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Summary. Let X be an algebraic K3 surface with Picard lattice N(X) and MX(v)
the moduli space of sheaves on X with given primitive isotropic Mukai vector
v = (r, H, s). In [14] and [3], we described all the divisors in moduli of polarized
K3 surfaces (X, H) (that is, all pairs H ∈ N(X) with rank N(X) = 2) for which
MX(v) ∼= X. These provide certain Mukai self-correspondences of X.

Applying these results, we show that there exists a Mukai vector v and a
codimension 2 subspace in moduli of (X, H) (that is, a pair H ∈ N(X) with
rank N(X) = 3) for which MX(v) ∼= X, but such that this subspace does not extend
to a divisor in moduli having the same property. There are many similar examples.

Aiming to generalize the results of [14] and [3], we discuss the general problem of
describing all subspaces of moduli of K3 surfaces with this property, and the Mukai
self-correspondences defined by these and their composites, in an attempt to outline
a possible general theory.

1 Introduction

We consider algebraic K3 surfaces X over C; recall that a nonsingular projec-
tive algebraic (or compact Kähler) surface X is a K3 surface if its canonical
class KX is zero and its irregularity q = dim Ω1[X] = 0. We write N(X) for
the Picard lattice of X, ρ(X) = rankN(X) for its rank, and T (X) for the
transcendental lattice.
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Consider a primitive isotropic Mukai vector on X

v = (r, l, s), with r ∈ N, s ∈ Z and l ∈ N(X) such that l2 = 2rs, (1)

and denote by Y = MX(v) = MX(r, l, s) the K3 surface obtained as the
minimal resolution of singularities of the moduli space of sheaves on X with
Mukai vector v. For details, see Mukai [4]–[7] and Yoshioka [19]. Under these
assumptions, by results of Mukai [5], the quasi-universal sheaf on X × Y
and its Chern class defines a 2-dimensional algebraic cycle on X × Y and a
correspondence between X and Y with nice geometric properties. For more
details, see Section 5.

If Y ∼= X, this provides an important 2-dimensional algebraic cycle on
X ×X, and a correspondence from X to itself; the question of when Y ∼= X
is thus very interesting. The answer when ρ(X) = 1, probably already known
to specialists, is given in Section 2.

Tensoring by any D ∈ N(X) gives a natural isomorphism:

TD : MX(r, l, s) ∼= MX(r, l + rD, s + 1
2rD2 + D · l)

defined by E 7→ E ⊗ O(D).

For r, s > 0, we have an isomorphism called reflection

δ : MX(r, l, s) ∼= MX(s, l, r);

see for example [5] and [16], [17], [20]. For integers d1, d2 > 0 with (d1, d2) =
(d1, s) = (r, d2) = 1, we have an isomorphism

ν(d1, d2) : MX(r, l, s) ∼= MX(d2
1r, d1d2l, d

2
2s)

and its inverse ν(d1, d2)−1; see [5], [6], [14], [3].
In Theorem 2.1 and Corollary 2.2, we show that if ρ(X) = 1 and X is

general, then for two primitive isotropic Mukai vectors v1 and v2, the moduli
spaces MX(v1) and MX(v2) are isomorphic if and only if there exists an
isomorphism between them obtained by composing the above three natural
isomorphisms. They give universal isomorphisms between moduli of sheaves
on X.

For l ∈ N(X) with±l2 > 0, it is known that we have a Tyurin isomorphism
(see for example Tyurin [17])

Tyu = Tyu(±l) : MX(±l2/2, l,±1) ∼= X . (2)

Corollary 2.6 shows that if ρ(X) = 1, then MX(r, H, s) and X are iso-
morphic if and only if there exists an isomorphism between them which is
a composite of the above three universal isomorphisms between moduli of
sheaves, and a Tyurin isomorphism (see also Remark 3.4). Compare [14] for
a similar result.
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We showed in [14] and interpreted geometrically in [3] (together with Carlo
Madonna) that analogous results hold if ρ(X) = 2 and X is general with its
Picard lattice, i.e., the automorphism group of the transcendental periods
is trivial: Aut

(
T (X),H2,0(X)

)
= ±1 (See also [1], [2], [13] about important

particular cases of these results.) We review these results in Section 3; see
Theorems 3.1, 3.2 and 3.3 for precise statements. These results show that
in this case (i.e., when ρ(X) = 2 and X is general with its Picard lat-
tice), MX(r, H, s) ∼= X if and only if there exists an isomorphism between
MX(r, H, s) and X which is a composite of the universal isomorphisms TD,
δ and ν(d1, d2) between moduli of sheaves on X and a Tyurin isomorphism
between moduli spaces of sheaves on X and X itself. The above results for
ρ(X) = 1 clarify the appearance of the natural isomorphisms TD, δ, ν(d1, d2),
Tyu in these results for Picard number 2.

The importance of the results for ρ(X) = 2 and general X is that they de-
scribe all the divisorial conditions on moduli of algebraic polarized K3 surfaces
(X, H) that imply MX(r, H, s) ∼= X. More exactly, the results for ρ(X) = 2
describe all abstract polarized Picard lattices H ∈ N with rankN = 2 such
that H ∈ N ⊂ N(X) and N ⊂ N(X) is primitive implies MX(r, H, s) ∼= X.
Recall that such X have codimension 1 in the 19-dimensional moduli of po-
larized K3 surfaces. Applying these results, we give in Theorems 3.6 and 3.8
a necessary condition on a Mukai vector (r, H, s) and a polarized K3 surface
X in order for the isomorphism MX(r, H, s) ∼= X to follow from a divisorial
condition on the moduli of X. In Example 3.7, we give an exact numerical ex-
ample when this necessary condition is not satisfied. Thus for the K3 surfaces
X in this example, the isomorphism MX(r, H, s) ∼= X is not a consequence of
any divisorial condition on moduli of polarized K3 surfaces. In other words,
MX(r, H, s) ∼= X, but this isomorphism cannot be deduced from any divisorial
condition on K3 surfaces X ′ implying MX′(r, H, s) ∼= X ′.

Applying these results, in Section 4, Theorem 4.1, we give an exact example
of a type of primitive isotropic Mukai vector (r, H, s) and a pair H ∈ N of
an (abstract) polarized K3 Picard lattice with rank N = 3 such that for any
polarized K3 surface (X, H) with H ∈ N ⊂ N(X) and primitive N ⊂ N(X)
one has MX(r, H, s) ∼= X, but this isomorphism does not follow from any
divisorial condition (i.e., from Picard number 2) on the moduli of polarized
K3 surfaces. Thus these polarized K3 surfaces have codimension 2 in moduli,
and they cannot be extended to a divisor in moduli of polarized K3 surfaces
preserving the isomorphism MX(r, H, s) ∼= X. This is the main result of this
paper. Section 4 gives many similar examples for Picard number ρ(X) ≥ 3.

These results give important corollaries for higher Picard number ρ(X) ≥ 3
of the above results for Picard number 1 and 2; they also show that the case
ρ(X) ≥ 3 is very nontrivial. These are the main subjects of this paper. Another
important aim is to formulate some general concepts, and predict the general
structure of possible results for higher Picard number ρ(X) ≥ 3.

At the end of Section 4, for a type (r, H, s) of primitive isotropic Mukai
vector, we introduce a notion of critical polarized K3 Picard lattice H ∈ N
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(critical for the problem of K3 self-correspondences). Roughly speaking, it
means that MX(r, H, s) ∼= X for any polarized K3 surface X with H ∈ N ⊂
N(X) where N ⊂ N(X) is primitive, but the same does not hold for any
primitive strict sublattice H ∈ N1 ⊂ N . Thus the corresponding moduli
space of K3 surfaces has dimension 20 − rank N , and is not a specialization
of higher dimensional moduli spaces of K3 surfaces.

The classification of critical polarized K3 Picard lattices is the main prob-
lem of self-correspondences of a K3 surface via moduli of sheaves. Our results
for ρ = 1 and ρ = 2 can be interpreted as a classification of all critical po-
larized K3 Picard lattices of rank one and two. The example of Theorem 4.1
mentioned above gives an example of a rank 3 critical polarized K3 Picard
lattice N . In Theorem 4.10 we prove that a critical polarized K3 Picard lat-
tice N has rank N ≤ 12. In Problem 4.11, we raise the problem of the exact
bound for the rank of a critical polarized K3 Picard lattice for a fixed type
of primitive isotropic Mukai vector. This problem is now solved only for very
special types: we know all primitive isotropic Mukai vectors when the exact
bound is one.

