Proposition 1.6.2 (i) There is a unique map f ′ : ΓQ −→ KS (K̂)/KS (K)
such that λΦ ◦ f ′ = fΦ, for all CM types Φ of K. The map f ′ factors through
Gal(Kab/Q).
(ii) For each λ ∈ X∗(KS ), put f ′λ = λ◦f ′ : ΓQ −→ K̂∗/K∗; then f ′λ+µ(g) =
f ′λ(g)f ′µ(g).
(iii) ∀λ ∈ X∗(KS ) ∀g, g′ ∈ ΓQ f ′λ(gg′) = f ′g′λ(g)f ′λ(g′).
(iv) ∀h ∈ Gal(K/Q) h(f ′λ(g)) = f ′h∗λ(g).

Proof. (i) As the torus KS is split over K and X∗(KS ) is a free abelian
group generated by the CM characters λΦ, we have

KS (K̂)/KS (K) = HomZ(X∗(KS ), K̂∗)/HomZ(X∗(KS ),K∗) =

= HomZ(X∗(KS ), K̂∗/K∗) =

{α : {CM types of K} −→ K̂∗/K∗∣∣ ∏
α(Φ)nΦ = 1 whenever

∑
nΦλΦ = 0}.

The existence and uniqueness of f ′ then follows from (1.5.3.2). As K is a Galois
extension of Q, the maps FΦ (hence fΦ, too) factor through Gal(Kab/Q).
(ii) This is a consequence of (the proof of) (i).
(iii), (iv) If λ = λΦ, the statement of (iii) (resp., of (iv)) is just (1.4.2.3)
(resp., (1.4.2.4)). The general case then follows from (ii).

Proposition 1.6.3 (i) Define the map f : ΓQ −→ KS (K̂)/KS (K) by the
formula f(g) = (ι (f ′(g)))−1. The map f factors through Gal(Kab/Q) and has
the following properties.
(ii) The maps fλ = λ ◦ f : ΓQ −→ K̂∗/K∗ (λ ∈ X∗(KS )) satisfy

fλ+µ(g) = fλ(g)fµ(g), fλ(g) = f ′ι(λ)(g)−1, fλ(gg′) = fg′∗λ(g)fλ(g′).

(iii) ∀h ∈ Gal(K/Q) ∀g ∈ ΓQ
h(fλ(g)) = fhλ(g), h(f(g)) = f(g).

(iv) ∀g, g′ ∈ ΓQ f(gg′) =
(
g′−1 ∗ f(g)

)
f(g′).

Proof. The statements of (i), (ii) and the first part of (iii) are immediate
consequences of 1.6.2, thanks to (1.5.4.2). The second part of (iii) follows
from

(
hλ

) (
h(f(g))

)
= h(λ (f(g)))

(iii)
=

(
hλ

)
(f(g)) (λ ∈ X∗(KS )),
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while (iv) is a consequence of the last formula from (ii) and

λ
(
g′−1 ∗ f(g)

)
= (g′ ∗ λ) (f(g)) .

1.6.4

For each CM type Φ of K, the map fλΦ
is given by

fλΦ
(g) = fΦ−1(g)−1,

which implies that

rK ◦ fλΦ
(g) = FΦ−1(g)−1.

In the notation of [Sch94, 4.2], we have fλ(g) = fK(g, λ). The map f is the
“universal Taniyama element” of [Mil90, I.5.7].

Proposition 1.6.5 If K ′ is a CM number field, which is a Galois extension
of Q and contains K, then the universal Taniyama elements fK : ΓQ −→
KS (K̂)/KS (K) and fK′ : ΓQ −→ K′S (K̂ ′)/K′S (K ′) over K and K ′,
respectively, satisfy fK = NK′/K ◦ fK′ .

Proof. As the map iK′/K : K̂∗/K∗ −→ K̂ ′∗/K ′∗ is injective, it is enough to
check that, for any CM type Φ of K and g ∈ ΓQ,

iK′/K ◦ λΦ ◦ fK(g) ?= iK′/K ◦ λΦ ◦NK′/K ◦ fK′(g) ∈ K̂ ′∗/K ′∗,

which follows from (1.4.2.5), since

iK′/K ◦ λΦ ◦ fK(g) = iK′/K

(
fΦ−1(g)−1

) (1.4.2.5)
= fΦ′−1(g)−1 = λΦ′ ◦ fK′(g) =

= iK′/K ◦ λΦ ◦NK′/K ◦ fK′(g),

where Φ′ is the CM type of K ′ induced from Φ.

1.7 The Taniyama group ([Mil90], [MS82], [Sch94])

Let K be as in §1.6.

1.7.1

The Taniyama group of level K sits in an exact sequence of affine group
schemes over Q

1 −→ KS
i−→ KT

π−→ Gal(Kab/Q) −→ 1
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such that the action of (the constant group scheme) Gal(Kab/Q) on KS
defined by this exact sequence is given by the algebraic action (g, t) 7→ g ∗ t.
In addition, there exists a continuous group homomorphism

sp : Gal(Kab/Q) −→ KT (Q̂)

satisfying π ◦ sp = id.

1.7.2

Choose a section

α : Gal(Kab/Q) −→ KT (K)

of the map KT (K) −→ Gal(Kab/Q) (which is surjective, as the torus KS is
split over K and H1(K,Gm) = 0); the map

b : Gal(Kab/Q) −→ KS (K̂), b(g) = sp(g)α(g)−1

has the following properties.

(1.7.2.1) The induced map b : Gal(Kab/Q) −→ KS (K̂)/KS (K) does not
depend on the choice of α.
(1.7.2.2) ∀g, g′ ∈ Gal(Kab/Q) b(gg′) =

(
g′−1 ∗ b(g)

)
b(g′).

(1.7.2.3) ∀h ∈ Gal(K/Q) ∀g ∈ Gal(Kab/Q) h
(
b(g)

)
= b(g).

(1.7.2.4) The “coboundary” dg,g′ =
(
g′−1 ∗ b(g)

)
b(g′) b(gg′)−1 is a locally

constant function on Gal(Kab/Q)2.

