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Introduction

In the theory of foliations in moduli spaces of abelian varieties, as developed
in [32], we study central leaves. Consider a p-divisible group X0 over a field
K, and let Def(X0) = Spf(Γ ) and D(X0) = Spec(Γ ). Consider g ∈ Z>0 and
consider Ag⊗Fp, the moduli space of polarized abelian varieties (in this paper
to be denoted by Ag); choose [(A, λ)] = x ∈ A and (A, λ)[p∞] = (X,λ). Here
is the central question of this paper: determine

unpolarized case: dim(CX0(D(X0))) =?; polarized case: dim(C(X,λ)(A)) =?.

For the notation C−(−) see 1.7. We give a combinatorial description of certain
numbers associated with a Newton polygon, such as “dim(−)”, “sdim(−)”,
“cdu(−)”, “cdp(−)”. We show these give the dimension of a stratum or a leaf,
in the unpolarized and in the principally polarized case. We give 3 different
proofs that these formulas for the dimension of a central leaf are correct:

dim(CY (D(X))) = cdu(β), β := N (Y ), see Theorem 4.5 and

dim
(
C(X,λ)(Ag)

)
= cdp(ξ), ξ := N (X), see Theorem 5.4;

One proof is based on the theory of minimal p-divisible groups, as devel-
oped in [36], together with a result by T. Wedhorn, see [42], [43]; this was the
proof I first had in mind, written up in the summer of 2002.

The second proof is based on the theory of Chai about Serre-Tate coordi-
nates, a generalization from the ordinary case to central leaves in an arbitrary
Newton polygon stratum, see [2]. This generalization was partly stimulated
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by the first proof, and the question to “explain” the dimension formula which
came out of my computations.

A third proof, in the unpolarized case and in the polarized case (p > 2), is
based on recent work by E. Viehmann, see [40], [41], where the dimension of
Rapoport-Zink spaces, and hence the dimension of isogeny leaves is computed
in the (un)polarized case; the almost product structure of an open Newton
polygon stratum by central and isogeny leaves, as in [32], see 7.16, finishes a
proof of the results.

These results enable us to answer a question, settle a conjecture, about bounds
of the dimension of components of a Newton polygon stratum, see Section 6.

These results find their natural place in joint work with Ching-Li Chai, which
we expect finally to appear in [5]. I thank Chai for the beautiful things I
learned from him, in particular for his elegant generalization of Serre-Tate
canonical coordinates used in the present paper.

The results of this paper were already announced earlier, e.g. see [32] 3.17,
[1] 7.10, 7.12.

Historical remarks. Moduli for polarized abelian varieites in positive charac-
teristic were studied in the fundamental work by Yuri Manin, see [21]. That paper
was and is a great source of inspiration.

In summer 2000 I gave a talk in Oberwolfach on foliations in moduli spaces of

abelian varieties. After my talk, in the evening of Friday 4-VIII-2000 Bjorn Poonen

asked me several questions, especially related to the problem I raised to determine

the dimensions of central leaves. Our discussion resulted in Problem 21 in [8]. His

expectations coincided with computations I had made of these dimensions for small

values of g. Then I jumped to the conclusion what those dimensions for an arbitrary

Newton polygon could be; that is what was proved later, and reported on here,

see 4.5, 5.4. I thank Bjorn Poonen for his interesting questions; our discussion was

valuable for me.

A suggestion to the reader. The results of this paper are in Sections 4,
5 and 6; we refer to the introductions of those sections. The reader could
start reading those sections and refer to other sections whenever definitions
or results are needed. In Section 1 we explain some of the concepts used in
this paper. In the Sections 2 and 3 we describe preliminary results used in the
proofs. In Section 7 we list some of the well-known methods and results we
need for our proofs.

Various strata NP - EO - Fol. Here is a short survey of strata and folia-
tions, to be defined, explained and studied below. For an abelian variety A,
with a polarization (sometimes supposed to be principal) we can study the
following objects:
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NP A 7→ A[p∞] 7→ A[p∞]/ ∼k over an algebraically closed field:
the isogeny class of its p-divisible group; by the Dieudonné - Manin theorem,
see 7.2, we can identify this isogeny class of p-divisible groups with the Newton
polygon of A. We obtain the Newton polygon strata, see 1.4 and 7.8.

EO (A, λ) 7→ (A, λ)[p] 7→ (A, λ)[p]/ ∼=k over an algebraically
closed field:
we obtain EO-strata; see [30], see 1.6. Important feature (Kraft, Oort): the
number of geometric isomorphism classes of group schemes of a given rank
annihilated by p is finite.

Fol (A, λ) 7→ (A, λ)[p∞] 7→ (A, λ)[p∞]/ ∼=k over an algebraically
closed field:
we obtain a foliation of an open Newton polygon stratum; see [32] and 1.7.
Note that for f < g − 1 the number of (central) leaves is infinite.

Note: X ∼= Y ⇒ N (X) = N (Y ); conclusion: every central leaf in Fol is
contained in exactly one Newton polygon stratum in NP.
Note: X ∼= Y ⇒ X[p] = Y [p]; conclusion: every central leaf in Fol is
contained in exactly EO-stratum in EO.

However, a NP-stratum may contain many EO-strata, an EO-stratum may
intersect several NP-strata, see 8.6. Whether an EO-stratum equals a central
leaf is studied and answered in the theory of minimal p-divisible groups, see
1.5 and 7.5.

Isogeny correpondences are finite-to-finite above central leaves, but may
blow up and down subsets of isogeny leaves; see 7.22 and Section 6.

1 Notations

We fix a prime number p. All base schemes and base fields will be in char-
acteristic p. We write K for a field, and we write k and Ω for algebraically
closed fields of characteristic p.

We study the (coarse) moduli scheme Ag of polarized abelian varieties of
dimension g in characteristic p; this notation is used instead of Ag ⊗ Fp. We
write Ag,1 for the moduli scheme of principally polarized abelian varieties of
dimension g in characteristic p. We will use letters like A, B to denote abelian
varieties.

For the notion of a p-divisible group we refer to the literature, e.g. [13];
also see [3], 1.18. Instead of the term p-divisible group the equivalent notion
“Barsotti-Tate group” is used. We will use letter like X, Y to denote a p-
divisible group. For an abelian variety A, or an abelian scheme, and a prime
number p we write A[p∞] = ∪iA[pi] = X for its p-divisible group.
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For finite group schemes and for p-divisible groups over a perfect field in
characteristic p we use the theory of covariant Dieudonné modules. In [21] the
contravariant theory was developed. However it turned out that the covariant
theory was easier to handle in deformation theory; see [30], 15.3 for references.

A warning and a remark on notation. Under the covariant Dieudonné mod-
ule theory the Frobenius morphism on a group scheme is transformed into the
Verschiebung homomorphism on its Dieudonné module; this homomorphism
is denoted by V; the analogous statement for V being transformed into F ; in
shorthand notation D(F ) = V and D(V ) = F , see [30], 15.3. In order not to
confuse F on group schemes and the Frobenius on modules we have chosen
the notation F and V. An example: for an abelian variety A over a perfect
field, writing D(A[p∞]) = M we have D(A[F ]) = M/VM .

1.1. Newton polygons. Suppose given integers h, d ∈ Z≥0; here h =
“height”, d = “dimension”. In case of abelian varieties we will choose h = 2g,
and d = g. A Newton polygon γ (related to h and d) is a polygon γ ⊂ Q×Q
(or, if you wish in R× R), such that:

• γ starts at (0, 0) and ends at (h, d);
• γ is lower convex;
• any slope β of γ has the property 0 ≤ β ≤ 1;
• the breakpoints of γ are in Z× Z; hence β ∈ Q.
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Note that a Newton polygon determines (and is determined by)

β1, · · · , βh ∈ Q with 0 ≤ β1 ≤ · · · ≤ βh ≤ 1 ↔ ζ.

Sometimes we will give a Newton polygon by data
∑
i (mi, ni); here mi, ni ∈

Z≥0, with gcd(mi, ni) = 1, and mi/(mi + ni) ≤ mj/(mj + nj) for i ≤ j,
and h =

∑
i (mi + ni), d =

∑
imi. From these data we construct the

related Newton polygon by choosing the slopesmi/(mi+ni) with multiplicities
hi = mi + ni. Conversely clearly any Newton polygon can be encoded in a
unique way in such a form.

Let ζ be a Newton polygon. Suppose that the slopes of ζ are 1 ≥ β1 ≥ · · · ≥
βh ≥ 0; this polygon has slopes βh, · · · , β1 (non-decreasing order), and it is
lower convex. We write ζ∗ for the polygon starting at (0, 0) constructed using
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the slopes β1, · · · , βh (non-increasing order); note that ζ∗ is upper convex, and
that the beginning and end point of ζ and of ζ∗ coincide. Note that ζ = ζ∗ iff
ζ is isoclinic (i.e. there is only one slope).

We say that ζ is symmetric if h = 2g is even, and the slopes 1 ≥ β1 ≥ · · · ≥
βh ≥ 0 satisfy βi = 1− βh−i+1 for 1 ≤ i ≤ h. We say that ζ is supersingular,
and we write ζ = σ, if all slopes are equal to 1/2. A symmetric Newton
polygon is isoclinic this is the case iff the Newton polygon is supersingular.

1.2. We will associate to a p-divisible group X over a field K its Newton poly-
gon N (X). This will be the “Newton polygon of the characteristic polynomial
of Frobenius on X”; this terminology is incorrect in case K is not the prime
field Fp. Here is a precise definition.

Let m,n ∈ Z≥0; we are going to define a p-divisble group Gm,n. We write
G1,0 = Gm[p∞] and G0,1 = Qp/Zp. For positive, coprime values of m and n

we choose a perfect field K, we write Mm,n = RK/RK(Vn −Fm), where RK
is the Dieudonné ring. We define Gm,n by D(Gm,n) = Mm,n. Note that this
works over any perfect field. This p-divisible group is defined over Fp and we
will use the same notation over any field K, instead of writing (Gm,n)K =
(Gm,n)Fp ⊗ K. Note that Mm,n/V·Mm,n is a K-vector space of dimension
m. Hence the dimension of Gm.n is m. We see that the height of Gm,n is
h = m+ n. We can show that under Serre-duality we have Gtm,n = Gn,m.