In Section 5, we interpret the above results in terms of isometric actions of
correspondences and their composites on H2(X, Q). For example, the Tyurin
isomorphisms of (2) give reflections in elements l ∈ N(X), and generate the
full automorphism group O(N(X)⊗Q). Every isotropic primitive Mukai vector
(r, H, s) on X with MX(r, H, s) ∼= X then generates some class of isometries in
O(N(X)⊗Q). See Section 5 for exact statements. Thus the main problem of
self-correspondences of X via moduli of sheaves is to find all these generators
and the relations between them. In this connection, we state problems (1–4)
at the end of Section 5; these show that, in principle, the general results for
any ρ(X) should look similar to the now known results for ρ(X) = 1, 2.

Our general idea should be clear: for a K3 surface X that is general for
its Picard lattice, the very complicated structure of self-correspondences of
X via moduli of sheaves is hidden inside the abstract lattice N(X); we try
to recover this structure. This should lead to some nontrivial constructions
involving the abstract Picard lattice N(X), and should relate it more closely
to the geometry of the K3 surface.

Acknowledgments. I am grateful to D.O. Orlov for useful discussions. I also
would like to thank the Referees for many helpful suggestions. This work was
supported by EPSRC grant EP/D061997/1.

1.1 Preliminary notation for lattices

We use the notation and terminology of [10] for lattices, and their discriminant
groups and forms. A lattice L is a nondegenerate integral symmetric bilinear
form. That is, L is a free Z-module of a finite rank with a symmetric pairing
x · y ∈ Z for x, y ∈ L, assumed to be nondegenerate. We write x2 = x · x.
The signature of L is the signature of the corresponding real form L ⊗ R.
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The lattice L is called even if x2 is even for any x ∈ L. Otherwise, L is
called odd. The determinant of L is defined to be detL = det(ei · ej) where
{ei} is some basis of L. The lattice L is unimodular if det L = ±1. The dual
lattice of L is L∗ = Hom(L, Z) ⊂ L ⊗ Q. The discriminant group of L is
AL = L∗/L; it has order |det L|, and is equipped with a discriminant bilinear
form bL : AL × AL → Q/Z and, if L is even, with a discriminant quadratic
form qL : AL → Q/2Z. To define these, we extend the form on L to a form on
the dual lattice L∗ with values in Q.

An embedding M ⊂ L of lattices is called primitive if L/M has no torsion.
Similarly, a non-zero element x ∈ L is called primitive if Zx ⊂ L is a primitive
sublattice.

2 Isomorphisms between MX(v) and X for a general K3
surface X and a primitive isotropic Mukai vectors v

We consider algebraic K3 surfaces X over C. Further, N(X) denotes the Pi-
card lattice of X, and T (X) its transcendental lattice. We consider primitive
isotropic Mukai vectors (1) on X. We denote by Y = MX(v) = MX(r, l, s)
the K3 surface obtained as the minimal resolution of singularities of the mod-
uli space of sheaves on X with Mukai vector v. Compare Mukai [4]–[7] and
Yoshioka [19].

In this section, we say that an algebraic K3 surface is general if its Picard
number ρ(X) = rankN(X) = 1 and the automorphism group of the trans-
cendental periods of X is trivial over Q: Aut

(
T (X)⊗Q, H2,0(X)

)
= ±1.

We now consider the following question: for a general algebraic K3 sur-
face X and two primitive isotropic Mukai vectors v1 = (r1, l1, s1) and
v2 = (r2, l2, s2), when are the moduli spaces MX(v1) and MX(v2) isomor-
phic?

We have the following three universal isomorphisms between moduli spaces
of sheaves over a K3 surface. (Here universal means that they are valid for all
algebraic K3 surfaces.)

Let D ∈ N(X). Then one has the natural isomorphism given by the tensor
product

TD : MX(r, l, s) ∼= MX(r, l + rD, s + r(D2/2) + D · l), E 7→ E ⊗ O(D).

Moreover, here the Mukai vectors

v = (r, l, s) and TD(v) = (r, l + rD, s + r(D2/2) + D · l)

have the same general common divisor and the same square under the Mukai
pairing. In particular, one is primitive and isotropic if and only if the other is.

Taking D = kH for H a hyperplane section and k > 0, using the iso-
morphisms TD, we can always replace MX(r, l, s) by an isomorphic MX(r, l′, s′)
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where l′ is ample, so that l′
2

> 0. Thus in our problem, we can also assume
that v = (r, l, s) where r > 0 and l is ample. Then l2 = 2rs > 0 and r, s > 0.

For r, s > 0, one has an isomorphism called reflection

δ : MX(r, l, s) ∼= MX(s, l, r).

See for example [5] and [16], [17], [20]. Thus using reflection, we can also
assume that 0 < r ≤ s.

For integers d1 > 0, d2 > 0 such that (d1, d2) = (d1, s) = (r, d2) = 1, one
has an isomorphism

ν(d1, d2) : MX(r, l, s) ∼= MX(d2
1r, d1d2l, d

2
2s)

and its inverse ν(d1, d2)−1; see [5], [6], [14], [3]. Using the isomorphisms
ν(d1, d2), ν(d1, d2)−1 and reflection δ, we can always assume that the primitive
isotropic Mukai vector v = (r, l, s) satisfies:

0 < r ≤ s, l2 = 2rs, and l ∈ N(X) is primitive and ample. (3)

We call such a primitive isotropic Mukai vector a reduced primitive isotropic
Mukai vector (for ρ(X) = 1).

We have the following result.

Theorem 2.1. Let X be a general algebraic K3 surface, i.e., N(X) = ZH
where H is a primitive polarization of X and Aut

(
T (X)⊗Q,H2,0(X)

)
= ±1.

Let v = (r, H, s) and v′ = (r′,H, s′) be two reduced primitive isotropic Mukai
vectors on X (see (3)), i.e., 0 < r ≤ s and 0 < r′ ≤ s′.

Then MX(v) ∼= MX(v′) if and only if v = v′, i.e., r′ = r, s′ = s.

It follows that the above universal isomorphisms TD, δ and ν(d1, d2) are
sufficient to find all the isomorphic moduli spaces of sheaves with primitive
isotropic Mukai vectors for a general K3 surface.

Corollary 2.2. Let X be a general algebraic K3 surface and v, v′ primitive
isotropic Mukai vectors on X. Then MX(v) ∼= MX(v′) if and only if there
exists an isomorphism between MX(v) and MX(v′) which is a composite of
the universal isomorphisms TD, δ and ν(d1, d2).

Proof. The following considerations are similar to the more general and diffi-
cult calculations of [14], Section 2.3. We have

N(X) = ZH =
{
x ∈ H2(X, Z)

∣∣ x ·H2,0(X) = 0
}
,

and the transcendental lattice of X is

T (X) = N(X)⊥H2(X,Z).

The lattices N(X) and T (X) are orthogonal complements to one another in
the unimodular lattice H2(X, Z), and N(X)⊕T (X) ⊂ H2(X, Z) is a sublattice



Self-correspondences of K3 surfaces via moduli of sheaves 439

of finite index; here and in what follows ⊕ denotes the orthogonal sum. Since
H2(X, Z) is unimodular and N(X) = ZH a primitive sublattice, there exists
u ∈ H2(X, Z) such that u ·H = 1.

We denote the dual lattices by N(X)∗ = Z · 1
2rsH ⊂ N(X) ⊗ Q and

T (X)∗ ⊂ T (X)⊗Q. Then H2(X, Z) ⊂ N(X)∗ ⊕ T (X)∗, and

u = 1
2rsH + t∗(H) with t∗(H) ∈ T (X)∗.

The element

t∗(H) mod T (X) ∈ T (X)∗/T (X) ∼= Z/2rsZ

is canonically defined by the primitive element H ∈ H2(X, Z). Obviously,

H2(X, Z) =
[
N(X), T (X), u = 1

2rsH + t∗(H)
]

where [ · ] means “generated by”. The element t∗(H) mod T (X) distinguishes
between the different polarized K3 surfaces with Picard number one and the
same transcendental periods; more precisely, for another polarized K3 surface
(X ′,H ′) with transcendental periods

(
T (X ′),H2,0(X ′)

)
, the periods of X

and X ′ are isomorphic (and then X ∼= X ′ by the Global Torelli Theorem
[15]) if and only if there exists an isomorphism of transcendental lattices
φ : T (X) ∼= T (X ′) such that (φ⊗ C)(H2,0(X)) = H2,0(X ′) and

(φ⊗Q)(t∗(H)) mod T (X) = t∗(H ′) mod T (X ′).