1.7.3

Conversely, any map b satisfying (1.7.2.1-4) gives rise to an object from 1.7.1
([MS82, Prop. 2.7]): firstly, the reverse 2-cocycle dg,g′ with values in KS (K)
defines an exact sequence of affine group schemes over K

1 −→ KSK
i−→ G′ π−→ Gal(Kab/Q) −→ 1 (1.7.3.1)

equipped with a section α : Gal(Kab/Q) −→ G′(K) such that

∀g, g′ ∈ Gal(Kab/Q) α(gg′) = α(g)α(g′)dg,g′ .

Secondly, the map

sp : Gal(Kab/Q) −→ G′(K̂), sp(g) = b(g)α(g)

is a group homomorphism satisfying π◦sp = id. Thirdly, each element h ∈ ΓK

acts on G′(Q) by

h(sα(g)) = hsα(g) (s ∈ KS (Q)). (1.7.3.2)
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In order to descend the sequence (1.7.3.1) to an exact sequence of group
schemes over Q

1 −→ KS
i−→ G

π−→ Gal(Kab/Q) −→ 1,

it is enough to extend the action of ΓK from (1.7.3.2) to an action of ΓQ com-
patible with i and π. This is done by putting, for h ∈ ΓQ and g ∈ Gal(Kab/Q),

h(sα(g)) = ch(g) hsα(g), ch(g) = b(g) h(b(g))−1 ∈ KS (K)

As h(sp(g)) = sp(g) for all h ∈ ΓQ and g ∈ Gal(Kab/Q), the map sp has
values in G(Q̂). Up to isomorphism, the quadruple (G, i, π, sp) obtained by
this method depends only on b, not on its lift b.

1.7.4

The Taniyama group KT of level K is defined by applying the construction
from 1.7.3 to the universal Taniyama element f , which satisfies (1.7.2.2-3), by
Proposition 1.6.3. The existence of a lift b of f satisfying (1.7.2.4) is established
in the following Proposition.

Proposition 1.7.5 There exists a lift b : Gal(Kab/Q) −→ KS (K̂) of f
whose “coboundary” dg,g′ =

(
g′−1 ∗ b(g)

)
b(g′) b(gg′)−1 is a locally constant

function on Gal(Kab/Q)2.

Proof. Let ˜̀
K be as in 1.3.4(iv). As the maps FΦ (which factor through

Gal(Kab/Q)) are continuous, there exists an open subgroup U ⊂ Γ ab
K such

that ˜̀
K , when restricted to

⋃
Φ FΦ(U), is a homomorphism. If nΦ ∈ Z satisfy∑

Φ nΦλΦ = 0, then the relation (1.5.3.1) implies that

∀u ∈ U
∏
Φ

˜̀
K (FΦ(u))nΦ = 1 ∈ K̂∗.

As in the proof of 1.6.2(i), we conclude that, for each u ∈ U , there exists a
unique element b′(u) ∈ KS (K̂) satisfying λΦ(b′(u)) = ˜̀

K (FΦ(u)). Fix coset
representatives Gal(Kab/Q) =

⋃
j giU (disjoint union) and lifts s̃j ∈ KS (K̂)

of f ′(gj) ∈ KS (K̂)/KS (K) such that gj0 = 1 and s̃j0 = 1; define a map
b′ : Gal(Kab/Q) −→ KS (K̂) by

b′(gju) = s̃jb
′(u) (u ∈ U).

The map b(g) := (ι(b′(g)))−1 then has the required property.
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1.7.6

Proposition 1.6.5 implies that the pull-backs of the group schemes KT via
ΓQ −→ Gal(Kab/Q) form, for varying K, a projective system compatible
with the norm maps NK′/K : K′S −→ KS . In the limit, they give rise to an
exact sequence

1 −→ S
i−→ T

π−→ ΓQ −→ 1 (1.7.6.1)

equipped with a splitting sp : ΓQ −→ T (Q̂). The main result of [Del82] states
that the affine group scheme T (= the Taniyama group) is the Tannaka dual
of the category CMQ of CM motives (for absolute Hodge cycles) defined over
Q. The group scheme KT corresponds to the full Tannakian subcategory of
CMQ consisting of objects with reflex field in K.

2 Hidden symmetries in the CM theory

Throughout this chapter, K and F are as in 1.3. Put X = X(F ). In §2.1
(resp., §2.2) we extend Tate’s half transfer FΦ (resp., the Taniyama element
fΦ) from ΓQ to AutF−alg(F ⊗Q) (resp., to AutF−alg(F ⊗Q)1). In §2.3-2.4
we use our generalisation of the Taniyama element to construct a generalised
Taniyama group.

2.1 Generalised half transfer

2.1.1

Fix a section s : X −→ ΓQ of the restriction map g 7→ g|F . As in 1.1.2-4, the
choice of s determines the following objects:

(2.1.1.1) An injection ρs : ΓQ ↪→ SX n ΓX
F .

(2.1.1.2) An isomorphism βs∗ : AutF−alg(F ⊗ Q) ∼−→ AutF−alg(Q
X

) =
SX n ΓX

F satisfying βs∗(idF ⊗ g) = ρs(g).

In addition, we obtain

(2.1.1.3) A bijection between (Z/2Z)X and the set of CM types of K:
a function α : X −→ Z/2Z corresponds to the CM type {cα(x)s(x)|K =
s(x)cα(x)|K}x∈X .
(2.1.1.4) A section ws : X(K) −→ ΓQ of the restriction map g 7→ g|K
satisfying ws(cy) = cws(y), namely ws(cas(x)|K) = cas(x) (x ∈ X, a ∈
Z/2Z).