We define N (Gm,n) as the polygon which has slope m/(m+ n) with mul-
tiplicity h = m+ n. Note : this is the F -slope on Gm,n, and it is the V-slope
on Mm,n. Indeed over Fp the Frobenius F : Gm,n → Gm,n has the property
Fm+n = FmV m = pm.

Let X be a p-divisble group over a field K. Choose an algebraic closure K ⊂ k.
Choose an isogenyXk ∼ Πi (Gmi,ni

) see 7.1 and 7.2. We defineN (X) as the
“union” of these N (Gmi,ni), i.e. take the slopes of these isogeny factors, and
order all slopes in non-decreasing order. By the Dieudonné-Manin theorem we
know that over an algebraically closed field there is a bijective correspondence
between isogeny classes p-divisible groups on the one hand and, and Newton
polygons on the other hand, see 7.2. For an abelian variety A we write N (A)
instead of N (A[p∞]).

For a commutative group scheme G over a field K we define the number
f = f(G) by: Hom(µp, Gk) ∼= (Z/p)f , where k is an algebraically closed field.
For a p-divisble group X, respectively an abelian variety A the number f(X),
respectively f(A) is called the p-rank. Note that in these cases this number is
the multiplicity of the slope equal to one in the Newton polygon.

For an abelian variety A its Newton polygon ξ is symmetric; by definition this
means that the multiplicity of the slope β in ξ is the same as the multiplicity
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of the slope 1 − β. This was proved by Manin over finite fields. The general
case follows from the duality theorem [28] 19.1; we see that At[p∞] = A[p∞]t;
using moreover (Gm,n)t = Gn,m and the definition of the Newton polygon of
a p-divisible group we conclude that N (A) is symmetric.

1.3. The graph of Newton polygons. For Newton polygons we introduce
a partial ordering.

We write ζ1 � ζ2 if ζ1 is “below” ζ2,
i.e. if no point of ζ1 is strictly above ζ2.
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1.4. Newton polygon strata. If S is a base scheme, and X → S is a p-
divisible group over S we write

Wζ(S) = {s ∈ S | N (Xs) ≺ ζ} ⊂ S

and
W0
ζ (S) = {s ∈ S | N (Xs) = ζ} ⊂ S.

Grothendieck showed in his Montreal notes [11] that “Newton polygons go up
under specialization”. The proof was worked out by Katz, see 7.8.

1.5. Minimal p-divisible groups. See [36] and [37]. In the isogeny class of
Gm,n we single out one p-divisible group Hm,n specifically; for a description
see [15], 5.3 - 5.7; the p-divisible group Hm,n is defined over Fp, it is isogenous
with Gm,n, and

the endomorphism ring End(Hm,n ⊗ k) is the maximal order
in the endomorphism algebra End(Hm,n ⊗ k)⊗Q;

these conditions determine Hm,n ⊗ Fp up to isomorphism. This p-divisible
group Hm,n is called minimal.

One can define Hm,n over Fp by defining its (covariant) Dieudonné module
by: D(H(m,n),Fp

) = M(m,n),Fp
, this module has a basis as free module over

W = W∞(Fp) given by {e0, · · · , eh−1}, where h = m + n, write p·ei = ei+h
inductively for all i ≥ 0, there is an endomorphism π ∈ End(H(m,n),Fp

) with
π(ei) = ei+1, and πn = F ∈ End(H(m,n),Fp

) and πm = V ∈ End(H(m,n),Fp
),

hence πh = p ∈ End(H(m,n),Fp
).

If ζ =
∑
i(mi, ni) we write H(ζ) :=

∑
iHmi,ni

, the minimal p-divisible
group with Newton polygon equal to ζ. We write G(ζ) = H(ζ)[p], the minimal
BT1 group scheme attached to ζ.

In case µ ∈ Z>0 we write
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Hd,c = (Hm,n)
µ
, where d := µm, c := µn, gcd(m,n) = 1.

For further information see 7.3.

1.6. Basic reference: [30]. We say that G a BT1 group scheme is, or, a p-
divisible group truncated at level one, if is is annihilated by p, and the image
of V and the kernel of F are equal; for more information see [13], 1.1 Let
X → S be a p-divisble group over a base S (in characteristic p). We write

SG(S) := {s ∈ S | ∃Ω Xs[p]⊗Ω ∼= G⊗Ω}.

This is called the Ekedahl-Oort stratum defined by X/S. This is a locally
closed subset in S. Polarizations can be considered, but are not taken into
account in the definition of SG(−). See [30], Section 9 for the case of principal
polarizations.

Let G be a BT1 group scheme over an algebraically closed field which is
symmetric in the sense of [30], 5.1, i.e. there is an isomorphism G ∼= GD.
To G we attached in [30], 5.6 an elementary sequence, denoted by ES(G).
A important point is the fact (not easy in case p = 2) that a “principally
polarized” BT1 group scheme over an algebraically closed field is uniquely
determined by this sequence; this was proved in [30], Section 9; in case p > 2
the proof is much easier, and the fact holds in a much more general situation,
see [26], Section 5, in particular Coroll. 5.4.

1.7. Basic reference: [32]. Let X be a p-divisible group over a field K and let
Y → S be a p-divisible group over a base scheme S. We write

CX(S) = {s ∈ S | ∃Ω,∃Ys ⊗Ω ∼= X ⊗Ω};

here Ω is an algebraically closed field containing κ(s) and K. Consider a
quasi-polarized p-divisible group (X,λ) over a field. Let (Y, µ) → S be a
quasi-polarized p-divisible group over a base scheme S. We write

C(X,λ)(S) = {s ∈ S | ∃Ω,∃(Y, µ)s ⊗Ω ∼= (X,λ)⊗Ω}.

See 7.12 for the fact that any central leaf is closed in an open Newton polygon
stratum.

We write IX(S) and I(X,λ)(S) for the notion of isogeny leaves introduced
in [32], Section 4, see 4.10 and 4.11. We recall the definition in the polarized
case S = Ag ⊗ Fp. Let x = [(X,λ)] be given over a perfect field. Write Hα(x)
for the set of points in Ag ⊗ Fp connected to x by iterated αp-isogenies (over
extension fields). In general this is not a closed subset of Ag ⊗ Fp. However
the union of all irreducible components of Hα(x) containing x is a closed
subset; this subset with the induced reduced scheme structure is denoted
by I(X,λ)(Ag ⊗ Fp); for the definition in the general (un)polarized case, and
for existence theorems, see [32], Section 4. Note that formal completion of
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I(X,λ)(Ag ⊗ Fp) at the point x is the reduced, reduction mod p of the related
Rapoport-Zink space; an analogous statement holds for the unpolarized case;
for the definition of these spaces see [39], Section 2 for the unpolarized case
and Chapter 3 for the polarized case.

1.8. Suppose X → S and Y → T are p-divisible groups. Consider triples
(f : U → S, g : U → T, ψ : Xf → Yg), where f : U → X and g : U → T
are morphisms, and where ψ : Xf = X ×U S → Yg = Y ×U S is an isogeny.
An object representing such triples in the category of schemes over S × T is
called an isogeny correspondence.

Consider polarized abelian schemes (A,µ) → S and (B, ν) → T . Triples
(f : U → X, g : U → T, ψ : Af → Bg) such that f∗(µ) = g∗(ν) define
isogeny correspondences between families of polarized abelian varieites. These
are also called Hecke correspondences. See [9], VII.3 for a slightly more general
notion. See [3] for a discussion.

One important feature in our discussion is the fact that isogeny corre-
spondence are finite-to-finite above central leaves. But note that isogeny cor-
respondences in general blow up and down as correspondences in (Ag⊗Fp)×
(Ag ⊗ Fp).

1.9. Let X0 be a p-divisible group over a field K. We write Def(X0) for the
local deformation space in characteristic p of X0. By this we mean the fol-
lowing. Consider all local Artin rings R with a residue class homomorphism
R→ K such that p·1 = 0 in R. Consider all p-divisble groups X over Spec(R)
plus an identification X ⊗R K = X0. This functor on the category of such
algebras is prorepresentable. The prorepresenting formal scheme is denoted
by Def(X0).

The prorepresenting formal p-divisible group can be written as X →
Def(X0) = Spf(Γ ). This affine formal scheme comes from a p-divisible
group over Spec(Γ ), e.g. see [14], 2.4.4. This object wil be denoted by
X → Spec(Γ ) =: D(X0).

An analogous definition can be given for the local deformation space
Def(X0, µ0) = Spf(Γ ) of a quasi-polarized p-divisible group. In this case we
will write D(X0, µ0) = Spec((Γ ).

Consider the local deformation space Def(A0, µ0) of a polarized abelian
variety (A0, µ0). By the Chow-Grothendieck algebraization theory, see [10],
III1.5.4, we know that there exists a polarized abelian scheme (A,µ) →
D(A0, µ0) := Spec(Γ ) of which the corresponding formal scheme is the prorep-
resenting object of this deformation functor.

2 Computation of the dimension of automorphism
schemes

Consider minimal p-divisible groups as in 1.5, and their BT1 group schemes
Hd,c[p]. Consider homomorphism group schemes between such, automorphism
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group schemes and their dimensions. Automorphism group schemes as defined
in [42], 5.7, and the analogous definition for homomorphism group schemes. In
this section we compute the dimension of Hom-schemes and of Aut-schemes.
In order to compute these dimensions it suffices to compute the dimension
of such schemes of homomorphisms and automorphisms between Dieudonné
modules, as explained in [42], 5.7. These computations use methods of proof,
as in [23], Sections 4 and 5, [25], [37], 2.4. We carry out the proof of the
first proposition, and leave the proof of the second, which is also a direct
verification, to a future publication.

2.1. Proposition. Suppose a, b, d, c ∈ Z≥0; assume that a/(a+b) ≥ d/(d+c).
Then:

dim (Hom(Ha,b[p],Hd,c[p])) = bd = dim (Hom(Hd,c[p],Ha,b[p)) ;

dim (Aut(Hd,c[p])) = dc.