Thus the calculation of the periods of X in terms its transcendental periods
is contained in the following statement.

Proposition 2.3. Let (X, H) be a polarized K3 surface with a primitive po-
larization H such that H2 = 2rs. Assume that N(X) = ZH (i.e., ρ(X) = 1).
Then

H2(X, Z) =
[
N(X) = ZH,T (X), 1

2rsH + t∗(H)
]

where t∗(H) ∈ T (X)∗. The element t∗(H) mod T (X) is uniquely defined.
Moreover, H2,0(X) ⊂ T (X)⊗C. (More generally, for ρ(X) ≥ 1, one should

replace T (X) by H⊥
H2(X,Z).)

Let Y = MX(r, H, s). We calculate the periods of Y . The Mukai lattice of
X is defined by

H̃(X, Z) = H0(X, Z) + H2(X, Z) + H4(X, Z) = U ⊕H2(X, Z)

where + is direct sum, and ⊕ orthogonal direct sum of lattices. Here H2(X, Z)
is the cohomology lattice of X with its intersection pairing and U = Ze1 +
Ze2 is the hyperbolic plane, where canonically Ze1 = H0(X, Z) and Ze2 =
H4(X, Z) with the Mukai pairing e2

1 = e2
2 = 0 and e1 · e2 = −1.

We have
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v = re1 + se2 + H. (4)

By Mukai [5], we have
H2(Y, Z) = v⊥/Zv, (5)

and H2,0(Y ) = H2,0(X) by the canonical projection. This determines the
periods of the K3 surface Y and its isomorphism class (by Global Torelli
Theorem [15]). We calculate the periods of Y as in Proposition 2.3.

Any element f of H̃(X, Z) can be written in a unique way as

f = xe1 + ye2 + α 1
2rsH + βt∗, with x, y, α ∈ Z and t∗ ∈ T (X)∗.

We have f · v = −sx− ry + α, so f ∈ v⊥ if and only if −sx− ry + α = 0, and
then

f = xe1 + ye2 + (sx + ry) 1
2rsH + βt∗.

By Proposition 2.3, f ∈ H̃(X, Z) if and only if t∗ = (sx+ry)t∗(H) mod T (X).
Since T (X) ⊂ v⊥, we can write

f = xe1 + ye2 + (sx + ry)
(

1
2rsH + t∗(H)

)
mod T (X) with x, y ∈ Z.

Set
c = (r, s), a = r/c, b = s/c.

Then (a, b) = 1. We have h = −ae1 + be2 ∈ v⊥ and h2 = 2ab = 2rs/c2.
Moreover, h ⊥ T (X) and then h ⊥ H2,0(X). Thus

h mod Zv = −ae1 + be2 mod Zv (6)

gives an element of the Picard lattice N(Y ). We have

e1 =
v − ch−H

2r
, e2 =

v + ch−H

2s
.

It follows that

f =
sx + ry

2rs
v +

c(−sx + ry)
2rs

h + (sx + ry)t∗(H) mod T (X), (7)

for some x, y ∈ Z. Here f mod Zv gives all the elements of H2(Y, Z), and
H2,0(Y ) = H2,0(X) ⊂ T (X)⊗ C.

It follows that f mod Zv ∈ T (Y ) (where Zv gives the kernel of v⊥ and
H2(Y, Z) = v⊥/Zv) if and only if −sx + ry = 0. Equivalently −bx + ay = 0,
or (since (a, b) = 1) x = az, y = bz where z ∈ Z, and then

(sx + ry)t∗(H) = z(sa + rb)t∗(H) = z 2abc t∗(H) for some z ∈ Z.

It follows that
T (Y ) = [T (X), 2abc t∗(H)]. (8)
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Since t∗(H) mod T (X) has order 2rs = 2abc2 in T (X)∗/T (X) ∼= Z/2rsZ, it
follows that [T (Y ) : T (X)] = c (this is a result of Mukai, [5]).

By (7) and (8), we have f ⊥ H2,0(Y ) = H2,0(X), that is f mod Zv ∈
N(Y ), if and only if

f =
sx + ry

2rs
v +

c(−sx + ry)
2rs

h

where sx + ry ≡ 0 mod 2abc. Thus acx + bcy ≡ 0 mod 2abc and ax + by ≡ 0
mod 2ab. Since (a, b) = 1, it follows that x = bx̃, y = aỹ where x̃, ỹ ∈ Z, and
x̃ + ỹ ≡ 0 mod 2. Thus ỹ = −x̃ + 2k where k ∈ Z. It follows that

f =
k

c
v + (−x̃ + k)h, for some x̃, k ∈ Z.

Thus h mod Zv generates the Picard lattice N(Y ), and we can consider h
mod Zv as the polarization of Y (or −h mod Zv, which makes no difference
from the point of view of periods and isomorphism class of Y ).

Let us calculate t∗(h) ∈ T (Y )∗. Then in (7) we should take an element f
with c(−sx+ ry)/(2rs) = 1/(2ab). Thus −sx+ ry = c or −bx+ ay = 1. Then

t∗(h) = (sx + ry)t∗(H) mod T (Y ).

By (8), T (Y )∗ = [T (X), ct∗(H)] and T (Y )∗/T (Y ) ∼= Z/2abZ.
Thus t∗(h) = (bx + ay)

(
ct∗(H) mod [T (X), 2ab (ct∗(H))]

)
is defined by

m ≡ bx + ay mod 2ab. Since −bx + ay = 1, we have m ≡ 2ay − 1 ≡ −1
mod 2a and m ≡ 2bx + 1 ≡ 1 mod 2b. This defines m mod 2ab uniquely.
We call such m mod 2ab a Mukai element (compare with [6]). Thus m(a, b)
mod 2ab is called Mukai element if

m(a, b) ≡ −1 mod 2a and m(a, b) ≡ 1 mod 2b. (9)

Thus t∗(h) = m(a, b) ct∗(H) mod [T (X), 2abc t∗(H)].
Thus we have finally completed the calculation of the periods of Y in terms

of those of X (see Proposition 2.3).

Proposition 2.4. Let (X, H) be a polarized K3 surface with a primitive po-
larization H such that H2 = 2rs with r, s > 0. Assume that N(X) = ZH
(i.e., ρ(X) = 1). Let Y = MX(r, H, s) and set c = (r, s) and a = r/c, b = s/c.

Then N(Y ) = Zh where h2 = 2ab,

T (Y ) = [T (X), 2abc t∗(H)], T (Y )∗ = [T (X), ct∗(H)]

and t∗(h) mod T (Y ) = m(a, b)ct∗(H) mod T (Y ) where m(a, b) mod 2ab is the
Mukai element: m(a, b) ≡ −1 mod 2a, m(a, b) ≡ 1 mod 2b. Thus

H2(Y, Z) =
[
N(Y ), T (Y ), 1

2abh + t∗(h)
]

=
[
Zh, [T (X), 2abc t∗(H)], 1

2abh + m(a, b)ct∗(H)
]
.

(More generally, when ρ(X) ≥ 1, one should replace T (X) by H⊥
H2(X,Z) and

T (Y ) by h⊥H2(Y,Z).)
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Now let us prove Theorem 2.1. We need to recover r and s from the
periods of Y . By Proposition 2.4, we have N(Y ) = Zh where h2 = 2ab. Thus
we recover ab. Since c2 = 2rs/2ab, we recover c.

We have (T (X)⊗Q,H2,0(X)) ∼= (T (Y )⊗Q,H2,0(Y )). Since X is general,
there exists only one such isomorphism up to multiplication by ±1. It follows
that (up to multiplication by ±1) there exists only one embedding T (X) ⊂
T (Y ) of lattices which identifies H2,0(X) and H2,0(Y ). By Proposition 2.4,
then t∗(h) mod T (Y ) = m̃(a, b)ct∗(H) mod T (Y ), where m̃(a, b) ≡ ±m(a, b)
mod 2ab and m(a, b) is the Mukai element. Assume pα | ab and pα+1 does not
divide ab where p is prime and α > 0. Then m̃(a, b) ≡ ±1 mod 2pα. Clearly,
only one sign ±1 is possible here; we denote by a the product of all the pα

having m̃(a, b) ≡ −1 mod 2pα, and by b the product of all the other pα having
m̃(a, b) ≡ 1 mod 2pα. If a > b, we must exchange a and b. Thus we recover a
and b and the reduced primitive Mukai vector (r, H, s) = (ac, H, bc) such that
periods of MX(r, H, s) are isomorphic to the periods of Y .