For h ∈ ΓX
F , we denote by h : X −→ Z/2Z the image of h in Gal(K/F )X ∼−→

(Z/2Z)X . In other words,
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∀x ∈ X h(x)|K = ch(x), R(h(x)) = ch(x)h(x),

where R : ΓF −→ ΓK is the retraction map from 1.3.2. We let SX n ΓX
F act

on (Z/2Z)X via (1.1.1.1) and the natural projection (σ, h) 7→ (σ, h):

(σ, h)α = (α + h) ◦ σ−1. (2.1.1.5)

2.1.2 Rewriting Tate’s half transfer in terms of ρs

Let Φ be a CM type of K. If g ∈ ΓQ, then ρs(g) = (σ, h) ∈ SX n ΓX
F , where

∀x ∈ X σ(x) = gx, h(x) = s(gx)−1gs(x) = s(σ(x))−1gs(x) ∈ ΓF .

Let α ∈ (Z/2Z)X correspond to Φ, as in (2.1.1.3). For each x ∈ X, the element

ϕx = cα(x)s(x)|K = s(x)cα(x)|K ∈ Φ

satisfies ws(ϕx) = cα(x)s(x) and

gϕx = gs(x)cα(x)|K = s(σ(x))h(x)cα(x)|K = cα(x)+h(x)s(σ(x))|K ,

which implies that ws(gϕx) = cα(x)+h(x)s(σ(x)) and

ws(gϕx)−1gws(ϕx) = s(σ(x))−1cα(x)+h(x)gcα(x)s(x) =

= s(σ(x))−1cα(x)+h(x)s(σ(x))h(x)s(x)−1cα(x)s(x) =

=
[
s(σ(x))−1cα(x)+h(x)s(σ(x))cα(x)+h(x)

]
·

·
[
cα(x)+h(x)h(x)cα(x)

]
·
[
cα(x)s(x)−1cα(x)s(x)

]
Denote by γx,s the image of s(x)−1cs(x)c ∈ ΓK in Γ ab

K . As each of the three
elements in square brackets lies in ΓK , we have

FΦ(g) =
∏
x∈X

ws(gϕx)−1gws(ϕx)|Kab =

=
∏

x∈|(σ,h)α|

γx,s

∏
x∈|α|

γ−1
x,s

∏
x∈X

cα(x)R(h(x))cα(x)|Kab ,

where we have denoted by |α| = {x ∈ X | α(x) 6= 0} the support of α. This
calculation justifies the following
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Proposition-Definition 2.1.3 For each α ∈ (Z/2Z)X , the formula

sF̃α(σ, h) =
∏
x∈X

s(σ(x))−1cα(x)+h(x)s(σ(x))h(x)s(x)−1cα(x)s(x)|Kab =

=
∏

x∈|(σ,h)α|

γx,s

∏
x∈|α|

γ−1
x,s

∏
x∈X

cα(x)R(h(x))cα(x)|Kab

defines a map
sF̃α : SX n ΓX

F −→ Γ ab
K

(depending on s and α) satisfying sF̃α ◦ ρs = FΦ, where Φ is the CM type
corresponding to α, as in (2.1.1.3).

Proposition 2.1.4 The maps sF̃α have the following properties.
(i) ∀g, g′ ∈ SX n ΓX

F sF̃α(gg′) = sF̃g′α(g) sF̃α(g′).
(ii) For each (σ, h) ∈ SX n ΓX

F ,

sF̃α(σ, h)|F ab =
∏

x∈|(σ,h)α|

cx

∏
x∈|α|

cx

∏
x∈X

h(x)|F ab ,

1+c
(

sF̃α(σ, h)
)

= ṼK/F (σ, h) =
∏
x∈X

1+cR(h(x))|Kab ,

where ṼK/F (σ, h) =
∏

x∈X VK/F (h(x)|F ab).
(iii) Each map sF̃α factors through SX n Gal(Kab/F )X .
(iv) If g = (σ, h) ∈ SX n ΓX

F satisfies gα = α, then

sF̃α(g) =
∏
x∈X

cα(x)R(h(x))cα(x)|Kab .

(v) ∀(σ, h) ∈ SX n ΓX
K sF̃0(σ, h) =

∏
x∈X h(x)|Kab .

(vi) ∀α ∈ (Z/2Z)X
sF̃0(1, cα) =

∏
x∈|α| γx,s.

Proof. (i) If g = (σ, h) and g′ = (σ′, h′), then gg′ = (σσ′, (h ◦ σ′)h′) and
α′ := g′α = (α + h

′
) ◦ σ′−1, which implies that sF̃α(gg′) sF̃α(g′)−1

sF̃g′α(g)−1

is equal to

∏
x∈X

(
cα(x)+h(σ′(x))+h

′
(x)h(σ′(x))h′(x)cα(x)

)
·

·
(
cα(x)+h

′
(x)h′(x)cα(x)

)−1

·
(
cα′(x)+h(x)h(x)cα′(x)

)−1

=

=
∏
x∈X

(
cα′(σ′(x))+h(σ′(x))h(σ′(x))cα′(σ′(x))

) (
cα′(x)+h(x)h(x)cα′(x)

)−1

= 1.

(ii) The first formula is a consequence of the fact that
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∀x ∈ X γx,s|F ab = cxc, cα(x)R(h(x))cα(x)|F ab = ch(x)h(x)|F ab ;

applying (1.3.2.1), we obtain the second formula.
The statements (iii)-(vi) follow directly from the definitions.

2.1.5 Change of s

Let s, s′ −→ ΓQ be two sections of the restriction map g 7→ g|F . We have s′ =
st, where t : X −→ ΓF . As in 2.1.1, we write, for each x ∈ X, t(x)|K = ct(x)

(t(x) ∈ Z/2Z); then R(t(x)) = ct(x)t(x) ∈ ΓK . The recipe (2.1.1.3), applied
to s and s′, respectively, associates to each CM type Φ of K two functions
α = αΦ,s, α

′ = αΦ,s′ : X −→ Z/2Z such that

Φ = {cα(x)s(x)|K} = {cα′(x)s′(x)|K} (=⇒ α′ = α + t).