In fact, much more is true in case of minimal p-divisible groups. For I, J ∈ Z>0

we have

dim(Hom(Ha,b[pI ],Hd,c[pJ ])) = dim(Hom(Ha,b[p],Hd,c[p])).

Proof. If a′ = µ·a and b′ = µ·b, we have Ha′,b′
∼= (Ha,b)µ. Hence it suffices to

compute these dimensions in case gcd(a, b) = 1 = gcd(d, c). From now on we
suppose we are in this case. We distinguish three possibilities:

(1) 1/2 ≥ a/(a+ b);
(2) a/(a+ b) ≥ 1/2d/(d+ c):
(3) a/(a+ b) ≥ d/(d+ c) ≥ 1/2.

We will see that a proof of (2) is easy. Note that once (1) is proved, (3)
follows by duality; indeed, (Ha,b)D = Hb,a. Most of the work will be devoted
to proving the case (1).

We remind the reader of some notation introduced in [37]. Finite words with
letters F and V are considered. They are treated in a cyclic way, finite cyclic
words repeat itself infinitely often. For such a word w a finite BT1 group
scheme Gw over a perfect field K is constructed by taking a basis for D(Gw) =∑
a≤i≤hK.zi of the same cardinality as the number h of letters in w. For

w = L1 · · ·Lh we define:

Li = F ⇒ Fzi = zi+1, Vzi+1 = 0;

Li = V ⇒ Vzi+1 = zi, Fzi = 0;

i.e. the Li = F acting clock-wise in the circular set {zi, · · · zh} and V acting
anti-clockwise; see [37], page 282. A circular word w defines in this way a
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(finite) BT1 group scheme. Moreover over k a word w is indecomposable iff
Gw is indecomposable, see [37] , 1.5. By a theorem of Kraft, see [37] , 1.5, this
classifies all BT1 group schemes over an algebraically closed field.

We define a finite string σ : w′ → w between words as a pair ((VsF), (FsV))
(see [37] page 283), where s is a finite non-cyclic word, (VsF) is contained in
w′ and (FsV) is contained in w; note that ”contained in w” means that it is
a subword of · · ·www · · · . In [37], 2.4 we see that for indecomposable words
w′, w a k-basis for Hom(Gw′ , Gw) can be given by the set of strings from w′

to w. From this we conclude:

dim (Hom(Gw′ , Gw)) equals the number of strings from w′ to w.

For Gw′ = Ha,b we write D(Ha,b) = W ·e0 ⊕ · · · ⊕W ·ea+b−1, with Fei = ei+b
and Vei = ei+a. For Gw′= = Hd,c we write D(Ha,b) = W ·f0⊕· · ·⊕W ·fd+c−1,
Fei = ei+c, Vei = ei+d. The number of symbols V in w′ equals b; we
choose some numbering {V | V in w′} = {ν1, · · · , νb}. Also we choose {F |
F in w} = {ϕ1, · · · , ϕd}.

Claim. For indices 1 ≤ i ≤ b and 1 ≤ j ≤ d there exists a unique non-cyclic
finite word s such that ((νi s F), (ϕj s V)) is a string from w′ to w. This gives
a bijective map

{ν1, · · · , νb} × {ϕ1, · · · , ϕd} −→ {string w′ → w}.

Note that the claim proves the first equality in 2.1.

Proof of the Claim, case (2). In this case b ≥ a and d ≥ c. We see that
every F in w′ is between letters V, and every V in w is is between letters F .
This shows that a string ((VsF), (FsV)) can only appear in this case with the
empty word s, and that any (νi F) and any j gives rise to a unique string
((νi F), (ϕj V)). Hence the claim follows in this case.

Proof of the Claim, case (1). First we note that for a finite word t of length
at least the greatest common divisor C of a + b and d + c there is no string
((VtF), (FtV)) from w′ to w. Indeed, after applying the first letter, and then
C letters in t we should obtain the same action on the starting base elements
of the string in D(Gw′) and in D(Gw), a contradiction with V 6= F .

We start with some V in w′ and some F in w and inductively consider
words t such that (Vt) is a subword of w′. We check whether (Ft) is a subword
of w. We know that this process stops. Let s be the last word for which
Fs is a subword of w. We are going to show that under these conditions
((VsF), (FsV)) is a string from w′ to w. Indeed, we claim:
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(1a) If (VtV) is contained in w′ and (Ft) is contained in w then (FtV) is
contained in w.

Note that this fact implies the claim; indeed, the first time the inductive
process stops it is at (VsF) in w′ and (FsV) in w.

Suppose that in (1a) the letter F appears γ times in t and V appears δ times
in t. We see:

V(ex)tV = eN =⇒ N = x− 2a+ γb− δa ≥ 0.

Let us write

F(fy)t = fM ; hence M = y + c+ γc− δd.

We show:
N ≥ 0 &

d

c
≥ a

b
=⇒ M > d.

Indeed, as x ≤ a+ b− 1 we see: N ≥ 0 ⇒

a+b−1−2a+γb−δa ≥ 0 ⇒ (γ+1)b ≥ (δ+1)a ⇒ d

c
≤ a

b
<
γ + 1
δ + 1

.

Hence
M = y + (γ + 1)c− δa ≥ (γ + 1)c− δa > d.

We see that F(fM ) is not defined; as (Ft) is contained in w, say F(fz)t = fy,
we see that F(fz)tV is defined, i.e. (FtV) is contained in w. We see that claim
(1a) follows. This ends the proof of first equality in all cases.

For the proof of the second equality we choose number the symbols F in w′,
number the symbols V in w, and perform a proof analogous tho the proof of
the first equality. This shows the second equality.

For the third equality we observe that dim (Aut(Hd,c[p])) equals the num-
ber of finite strings involved, and the result follows. This ends the proof of the
proposition.

�

2.2. Proposition. Suppose d, c ∈ Z≥0 with d > c. Let λ be a principal quasi-
polarization on Hd,c ×Hc,d. Then:

dim(Aut((Hd,c ×Hc,d, λ)[p])) = c(c+ 1) + dc.

Moreover:
dim(Aut(((H1,1)r, λ)[p])) =

1
2
·r(r + 1)

for a principal quasi-polarization λ.

The proof is a direct verification, with methods as in [23], Sections 4 and 5,
[25], [37], 2.4. �
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3 Serre-Tate coordinates, see [2], see [1], §7

For moduli of ordinary abelian varieties there exist canonical Serre-Tate pa-
rameters. Ching-Li Chai showed how to generalize that concept from the or-
dinary case to Serre-Tate parameters on a central leaf in Ag,1. Results in this
section are due to Chai.

3.1. The Serre - Tate theorem. Let A0 be an abelian variety, and X0 =
A0[p∞]. We obtain a natural morphism

Def(A0)
∼−→ Def(X0), A 7→ A[p∞];

a basic theorem of Serre and Tate says that this is an isomorphism. An anal-
ogous statement holds for (polarized abelian variety) 7→ (quasi-polarized p-
divisible group). See [20], 6.ii; a proof first appeared in print in [22]; also see
[7], [16]. See [3], Section 2.

3.2. Let (A, λ) be an ordinary principally polarized abelian variety; write
(X,λ) = (A, λ)[p∞]. Deformations of (A, λ) are described by extensions of
(X,λ)et by (X,λ)loc. This shows that Def(X,λ) has the structure of a formal
group. Let n ∈ Z≥3 be not divisible by p and let [(A, λ, γ)] = a ∈ Ag,1,n⊗Fp.
Write (Ag,1,n ⊗ Fp)/a for the formal completion at a. Using the Serre-Tate
theorem, see 3.1, we see that we have an isomorphism:

(Ag,1,n ⊗ Fp)/a ∼= (Gm[p∞])g(g+1)/2
,

canonically up to Zp-linear transformations: the Serre-Tate canonical coordi-
nates; see [18]; see [24], Introduction.

Discussion. One can try to formulate an analogous result around a non-
ordinary point. Generalizations of Serre-Tate coordinates run into several dif-
ficulties. In an arbitrary deformation there is no reason that the slope filtration
on the p-divisible group remains constant (as it does in the ordinary case).
Even supposing that the slope filtration remains constant or supposing that
the slope subfactors remain constant does not give the desired generalization.
However it turns out that if we suppose that under deformation the geomet-
ric isomorphism type of the p-divisible group remains geometrically constant,
the slope filtration exists and is constant. Describing extensions Chai arrives
at a satisfactory generalization of Serre-Tate coordinates. Note that for the
ordinary case and for f = g − 1 the leaf is the whole open Newton polygon
stratum; however for p-rank = f < g − 1, the inclusion C(x) ⊂Wξ is proper;
this can be seen by observing that in these cases isogeny leaves are positive
dimensional, or by using the computation of dimensions we carry out in this
paper.
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The input for this generalization is precisely the tool provided by the
theory of central leaves as in [32]. We follow ideas basically due to Ching-Li
Chai: we extract from [2], and from [1], §7 the information we need here.

Let Z be a p-divisible group, Def(Z) = Spf(Γ ) and D(Z) = Spec(Γ ). Suppose
that Z = X1 × · · · × Xu, where the summands are isoclinic of slopes ν1 >
· · · > νu. Write Zi,j = Xi ×Xj .

3.3. Proposition.

dim (CZ(D(Z))) =
∑

1≤i<j≤u

dim
(
CZi,j (D(Z(i,j)))

)
.

Note that the “group-like structure” on the formal completion at a point of
the leaf CZ(D) can be described using the notion of “cascades” as in [24], 0.4.

Let (Z, λ) be a principally quasi-polarized p-divisible group, and consider D =
D(Z, λ). Suppose that Z = X1 × · · · ×Xu, where the summands are isoclinic
of slopes ν1 > · · · > νu. Then the heights of Xi and Xu+1−i are equal and
νi = 1− νu+1−i. We have the following pairs of summands:

Xi +Xj , with 1 ≤ i < j < u+ 1− i and Xu+1−j +Xu+1−i, and
Xi +Xu+1−i for 1 ≤ i ≤ t/2.