This completes the proof. ut

Remark 2.5. Propositions 2.3 and 2.4 and their proofs remain valid for any
algebraic K3 surface X and a primitive element H ∈ N(X) with H2 = 2rs 6=
0, provided we replace T (X) by the orthogonal complement H⊥

H2(X,Z).

As an example of an application of Theorem 2.1, let us consider the case
when MX(r, l, s) ∼= X. It is known (see for example [17]) that for l ∈ N(X)
and ±l2 > 0, one has the Tyurin isomorphism

Tyu = Tyu(±l) : MX(±l2/2, l,±1) ∼= X . (10)

The existence of such an isomorphism follows at once from the Global Torelli
Theorem for K3 surfaces [15] using Propositions 2.3, 2.4 and Remark 2.5.

Thus for a general K3 surface X and a primitive isotropic Mukai vector
v = (r, H, 1) where r = H2/2, we have MX(r, H, 1) ∼= X. By Theorem 2.1,
we then obtain the following result, where we also use the well-known fact
that Aut

(
T (X),H2,0(X)

)
= ±1 if ρ(X) = 1 (see (33) below); it is sufficient

to consider the automorphism group over Z for this result.

Corollary 2.6. Let X be an algebraic K3 surface with ρ(X) = 1, i.e.,
N(X) = ZH where H is a primitive polarization of X. Let v = (r, H, s)
be a reduced primitive isotropic Mukai vector on X (see (3)), i.e., 0 < r ≤ s.

Then MX(v) ∼= X if and only if v = (1,H, H2/2), i.e. r = 1, s = H2/2.

3 Isomorphisms between MX(v) and X for X a general
K3 surface with ρ(X) = 2

We now consider general K3 surfaces X with ρ(X) = rankN(X) = 2; here
a K3 surface X is called general with its Picard lattice if the transcendental
periods have trivial automorphism group, Aut

(
T (X),H2,0(X)

)
= ±1.
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For ρ(X) ≥ 2, we do not know when MX(v1) ∼= MX(v2) for primitive
isotropic Mukai vectors v1 and v2 on X. But we still have the universal iso-
morphisms TD, D ∈ N(X), the reflection δ, the isomorphism ν(d1, d2) and
the Tyurin isomorphism Tyu considered in Section 2. They are universal iso-
morphisms, i.e., they are defined for all K3 surfaces.

We start by reviewing the results of [14] and [3], where we found all the
primitive isotropic Mukai vectors v with MX(v) ∼= X for general K3 surfaces
X with ρ(X) = 2. In particular, we know when MX(v1) ∼= MX(v2) in the case
when both moduli spaces are isomorphic to X. The result is that MX(v) ∼= X
if and only if there exists such an isomorphism which is a composite of the
universal isomorphisms δ, TD and ν(d1, d2) between moduli of sheaves over
X and the Tyurin isomorphism Tyu between moduli of sheaves over X and
X itself. More exactly, the results are as follows.

Using the universal isomorphisms TD, we can assume that the primitive
isotropic Mukai vector is

v = (r, H, s), with r > 0, s > 0 and H2 = 2rs.

(We can even assume that H is ample.) We are interested in the case when
Y = MX(r, H, s) ∼= X.

We set c = (r, s) and a = r/c, b = s/c. Then (a, b) = 1. Suppose that H

is divisible by d ∈ N where H̃ = H/d is primitive in N(X). The primitivity
of v = (r, H, s) means that (r, d, s) = (c, d) = 1. Since H̃2 = 2abc2/d2 is even,
we have d2 | abc2. Since (a, b) = (c, d) = 1, it follows that d = dadb where
da = (d, a), db = (d, b), and we can introduce integers

a1 =
a

d2
a

and b1 =
b

d2
b

,

obtaining H̃2 = 2a1b1c
2. Define γ = γ(H̃) by H̃ ·N(X) = γZ, in other words,

H ·N(X) = γdZ. Clearly, γ | H̃2 = 2a1b1c
2. We write

n(v) = (r, s, dγ) = (r, s, γ). (11)

By Mukai [5], we have T (X) ⊂ T (Y ), and

n(v) = [T (Y ) : T (X)], (12)

where T (X) and T (Y ) are the transcendental lattices of X and Y . Thus

Y ∼= X =⇒ n(v) = (r, s, dγ) = (c, dγ) = (c, γ) = 1. (13)

Assuming that Y ∼= X and then n(v) = 1, we have γ | 2a1b1, and we can
introduce

γa = (γ, a1), γb = (γ, b1) and γ2 =
γ

γaγb
. (14)

Clearly, γ2 | 2.
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In [14], Theorem 4.4, we obtained the following general theorem (see im-
portant particular cases of it in [1], [2] and [13]). In the theorem, we use the
notation c, a, b, d, da, db, a1, b1 introduced above. The same notation γ, γa, γb

and γ2 as above is used when we replace N(X) by a 2-dimensional primitive
sublattice N ⊂ N(X), e.g., H̃ · N = γZ with γ > 0. We write detN = −γδ

and Zf(H̃) for the orthogonal complement to H̃ in N .

Theorem 3.1. Let X be a K3 surface and H a polarization of X such that
H2 = 2rs where r, s ∈ N. Assume that the Mukai vector (r, H, s) is primitive.
Let Y = MX(r, H, s) be the K3 surface which is the moduli of sheaves over
X with isotropic Mukai vector v = (r, H, s). Let H̃ = H/d for d ∈ N be the
corresponding primitive polarization.

We have Y ∼= X if there exists h̃1 ∈ N(X) such that H̃ and h̃1 belong to
a 2-dimensional primitive sublattice N ⊂ N(X) such that H̃ ·N = γZ, γ > 0,
(c, dγ) = 1, and the element h̃1 belongs to the a-series or the b-series described
below:

h̃1 belongs to the a-series if

h̃2
1 = ±2b1c, H̃ · h̃1 ≡ 0 mod γ(b1/γb)c, f(H̃) · h̃1 ≡ 0 mod δb1c (15)

(where γb = (γ, b1));
h̃1 belongs to the b-series if

h̃2
1 = ±2a1c, H̃ ·h̃1 ≡ 0 mod γ(a1/γa)c, f(H̃)·h̃1 ≡ 0 mod δa1c (16)

(where γa = (γ, a1)).

These conditions are necessary to have Y ∼= X if ρ(X) ≤ 2 and X is a
general K3 surface with its Picard lattice.

In [3], we interpreted geometrically Theorem 3.1 as follows.

Theorem 3.2. Let X be a K3 surface and H a polarization of X such that
H2 = 2rs where r, s ∈ N. Assume that the Mukai vector (r, H, s) is primitive.
Let Y = MX(r, H, s) be the K3 surface which is the moduli of sheaves over
X with isotropic Mukai vector v = (r, H, s). Let H̃ = H/d with d ∈ N be the
corresponding primitive polarization.

Assume that there exists h̃1 ∈ N(X) such that H̃ and h̃1 belong to a 2-
dimensional primitive sublattice N ⊂ N(X) such that H̃ · N = γZ, γ > 0,
(c, dγ) = 1, and the element h̃1 belongs to the a-series or to the b-series
described in (15) and (16) above.

If h̃1 belongs to the a-series, then

h̃1 = d2H̃ + b1cD for some d2 ∈ N, D ∈ N, (17)

which defines an isomorphism
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Tyu(±h̃1) · TD · ν(1, d2) · δ · ν(da, db)−1 : Y = MX(r, H, s) ∼= X. (18)

If h̃1 belongs to the b-series, then

h̃1 = d2H̃ + a1cD for some d2 ∈ N, D ∈ N, (19)

which defines an isomorphism

Tyu(±h̃1) · TD · ν(1, d2) · ν(da, db)−1 : Y = MX(r, H, s) ∼= X. (20)

Since the conditions of Theorems 3.1, 3.2 are necessary for general K3
surfaces with ρ(X) ≤ 2, we obtain the following result.