According to Proposition 1.1.4, the following diagram is commutative:

SX n ΓX
F

Ad(1,t)−1

��

ΓQ

ρs

44iiiiiiiiiiiiiiiiiiiiiiiiii //

ρs′

**UUUUUUUUUUUUUUUUUUUUUUUUUU AutF−alg(F ⊗Q)

βs∗

88qqqqqqqqqqqqq

βs′∗

&&MMMMMMMMMMMMM

SX n ΓX
F

(2.1.5.1)

For (σ, h) ∈ SX n ΓX
F , put

(σ′, h′) := Ad(1, t)−1(σ, h) = (1, t)−1(σ, h)(1, t) = (σ, (t ◦ σ)−1ht) ∈ SX n ΓX
F .

(2.1.5.2)
The map ṼK/F from Proposition 2.1.4(ii) satisfies ṼK/F (σ, h) = ṼK/F (σ′, h′),
which means that the map

ṼK/F ◦ βs∗ : AutF−alg(F ⊗Q) −→ Γ ab
K (2.1.5.3)

does not depend on s; we denote it again by ṼK/F . The equalities

(σ, h)α = (α+h)◦σ−1, (σ′, h′)α′ = (α′+h
′
)◦σ−1 = (α+h)◦σ−1+t ∈ (Z/2Z)X

imply that the action of SX nΓX
F on (Z/2Z)X defined in (2.1.1.5) gives rise to

an action of the group AutF−alg(F ⊗Q) on the set of CM types of K, which
is characterised by
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∀g ∈ AutF−alg(F ⊗Q) αgΦ,s = βs∗(g)αΦ,s, (2.1.5.4)

but which does not depend on s.

Proposition 2.1.6 sF̃α(σ, h) = s′ F̃α′(σ′, h′) ∈ Γ ab
K , in the notation of

(2.1.5.2).

Proof. The relations s′ = st, (σ′, h′) = (σ, (t ◦ σ)−1ht), h
′

= h + t + t ◦ σ,
α′ = α + t, (σ, h)α = (α + h) ◦ σ−1 and (σ′, h′)α′ = (σ, h)α + t imply that

s′ F̃α′(σ′, h′) =∏
x∈X

t(σ(x))−1s(σ(x))−1c(α+h)(x)+t(σ(x))s(σ(x))h(x)s(x)−1c(α+t)(x)s(x)t(x)|Kab

=
∏
x∈X

A′((σ, h)α, x)−1B(α, x)A′(α, x),

where

A′(α, x) = cα(x)s(x)−1c(α+t)(x)s(x)t(x)|Kab , B(α, x) = cα(x)R(h(x))cα(x)|Kab .

As

sF̃α(σ, h) =
∏
x∈X

A((σ, h)α, x)−1B(α, x)A(α, x),

where

A(α, x) = cα(x)s(x)−1cα(x)s(x)|Kab ,

the equality sF̃α(σ, h) = s′ F̃α′(σ′, h′) follows from the fact that

∀x ∈ X A(α, x)−1A′(α, x) = s(x)−1ct(x)s(x)t(x)|Kab

does not depend on α.

Proposition-Definition 2.1.7 In the notation of 2.1.5, the map

F̃Φ = sF̃α(σ, h) ◦ βs∗ : AutF−alg(F ⊗Q) −→ Γ ab
K

depends on Φ, but not on s; it has the following properties.
(i) ∀g ∈ ΓQ F̃Φ(idF ⊗ g) = FΦ(g).
(ii) ∀g, g′ ∈ AutF−alg(F ⊗Q) F̃Φ(gg′) = F̃g′Φ(g)F̃Φ(g′).
(iii) ∀g ∈ AutF−alg(F ⊗ Q) 1+cF̃Φ(g) = ṼK/F (g) (in the notation of
(2.1.5.3)).

Proof. The independence of F̃Φ of the choice of s follows from Proposition
2.1.6 and the commutative diagram (2.1.5.1). The remaining statements are
consequences of Proposition 2.1.4.
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2.1.8 Galois functoriality of F̃Φ

Given an element ũ ∈ ΓQ, define u := ũ|K , uF := u|F , K ′ := u(K), F ′ =
uF (F ) and X ′ = X(F ′). As in Proposition 1.1.6 (for k = Q and k′ = Q), a
fixed section s : X −→ ΓQ of the restriction map g 7→ g|F defines a section
s′ : X ′ −→ ΓQ of the restriction map g 7→ g|F ′ , given by

s′(x′) = s′(xu−1
F ) = s(x) ◦ ũ−1 (x ∈ X).

Proposition 2.1.9 For each α : X −→ Z/2Z, the diagram

SX n ΓX
F

s
eFα−→ Γ ab

Kyeu∗ yu

SX′ n ΓX′

F ′
s′

eFα′−→ Γ ab
K′

is commutative, where ũ∗ is the map defined in Proposition 1.1.6, α′ : X ′ −→
Z/2Z is given by α′(x′) = α(x) (x = x′uF ) and the right vertical map (which
depends only on u) is given by g 7→ ũgũ−1.

Proof. For (σ, h) ∈ SX n ΓX
F , we have ũ∗(σ, h) = (σ′, h′), where σ′(x′) =

σ(x)u−1
F , h′(x′) = ũh(x)ũ−1 (x′ = xu−1

F ). The relations α′(x′) = α(x),
s′(σ′(x′)) = s(σ(x))ũ−1, s′(x′) = s(x)ũ−1 and h

′
(x′) = h(x) imply that

s′ F̃α′(σ′, h′) is equal to

∏
x′∈X′

s′(σ′(x′))−1cα′(x′)+h
′
(x′)s′(σ′(x′))h′(x′)s′(x′)−1cα′(x′)s′(x′)|K′ab =

= ũ
∏
x∈X

s(σ(x))−1cα(x)+h(x)s(σ(x))h(x)s(x)−1cα(x)s(x)|Kab ũ−1 =

= u
(

sF̃α(σ, h)
)

.

Corollary 2.1.10 For each CM type Φ of K, the diagram

AutF−alg(F ⊗Q)
eFΦ−→ Γ ab

Ky[uF ]

yu

AutF ′−alg(F ′ ⊗Q)
eFΦu−1−→ Γ ab

K′

is commutative, where [uF ] is the map defined in Proposition 1.1.7(i).