In this ways all pairs are described. Note that
Zi,j := Xi +Xj +Xu+1−j +Xu+1−i for 1 ≤ i < j < u+ 1− i, and
Si := Xi +Xu+1−i for 1 ≤ i ≤ u/2, and S(u+1)/2 if u is odd

are principally quasi-polarized p-divisible groups (write the induced polariza-
tion again by λ on each of them).

3.4. Proposition.
dim

(
C(Z,λ)(D(Z, λ))

)
=

=
∑

1≤i<j<u+1−i

dim
(
CZ(i,j)(D(Z(i,j))

)
+

∑
1≤i≤u/2

dim
(
C(Si,λ)(D(Si, λ))

)
.

Note that

{(i, j) | 1 ≤ i < j < u+1−i} ∼−→ {(I, J) | 1 ≤ I < J and u+1−I < J ≤ u}

is a bijection under the map (i, j) 7→ (I = u + 1 − j, J = u + 1 − i). Indeed
i < j implies I < J and j < u+ 1− i gives j = u+ 1− I < J = u+ 1− i. In
this case λ gives an isomorphism Xi ×Xj

∼−→ XJ ×XI .

An example. The group structure on a leaf can be easily understood in
the case of two slopes. This was the starting point for Chai to describe the
relevant generalization of Serre-Tate coordinates from the ordinary case to
the arbitrary case.
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3.5. Theorem (Chai). Let X be isoclinic of slope νX , height hX and Y
isoclinic of slope νY and height hY . Suppose νY > νX . Write Z = Y ×X. At
every point of the central leaf C = CZ(D(Z)) the formal completion has the
structure of a p-divisible group, isoclinic of slope νY − νX , of height hX ·hY ,
and

dim (CZ(D(Z))) = (νY − νX)·hX ·hY .

Suppose moreover there exists a principal quasi-polarization λ on Z; this im-
plies hX = hY and νX = 1 − νY . The central leaf C(Z,λ)(Def(Z, λ)) has
the structure of a p-divisible group, isoclinic of slope νY − νX , of height
hX ·(hX + 1)/2, and

dim
(
C(Z,λ)(D(Z, λ)

)
=

1
2
(νY − νX)·hX ·(hX + 1).

See [1], 7.5.2.

3.6. Let Z be an isoclinic p-divisible group. Then dim (CZ(D(Z))) = 0. This
can also be seen from a generalization of the previous theorem: take νY = νX .
This fact was already known as the isogeny theorem, see [15], 2.17.

4 The dimension of central leaves, the unpolarized case

In this section we compute the dimension of a central leaf in the local defor-
mation space of an (unpolarized) p-divisible group.

4.1. Notation. Let ζ be a Newton polygon, and (x, y) ∈ Q×Q. We write:
(x, y) ≺ ζ if (x, y) is on or above ζ,
(x, y) � ζ if (x, y) is strictly above ζ,
(x, y) � ζ if (x, y) is on or below ζ,
(x, y) � ζ if (x, y) is strictly below ζ.

4.2. Notation. We fix integers h ≥ d ≥ 0, and we write c := h − d. We
consider Newton polygons ending at (h, d). For such a Newton polygon ζ we
write:

♦(ζ) = {(x, y) ∈ Z× Z | y < d, y < x, (x, y) ≺ ζ},

and we write

dim(ζ) := #(♦(ζ)).

See 7.10 for an explanation why we did choose this terminology.
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Example:

(((
(((

�
�
�
�
�

s s s
�
�
�
�
�

q q q qq q q q qq q q q qq q q q q q
x = y

(h, d)

ζ

ζ = 2× (1, 0) + (2, 1) + (1, 5) =

= 6× 1
6 + 3× 2

3 + 2× 1
1 ; h = 11.

Here dim(ζ) = #(♦(ζ)) = 22.

See 7.10.

4.3. Notation. We write:

♦(ζ; ζ∗) := {(x, y) ∈ Z× Z | (x, y) ≺ ζ, (x, y) � ζ∗}, cdu(ζ) := # (♦(ζ; ζ∗)) ;

“cdu” = dimension of central leaf, unpolarized case; see 4.5 for an explanation.

We suppose ζ =
∑

1≤i≤u µi·(mi, ni), written in such a way that gcd(mi, ni) =
1 for all i, and µi ∈ Z>0, and i < j ⇒ (mi/(mi+ni)) > (mj/(mj +nj). Write
di = µi·mi and ci = µi·ni and hi = µi·(mi + ni); write νi = mi/(mi + ni) =
di/(di+ ci) for 1 ≤ i ≤ u. Note that the slope νi = slope(Gmi,ni) = mi/(mi+
ni) = di/hi: this Newton polygon is the “Frobenius-slopes” Newton polygon
of
∑

(Gmi,ni)
µi . Note that the slope νi appears hi times; these slopes with

these multiplicities give the set {βj | 1 ≤ j ≤ h := h1 + · · ·+ hu} of all slopes
of ζ.

4.4. Combinatorial Lemma, the unpolarized case. The following num-
bers are equal

# (♦(ζ; ζ∗)) =: cdu(ζ) =
i=h∑
i=1

(ζ∗(i)− ζ(i)) =

=
∑

1≤i<j≤u

(dicj − djci) =
∑

1≤i<j≤u

(dihj − djhi) =
∑

1≤i<j≤u

hj ·hi·(νi − νj).

(0, 0) (h, 0)

(h, d)(0, d)

Example:

h = h1 + · · ·+ hu

d = d1 + · · ·+ du

r

rr r

r r

((((
((((

((((

((((
((((

((((

#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#

ζζ∗
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A proof for this lemma is not difficult. The equality cdu(ζ) =
∑

(ζ∗(i)− ζ(i))
can be seen as follows. From every break point of ζ∗ draw a vertical line up,
and a horizontal line to the left; from every break point of ζ draw a vertical
line down and a horizontal line to the right. This divides the remaining space
of the h × d rectangle into triangles and rectangles. Pair opposite triangles
to a rectangle. In each of these take lattice points, in the interior and in the
lower or right hand sides; in this way all lattice points in the large rectangle
belong to precisely one of the subspaces; for each of the subspaces we have the
formula that the number of such lattice points is the total length of vertical
lines. This proves the desired equality for cdu(ζ). The other equalities follow
by a straightforward computation. �

4.5. Theorem. (Dimension formula, the unpolarized case.) Let X0 be a p-
divisible group, D = D(X0); let y ∈ D, let Y be the p-divisible group given by
y with β = N (Y ) � N (X0);

dim(CY (D)) = cdu(β).

Example:

((((
((((

((((

((((
((((

((((

#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#

ζζ∗

rr r r rr r r r rr r r r rr r r r
dim(CX(D)) = # ((♦(ζ; ζ∗)).
( 4
5 −

1
6 )·5·6 = 19,

d1h2 − d2h1 = 4·6− 1·5 = 19;
d1c2 − d2c1 = 4·5− 1·1 = 19.

First proof. It suffices to prove this theorem in case Y = X0. Write N (Y ) =
ζ. By 7.19 it suffices to prove this theorem in case Y = H(ζ). By 7.4, see 7.5, we
know that in this case CY (D) = SY [p](D). Let β =

∑
µi·(mi, ni); we suppose

that i < j ⇒ mi/(mi + ni) > mj/(mj + nj); write di = µi·mi and d =
∑
di;

write ci = µi·ni and c =
∑
ci. We know: dim(Def(Y )) = dimY ·dimY t = dc.

By 7.27, using 2.1 and 4.4, we conclude:

dim(CY (D)) = dim(SH(β)[p](D)) = dim(Def(Y ))− dim(Aut(H(β)[p])) =

= (
∑

di)(
∑

ci)− (
∑
i

di·ci)− 2·
∑
i<j

(ci·dj) =
∑
i<j

(dihj − djhi) = cdu(β).

�4.5

Second proof. Assume, as above, that Y = X0 = Hβ . Write Zi,j = Hdi,ci
×

Hdj ,cj . A proof of 4.5 follows from 3.5 using 3.3 and 7.19:

dim(CY (D)) =
∑
i<j

dim(CZi,j
(D(Zi,j))) =

∑
i<j

hj ·hi·(νi − νj),
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where νi = di/(di + ci) = mi/(mi + ni) and hi = di + ci. Conclude by using
3.3. �4.5

4.6. Remark. A variant of the first proof can be given as follows. At first
prove 4.5 in the case of two slopes, as was done above. Then conclude using
3.3.

4.7. Remark: a third proof. We use a recent result by Eva Viehmann, see
[40]. Write

ζ =
∑
j

(mj , nj), gcd(mi, nj) = 1, hj = mj + nj ,

λj = mj/hj , d =
∑

mj , c =
∑

nj , j < s⇒ λj ≥ λs.

We write idu(ζ) for the dimension of the isogeny leaf, as in [32], of Y = X0 in
D = D(X0). By the theory of Rapoport-Zink spaces, as in [39], we see that
the reduction modulo p completed at a point gives an isogeny leaf completed
at that point. Hence idu(ζ) is also the dimension of that Rapoport-Zink space
modulo p defined by X0. This dimension is computed in [40] Theorem B:

idu(ζ) =
∑
i

(mi − 1)(ni − 1)/2 +
∑
i>j

minj .

Let ρ be the ordinary Newton polygon, equal to d(1, 0) + c(0, 1) in the case
studied here. Note that

{(x, y) | ρ∗ � (x, y) ≺ ζ∗} ∪ {(x, y) | ζ∗ � (x, y) ≺ ζ} =

= {(x, y) | ρ∗ � (x, y) ≺ ζ}.

We know that dim(ζ) = cdu(ζ) + idu(ζ) by the “almost product structure”
on Newton polygon strata, see 7.16. By the computation of Viehmann we see
that

idu(ζ) = # ({(x, y) | ρ∗ � (x, y) ≺ ζ∗}) .