Theorem 3.3. Let X be a K3 surface with a polarization H such that H2 =
2rs, r, s ≥ 1 and the Mukai vector (r, H, s) is primitive. Let Y = MX(r, H, s)
be the moduli space of sheaves over X with isotropic Mukai vector (r, H, s).
Assume that ρ(X) ≤ 2 and X is general with its Picard lattice. Let H̃ = H/d,
d ∈ N, be the corresponding primitive polarization.

Then Y = MX(r, H, s) is isomorphic to X if and only if there exists d2 ∈ N
and D ∈ N = N(X) such that either

h̃1 = d2H̃ + b1cD has h̃2
1 = ±2b1c, (21)

defining an isomorphism

Tyu(±h̃1) · TD · ν(1, d2) · δ · ν(da, db)−1 : Y = MX(r, H, s) ∼= X, (22)

or
h̃1 = d2H̃ + a1cD has h̃2

1 = ±2a1c, (23)

defining an isomorphism

Tyu(±h̃1) · TD · ν(1, d2) · ν(da, db)−1 : Y = MX(r, H, s) ∼= X. (24)

Theorem 2.1 clarifies the appearance of the isomorphisms TD, δ, ν(d1, d2)
and Tyu in these results for Picard number 2. These are universal and exist
for all K3 surfaces; moreover, they are all isomorphisms which are necessary
to obtain all isomorphisms from moduli spaces MX(v) to X for isotropic
Mukai vectors v on a general K3 surface X (i.e. with ρ(X) = 1). Thus the
appearance of the isomorphisms TD, δ, ν(d1, d2) and Tyu is very natural in
the above results.

Remark 3.4. For Picard number ρ(X) = 1, Theorems 3.1, 3.2 and 3.3 are
formally equivalent to Corollary 2.6. In fact, for ρ(X) = 1 we have γ =
2a1b1c

2. Thus (γ, c) = 1 implies that c = 1. Then γ = 2a1b1 and γ2 = 2,
γa = a1, γb = b1. The conditions of Theorem 3.1 can only be satisfied for
h̃1 = H̃, which implies that a1 = 1 for the a-series and b1 = 1 for the b-series
(we can formally put f(H̃) = 0).

Thus for ρ(X) = 1 we have Y ∼= X if and only if c = 1 and either a1 = 1
or b1 = 1. This is equivalent to Corollary 2.6.
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Under the conditions of Theorem 3.1, assume that for a primitive rank 2
sublattice N ⊂ N(X) an element h̃1 ∈ N with h̃2

1 = ±2b1c belongs to the
a-series. This is equivalent to the condition (17) of Theorem 3.2. Replacing
h̃1 by −h̃1 if necessary, we see that (17) is equivalent to

h̃1 = d2H̃ + b1cD̃, d2 ∈ Z, D̃ ∈ N. (25)

Since H̃ is primitive, the lattice N has a basis H̃, D ∈ N , i.e., N = [H̃, D].
Since H̃ ·N = γZ where (γ, c) = 1, the matrix of N in this basis is(

H̃2 H̃ ·D
H̃ ·D D2

)
=

(
2a1b1c

2 γk

γk 2t

)
(26)

where k, t ∈ Z and γ | 2a1b1, (γ, c) = 1 and (2a1b1c
2/γ, k) = 1.

The condition of a-series (25) is then equivalent to the existence of h̃1 ∈
[H̃, b1cN ] = [H̃, b1cD] with h̃2

1 = ±2b1c. Thus the lattice N1 = [H̃, b1cD] with
the matrix (

2a1b1c
2 b1cγk

b1cγk b2
1c

22t

)
(27)

must have h̃1 with h̃2
1 = ±2b1c. Writing h̃1 as h̃1 = xH̃ + yb1cD, we obtain

that the quadratic equation a1cx
2+γkxy+b1cty

2 = ±1 must have an integral
solution. Similarly, for b-series we obtain the equation b1cx

2+γkxy+a1cty
2 =

±1. Thus we finally obtain a very elementary reformulation of the above
results.

Lemma 3.5. For the matrix (26) of the lattice N in Theorems 3.1, 3.2 and
3.3, the conditions of a-series are equivalent to existence of an integral solution
of the equation

a1cx
2 + γkxy + b1cty

2 = ±1, (28)

and for b-series of the equation

b1cx
2 + γkxy + a1cty

2 = ±1. (29)

This calculation has a very important corollary. Assume that p | γb =
(γ, b1) for a prime p. Then (28) gives a congruence a1cx

2 ≡ ±1 mod p. Thus
±a1c is a quadratic residue mod p. Similarly, for the equation (29), we obtain
that ±b1c is a quadratic residue mod p for a prime p | γa = (γ, a1).

We thus obtain an important necessary condition for Y = MX(v) ∼= X
when ρ(X) = 2.

Theorem 3.6. Let X be a K3 surface with a polarization H such that H2 =
2rs, r, s ≥ 1 and the Mukai vector (r, H, s) is primitive. Let Y = MX(r, H, s)
be the moduli of sheaves over X with isotropic Mukai vector (r, H, s). Assume
that ρ(X) ≤ 2 and X is general with its Picard lattice. Let H̃ = H/d, d ∈ N,
be the corresponding primitive polarization, H̃ ·N(X) = γZ and (γ, c) = 1.
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Then Y = MX(r, H, s) ∼= X implies that for one of ± either

∀ p | γb =⇒
(
±a1c

p

)
= 1 (30)

or

∀p | γa =⇒
(
±b1c

p

)
= 1. (31)

Here p means any prime, and
(

x
2

)
= 1 means that x ≡ 1 mod 8.

Thus if for either choice of ±1,

∃p | γb such that
(
±a1c

p

)
= −1 and ∃p | γa such that

(
±b1c

p

)
= −1

(32)
then Y = MX(r, H, s) is not isomorphic to X for X a K3 surface with ρ(X) ≤
2 which is general with its Picard lattice.

Example 3.7. Assume that a1 = 5, b1 = 13, c = 1 and γ = 5 · 13 (or
γ = 2 · 5 · 13). Then (32) obviously holds. Thus for

v = (5,H, 13), H2 = 2 · 5 · 13, and γ = 5 · 13 or 2 · 5 · 13

(then H is always primitive), for any general K3 surface X with ρ(X) = 2
and any H ∈ N(X) with H2 = 2 ·5 ·13 and H ·N(X) = γZ, the moduli space
Y = MX(v) is not isomorphic to X.

There are many such Picard lattices given by (26).

In [13], we showed that any primitive isotropic Mukai vector v = (r, H, s)
with H2 = 2rs and γ = 1 is realized by a general K3 surface with Picard
number 2 and Y = MX(v) ∼= X. Theorem 3.6 may possibly give all the
necessary conditions for a similar result to hold for any γ; we hope to return
to this problem later.

The importance of these results for general K3 surfaces X with ρ(X) = 2 is
that they describe all divisorial conditions on moduli of polarized K3 surfaces
that imply Y = MX(r, H, s) ∼= X. Let us consider the corresponding simple
general arguments.

It is well known (see [9] and [11] where, it seems, it was first observed)
that Aut

(
T (X),H2,0(X)

) ∼= Cm is a finite cyclic group of order m > 1, and
its representation in T (X) ⊗ Q is the sum of irreducible representations of
dimension φ(m) (where φ is the Euler function). H2,0(X) is a line in one of
the eigenspaces of Cm. In particular, φ(m) | rank T (X) and if m > 2 the
dimension of moduli of these X is equal to

dim Mod(X) = rank T (X)/φ(m)− 1. (33)

If m = 2, then dim Mod(X) = rank T (X)− 2.
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Consider polarized K3 surfaces (X, H) with H2 = 2rs and a primitive
Mukai vector (r, H, s) with r, s > 0. Assume Y = MX(r, H, s) ∼= X.

If ρ(X) = 1, then rank T (X) = 21 and φ(m) | 21. Since 21 is odd, it
follows that m = 2. Thus Aut

(
T (X),H2,0(X)

)
= ±1, and then c = 1 and

either a1 = 1 or b1 = 1 by Corollary 2.6 (or Remark 3.4). By the specialization
principle (see [14], Lemma 2.1.1), then Y ∼= MX(r, H, s) for all K3 surfaces X
and a Mukai vector with these invariants:

c = 1 and either a1 = 1 or b1 = 1. (34)

Now assume that (r, H, s) does not satisfy (34), but Y = MX(r, H, s) ∼= X;
then ρ(X) 6= 1 by Corollary 2.6. Hence ρ(X) ≥ 2 and

dim Mod(X) ≤ 20− ρ(X) ≤ 18.