Proof. This follows from Proposition 2.1.9 combined with Proposition 1.1.7(ii)
(for k = Q and k′ = Q), if we take into account the fact that

{cα′(x′)s′(x′)|K′}x′∈X′ = {cα(x)s(x)|K u−1}x∈X .
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2.2 Generalised Taniyama elements

2.2.1

Let (SX n ΓX
F )1 be the group defined as the fibre product

(SX n ΓX
F )1 −→ SX n ΓX

Fy y(1,prod)

Γ ab
Q /〈c〉

V F/Q

↪→ Γ ab
F /〈cX〉.

As the morphism V F/Q is injective (1.3.2.4), we can (and will) identify (SX n
ΓX

F )1 with its image in SX nΓX
F . The group (SX nΓX

F )0, defined in (1.1.2.4),
sits in an exact sequence

1 −→ (SX n ΓX
F )0 −→ (SX n ΓX

F )1 −→ 〈cX〉/VF/Q(〈c〉) −→ 1.

For i = 0, 1, the subgroups β−1
s∗

(
(SX n ΓX

F )i

)
of AutF−alg(F ⊗Q) are inde-

pendent of the choice of a section s : X −→ ΓQ; we denote them by

AutF−alg(F ⊗Q)0 ⊂ AutF−alg(F ⊗Q)1 ⊂ AutF−alg(F ⊗Q).

Definition 2.2.2 For each CM type Φ of K, define a map

f̃Φ : AutF−alg(F ⊗Q)1 −→ K̂∗/K∗

by
f̃Φ(g) = `K

(
F̃Φ(g)

)
,

where `K is the morphism from Proposition 1.3.4(i). [This definition makes
sense, by Proposition 2.1.4(ii).]

Proposition 2.2.3 The maps f̃Φ have the following properties.
(i) rK ◦ f̃Φ = F̃Φ.
(ii) ∀g ∈ ΓQ f̃Φ(idF ⊗ g) = fΦ(g).
(iii) Each map f̃Φ factors through

AutF−alg(F ⊗Kab)1 := Im
(
AutF−alg(F ⊗Q)1 −→ AutF−alg(F ⊗Kab)

)
.

(iv) ∀g, g′ ∈ AutF−alg(F ⊗Q)1 f̃Φ(gg′) = f̃g′Φ(g)f̃Φ(g′).
(v) If u : K

∼−→ K ′ is an isomorphism of CM number fields, then

f̃Φu−1 ◦ [u|F ] = u ◦ f̃Φ.

(vi) For g ∈ AutF−alg(F ⊗Q)1, denote by u(g) ∈ Γ ab
Q /〈c〉 the unique element

satisfying VK/Q(u(g)) = 1+cF̃Φ(g); then 1+cf̃Φ(g) = χ(u(g))K∗.
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(vii) For g ∈ AutF−alg(F⊗Q)0, denote by u(g) ∈ Γ ab
Q the unique element sat-

isfying VF/Q(u(g)) = F̃Φ(g)|F ab ; then NK/F (f̃Φ(g)) = χ(u(g))αF ∗
+ ∈ F̂ ∗/F ∗

+,
where α ∈ F ∗ satisfies

∀x ∈ X sgn(x(a)) =
{

1, if Φ and gΦ agree at x
−1, if Φ and gΦ do not agree at x

(we say that two CM types Φ and Φ′ of K agree at x ∈ X if the unique element
of Φ whose restriction to F is x is equal to the unique element of Φ′ whose
restriction to F is x).

Proof. The statement (i) holds by definition, while (ii)-(v) follow from the
correspondings assertions for F̃Φ, proved in Proposition 2.1.7 and Corollary
2.1.10. The property (vi) (resp., (vii)) is a consequence of Proposition 1.3.4(i)
(resp., 1.3.4(ii)) combined with the second (resp., the first) formula in Propo-
sition 2.1.4(ii).

Proposition 2.2.4 Let K ′ be a CM number field containing K; put X ′ =
X(F ′), where F ′ is the maximal totally real subfield of K ′. If Φ is a CM type
of K and Φ′ is the induced CM type of K ′, then:
(i) ∀g ∈ AutF−alg(F ⊗Q) F̃Φ′(idF ′ ⊗F g) = VK′/K

(
F̃Φ(g)

)
∈ Γ ab

K′ .

(ii) ∀i = 0, 1 ∀g ∈ AutF−alg(F ⊗Q)i idF ′ ⊗F g ∈ AutF ′−alg(F ′ ⊗Q)i.

(iii) ∀g ∈ AutF−alg(F ⊗Q)1 f̃Φ′(idF ′ ⊗F g) = iK′/K

(
f̃Φ(g)

)
∈ K̂ ′∗/K ′∗.

Proof. (i) Fix a section s : X −→ ΓQ; let α : X −→ Z/2Z correspond to
Φ, as in (2.1.1.3). The sets ΓK/ΓK′ and ΓF /ΓF ′ are canonically identified.
Fix a section u : ΓK/ΓK′ = HomK−alg(K ′,Q) −→ ΓK of the restriction map
g 7→ g|K and define a section s′ : X ′ −→ ΓQ by

s′(s(x)y|F ′) = s(x)u(y) (x ∈ X, y ∈ ΓF /ΓF ′);

then Φ′ corresponds to α′ = α ◦ p : X ′ −→ Z/2Z, where we have denoted by
p : X ′ −→ X the restriction map g 7→ g|F . Proposition 1.1.8 implies that the
elements

(σ, h) = βs∗(g) ∈ SX n ΓX
F , (σ′, h′) = βs′∗(idF ′ ⊗F g) ∈ SX′ n ΓX′

F ′

are related by

σ′(s(x)y|F ′) = s(σ(x))h(x)y|F ′ , s′(σ′(s(x)y|F ′)) = s(σ(x))u(h(x)y),
h′(s(x)y|F ′) = u(h(x)y)−1h(x)u(y) (x ∈ X, y ∈ ΓF /ΓF ′),

hence h
′
= h ◦ p. For x ∈ X and x′ ∈ X ′, put
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k(x) = s(σ(x))−1cα(x)+h(x)s(σ(x))h(x)s(x)−1cα(x)s(x) ∈ ΓK

k′(x′) = s′(σ′(x′))−1cα′(x′)+h
′
(x′)s′(σ′(x′))h′(x′)s′(x′)−1cα′(x′)s′(x′) ∈ ΓK′ .

