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Summary. We show that a nondegenerate unitary solution r(u, v) of the associative
Yang-Baxter equation (AYBE) for Mat(N, C) (see [7]) with the Laurent series at
u = 0 of the form r(u, v) = 1⊗1

u
+ r0(v) + . . . satisfies the quantum Yang-Baxter

equation, provided the projection of r0(v) to slN ⊗ slN has a period. We classify all
such solutions of the AYBE extending the work of Schedler [8]. We also characterize
solutions coming from triple Massey products in the derived category of coherent
sheaves on cycles of projective lines.

Introduction

This paper is concerned with solutions of the associative Yang-Baxter equation
(AYBE)

r12(−u′, v)r13(u+u′, v+v′)−r23(u+u′, v′)r12(u, v)+r13(u, v+v′)r23(u′, v′) = 0,
(1)

where r(u, v) is a meromorphic function of two complex variables (u, v) in a
neighborhood of (0, 0) taking values in A ⊗ A, where A = Mat(N,C) is the
matrix algebra. Here we use the notation r12 = r ⊗ 1 ∈ A ⊗ A ⊗ A, etc.
We will refer to a solution of (1) as an associative r-matrix. This equation
was introduced in the above form in [7] in connection with triple Massey
products for simple vector bundles on elliptic curves and their degenerations.
It is usually coupled with the unitarity condition

r21(−u,−v) = −r(u, v). (2)

Note that the constant version of (1) was independently introduced in [1]
in connection with the notion of infinitesimal bialgebra (where A can be any
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associative algebra). The AYBE is closely related to the classical Yang-Baxter
equation (CYBE) with spectral parameter

[r12(v), r13(v + v′)]− [r23(v′), r12(v)] + [r13(v + v′), r23(v′)] = 0 (3)

for the Lie algebra slN (so r(v) takes values in slN ⊗ slN ) and also with the
quantum Yang-Baxter equation (QYBE) with spectral parameter

R12(v)R13(v + v′)R23(v′) = R23(v′)R13(v + v′)R12(v), (4)

where R(v) takes values in A⊗A. In the seminal work [3] Belavin and Drinfeld
made a thorough study of the CYBE for simple Lie algebras. In particular,
they showed that all nondegenerate solutions are equivalent to either elliptic,
trigonometric, or rational solutions, and gave a complete classification in the
elliptic and trigonometric cases. In the present paper we extend some of their
results and techniques to the AYBE. In addition, we show that often solutions
of the AYBE are automatically solutions of the QYBE (for fixed u).

We will be mostly studying unitary solutions of the AYBE (i.e., solutions
of (1) and (2)) that have the Laurent expansion at u = 0 of the form

r(u, v) =
1⊗ 1
u

+ r0(v) + ur1(v) + . . . (5)

It is easy to see that in this case r0(v) is a solution of the CYBE. Hence,
denoting by pr : Mat(N,C) → slN the projection along C · 1 we obtain that
r0(v) = (pr⊗pr)r0(v) is a solution of the CYBE for slN . We prove that if
r(u, v) is nondegenerate (i.e., the tensor r(u, v) ∈ A⊗A is nondegenerate for
generic (u, v)) then so is r0. Thus, r0 falls within Belavin-Drinfeld classifica-
tion. Furthermore, we show that if r0 is either elliptic or trigonometric then
r(u, v) is uniquely determined by r0 up to certain natural transformations. The
natural question raised in [7] is which solutions of the CYBE for slN extend
to unitary solutions of the AYBE of the form (5). In [7] we showed that this is
the case for all elliptic solutions and gave some examples with trigonometric
solutions. In [8] Schedler studied further this question for trigonometric solu-
tions of the CYBE of the form r0(v) = r+evr21

1−ev , where r is a constant solution
of the CYBE. He discovered that not all trigonometric solutions of the CYBE
can be extended to solutions of the AYBE, and found a nice combinatorial
structure that governs the situation (called associative BD triples). In this
paper we complete the picture by giving the answer to the above question for
arbitrary trigonometric solutions of the CYBE (see Theorem 0.2 below). We
will also prove that every nondegenerate unitary solution r(u, v) of the AYBE
with the Laurent expansion at u = 0 of the form (5) satisfies the QYBE with
spectral parameter for fixed u, provided r0(v) either has a period (i.e., it is
either elliptic or trigonometric) or has no infinitesimal symmetries (see Theo-
rem 1.5). Thus, our work on extending trigonometric classical r-matrices (with
spectral parameter) to solutions of the AYBE leads to explicit formulas for
the corresponding quantum r-matrices. The connection with the QYBE was
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noticed before for elliptic solutions constructed in [7] (because they are given
essentially by Belavin’s elliptic R-matrix) and also for those trigonometric
solutions that are constructed in [8].