Thus a divisorial condition on moduli or polarized K3 surfaces (X, H) to have
Y = MX(r, H, s) ∼= X means that ρ(X) = 2 for a general K3 surface satis-
fying this condition. All these conditions are described by the isomorphism
classes of H ∈ N(X) where rankN(X) = 2 and H ∈ N(X) satisfies Theo-
rems 3.1, 3.2 or 3.3 (which in this case are all equivalent). If H ∈ N ⊂ N(X)
is a primitive sublattice of rank two and H ∈ N satisfies the equivalent The-
orems 3.1 and 3.2, then Y = MX(r, H, s) ∼= X by the specialization principle.
This means that X belongs to the closure of the divisor defined by the moduli
of polarized K3 surfaces (X ′,H) with Picard lattice N(X ′) = N of rank two.
Thus Y ′ = MX(r, H, s) ∼= X ′ because X ′ satisfies the divisorial condition
H ∈ N where H ∈ N ⊂ N(X ′).

By Theorem 3.6 we obtain the following result.

Theorem 3.8. For r, s ≥ 1 let

v = (r, H, s), d, H2 = 2rs, (c, d) = 1, d2|ab

be a type of primitive isotropic Mukai vector on K3, and γ | 2a1b1 and (γ, c) =
1.

Then if (32) holds, there does not exist any divisorial condition on mod-
uli of polarized K3 surfaces (X, H) that implies Y = MX(r, H, s) ∼= X and
H · N(X) = γZ. Thus these K3 surfaces have codimension ≥ 2 in the 19-
dimensional moduli space of polarized K3 surfaces (X, H).

For example, this holds for r = 5, s = 13 (then H is primitive and d = 1),
and γ = 5 · 13 (or γ = 2 · 5 · 13).

In the next section, we will show that the numerical example of Theorem
3.8 can be satisfied by K3 surfaces X with ρ(X) = 3 and Y = MX(r, H, s) ∼=
X. Thus these K3 surfaces define a 17-dimensional submanifold in the moduli
of polarized K3 surfaces that does not extend to a divisor in moduli preserving
the condition Y = MX(r, H, s) ∼= X.
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4 Isomorphisms between MX(v) and X for a general K3
surface X with ρ(X) ≥ 3

Here we show that it is interesting and nontrivial to generalize the results of
the previous section to ρ(X) ≥ 3.

Let K = [e1, e2, (e1 + e2)/2] be a negative definite 2-dimensional lattice
with e2

1 = −6, e2
2 = −34 and e1 · e2 = 0. Then ((e1 + e2)/2)2 = (−6− 34)/4 =

−10 is even, and the lattice K is even. Since 6x2 + 34y2 = 8 has no integral
solutions, it follows that K has no elements δ ∈ K with δ2 = −2. Consider
the lattice

S = ZH ⊕K

which is the orthogonal sum of ZH with H2 = 2 · 5 · 13 and the lattice K. By
standard results about K3 surfaces, there exists a polarized K3 surface (X, H)
with the Picard lattice S and the polarization H ∈ S. (E.g., see [15] and [9].)
We then have H · S = 2 · 5 · 13 Z. Thus γ = 2 · 5 · 13.

Let Y = MX(5,H, 13). We have the following result, perhaps the main
result of the paper.

Theorem 4.1. For any polarized K3 surface (X, H) with N(X) = S, where S
is the hyperbolic lattice of rank 3 defined above, one has Y = MX(5,H, 13) ∼=
X which gives a 17-dimensional moduli space MS of polarized K3 surfaces
(X, H) with Y = MX(5,H, 13) ∼= X.

On the other hand, MS is not contained in any 18-dimensional moduli
space MN of polarized K3 surfaces (X ′,H) where H ∈ N(X ′) = N ⊂ S is a
primitive sublattice of rank N = 2 and MX′(5,H, 13) ∼= X ′. Thus MS is not
defined by any divisorial condition on moduli of polarized K3 surfaces (X, H)
implying MX(5,H, 13) ∼= X. (That is, MS is not a specialization of a divisor
with this condition.)

Proof. For this case, c = (5, 13) = 1 and (γ, c) = 1. By Mukai’s results (5)
and (12), the transcendental periods (T (X),H2,0(X)) and (T (Y ),H2,0(Y ))
are then isomorphic. The discriminant group AS = S∗/S of the lattice S =
T (X)⊥ is a cyclic group Z/(2 · 5 · 13 · 3 · 17). Thus the minimal number
l(AS) of generators of AS is one. Thus l(AS) ≤ rank S − 2. By [10], Theorem
1.14.4, a primitive embedding of T (X) into the cohomology lattice of K3
(which is an even unimodular lattice of signature (3, 19)) is then unique, up to
isomorphisms. It follows that the isomorphism between transcendental periods
of X and Y can be extended to an isomorphism of periods of X and Y . By
the Global Torelli Theorem for K3 surfaces [15], the K3 surfaces X and Y are
isomorphic. (These considerations are now standard.)

Let H ∈ N ⊂ S be a primitive sublattice with rankN = 2. Since H · S =
H ·HZ = 2 · 5 · 13Z, it follows that H ·N = 2 · 5 · 13Z, and the invariant γ =
2 · 5 · 13 is the same for any sublattice N ⊂ S containing H. By Theorem 3.8,
MX′(r, H, s) is not isomorphic to X ′ for any general K3 surface (X ′,H) with
N(X ′) = N .

This completes the proof. ut
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Similar arguments can be used to prove the following general statement for
ρ(X) ≥ 12. This shows that there are many cases when Y = MX(r, H, s) ∼= X
which do not follow from divisorial conditions on moduli. Its first statement
is well known (see for example [1], Proposition 2.2.1).

Theorem 4.2. Let (X, H) be a polarized K3 surface with ρ(X) ≥ 12, and
for r, s ≥ 1, let (r, H, s) be a primitive isotropic Mukai vector on X, i.e.,
H2 = 2rs and (c, d) = 1. Assume that H ·N(X) = γZ.

Then Y = MX(r, H, s) ∼= X if (γ, c) = 1 (Mukai’s necessary condition).
On the other hand, if (32) holds, the isomorphism Y = MX(r, H, s) ∼=

X does not follow from any divisorial condition on moduli of polarized K3
surfaces. That is, for any primitive 2-dimensional sublattice H ∈ N ⊂ N(X),
there exists a polarized K3 surface (X ′,H) with N(X ′) = N such that Y ′ =
MX′(r, H, s) is not isomorphic to X ′.

Proof. Since ρ(X) ≥ 12,

rank T (X) ≤ 22− 12 = 10 and l(AT (X)) ≤ rank T (X) = 10.

Since N(X) and T (X) are orthogonal complements to one another in the
unimodular lattice H2(X, Z), it follows that AN(X)

∼= AT (X) and l(AN(X)) ≤
10 ≤ rank N(X)−2. By [10], Theorem 1.14.4, a primitive embedding of T (X)
into the cohomology lattice of K3 is then unique up to isomorphisms. As in
the proof of Theorem 4.1, it follows that Y ∼= X.

We prove the second statement. Since H ·N(X) = γZ and H ∈ N ⊂ N(X),
it follows that H ·N = γ(N)Z where γ | γ(N). Let X ′ be a general K3 surface
with N(X ′) = N . If (c, γ(N)) > 1, then Y ′ = MX′(r, H, s) is not isomorphic
to X ′ because [T (Y ′) : T (X ′)] = (c, γ(N)) > 1 by Mukai’s result (12). Assume
(c, γ(N)) = 1. Obviously, (32) for γ implies (32) for γ(N). By Theorem 3.6,
Y ′ = MX′(r, H, s) is not isomorphic to X ′.

This completes the proof. ut

Theorems 4.1 and 4.2 can be unified in the following statement, which
is the most general known: when does Y = MX(r, H, s) ∼= X hold for any
primitive isotropic Mukai vector on X satisfying Mukai’s necessary condition.
We remind that two lattices have the same genus if they are isomorphic over
R and rings Zp of p-adic integers for all prime p.