By definition,

F̃Φ(g) = sF̃α(σ, h) =
∏
x∈X

k(x)|Kab ∈ Γ ab
K ,

F̃Φ′(idF ′ ⊗F g) = s′ F̃α′(σ′, h′) =
∏

x′∈X′

k′(x′)|K′ab ∈ Γ ab
K′ .

For each x ∈ X and y ∈ ΓF /ΓF ′ ,

k′(s(x)y|F ′) = u(h(x)y)−1k(x)u(y) ∈ ΓK′ ,

which implies that k(x)y = k(x)u(y)|K′ = u(h(x)y)|K′ = h(x)y, hence
u(h(x)y) = u(k(x)y) and

∏
x′∈p−1(x)

k′(x′)|K′ab =
∏

y∈ΓK/ΓK′

u(k(x)y)−1k(x)u(y)|K′ab = VK′/K (k(x)|Kab) .

Taking the product over all x ∈ X yields (i). The statement (ii) follows from
the fact that, in the notation used in the proof of (i),

∏
x′∈p−1(x)

h′(x′)|F ′ab =
∏

y∈ΓF /ΓF ′

u(h(x)y)−1h(x)u(y)|F ′ab = VF ′/F (h(x)|F ab) .

Finally, (iii) follows by applying `K′ to the statement of (i) (which makes
sense, by (ii) for i = 1).

2.2.5 Action of AutF −alg(F ⊗ Q)0 on CM points of Hilbert
modular varieties

In this section we prove Theorem 0.9. Given a polarised HBAV (Hilbert-
Blumentahl abelian variety) A relative to F with CM, then A is defined over
Q, and there exist

• a CM field K of degree 2 over F ;
• a CM type Φ of K (which defines an embedding K ↪→ CΦ, α 7→ (ϕ 7→
ϕ(α))ϕ∈Φ);
• a fractional ideal a of K;
• an element t ∈ K∗ such that t 6∈ F ∗, t2 ∈ F ∗ and ∀ϕ ∈ Φ Im(ϕ(t)) < 0;
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• an OK-linear isomorphism θ : CΦ/a
∼−→ A(C) such that the Riemann

form of the pull-back of the polarisation of A by θ is induced by the form
Et(x, y) = TrK/Q(tx cy) on K.

One says that A is a CM abelian variety of type (K, Φ, a, t) (via θ). The type is
determined up to transformations (K, Φ, a, t) 7→ (K, Φ, aα, t/1+cα) (α ∈ K∗),
and it determines A with its polarisation up to isomorphism.
Given g ∈ AutF−alg(F⊗Q)0, let u(g) ∈ Γ ab

Q be as in Proposition 2.2.3(vii). Fix
a lift f̃ ∈ K̂∗ of f̃Φ(g) ∈ K̂∗/K∗ and define A′ = CgΦ/af̃ , with polarisation
given by Et′ , where

t′ = t χ(u(g))/1+cf̃ ∈ K∗

(t′ satisfies t′ 6∈ F ∗, t′2 ∈ F ∗ and ∀ϕ′ ∈ gΦ Im(ϕ′(t′)) < 0, the last condition
by Proposition 2.2.3(vii)).
Given, in addition, a full level structure η : (F/OF )2 ∼−→ A(Q)tors of A under
which the Weil pairing associated to the given polarisation is a Q̂∗-multiple of
the standard form Tr bF/ bQ ◦ det bF on F̂ 2, let η′ be the following level structure
of A′:

η′ : (F/OF )2
η−→ A(C)tors

θ−1

−→ K/a
[× ef ]−→ K/af̃ = A′(C)tors.

The isomorphism class of the triple (A′, Et′ , η
′) depends only on g and on the

isomorphism class [(A,Et, η)] of (A,Et, η). Proposition 2.2.3 implies that the
assignement

g[(A,Et, η)] = [(A′, Et′ , η
′)]

defines an action of AutF−alg(F ⊗Q)0 on the isomorphism classes of polarised
HBAV (relative to F ) with CM, equipped with a full level structure. Moreover,
this action commutes with the action of G(F̂ ) on η (by γ : η 7→ η ◦ γ), where
G is the fibre product

G −→ RF/Q(GL(2)F )

↓
ydet

Gm,Q −→ RF/Q(Gm,F ).

In view of the results of Tate and Deligne that were recalled in 1.4.3, it follows
from Proposition 2.2.3 that the action of AutF−alg(F ⊗ Q)0 we have just
defined extends the usual Galois action of ΓQ.

Recall that f̃Φ(g) is defined even for g ∈ AutF−alg(F ⊗ Q)1. However, the
positivity of polarisations implies that the above recipe makes sense only if the
conlusion of Proposition 2.2.3(vii) is satisfied, namely if g ∈ AutF−alg(F⊗Q)0.
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Proposition-Definition 2.2.6 Fix s : X −→ ΓQ as in 2.1.1; then X(K) =
{s(x)ca|K | x ∈ X, a ∈ Z/2Z}.
(i) Let g ∈ AutF−alg(F ⊗Q); put (σ, h) = βs∗(g) ∈ SX n ΓX

F . The formula

g (s(x)ca|K) := s(σ(x))ch(x)+a|K = s(σ(x))h(x)ca|K

defines an action of AutF−alg(F ⊗ Q) on X(K). The action of g on X(K)
depends only on the image of (σ, h) in SX n Gal(K/F )X .
(ii) This action does not depend on the choice of s.
(iii) For each CM type Φ ⊂ X(K) of K, the set gΦ = {gy | y ∈ Φ} coincides
with gΦ, defined in (2.1.5.4).
(iv) If g = idF ⊗ u, u ∈ ΓQ, then gy = u ◦ y = uy, for each y ∈ X(K).