An important input for our study of trigonometric solutions of the AYBE
is the geometric picture with Massey products developed in [7] that involves
considering simple vector bundles on elliptic curves and their rational degen-
erations. In loc. cit. we constructed all elliptic solutions in this way and some
trigonometric solutions coming from simple vector bundles on the union of
two projective lines glued at two points. In this paper we consider the case
of bundles on a cycle of projective lines of arbitrary length. We compute ex-
plicitly corresponding solutions of the AYBE. Then we notice that similar
formula make sense in a more general context and prove this by a direct cal-
culation. The completeness of the obtained list of trigonometric solutions is
then checked by combining the arguments of [8] with those of [3] (modified
appropriately for the case of the AYBE). It is interesting that contrary to
the initial expectation expressed in [7] not all trigonometric solutions of the
AYBE can be obtained from the triple Massey products on cycles of projec-
tive lines (see Theorem 5.5). This makes us wonder whether there is some
generalization of our geometric setup.

Another question that seems to be worth pursuing is the connection be-
tween the combinatorics of simple vector bundles on a cycle of projective lines
X and the Belavin-Drinfeld combinatorics. Namely, the discrete type of a vec-
tor bundle on X is described by the splitting type on each component of X.
As was observed in [4], Theorem 5.3, simplicity of a vector bundle corresponds
to a certain combinatorial condition on these splitting types (see also Lemma
3.1). In this paper we show that this condition allows to associate with such
a splitting type a Belavin-Drinfeld triple (or rather an enhanced combinato-
rial data described below). It seems that this connection might provide an
additional insight on the problem of classifying discrete types of simple vector
bundles on X.

In [6] Mudrov constructs solutions of the QYBE from certain algebraic
data that should be viewed as associative analogues of Manin triples. Else-
where we will show how solutions of the AYBE give rise to such data and
will study the corresponding associative algebras that are related to both the
classical and quantum side of the story.

Now let us present the combinatorial data on which our trigonometric
solutions of the AYBE depend (generalizing Belavin-Drinfeld triples with as-
sociative structure considered in [8]). Let S be a finite set. To equip S with a
cyclic order is the same as to fix a transitive cyclic permutation C0 : S → S.
We denote by ΓC0 := {(s, C0(s)) | s ∈ S} the graph of C0.

Definition 0.1. An associative BD-structure on a finite set S is given by a
pair of transitive cyclic permutations C0, C : S → S and a pair of proper
subsets Γ1, Γ2 ⊂ ΓC0 , such that (C × C)(Γ1) = Γ2, where (C × C)(i, i′) =
(C(i), C(i′)).
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We can identify ΓC0 with the set of vertices Γ of the affine Dynkin dia-
gram ÃN−1, where N = |S| (preserving the cyclic order). Then we get from
the above structure a Belavin-Drinfeld triple (Γ1, Γ2, τ) for ÃN−1, where the
bijection τ : Γ1 → Γ2 is induced by C ×C. It is clear that τ preserves the in-
ner product. The nilpotency condition on τ is satisfied automatically. Indeed,
choose (s1, C0(s1)) ∈ ΓS \Γ1. Then for every (s, C0(s)) ∈ Γ1 there exists k ≥ 1
with Ck(s) = s1, so that (C × C)k(s, C0(s)) 6∈ Γ1.

We extend the bijection τ to a bijection τ : P1 → P2 induced by C × C,
where

Pι = {(s, Ck
0 (s)) | (s, C0(s)) ∈ Γι, (C0(s), C2

0 (s)) ∈ Γι, . . . , (Ck−1
0 (s), Ck

0 (s)) ∈ Γι}, ι = 1, 2.

For a finite set S let us denote by AS the algebra of endomorphisms of
the C-vector space with the basis (ei)i∈S , so that AS ' Mat(N,C), where
N = |S|. We denote by eij ∈ AS the endomorphism defined by eij(ek) = δjkei.
We denote by h ⊂ AS the subalgebra of diagonal matrices (i.e., the span of
(eii)i∈S). Now we can formulate our result about trigonometric solutions of
the AYBE.