Hence the dimension of the central leaf in this case equals

# ({(x, y) | ζ∗ � (x, y) ≺ ζ}) .

This proves the Theorem 4.5. �

5 The dimension of central leaves, the polarized case

In this section we compute the dimension of a central leaf in the local de-
formation space of a polarized p-divisible group, and in the moduli space of
polarized abelian varieties.
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5.1. Notation. We fix an integer g. For every symmetric Newton polygon ξ
of height 2g we define:

4(ξ) = {(x, y) ∈ Z× Z | y < x ≤ g, (x, y) on or above ξ},

and we write

sdim(ξ) := #(4(ξ)).

See 7.11 for explanation of notation.
Example:

s s s
�
�
�
�
�
�
�
�
�
�
�

x = y

(g, g)

((((
((�

��
��q q q qq q q q q qq q q q q q q qq q q q q q qq q q q q qq q q q qq q q qq q qq qq

ξ

dim(Wξ(Ag,1 ⊗ Fp)) = #(4(ξ))

ξ = (5, 1) + (2, 1) + 2·(1, 1) + (1, 2) + (1, 5),

g=11; slopes: {6× 5
6 , 3×

2
3 , 4×

1
2 , 3×

1
3 , 6×

1
6}.

This case: dim(Wξ(Ag,1 ⊗ Fp)) = sdim(ξ) = 48.

See 7.11.

5.2. Let ξ be a symmetric Newton polygon. For convenience we adapt notation
to the symmetric situation:

ξ = µ1·(m1, n1) + · · ·+ µs·(ms, ns) + r·(1, 1) + µs·(ns,ms) + · · ·+ µ1·(n1,m1)

with:

mi > ni and gcd(mi, ni) = 1 for all i,
1 ≤ i < j ≤ s⇒ (mi/(mi + ni)) > (mj/(mj + nj)),
r ≥ 0 and s ≥ 0.

We write di = µi·mi, and ci = µi·ni, and hi = di + ci. Write g :=(∑
1≤i≤s(di + ci)

)
+ r and write u = 2s+ 1.

We write:

4(ξ; ξ∗) := {(x, y) ∈ Z× Z | (x, y) ≺ ξ, (x, y) � ξ∗, x ≤ g},

cdp(ξ) := # (4(ξ; ξ∗));

“cdp” = dimension of central leaf, polarized case.

Write ξ =
∑

1≤i≤u µi·(mi, ni), i.e. (mj , nj) = (nu+1−j ,mu+1−j) for s < j ≤ u
and r(1, 1) = µs+1(ms+1, ns+1). Write νi = mi/(mi+ni) for 1 ≤ i ≤ u; hence
νi = 1− νu+1−i for all i.
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5.3. Combinatorial Lemma, the polarized case. The following numbers
are equal

# (4(ξ; ξ∗)) =: cdp(ξ) =
1
2
cdu(ξ) +

1
2
(ξ∗(g)− ξ(g)) =

∑
1≤j≤g

(ξ∗(j)− ξ(j)) =

=
∑

1≤i≤s

(
1
2
·di(di + 1)− 1

2
·ci(ci + 1)

)
+

j≤s∑
1≤i<j

(di−ci)hj+

(
i=s∑
i=1

(di − ci)

)
·r =

=
1
2

∑
1≤i≤s

(2νi − 1)hi(hi + 1) +
1
2

∑
1≤i<j 6=u+1−i

(νi − νj)hihj .

Example:

r r r r (g, ξ(g))

r
r r

   
   

   
 �

��
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��
��
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#
#
#
#
#
#
#
#
#
#
�
�
�
�
�
�
�
�
�
�

ξ

ξ∗

�
�
�
�
�
�

A proof of this lemma is not difficult. The first equalities follow from the
unpolarized lemma, and from the definitions of cdu(-) and cdp(-). For a proof
of the one but last equality draw vertical lines connecting breakpoints, and
then draw lines from the breakpoints of ξ with slopes and lengths as in ξ∗;
this divides 4(ξ; ξ∗) into subspaces, where lattice points are considered in the
interior, and on lower and right hand sides of the triangles and parallelograms
created. Counting points in each of these give all summands of the right hand
side of the last equality.

For the last equality:

1
2
·di(di + 1)− 1

2
·ci(ci + 1) =

1
2
(di − ci)(di + ci + 1) =

1
2
(2νi − 1)hi(hi + 1);

for 1 ≤ i ≤ s:

2·(di − ci)·r =
(

(νi −
1
2
) + (

1
2
− νu+1−i)

)
·hi·2r =

= (νi − νs+1)hihs+1 + (νs+1 − νu+i−1)hs+1hi;

for 1 ≤ i < j ≤ s we have:
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2(di − ci)hj = 2((dicj − cidj) + (didj − cicj)) =

= (νi−νj)hihj+(νi−νu+1−j)hihj+(νj−νu+1−i)hihj+(νu+1−j−νu+1−i)hihj ;

this shows∑j≤s
1≤i<j(di − ci)hj = 1

2

∑
1≤i<j 6=u+1−i, i 6=s+1, j 6=s+1 (νi − νj)hihj .

Hence the last equality is proved. �

5.4. (Dimension formula, the polarized case.) Let (A, λ) be a polarized
abelian variety. Let (X,λ) = (A, λ)[p∞]; write ξ = N (A); then

dim
(
C(X,λ)(A⊗ Fp)

)
= cdp(ξ).

Example:

r r r

   
   

   
 �
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#
#
#
#
#
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ξ

ξ∗
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dim(C(A,λ)(Ag ⊗ Fp)) =
∑

0<i≤g (ξ∗(i)− ξ(i)).
slopes 1/5, 4/5, h = 5: 1

24·5− 1
21·2 = 9,

slopes 1/3, 2/3, h = 3: 1
22·3− 1

21·2 = 2,
(d1 − c1)h2 = 3·3 = 9,
(d1 + d2 − c1 − c2)r = 4·2 = 8,
dim(C(A,λ)(Ag ⊗ Fp)) = # (4(ζ; ζ∗)) = 28.

5.5. Notation used in the proof of 5.4. Using 7.7 and 7.21 we only need
to prove Theorem 5.4 in case λ is a principal polarization on

A[p∞] = H(ξ) =: Z = Z1 × · · · × Zs × Zs+1 × Zs+2 × · · · × Zu,

Yi := Zi = Hdi,ci , Zs+1 = Ss+1 = (H1,1)r, Xi := Zu+1−i = Hci,di 1 ≤ i ≤ s+1.

Write Si = Hdi,ci × Hci,di for i ≤ s, and we write λ for the induced quasi-
polarization on Si for 1 ≤ i ≤ s+ 1; note that r ≥ 0. We have:

Z = Y1 × · · · × Ys × Zs+1 ×Xs × · · · ×X1.

First proof. We have:
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dim(Aut((Z, λ)[p])) =∑
i≤s+1 dim(Aut((Si, λ)[p])) + 1

2 ·
∑
i 6=j 6=u+1−i dim(Hom(Zi, Zj)) =

=
∑
i≤s+1 dim(Aut((Si, λ)[p])) +

∑
1≤i<j 6=u+1−i dim(Hom(Zi, Zj)).

Using 2.1 and 2.2 and using the notation introduced, a computation shows:

cdp(ξ) + dim(Aut((Z, λ)[p])) =
1
2
·g(g + 1).

Indeed, write

I =
∑

1≤i≤s

(
1
2
·di(di + 1)− 1

2
·ci(ci + 1)

)
,

II =
j≤s∑

1≤i<j

(di − ci)hj , III =

(
i=s∑
i=1

(di − ci)

)
·r.

Note that:
1 ≤ i < j ≤ s : dim(Hom(Yi, Yj)) = ci·dj ,

1 ≤ i < j = s+ 1 : dim(Hom(Yi, Zs+1)) = ci·r,

1 ≤ i < s < j : dim(Hom(Yi, Zj)) = ci·cu+1−j , Zj = Xu+1−j ,

i = s+ 1 < j : dim(Hom(Zs+1, Zj)) = r·cu+1−j ,

s < i < j : dim(Hom(Zi, Zj)) = du+1−i·cu+1−j .

Direct verification gives:

I + II + III +
∑
i≤s

(dici + ci(ci + 1)) +
1
2
·r(r + 1) +

+
1
2
·

∑
i 6=j 6=u+1−i

dim(Hom(Zi, Zj)) =

= (d1 + · · ·+ ds + r + cs + · · ·+ c1)(d1 + · · ·+ ds + r + cs + · · ·+ c1 + 1)/2.

First we suppose p > 2, and prove the theorem in this case. Indeed, using 7.6
and 7.28 we see:

dim
(
C(X,λ)(A⊗ Fp)

)
= dim(A⊗ Fp)− dim(Aut((Z, λ)[p])) = cdp(ξ).

Hence Theorem 5.4 is proved in case p > 2.
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Let p and q be prime numbers, let ξ be a symmetric Newton polygon, and
let H(p)(ξ) respectively H(q)(ξ) be this minimal p-divisible group in character-
istic p, respectively in characteristic q, both with a principal quasi-polarization
λ. Their elementary sequences as defined in [30] are equal:

Claim.
ϕ((H(p)(ξ), λ)[p]) = ϕ((H(q)(ξ), λ)[q]).

The proof is a direct verification: in the process of constructing the canonical
filtration, the characteristic plays no role.

In order to conclude the proof of Theorem 5.4 in case p = 2 we can follow two
different roads. One is by using 7.6 and 7.28 we see:

dim
(
C(X,λ)(A⊗ Fp)

)
= dim(A⊗ Fp)− dim(Aut((Z, λ)[p])) = cdp(ξ).

This argument in the proof of 5.4 works in all characteristics by the general-
ization of Wedhorn’s 7.28, see 7.29, see [43]; QED for 5.4.

One can also show that once 5.4 is proved in one characteristic, it follows in
every characteristic. Here is the argument.
Next we assume p > 2 and q = 2, and we prove the theorem in characteristic
q = 2. We have seen that the theorem holds in the case p > 2. In that case
we know, using 7.6 and [30], Theorem 1.2, that

cdp(ξ) = dim
(
C(X,λ)(A⊗ Fp)

)
= dim

(
S(X,λ)[p](A⊗ Fp)

)
=| ES((H(p)(ξ), λ)[p]) | .