Proof. Easy calculation.

Corollary-Definition 2.2.7 (i) The induced action of AutF−alg(F ⊗Q) on
X∗(KT ) = Z[X(K)]

λ =
∑

ny[y] 7→ gλ =
∑

ny[gy] (g ∈ AutF−alg(F ⊗Q))

extends the action (1.5.1.1) of ΓQ and leaves stable the subgroup X∗(KS ) of
X∗(KT ) spanned by the CM characters λΦ.
(ii) In the special case when K is a Galois extension of Q, the involution ι
from (1.5.4.3) gives rise to another action of AutF−alg(F ⊗Q) on X∗(KT ),
namely

g ∗ ι(λ) = ι(gλ) (λ ∈ X∗(KT )).

This action extends the action (1.5.4.1) of ΓQ and leaves stable X∗(KS ).

Proposition 2.2.8 Let n : {CM types of K} −→ Z be a function satisfying∑
Φ

nΦλΦ = w ·NK/Q = w
∑

y∈X(K)

[y] ∈ X∗(KS ) (w ∈ Z). Then :

(i) ∀g ∈ AutF−alg(F ⊗Q)
∏

Φ F̃Φ(g)nΦ = ṼK/F (g)w.
(ii) If w = 0, then ∀g ∈ AutF−alg(F ⊗Q)1

∏
Φ f̃Φ(g)nΦ = 1 ∈ K̂∗/K∗.

Proof. (i) Fix s : X −→ ΓQ as in 2.1.1, and parametrise the CM types by
functions α : X −→ Z/2Z, as in (2.1.1.3): we write Φα = {s(x)cα(x)|K}x∈X ,
nα = nΦα and λα = λΦα . The condition

∑
Φ nΦλΦ = w · NK/Q is equivalent

to

∀x ∈ X
∑
α

nαλα(x) =
∑
α

nα(1− λα(x)) = w.

The statement (i) follows from the fact that, for each g = (σ, h) ∈ SX n ΓX
F ,
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∏
α

sF̃α(g)nα =
∏
x∈X

γ
P

α(nαλgα(x)−nαλα(x))
x,s R(h(x))

P
α nα(1−λα(x))·

·
∏
x∈X

(cR(h(x)))
P

α nαλα(x) =
∏
x∈X

1+cR(h(c))w = ṼK/F (g)w.

If w = 0, the statement (ii) follows by applying `K to (i).

2.3 Generalised universal Taniyama elements

As in §1.6, we assume that K is a CM number field which is a Galois extension
of Q.

Proposition 2.3.1 (i) There exists a unique map f̃ ′ : AutF−alg(F⊗Q)1 −→
KS (K̂)/KS (K) such that λΦ ◦ f̃ ′ = f̃Φ, for all CM types Φ of K. The map
f̃ ′ factors through AutF−alg(F ⊗Kab)1.
(ii) For each λ ∈ X∗(KS ), put f̃ ′λ = λ ◦ f̃ ′ : AutF−alg(F ⊗Q)1 −→ K̂∗/K∗;
then f̃ ′λ+µ(g) = f̃ ′λ(g)f̃ ′µ(g).
(iii) ∀λ ∈ X∗(KS ) ∀g, g′ ∈ AutF−alg(F ⊗Q)1 f̃ ′λ(gg′) = f̃ ′g′λ(g)f̃ ′λ(g′).
(iv) ∀u ∈ Gal(K/Q) u(f̃ ′λ(g)) = f̃ ′u∗λ([u|F ]g).
(v) ∀g ∈ ΓQ f̃ ′(idF ⊗ g) = f ′(g).

Proof. The statements (i) and (ii) follow from Proposition 2.2.8(ii) by the
same argument as in the proof of Proposition 1.6.2. If λ = λΦ, then (iii)
(resp., (iv)) is just the statement of Proposition 2.2.3 (iv) (resp., (v)); the
general case follows from (ii). Finally, (v) is a consequence of the uniqueness
of f ′, as

∀Φ λΦ(f̃ ′(idF ⊗ g)) = f̃Φ(idF ⊗ g) = fΦ(g) = λΦ(f ′(g)),

by Proposition 2.2.3(ii).

Proposition 2.3.2 (i) Let f̃ : AutF−alg(F ⊗Q)1 −→ KS (K̂)/KS (K) be
the map defined by the formula f̃(g) = (ι(f̃ ′(g)))−1. This map factors through
AutF−alg(F ⊗Kab)1 and has the following properties.
(ii) The maps f̃λ = λ ◦ f̃ : AutF−alg(F ⊗Q)1 −→ K̂∗/K∗ (λ ∈ X∗(KS ))
satisfy

f̃λ+µ(g) = f̃λ(g)f̃µ(g), f̃λ(g) = f̃ ′ι(λ)(g)−1, f̃λ(gg′) = f̃g′∗λ(g)f̃λ(g′).

(iii) ∀u ∈ Gal(K/Q) ∀g ∈ AutF−alg(F ⊗ Q)1 u(f̃λ(g)) = f̃uλ([u|F ]g),
u(f̃(g)) = f̃([u|F ]g).
(iv) ∀g, g′ ∈ AutF−alg(F ⊗Q)1 f̃(gg′) = (g′−1 ∗ f̃(g)) f̃(g′).
(v) ∀g ∈ ΓQ f̃(idF ⊗ g) = f(g).



428 Jan Nekovář

Proof. As in the proof of Proposition 1.6.3, everything follows from Proposition
2.3.1.

Proposition 2.3.3 There exists a lift b̃ : AutF−alg(F ⊗Kab)1 −→ KS (K̂)
of f̃ whose “coboundary” d̃g,g′ = (g′−1 ∗ b̃(g)) b̃(g′) b̃(gg′)−1 is a locally con-
stant function on (AutF−alg(F ⊗Kab)1)2.