Theorem 0.2. (i) Let (C0, C, Γ1, Γ2) be an associative BD-structure on a fi-
nite set S. Consider the AS ⊗AS-valued function

r(u, v) =
1

1− exp(−v)
∑

i

eii ⊗ eii +
1

exp(u)− 1

∑
0≤k<N,i

exp(
ku

N
)eCk(i),Ck(i) ⊗ eii+

1
exp(v)− 1

∑
0<m<N,j=Cm

0 (i)

exp(
mv

N
)eij ⊗ eji+

∑
0<m<N,k≥1;j=Cm

0 (i),τk(i,j)=(i′,j′)

[exp(−ku+mv

N
)eji ⊗ ei′j′ − exp(

ku+mv

N
)ei′j′ ⊗ eji],

where i, i′, j, j′ denote elements of S, and the summation in the last sum is
taken only over those (i, j) for which τk is defined on (i, j). Then r(u, v)
satisfies (1) and (2). Furthermore, let us set

R(u, v) =
(
[exp(

u

2
)− exp(−u

2
)]−1 + [exp(

v

2
)− exp(−v

2
)]−1

)−1

· r(u, v). (6)

Then R(u, v) satisfies the QYBE with spectral parameter (4) (for fixed u) and
the unitarity condition

R(u, v)R21(u,−v) = 1⊗ 1. (7)

(ii) Assume that N > 1. Then every nondegenerate unitary solution of the
AYBE for A = Mat(N,C) with the Laurent expansion at u = 0 of the form
(5), where r0(v) is a trigonometric solution of the CYBE for slN , is equal to

c exp(λuv) exp[u(1⊗ a) + v(b⊗ 1)]r(cu, c′v) exp[−u(a⊗ 1)− v(b⊗ 1)],
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where r(u, v) is obtained from one of the solutions from (i) by applying an
algebra isomorphism AS ' A, λ, c and c′ are constants (c 6= 0, c′ 6= 0), and
a, b ∈ h are infinitesimal symmetries of r(u, v), i.e.,

[a⊗ 1 + 1⊗ a, r(u, v)] = [b⊗ 1 + 1⊗ b, r(u, v)] = 0.

Note that the complete list of scalar unitary solutions of the AYBE was
obtained in Theorem 5 of [7]. The solution obtained from Theorem 0.2(i) in
the case N = 1 coincides with the basic trigonometric solution from that list
(up to changing v to −v).

We will also deduce the following result about solutions of the AYBE not
depending on the variable u.

Theorem 0.3. Assume that N > 1. Let r(v) be a nondegenerate unitary so-
lution of the AYBE for A = Mat(N,C) not depending on the variable u. Then

r(v) = r(v) + b⊗ 1 + 1⊗ b+
c · 1⊗ 1
Nv

,

where r(v) is equivalent to a rational nondegenerate solution of the CYBE for
slN , b ∈ slN is an infinitesimal symmetry of r(v), c ∈ C∗. Also,

R(u, v) =
(
1 +

cu

v

)−1

· (1 + ur(v))

is a unitary solution of the QYBE with spectral parameter for fixed u (hence,
the same is true for v

c r(v) = limu→∞R(u, v)).

The case of nondegenerate unitary solutions of the AYBE not depending on
v turns out to be much easier — in this case we get a complete list of solutions
(see Proposition 1.1). Note that there are no constant nondegenerate solutions
of the AYBE for A = Mat(N,C) (unitary or not), as follows from Proposition
2.9 of [2].

The paper is organized as follows. In section 1 we discuss nondegeneracy
conditions for solutions of the AYBE and show how to deduce the QYBE
in Theorem 1.5. After recalling in section 2 the geometric setup leading to
solutions of the AYBE, we calculate these solutions associated with simple
vector bundles on cycles of projective lines in sections 3 and 4 (the result
is given by formulas (32), (33)). Then in section 5 we consider associative
BD-structures on completely ordered sets and classify such structures coming
from simple vector bundles on cycles of projective lines (see Theorem 5.5).
In section 6 we prove the first part of Theorem 0.2. In section 7 we establish
a meromorphic continuation in v for a class of solutions of the AYBE and
derive some additional information about these solutions. Finally, in section
8 we prove the second part of Theorem 0.2 and Theorem 0.3.
Acknowledgment. I am grateful to Pavel Etingof for the crucial help with
organizing my initial computations into a nice combinatorial pattern. I also
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1 The AYBE and the QYBE

Recall that we denote A = Mat(N,C). Let r(u, v) be a meromorphic A⊗ A-
function in a neighborhood of (0, 0). We say that r(u, v) is nondegenerate if
the tensor r(u, v) is nondegenerate for generic (u, v).

We start by collecting some facts about nondegenerate unitary solutions
of the AYBE. First, let us consider the case when r(u, v) does not depend on
v. Then the AYBE reduces to

r12(−u′)r13(u+ u′)− r23(u+ u′)r12(u) + r13(u)r23(u′) = 0, (8)

and the unitarity condition becomes r21(−u) = −r(u).
Let us set P =

∑
i,j eij ⊗ eji.