Theorem 4.3. Let X be a K3 surface. Assume that the Picard lattice N(X)
is unique in its genus, and the natural homomorphism

O(N(X)) → O(qN(X))

is surjective, where qN(X) is the discriminant quadratic form of N(X). Equiv-
alently, any isomorphism of the transcendental periods of X and another K3
surface extends to an isomorphism of the periods of X and the other K3 sur-
face.
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Then for any primitive isotropic Mukai vector v = (r, H, s) on X such that
(c, γ) = 1 (Mukai’s necessary condition), one has Y = MX(r, H, s) ∼= X.

On the other hand, if X is general with its Picard lattice and (32) holds,
then the isomorphism Y = MX(r, H, s) ∼= X does not follow from any divi-
sorial condition on moduli of polarized K3 surfaces (X, H). That is, for any
primitive 2-dimensional sublattice H ∈ N ⊂ N(X), there exists a polarized
K3 surface (X ′,H) with N(X ′) = N such that Y ′ = MX′(r, H, s) is not
isomorphic to X ′.

These results and those of Section 3 suggest the following general notions.
Let r ∈ N and s ∈ Z. We formally put H2 = 2rs and introduce c = (r, s) and
a = r/c, b = s/c. Let d ∈ N, (d, c) = 1 and d2 | ab. We call

(r, H, s), H2 = 2rs, d, (35)

a type of primitive isotropic Mukai vector for a K3. Clearly, a Mukai vector of
type (35) on a K3 surface X is just an element H ∈ N(X) such that H2 = 2rs

and H̃ = H/d is primitive. As above, we introduce da = (d, a), db = (d, b) and
put a1 = a/d2

a, b1 = b/d2
b . Then H̃2 = 2a1b1c

2.
Let N be a lattice that embeds primitively into the Picard lattice of some

algebraic K3 surface (equivalently, there exists a Kähler K3 surface with this
Picard lattice). It is equivalent to say that N is either negative definite, or
semi-negative definite with 1-dimensional kernel, or hyperbolic (i.e., N has
signature (1, ρ − 1)), and has a primitive embedding into an even unimod-
ular lattice of signature (3, 19). Moreover, we say that N is an abstract K3
Picard lattice (or just a K3 Picard lattice). Let H ∈ N ; we say that H ∈ N
is a polarized (abstract) K3 Picard lattice (despite the fact that H2 can be
nonpositive). We consider such pairs up to natural isomorphism. Another po-
larized K3 Picard lattice H ′ ∈ N ′ is isomorphic to H ∈ N if there exists an
isomorphism f : N ∼= N ′ of lattices with f(H) = H ′.

Definition 4.4. Fix a type (35) of primitive isotropic Mukai vector of K3. A
polarized K3 Picard lattice H ∈ N is critical for self-correspondences of a K3
surface via moduli of sheaves for the type (35) of Mukai vector if H2 = 2rs and
H̃ = H/d ∈ N is primitive and H ∈ N satisfies the following two conditions:

(a) for any K3 surface X such that H ∈ N ⊂ N(X) is a primitive sublattice,
one has Y = MX(r, H, s) ∼= X.

(b) the above condition (a) does not hold if one replaces H ∈ N by H ∈ N1

for any primitive sublattice H ∈ N1 ⊂ N of N of strictly smaller rank
rank N1 < rank N .

In what follows we abbreviate this, saying that H ∈ N is a critical polarized
K3 Picard lattice for the type (35).

On the one hand, [14], Theorem 2.3.3 gave a criterion for a polarized
K3 Picard lattice H ∈ N , for a general (and then any) K3 surface with
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H ∈ N = N(X) to have Y = MX(r, H, s) ∼= X. On the other hand, by the
specialization principle (Lemma 2.1.1 in [14]), if this criterion is satisfied, then
Y = MX(r, H, s) ∼= X for any K3 surface X such that H ∈ N ⊂ N(X) is
a primitive sublattice. Thus for the problem of describing in terms of Picard
lattices, of all K3 surfaces X such that Y = MX(r, H, s) ∼= X, the main
problem is as follows.

Problem 4.5. For a given type of primitive isotropic Mukai vector (35) for a
K3, describe all critical polarized K3 Picard lattices H ∈ N (for the problem
of self-correspondences of a K3 surface via moduli of sheaves).

Now we have the following examples of solution of this problem.
By (10), or Corollary 2.6, or Remark 3.4, we have classified the critical

polarized K3 Picard lattices of rank one.

Example 4.6. For the type (r, H, s), H2 = 2rs, d where c = 1 and either
a1 = 1 or b1 = ±1, we obtain that N = ZH̃ where H̃2 = 2a1b1 gives all
critical polarized K3 Picard lattices H = dH̃ ∈ N of rank one.

Example 4.7. For the type of Mukai vector which is different from Example
4.6, classification of the critical polarized K3 Picard lattices of rank 2 is given
by equivalent Theorems 3.1, 3.2 or 3.3.

Example 4.8. For the Mukai vector of the type (5,H, 13) with H2 = 2 ·5 ·13
and d = 1, the polarized Picard lattice H ∈ S of Theorem 4.1 is critical of rank
rank S=3, by Theorem 4.1. Obviously, there are plenty of similar examples.
It would be very interesting and nontrivial to find all critical polarized K3
Picard lattices H ∈ S of rank 3.

Example 4.9. By Theorem 4.2, we should expect that there exist critical
polarized K3 Picard lattices of the rank more than 3. On the other hand, the
same Theorem 4.2 gives that the rank of a critical polarized K3 Picard lattice
is ≤ 12.

Theorem 4.10. For any type (r, H, s), H2 = 2rs and d of a primitive
isotropic Mukai vector of K3, the rank of a critical polarized K3 Picard lattice
H ∈ N is at most 12: we have rank N ≤ 12.

Proof. Let H ∈ N be a critical polarized K3 Picard lattice of this type and
rank N ≥ 13. Let us take any primitive sublattice H ∈ N ′ ⊂ N of the
rank N ′ = 12 such that H̃ · N ′ = H̃ · N . Obviously, it does exist. Let X
be an algebraic K3 surface such that H ∈ N ′ ⊂ N(X). Then rankN(X) ≥ 12
and Y = MX(r, H, s) ∼= X by Theorem 4.2.

Then the condition (b) of Definition 4.4 is not satisfied, and we get a
contradiction. Thus rank N ≤ 12.

This completes the proof. ut
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It would be very interesting to give an exact estimate for the rank of
critical polarized K3 Picard lattices.

Problem 4.11. For a given type (35) of primitive isotropic Mukai vector of
K3, give the exact estimate of the rank rankN of a critical polarized K3
Picard lattices H ∈ N of this type (for the problem of self-correspondences of
K3 surfaces).

Now we don’t know the answer to this problem for any type (35) different
from Example 4.6.

5 Composing self-correspondences of a K3 surface via
moduli of sheaves and the general classification problem

We want to interpret the above results in terms of the action of corre-
spondences on the 2-dimensional cohomology lattice of a K3 surface. More-
over, we attempt to formulate the general problem of classification of self-
correspondences of a K3 surface via moduli of sheaves.

Let v = (r, H, s) be a primitive isotropic Mukai vector on a K3 surface X
and Y = MX(r, H, s). Write πX , πY for the projections of X × Y to X and
Y . By Mukai [5], Theorem 1.5, the algebraic cycle

ZE = (π∗X
√

tdX) · ch(E) · (π∗Y
√

tdY )/σ(E) (36)

arising from the quasi-universal sheaf E on X × Y defines an isomorphism of
the full cohomology groups

fZE : H∗(X, Q) → H∗(Y, Q), t 7→ πY ∗(ZE · π∗Xt) (37)

with their Hodge structures (see [5], Theorem 1.5 for details). Moreover, ac-
cording to Mukai, it defines an isomorphism of lattices (an isometry)

fZE : v⊥ → H4(Y, Z)⊕H2(Y, Z)

where fZE (v) = w ∈ H4(Y, Z) is the fundamental cocycle, and the orthogonal
complement v⊥ is taken in the Mukai lattice H̃(X, Z). This gives the relation
(5) already used in Section 2.

In particular, composing fZE with the projection π : H4(Y, Z)⊕H2(Y, Z) →
H2(Y, Z) gives an embedding of lattices

π · fZE : H⊥
H2(X,Z) → H2(Y, Z)

that extends to an isometry

f̃ZE : H2(X, Q) → H2(Y, Q) (38)
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of quadratic forms over Q by Witt’s Theorem. If H2 = 0, this extension is
unique.