Proof. The argument from the proof of Proposition 1.7.5 applies.

Proposition 2.3.4 If K ′ is a CM number field, which is a Galois extension
of Q and contains K, then the generalised universal Taniyama elements f̃K :
AutF−alg(F ⊗Q)1 −→ KS (K̂)/KS (K) and f̃K′ : AutF ′−alg(F ′ ⊗Q)1 −→
K′S (K̂ ′)/K′S (K ′) over K and K ′, respectively, satisfy

∀g ∈ AutF−alg(F ⊗Q)1 f̃K(g) = NK′/K

(
f̃K′(idF ′ ⊗F g)

)
.

Proof. This follows from Proposition 2.2.4(iii), as in the proof of Proposition
1.6.5.

2.4 Generalised Taniyama group

Let K be as in §2.3.

2.4.1

Let us try to apply the method of [MS82, Prop. 2.7] (see 1.7.3 above) to the
generalised universal Taniyama element f̃ and its lift b̃. The reverse 2-cocycle
d̃g,g′ with values in KS (K) gives rise to an exact sequence of affine group
schemes over K

1 −→ KSK
eı−→ G̃′ eπ−→ AutF−alg(F ⊗Kab)1 −→ 1 (2.4.1.1)

(where the term on the right is considered as a constant group scheme),
equipped with a section α̃ : AutF−alg(F ⊗Kab)1 −→ G̃′(K) such that

∀g, g′ ∈ AutF−alg(F ⊗Kab)1 α̃(gg′) = α̃(g)α̃(g′)d̃g,g′ .

The map

s̃p : AutF−alg(F ⊗Kab)1 −→ G̃′(K̂), s̃p(g) = b̃(g)α̃(g)

is a group homomorphism satisfying π̃ ◦ s̃p = id.
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2.4.2

Each element u ∈ ΓK acts on G̃′(Q) by

u(s α̃(g)) = us α̃(g) (s ∈ KS (Q)) (2.4.2.2)

We extend this action to an action of ΓQ: for u ∈ ΓQ and g ∈ AutF−alg(F ⊗
Kab)1, put

c̃u(g) = b̃([u|F ]g) u(̃b(g))−1 ∈ KS (K).

As

∀u, u′ ∈ ΓQ ∀g ∈ AutF−alg(F ⊗Kab)1 c̃uu′(g) = c̃u([u′|F ]g) u(c̃u′(g)),

the formula

u(s α̃(g)) = c̃u(g) us α̃(g) (s ∈ KS (Q), g ∈ AutF−alg(F ⊗Kab)1)
(2.4.2.3)

defines an action of ΓQ on G̃′(Q) which extends the action (2.4.2.2) of ΓK .

We define KT̃ to be the affine group scheme over Q such that KT̃ (Q) =
G̃′(Q), with the ΓQ-action given by (2.4.2.3). The exact sequence (2.4.1.1)
descends to an exact sequence

1 −→ KS
eı−→ KT̃

eπ−→ AutF−alg(F ⊗Kab)′1 −→ 1, (2.4.2.4)

where we have denoted by AutF−alg(F⊗Kab)′1 a twisted form of the constant
group scheme AutF−alg(F ⊗Kab)1, for which u ∈ ΓQ acts on

AutF−alg(F ⊗Kab)′1(Q) = AutF−alg(F ⊗Kab)1

by [u|F ]. Note that

AutF−alg(F ⊗Kab)′1(Q) = idF ⊗Gal(Kab/Q), (2.4.2.5)

by Proposition 1.1.6(iv).

2.4.3

As f̃ extends f (and the restriction of b̃ to Gal(Kab/Q)2 satisfies 1.7.5), there
is a commutative diagram of affine group schemes over Q with exact rows

1 −→ KS
i−→ KT

π−→ Gal(Kab/Q) −→ 1∥∥∥ y y(idF⊗−)

1 −→ KS
eı−→ KT̃

eπ−→ AutF−alg(F ⊗Kab)′1 −→ 1.
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Moreover, there is a commutative diagram of groups

KT (Q̂)
sp←− Gal(Kab/Q)y y(idF⊗−)

KT̃ (K̂)
esp←− AutF−alg(F ⊗Kab)1

such that π ◦ sp = id, π̃ ◦ s̃p = id. As

us̃p(g) = u(̃ b(g)α̃(g)) = c̃u(g) ũb(g) α̃([u|F ]g) = b̃([u|F ]g) α̃([u|F ]g) = s̃p([u|F ]g)

for all u ∈ ΓQ and g ∈ AutF−alg(F ⊗Kab)1, the map s̃p is ΓQ-equivariant. As
[u|F ] depends only on the image of u in Gal(F/Q), it follows that the image
of s̃p is contained in KT̃ (F̂ ), and that s̃p is Gal(F/Q)-equivariant.

2.4.4

Proposition 2.3.4 implies that the pull-backs of K′T̃ to AutF−alg(F⊗Q)′1 (for
varying K ′ ⊃ K) give rise to an extension of AutF−alg(F ⊗Q)′1 by S . These
extensions for varying F are again compatible; they give rise to an extension
of affine group schemes over Q

1 −→ S −→ T̃ −→ lim−→F
AutF−alg(F ⊗Q)′1 −→ 1,

whose pull-back to ΓQ coincides with (1.7.6.1). The direct limit is taken with
respect to the transition maps idF ′ ⊗F − (for F ⊆ F ′).

2.4.5

It would be of interest to give an “abstract” definition of T̃ along the lines of
[Del82]. As observed in 2.2.5, it is the group AutF−alg(F ⊗Q)0 rather than
AutF−alg(F ⊗Q)1 which has a geometric significance, which means that one
should rather consider the subgroup scheme T̃0 ⊂ T̃ sitting in the exact
sequence

1 −→ S −→ T̃0 −→ lim−→F
AutF−alg(F ⊗Q)′0 −→ 1.
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