Hence

dim
(
C(X,λ)(A⊗ Fq)

)
= ϕ((H(q)(ξ), λ)[q]) = ϕ((H(p)(ξ), λ)[p]) = cdp(ξ).

This ends the first proof of Theorem 5.4.

5.6. (A proof of 5.4 in the case of two slopes). Suppose ξ = (d, c)+(c, d)
with d > c, i.e. s = 1 and r = 0 in the notation used above, i.e. the case of a
symmetric Newton polygon with only two different slopes. Write g = d + c.
In this case

cdp(ξ) =
1
2
d(d+1)−1

2
c(c+1) =

1
2
·(d−c)(d+c+1) = (1+· · ·+g)( d

d+ c
− c

d+ c
).

We choose X = Hd,c × Hc,d, and G = X[p]; let λ be the principal quasi-
polarization on X over k. Note this is unique up to isomorphism, see [32],
Proposition 3.7. Let ϕ(G) = ES(G) be the elementary sequence of G, in the
notation and terminology as in [30]. Then

ϕ = {0, · · · , ϕ(c) = 0, 1, 2, · · · , ϕ(d) = d− c, d− c, · · · , d− c}.

Hence in this case
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dim
(
C(X,λ)(A⊗ Fp)

)
= c·0 + (1 + · · ·+ d− c) + c·(d− c) = cdp(ξ).

Proof. In order to write down a final sequence for (Hm,n×Hn,m)µ it suffices
to know a canonical filtration for Z = (Hm,n × Hn,m). Write D(Hm,n) =
Mm,n, the covariant Dieudonné module; there is a W -basis Mm,n = W ·e0 ⊕
· · · ⊕W ·em+n−1, and F(ei) = ei+n, and V(ei) = ei+m, with the convention
ej+m+n = pej . Also we have D(Hn,m) = Mn,m = W ·f0 ⊕ · · · ⊕W ·fm+n−1,
and F(fj) = fj+n and V(fj) = fi+m; the quasi-polarization can be given by
< ei, fj >= δi,m+n−1−j . Consider the k-basis for V(D(Z[p])) given by

{x1 = em+n−1, · · · , xn = em, xn+1 = em−1, · · · , xm = en,

xm+1 = fm+n−1, · · · , xm+n = fm};

this can be completed to a symplectic basis for D(Z[p]); write Nj = k·x1⊕· · ·⊕
k·xj for 1 ≤ j ≤ m+ n. Direct verification shows that 0 ⊂ N1 ⊂ · · · ⊂ Nm+n

plus the symplectic dual filtration is a final filtration of D(Z[p]). From this we
compute ϕ as indicated, and the result for Hm,n ×Hn,m follows. This proves
the lemma. �

Remark. It seems attractive to prove 5.4 in the general case along these
lines by computing | ϕ |. There is an algorithm for determining the canonical
filtration in general, but I do not know a closed formula in ξ for computing
| ϕ |, with ϕ = ES(H(ξ)). Therefore, in the previous proof of 5.4 we made a
detour via 7.27.

5.7. Lemma. Let (Z = Y ×X,λ) be a principally quasi-polarized p-divisible
group, where X is isoclinic of slope νX , height hX , and Y isoclinic of slope νY
and height hY . Suppose 1 ≥ νY > 1

2 > νX = 1− νY ≥ 0. Write dx = hX ·νX ,
and νX = dX/cX ; analogous notation for dY and cY ; write d = dY = cX , and
c = cY = dX and g = d+ c. Then:

dim
(
C(Z,λ)(D(Z, λ))

)
=

1
2
(νY −νX)·hX ·(hX+1) =

1
2
d(d+1)− 1

2
c(c+1).

First proof. By 7.21 it suffices to prove this lemma in case X = Hc,d and
Y = Hd,c. By 5.6 the result follows.
Second proof. The result follows from 3.5. �5.7

5.8. Second proof. This proof of 5.4 follows from 3.4 using Lemma 4.5 and
Lemma 5.7.

�5.4

5.9. Remark. Third proof in the polarized case; p > 2. In [41] the
dimension of Rapoport-Zink spaces in the polarized case is computed. Here
p > 2. Using our computation of cdp(−), analogous to 4.7, a proof of 5.4
follows from this result by Viehmann.



482 Frans Oort

6 The dimension of Newton polygon strata

The dimension of a Newton polygon stratum in Ag,1 is known, see 7.26. How-
ever it was unclear what the possible dimensions of Newton polygon strata
in the non-principally polarized case could be. In this section we settle this
question, partly solving an earlier conjecture.

6.1. We know that dim(Wξ(Ag,1)) = sdim(ξ), see 5.1 and 7.11. We like to
know what the dimension could be of an irreducible component of W0

ξ (Ag).
Note that isogeny correspondences blow up and down in general, hence various
dimensions a priori can appear.

Write Vf (Ag) for the moduli space of polarized abelian varieties having p-rank
at most f ; this is a closed subset, and we give it the induced reduced scheme
structure. By [27], Th. 4.1 we know that every irreducible component of this
space has dimension exactly equal to (g(g+1)/2)− (g−f) = ((g−1)g/2)+f
(it seems a miracle that under blowing up and down this locus after all has
only components exactly of this dimension).

Let ξ be a symmetric Newton polygon. Let its p-rank be f = f(ξ). This is the
multiplicity of the slope 1 in ξ; for a symmetric Newton polygon it is also the
multiplicity of the slope 0. Clearly

W0
ξ (Ag) ⊂ Vf(ξ)(Ag).

Hence for every irreducible component

T ⊂ W0
ξ (Ag) we have dim(T ) ≤ 1

2
(g − 1)g + f.

In [31], 5.8 we find the conjecture that

for any ξ we expected there would be an irreducible component
T of W0

ξ (Ag) with dim(T ) = ((g − 1)g/2) + f(ξ) ?

In this section we settle this question completely by showing that this is
true for many Newton polygons, but not true for all. The result is that a
component can have the maximal possible (expected) dimension: for many
symmetric Newton polygons the conjecture is correct (for those when δ(ξ) = 0,
for notation see below), but for every g > 4 there exists a ξ for which the
conjecture fails (those with δ(ξ) > 0); see 6.3 for the exact statement.

6.2. Notation. Consider W0
ξ (Ag) and consider every irreducible component

of this locus; let minsd(ξ) be the minimum of dim(T ) where T ranges through
the set of such irreducible components of W0

ξ (Ag), and let maxsd(ξ) be the
maximum. Write
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δ = δ(ξ) := d(ξ(g))e −# ({(x, y) ∈ Z× Z | f(ξ) < x < g, (x, y) ∈ ξ})− 1,

where dbe is the smallest integer not smaller than b. Note that ξ(g) ∈ Z iff the
multiplicity of (1, 1) in ξ is even. Here δ stands for “discrepancy”. We will see
that δ ≥ 0. We will see that δ = 0 and δ > 0 are possible.

6.3. Theorem.

sdim(ξ) = minsd(ξ), and maxsd(ξ) = cdp(ξ)+idu(ξ) =
1
2
(g−1)g+f(ξ)−δ(ξ).

6.4. Corollary/Examples. Suppose ξ =
∑

(mi, ni) with gcd(mi, ni) = 1 for
all i. Then:

δ(ξ) = 0 ⇐⇒ min(mi, ni) = 1, ∀i.

We see that 0 ≤ δ(ξ) ≤ dg/2e − 2. We see that

maxsd(ξ) =
1
2
(g − 1)g/2 + f ⇐⇒ δ(ξ) = 0.

We see that δ(ξ) > 0 for example in the following cases:
g = 5 and δ((3, 2) + (2, 3)) = 1, g = 8 and δ((4, 3) + (1, 1) + (3, 4)) = 2,
more generally, g = 2k + 1, and δ((k + 1, k) + (k, k + 1)) = k − 1,
g = 2k + 2, and δ((k + 1, k) + (1, 1) + (k, k + 1)) = k − 1.

Knowing this theorem one can construct many examples of pairs of symmetric
Newton polygons ζ ≺ ξ such that

W0
ζ (Ag) 6⊂

(
W0
ξ (Ag)

)Zar
.

6.5. Proof of 6.3. Let T be an irreducible component of W0
ξ (Ag) ⊗ k. Let

η ∈ T be the generic point. There exist a finite extension [L1 : k(η)] <∞ and
(B,µ) over L1 such that [(B,µ)] = η. There exist a finite extension [L : L1] <
∞ and an isogeny ϕ : (BL, µL) → (C, λ), where (C, λ) is a principally polarized
abelian variety over L. Let T ′ be the normalization of T in k(η) ⊂ L. Let
N = Ker(ϕ). By flat extension there exists a dense open subscheme T 0 ⊂ T ′,
and a flat extension N ⊂ B0 → T 0 of (N ⊂ BL)/L. Hence we arrive at a
morphism (B0, µ) → (C, λ), with C := B0/N , of polarized abelian schemes
over T 0. This gives the moduli morphism ψ : T 0 →W0

ξ (Ag,1)⊗ k.

We study Isogg as in [9], VII.4. The morphism ψ : T 0 → W0
ξ (Ag,1) ⊗ k

extends to an isogeny correspondence. This is proper in its both projections
by [9], VII.4.3. As T is an irreducible component of W0

ξ (Ag)⊗ k this implies
that the image of ψ is dense in a component T ′′ of W0

ξ (Ag,1) ⊗ k. Hence
dim(T ) ≥ dim(T ′′). By 7.11 we have dim(T ′′) = sdim(ξ). This proves the first
claim of the theorem.
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Let (A0, µ0) ∈ W0
ξ (Ag)⊗ k, and define (X0, µ0) = (A0, µ0)[p∞]. We obtain

Def(A0, µ0) = Def(X0, µ0) ⊂ Def(X0),

the first equality by the Serre-Tate theorem, and the inclusion is a closed
immersion. Moreover I(A0,µ0)(D(A0, µ0)) ⊂ IX0(D(X0)). This shows that

maxsd(ξ) ≤ cdp(ξ) + idu(ξ).

We show that in certain cases, for certain degrees of polarization, equality
holds.