If H2 6= 0, there are two such extensions, differing by ±1 on ZH. We agree
to take

f̃ZE (H̃) = ch, (39)

where h is defined in (6), and we use Proposition 2.4 to relate the periods of
X and Y .

The Hodge isometry (38) can be viewed as a minor modification of Mukai’s
algebraic cycle (36) to give an isometry in H2. It is also clearly defined by
some algebraic cycle, because it only changes the Mukai isomorphism (37) in
the algebraic part.

By Proposition 2.4, the isomorphism f̃ZE is given by embeddings

H̃⊥ ⊂ h⊥ =
[
H̃⊥, 2a1b1ct

∗(H̃)
]
, ZH̃ ⊂ Zh, H̃ = ch

and H2,0(X) = H2,0(Y ).
(40)

This identifies the quadratic forms H2(X, Q) = H2(Y, Q) over Q, and the
lattices H2(X, Z), H2(Y, Z) as two sublattices of this. Let

O(H2(X, Q))0 =
{
f ∈ O(H2(X, Q))

∣∣ f |T (X) = ±1
}

∼= O(N(X)⊗Q)× {±1T (X)},

and
O(H2(X, Z))0 = O(H2(X, Z)) ∩O(H2(X, Q))0.

By the Global Torelli Theorem for K3 surfaces of [15], we obtain at once:

Proposition 5.1. If a K3 surface X is general with its Picard lattice, then
Y = MX(r, H, s) ∼= X if and only if there exists an automorphism φ(r, H, s) ∈
O(H2(X, Q))0 such that φ(H2(X, Z)) = H2(Y, Z).

If Y ∼= X we can give the definition.

Definition 5.2. If Y = MX(r, H, s) ∼= X and X is general with its Picard
lattice, then the isomorphism of Proposition 5.1

φ(r, H, s) mod O(H2(X, Z))0 ∈ O(H2(X, Q))0/O(H2(X, Z))0

is called the action on H2(X, Q) of the self-correspondence of a general K3 sur-
face X (general with its Picard lattice) via moduli of sheaves Y = MX(r, H, s)
with primitive isotropic Mukai vector v = (r, H, s).

By the Global Torelli Theorem for K3 surfaces [15], the group O(H2(X, Z))0
mod ±1 can be considered as generated by correspondences defined by graphs
of automorphisms of X and by the reflections in elements δ ∈ N(X) with
δ2 = −2 given by sδ : x 7→ x + (x · δ)δ for x ∈ H2(X, Z). By the Riemann–
Roch theorem for K3 surfaces, ±δ contains an effective curve E. If ∆ ⊂ X×X
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is the diagonal, the effective 2-dimensional algebraic cycle ∆+E×E ⊂ X×X
acts as the reflection sδ in H2(X, Z) (I learnt this from Mukai [8]). Thus con-
sidering actions of correspondences modulo O(H2(X, Z)) mod ± 1 is very
natural.

Consider the Tyurin isomorphism (10) defined by the Mukai vector v =
(±H2/2,H,±1), where H ∈ N(X) has±H2 > 0. Then MX(±H2/2,H,±1) ∼=
MX(±H̃2/2, H̃,±1) where H̃ = H/d is primitive.

Then c = 1, a1 = ±H̃2/2 and b1 = ±1, m(a1, b1) ≡ −1 mod 2a1b1, h = H̃,
and we have

H2(X, Z) =
[
ZH̃, H̃⊥, H̃ + t∗(H̃)

]
and H2(Y, Z) =

[
ZH̃, H̃⊥, H̃ − t∗(H̃)

]
.

Then the reflection s eH in H̃

s eH(x) = x− 2(x · H̃)H̃

H̃2
for x ∈ H2(X, Q)

belongs to O(H2(X, Q))0, and s eH(H2(X, Z)) = H2(Y, Z). Moreover, the re-
flections sH and s eH coincide.

This gives the following result.

Proposition 5.3. For a K3 surface X and H ∈ N(X) with ±H2 > 0, the
Tyurin isomorphism

MX(±H2,H,±1) ∼= X

defines a self-correspondence of X with the action

sH mod O(H2(X, Z)0),

where sH is the reflection in H.

By classical and well-known results, their composites generate the full
group O(H2(X, Q))0 mod ± 1.

5.1 General problem of classifying self-correspondences of a K3
surface via moduli of sheaves

We need some notation. For a primitive sublattice N ⊂ N(X), we introduce

O(N ⊗Q)0 =
{
f ∈ O(H2(X, Q))

∣∣ f |N⊥
H2(X,Z) = ±1

}
and

O(N)0 = O(H2(X, Z)) ∩O(N ⊗Q)0.

We denote by [ · ]pr ⊂ L the primitive sublattice of L generated by · .
Let X be a K3 surface which is general with its Picard lattice N(X). From

our current point of view, the problem of classifying self-correspondences of
X via moduli of sheaves consists of the following problems:
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(1) Find all primitive isotropic Mukai vectors (r, H, s) on X such that Y =
MX(r, H, s) ∼= X.

(2) For a primitive isotropic Mukai vector (r, H, s) as in (1), find all primitive
critical polarized Picard sublattices H ∈ N(r, H, s) ⊂ N(X).

For either of these problems, the action φ(r, H, s) of Definition 5.2 can be
taken to be in O(N(r, H, s) ⊗ Q)0. We denote it by φN(r,H,s), and it looks
like a reflection with respect to N(r, H, s). For two critical polarized Picard
sublattices H ∈ N(r, H, s) and H ′ ∈ N ′(r, H, s) as in (2), the automorphisms
φN(r,H,s) and φN ′(r,H,s) differ by an automorphism in O(H2(X, Z))0.

(3) The structures (1) and (2) are important for the following reason: given
any two primitive isotropic Mukai vectors (r, H, s) and (r′,H ′, s′) as in
(1) and two critical polarized Picard sublattices H ∈ N(r, H, s) and H ′ ∈
N(r′,H ′, s′) for them as in (2), the isomorphism

φ(r′,H ′, s′) ◦ φ(r, H, s)−1 : MX(r, H, s) → MX(r′,H ′, s′)

comes from K3 surfaces with the Picard sublattice

[N(r, H, s) + N(r′,H ′, s′)]pr ⊂ N(X),

and it can be viewed as a natural isomorphism between these moduli .
(4) All these generators φN(r,H,s) mod O(N(r, H, s))0 can be considered as

natural generators for self-correspondences of X via moduli of sheaves,
together with automorphisms of X and reflections sδ, δ ∈ N(X) and
δ2 = −2. They and their relations are the natural subject to study.

Problems (1)—(4) are solved for ρ(X) = 1 and 2 in Sections 2 and 3. The
results of Section 4 show that these problems are very nontrivial for ρ(X) ≥ 3.

As an example, take a general K3 surface X with the rank 3 Picard lattice
N(X) = S of Theorem 4.1 (or any other Picard lattice of rank 3 satisfying
Theorem 4.3). Let v = (r, H, s) be a primitive isotropic Mukai vector on X.
Then Y = MX(r, H, s) ∼= X if and only if (γ, c) = 1 where H̃ · S = γZ.
Moreover, we have three cases:

(a) If c = 1 and either a1 = 1 or b1 = ±1 (Tyurin’s case), then the critical
sublattice is N(v) = ZH̃, it has rank one and is unique. The corresponding
φN(v) = sH mod O(H2(X, Z))0.

(b) If v = (r, H, s) is different from (a), but the critical sublattice N(v) has
rank two (the divisorial case), then all critical sublattices N(v) are prim-
itively generated by H̃ and h̃1 ∈ [H̃, a1cN(X)] with h̃2

1 = ±2a1c or
h̃1 ∈ [H̃, b1cN(X)] with h̃2

1 = ±2b1c (see the theorems of Section 3).
All these N(v) give automorphisms φN(v) that differ by elements of
O(H2(X, Z))0.

(c) If v = (r, H, s) is different from (a) and (b), then the critical sublattice
N(v) = N(X) has rank 3. These cases really happen by Theorem 4.1. We
get φN(v) mod O(H2(X, Z))0.
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Any two v1, v2 satisfying one of these conditions (a–c), together with any
two critical sublattices N(v1), N(v2) for them, generate natural isomorphisms
φN(v2) ◦ φ−1

N(v1)
between the corresponding moduli spaces of sheaves over X

(all of which are isomorphic to X), which are specializations of isomorphisms
from the Picard sublattice [N(v1) + N(v2)]pr ⊂ N(X).
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