We choose A0 such that X0 = A0[p∞] is minimal. Let J be an irreducible
component of IX0(D(X0)). Let ϕ : (Y0×J) → X be the universal family over
J defining this isogeny leaf. Let q = pn be the degree of ϕ. Define r = p2gn.
We are going to prove that in IX0

(
W0
ξ ((Ag,r)k)

)
there exists a component

I with I = J . Hence inside W0
ξ ((Ag,r)k) there is a component of dimension

cdp(ξ)+idu(ξ). Choose [(A0, µ0)] ∈ W0
ξ ((Ag,r)k) such that Ker(µ0) = A0[pn];

as X0 is minimal, this is possible by [32], 3.7.
Claim. In this case

I(A0,µ0)(D(A0, µ0)) ⊃ I = J ⊂ IX0(D(X0)).

Let τ be the quasi-polarization on Y0 obtained by pulling back µ0 via Y0 →
X0. Note that the kernel of ϕ is totally isotropic under the form given by
τ = ϕ∗(µ). Hence the conditions imposed by the polarization do not give
any restrictions and we have proved the claim. This finishes the proof of
maxsd(ξ) = cdp(ξ) + idu(ξ).

By 4.5 and 7.16 and by 5.4 we see that maxsd(ξ) = cdp(ξ) + idu(ξ) is the
cardinality of set of (integral points) in the following regions:

4(ξ)∪{(x, y) | (x, y) � ξ∗, g < x, y < g}∪{(x, y) | (x, y) ∈ ξ∗, g < x, y < g}.

Note that

{(x, y) | (x, y) � ξ∗, g < x, y < g} ∼= {(x, y) | (x, y) � ξ, x < g, y > 0},

and

{(x, y) | (x, y) ∈ ξ∗, g < x, y < g} ∼= {(x, y) | (x, y) ∈ ξ, f(ξ) < x < g}.

Hence
cdp(ξ) + idu(ξ) =

1
2
(g − 1)g + f − δ(ξ).

�6.3

Remark. Let q = pn be a as above. Actually we can already construct inside
W0
ξ (Ag,q) ⊗ k a component of dimension equal to maxsd(ξ); in this way the

relevant part of the proof above can be given.
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6.6. Explanation. We see the curious fact that on a Newton polygon stratum
the dimension of a central leaf is independent of the degree of the polarization
(which supports the “feeling” that these leaves look like moduli spaces in
characteristic zero), while the dimension of an isogeny leaf in general depends
on the degree of the polarization. As we know, Hecke correspondences are
finite-to-finite above central leaves, and may blow up and down subsets of
isogeny leaves.

7 Some results used in the proofs

7.1. A basic theorem tells us that the isogeny class of a p-divisible group over
an algebraically closed field k ⊃ Fp is “the same” as its Newton polygon, see
below. Let X be a simple p-divisible group of dimension m and height h over
k. In that case we define N (X) as the isoclinic polygon (all slopes are equal) of
slope equal to m/h with multiplicity h. Such a simple p-divisible group exists,
see the construction of Gm,n, [21], page 50, see 1.2; in the covariant theory
of Dieudonné module this group can be given (over any perfect field) by the
module generated by one element e over the Dieudonné ring, with relation
(Vn − Fm)e. Any p-divisible group X over an algebraically field closed k is
isogenous with a product

X ∼k Πi (Gmi,ni),

where mi ≥ 0, ni ≥ 0 and gcd(mi, ni) = 1 for every i. In this case the Newton
polygon N (X) of X is defined by all slopes mi/(mi + ni) with multiplicity
hi := mi + ni.

7.2. Theorem (Dieudonné and Manin), see [21], “Classification theorem ”
on page 35.

{X}/ ∼k
∼−→ {Newton polygon}, X 7→ N (X).

This means: for every p-divisible group X over a field we define its Newton
polygon N (X); over en algebraically closed field, every Newton polygon comes
from a p-divisible group and

X ∼k Y ⇐⇒ N (X) = N (Y ).

7.3. Minimal p-divisible groups. In [36] and [37] we study the following
question:

Starting from a p-divisible group X we obtain a BT1 group scheme:

[p] : {X | a p-divisible group}/ ∼=k −→ {G | a BT1}/ ∼=k; X 7→ G := X[p].

This map is known to be surjective. DoesG = X[p] determine the isomorphism
class of X? This seems a strange question, and in general the answer is “NO”.
It is the main theorem of [36] that the fiber of this map over G up to ∼=k is
precisely one p-divisible group X if G is minimal:
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7.4. Theorem. If G = G(ζ) is minimal over k, and X and Y are p-divisible
groups with X[p] ∼= G ∼= Y [p], then X ∼= Y ; hence X ∼= H(ζ) ∼= Y .

For the notation H(ζ) see 1.5.

However things are different if G is not minimal: it is one of the main results
of [37] that for a non-minimal BT1 group scheme G there are infinitely many
isomorphism classes X with X[p] ∼= G.

Note the following important corollaries.

7.5. Suppose X is a p-divisible group and G = X[p]; let D = D(X). Study
the inclusion CX(D) ⊂ SG(D). Then:

X is minimal ⇒ CX(D) = SG(D).

7.6. Corollary. Let (A0, µ) be a polarized abelian variety. If A0[p] is minimal,
then every irreducible component of C(A0,µ)[p∞](Ag) is an irreducible compo-
nent of SA[p](Ag).

7.7. Remark. Let (X,λ′) be a quasi-polarized p-divisible group over k, with
N (X) = ξ. There exists an isogeny between (X, ξ′) and (H(ξ), λ), where λ is
a principal quasi-polarization.

See [32], 3.7. �

7.8. Newton polygon strata: a theorem by Grothendieck - Katz. A
theorem by Grothendieck and Katz, see [17], Th. 2.3.1 on page 143 says that
for any X → S and for any Newton polygon ζ

Wζ(S) ⊂ S is a closed set.

Hence

W0
ζ (S) ⊂ S is a locally closed set.

Notation. We do not know a natural way of defining a scheme structure on
these sets. These set can be considerd as schemes by introducing the reduced
scheme structure on these sets.

Sometimes we will write Wξ = Wξ(Ag,1) and W 0
ξ = W0

ξ (Ag,1) for a sym-
metric Newton polygon ξ and the moduli space of principally polarized abelian
varieties.

7.9. Remark. For ξ = σ, the supersingular Newton polygon, the locus Wσ

has many components (for p� 0), see [19], 4.9. However in [4] we find: for a
non-supersingular Newton polygon the locus Wξ = Wξ(Ag,1) is geometrically
irreducible.
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7.10. Theorem (the dimension of Newton polygon strata in the unpolarized
case), see [29], Th. 3.2 and [31], Th. 2.10. Let X0 be a p-divisible group over
a field K; let ζ � N (X0). Then:

dim(Wζ(D(X0))) = dim(ζ).

See 4.2 for the definition of dim(ξ). �

7.11. (the dimension of Newton polygon strata in the principally polarized
case), see [29], Th. 3.4 and [31], Th. 4.1. Let ξ be a symmetric Newton polygon.
Then:

dim (Wξ(Ag,1 ⊗ Fp)) = sdim(ξ).

See 5.1 for the definition of sdim(ξ). See Section 6 for what happens for non-
principally polarized abelian varieties and Newton polygon strata in their
moduli spaces.

7.12. see [32], Th. 2.3.

CX(S) ⊂ W0
N (X)(S)

is a closed set.
A proof can be given using 7.13, 7.14 and 7.15. �

7.13. Definition. Let S be a scheme, and let X → S be a p-divisible group.
We say that X/S is geometrically fiberwise constant, abbreviated gfc if there
exist a field K, a p-divisible group X0 over K, a morphism S → Spec(K),
and for every s ∈ S an algebraically closed field k ⊃ κ(s) ⊃ K containing the
residue class field of s and an isomorphism X0 ⊗ k ∼=k Xs ⊗ k.

The analogous terminology will be used for quasi-polarized p-divisible groups
and for (polarized) abelian schemes.

See [32], 1.1.

7.14. Theorem (T. Zink & FO). Let S be an integral, normal Noetherian
scheme. Let X → S be a p-divisible group with constant Newton polygon.
Then there exist a p-divisible Y → S and an S-isogeny ϕ : Y → X such that
Y/S is gfc.

See [44], [38], 2.1, and [32], 1.8. �

7.15. Let S be a scheme which is integral, and such that the normalization
S′ → S gives a noetherian scheme. Let X → S be a p-divisible group; let
n ∈ Z≥0. Suppose that X → S is gfc. Then there exists a finite surjective
morphism Tn = T → S, such that X [pn]×S T is constant over T .
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See [32], 1.3. �

Note that we gave a “point-wise” definition of CX(S); we can consider CX(S) ⊂
S as a closed set, or as a subscheme with induced reduced structure; however is
this last definition “invariant under base change”? It would be much better to
have a “functorial definition” and a nature-given scheme structure on CX(S).

Note that the proof of Theorem 7.12 is quite involved. One of the ingredi-
ents is the notion of “completely slope divisible p-divisible groups” introduced
by T. Zink, and theorems on p-divisible groups over a normal base, see [44]
and [38].

Considering the situation in the moduli space with enough level structure
in order to obtain a fine moduli scheme, we see that C(x) = C(A,λ)[p∞](Ag,∗,n⊗
Fp) is regular (as a stack, or regular as a scheme in case sufficiently high level
structure is taken into account).

We write Cx for the irreducible component of C(A,λ)[p∞]A passing through
[(A, λ)] = x.

Remark/Theorem (Chai & FO). In fact, for N (A) 6= σ, i.e. A is not super-
singular, it is known that C(A,λ)[p∞](A) is geometrically irreducible in every
irreducible component of Ag; see [4].

Central and isogeny leaves in a deformation space. We give additional results
on deformation spaces of p-divisible groups analogously to the results in the
polarized case in [32]. We choose a p-divisible group over a perfect field K.
We write D = D(X).

7.16. Proposition. The central leaf CX(D) ⊂ D is closed. There exists an
isogeny leaf (a maximal Hα-subscheme as in [32], §4), IX(D) = I(X) ⊂ D.
The intersection CX(D) ∩ I(X) ⊂ D equals the closed point [X] = 0 ∈ D.
There is a natural, finite epimorphism CX(D)× I(X) → D. Hence

cdu(ζ) + iduX(ζ) = dim(D).

Here iduX(ζ) is the dimension of I(X) ⊂ D.
The proof of this proposition follows as in [32], §4, (5.1), (5.3). �

7.17. Corollary. Let ζ be a Newton polygon. There exists a number idu(ζ)
such that for every X with N (X) = ζ the isogeny leaf in D = D(X) has pure
dimension equal to idu(ζ).

This follows because dim(CX(D)) and dim(D) only depend on ζ, see 4.5 and
7.21. �

7.18. Theorem. Isogeny correspondences, unpolarized case. Let ψ :
X → Y be an isogeny between p-divisible groups. Then the isogeny correspon-
dence contains an integral scheme T with two finite surjective morphisms



Foliations in moduli spaces 489

CX(D(X)) � T � CY (D(Y ))

such that T contains a point corresponding with ψ.

7.19. The dimension of CX(D(X)) only depends on the isogeny class of X.
�

7.20. Isogeny correspondences, polarized case.Let ψ : A → B be an
isogeny, and let λ respectively µ be a polarization on A, respective on B, and
suppose there exists an integer n ∈ Z>0 such that ψ∗(µ) = n·λ. Then there
exist finite surjective morphisms

C(A,λ)[p∞](Ag ⊗ Fp) � T � C(B,µ)[p∞](Ag ⊗ Fp).

See [32], 3.16.

7.21. The dimension of C(X,λ)(Ag ⊗ Fp) only depends on the isogeny class of
(X,λ). �

Remark / Notation. In fact, this dimension only depends on the isogeny
class of X. We write

c(ξ) := dim
(
C(X,λ)(Ag ⊗ Fp)

)
, X = A[p∞], ξ := N (X);

this is well-defined: all irreducible components have the same dimension.

A proof of all previous results on isogeny correspondences, and the indepen-
dence of the dimension of the leaf in an isogeny class can be given using 7.13,
7.14 and 7.15; see [32], 2.7 and 3.13.

7.22. Remark. Isogeny correspondences in characteristic p in general blow
up and down in a rather wild pattern. The dimension of Newton polygon
strata and of EO-strata in general depends very much on the degree of the
polarization in consideration. However for p-rank strata the dimension in the
whole of Ag⊗Fp solely depends on the p-rank, see [27], Theorem 4.1. It seems
a miracle that the dimension on central leaves does not depend on the degree
of a polarization. See 6.6.

In [32] we also find the definition of isogeny leaves, and we see that any
irreducible component of Wξ(Ag ⊗ Fp) up to a finite morphism is isomorphic
with the product of a central leaf and an isogeny leaf, see [32], 5.3. Note that
all central leaves with the same Newton polygon have the same dimension,
see 7.19 and 7.21. However for Newton polygon strata, and hence also for
isogeny leaves, the dimension in general depends very much on the degree of
the polarization; for more information see Section 6.
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7.23. Cayley - Hamilton. See [29]. We like to compute the dimension of a
Newton polygon stratum. In 7.10 and 7.11 we have seen “easy” formulas to
compute these dimensions (in the unpolarized, or in the principally polarized
case). However, up to now there seems to be no really easy proof that these
are indeed the correct formulas. In [19] the dimension of the supersingular
locus Wσ ⊂ Ag,1 ⊗ Fp is computed: every irreducible component of Wσ has
dimension equal to [g2/4]. Using purity, see [15], and if one would know be-
forehand that Newton polygon strata in Ag,1 ⊗ Fp are nested as predicted by
the Newton polygon graph, we have a proof of 7.11. However proofs work the
other way around.

7.24. For a group scheme G over a perfect field K we write a(G) :=
dimK (Hom(αp, G)). For a local-local p-divisible group X the fact a(X) = 1
implies that this Dieudonné module D(X) is generated by one element over
the Dieudonné ring. It turns out that Newton polygon strata around a points
where a = 1 are smooth (in the local deformation space in the unpolarized
case, and in the principally polarized case). In this case the local dimension
of the deformation space is computed in [29]. More precisely:

7.25. (CH - unpolarized). Let X0 be a p-divisible group over a perfect field
K. Suppose a(X0) = 1. Let γ = N (X0), and let γ ≺ β. Let ρ be the ordinary
Newton polygon of the same dimension and height as X0. Define Rβ by:

Wβ(Def(X0)) = Spf(Rβ);

then

Rβ ∼=
K[[zx,y | (x, y) ∈ ♦(ρ)]]
(zx,y | (x, y) 6∈ ♦(β))

∼= K[[zx,y | (x, y) ∈ ♦(β)]].

7.26. (CH - polarized). Let (A0, λ) be a principally polarized abelian variety
over a perfect field K. Suppose a(A0) = 1. Let ζ = N (A0), and let ζ ≺ ξ. Let
ρ be the ordinary Newton polygon. Define Rξ by:

Wξ(Def(A0, λ0)) = Spf(Rξ);

then

Rξ ∼=
K[[zx,y | (x, y) ∈ 4(ρ)]]
(zx,y | (x, y) 6∈ 4(β))

∼= K[[zx,y | (x, y) ∈ 4(β)]].

A theorem by Torsten Wedhorn on the dimension of EO-strata, see [42]. Let X
be a p-divisible group, and G := X[p]. Consider the EO-stratum SG(D(X)).

7.27. (Wedhorn).
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dim(SG(D(X))) = dim(Def(X))− dim (Aut(G)) .

See [42], 6.10. �

Let(X,λ) be a principally quasi-polarized p-divisible group over a field of
characteristic char(k) = p > 2. Write (G,λ) = (X,λ)[p].

7.28. Theorem (Wedhorn) p > 2 .

dim(S(G,λ)(D(X,λ))) = dim(Def(X,λ))− dim (Aut((G,λ))) .

See [42], 2.8 and 6.10. �

7.29. In [43] we find a theorem which shows that the previous result also holds
in case the characteristic of the base field equals 2.

8 Some questions and some remarks

8.1. In general the number of lattice points in a region need not be equal
to its volume. For example in the case ρ = g(1, 0) + g(0, 1) and 4(ρ). Same
remark in general for ♦(β) and for 4(ξ; ξ∗). However:

Remark (I thank Cathy O’Neil for this observation). The number #(♦(ζ; ζ∗)) =
cdu(ζ) as defined and computed in Section 2 is equal to the volume of the
region between ζ∗ and ζ for every ζ.

8.2. Remark. Using the result 7.8 by Grothendieck and Katz we have defined
open and closed Newton polygon strata. Suppose we have symmetric Newton
polygons ζ ≺ ξ. Then by the definitions we see

W0
ζ (Ag) ⊂ Wξ(Ag) ⊃ W0

ξ (Ag).

In general the last inclusion is not an equality. For example for ζ = σ, the
supersingular Newton polygon, and for ξ = (2, 1) + (1, 2) we can see that
W0
σ(A3,p3) = Wσ(A3,p3) is not contained in the closure of W0

ξ (A3,p3). Using
the results of Section 6 we see many more of such examples do exist.

However for every symmetric ξ in the principally polarized case we do have:

Wξ(Ag) = W0
ξ (Ag).

We consider the central leaf CY (D(X0) ⊂ D(X0). Can we describe this locus in
the coordinates zx,y given as in 7.25? I.e. does the inclusion 4(β;β∗) ⊂ 4(β)
induce the inclusion CY (D) ⊂ Wβ(D) ?

8.3. Question. Under the identification given in 7.25 it might be that the
formal completion C of the central leaf CY (D(X0)) can be described by:
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C
?= Spf(K[[zx,y | (x, y) ∈ ♦(β;β∗)]]) ⊂ Wβ(D) = Spf(K[[zx,y | (x, y) ∈ ♦(β)]]).

8.4. Question. Under the identification given in 7.26 is it true that the formal
completion C of the central leaf C(B,µ)(D(A0, λ)) can be described by:

C
?= Spf(K[[zx,y | (x, y) ∈ 4(ξ, ξ∗)]]) ⊂ Wξ(D) = Spf(K[[zx,y | (x, y) ∈ 4(ξ)]]).

8.5. It seems desirable to have an explicit formula for the elementary sequence
of a principally quasi-polarized minimal p-divisible group. If there are only
two slopes this is easy. For every explicitly given Newton polygon this can be
computed. In case there are more than two slopes, I do not know a general
formula. However Harashita has proven, see [12], that for symmetric Newton
polygons ζ ≺ ξ and their minimal p divisible groups we have ES(H(ζ)) ⊂
ES(H(ξ)).

8.6. Give a simple criterion, in terms of ϕ and ξ, which decides when an
elementary sequence ϕ appears on an open Newton polygon stratum, i.e. when
Sϕ ∩W 0

ξ 6= ∅.

8.7. Conjecture. Let ψξ = ES(H(ξ)). I expect:

Sϕ ∩W 0
ξ 6= ∅ ⇒ ψξ ⊂ ϕ.

The notation ψξ ⊂ ϕ stands for Sψξ
⊂ Sϕ, see [30], 14.3. Note that the

opposite implication is false in general. Hence a proof of this conjecture does
not fully answer the previous question.
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Priložen. 10 (1976), no. 2, 29–40.] Functional Analysis and its Applications, 10
(1976), 107-115.

8. S. J. Edixhoven, B. J. J. Moonen & F. Oort (Editors) – Open problems in
algebraic geometry. Bull. Sci. Math. 125 (2001), 1 - 22.



Foliations in moduli spaces 493

9. G. Faltings & C.-L. Chai – Degeneration of abelian varieties. Ergebnisse Bd 22,
Springer-Verlag, 1990.
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14. A. J. de Jong - Crystalline Dieudonné module theory via formal rigid geometry.
Publ. Math. IHES 82 (1995), 5 - 96.

15. A. J. de Jong & F. Oort – Purity of the stratification by Newton polygons. Journ.
Amer. Math. Soc. 13 (2000), 209 - 241. See: http://www.ams.org/jams

16. N. M. Katz – Appendix to Expose V. In: Surfaces algébriques (Ed. J. Giraud,
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