Proposition 1.1. All nondegenerate unitary solutions of (8) have form

r(u) = (φa(cu)⊗ id)(P ),

where c ∈ C∗, a ∈ slN , φa(u) ∈ End(A) is the linear operator on A defined
from the equation

uφa(u)(X) + [a, φa(u)(X)] = X.

Proof. Let us write r(u, v) in the form r(u) = (φ(u)⊗ id)(e), where e ∈ A∗⊗A
is the canonical element, φ(u) : A∗ → A is an operator, nondegenerate for
generic u. Now set B(u)(X,Y ) = (X,φ(u)−1(Y )) for X,Y ∈ A. It is easy to
see that the equation (8) together with the unitarity condition are equivalent
to the following equations on B(u):

B(−u)(XY,Z) +B(−u′)(Y Z,X) +B(u+ u′)(ZX, Y ) = 0, (9)

B(u)(X,Y ) +B(−u)(Y,X) = 0. (10)

Substituting Z = 1 in the first equation we find

B(−u)(XY, 1) + (B(u+ u′)−B(u′))(X,Y ) = 0, i.e.,

B(u+ u′)(X,Y ) = ξ(u)(XY ) +B(u′)(X,Y ),

where ξ(u)(X) = −B(−u)(X, 1). Exchanging u and u′ we get that C(X,Y ) =
B(u)(X,Y ) − ξ(u)(XY ) does not depend on u. Substituting B(u)(X,Y ) =
ξ(u)(XY ) + C(X,Y ) into the previous equation we get
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ξ(u+ u′) = ξ(u) + ξ(u′),

hence, ξ(u) = u·ξ for some ξ ∈ A∗. Now substituting B(u)(X,Y ) = u·ξ(XY )+
C(X,Y ) into (10) we derive that ξ(XY ) = ξ(Y X) and C is skew-symmetric.
Therefore, ξ = c · tr. Finally, equation (9) reduces to the equation

C(XY,Z) + C(Y Z,X) + C(ZX, Y ) = 0.

Together with the skew-symmetry of C this implies that C(X, 1) = C(1, X) =
0 and the restriction of C to slN × slN is a 2-cocycle. Hence, C(X,Y ) =
l(XY − Y X) for some linear functional l on slN . Conversely, for C of this
form the above equation is satisfied. Thus, all solutions of (9) and (10) are
given by

B(u)(X,Y ) = cu tr(X,Y ) + l(XY − Y X),

where c ∈ C∗ and l is a linear functional on slN . Let us identify A with A∗

using the metric tr(XY ). Then we can view φ(u) as an operator from A to
A such that B(u)(X,Y ) = tr(Xφ(u)−1(Y )). Representing the functional l in
the form l(X) = − tr(Xa) we obtain the formula

φ(u)−1(Y ) = cuY + [a, Y ].

ut

Remark 1.2. It is easy to see that φa(u) (and hence the corresponding asso-
ciative r-matrix) always has a pole at u = 0 with order equal to the maximal
k such that there exists X ∈ A with adk(a)(X) = 0 and adk−1(a)(X) 6= 0. In-
deed, φa(u) cannot be regular at u = 0 since this would give [a, φa(0)(1)] = 1.
Let

φa(u) =
ψ−k

uk
+
ψ−k+1

uk−1
+ . . .

be the Laurent expansion of φa(u). Then we have

ψi−1 + ad(a) ◦ ψi = 0

for i 6= 0 and
ψ−1 + ad(a) ◦ ψ0 = id .

Decomposing End(A) into generalized eigenspaces of the operator ψ 7→ ad(a)◦
ψ we see that ψ−1 is the component of id ∈ End(A) corresponding to the zero
eigenvalue. This immediately implies our claim. For example, if a is semisimple
then φa(u) has a simple pole at u = 0. More precisely, taking diagonal matrix
a =

∑
i aieii we get the associative r-matrix

r(u) =
∑
ij

1
u+ ai − aj

eij ⊗ eji.
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The proofs of the next two results are parallel to those of Propositions 2.2
and 2.1 in [3], respectively.

Lemma 1.3. Let r(u, v) be a nondegenerate unitary solution of the AYBE.
Assume that r(u, v) does not have a pole at v = 0. Then r(u, 0) is still non-
degenerate, and hence has the form described in Proposition 1.1.

Proof. Let us fix v0 such that r(u, v) does not have a pole at v = v0 and
r(u, v0) is nondegenerate for generic u. Then we can define a meromorphic
function φ(u, v) with values in EndC(A) by the condition

(φ(u, v)⊗ id)(r(u, v0)) = r(u, v).

We claim that this function satisfies the identity

φ(u+ u′, v)(XY ) = φ(u, v)(X)φ(u′, v)(Y ), (11)

where X,Y ∈ A. Indeed, since r(u, v) does not have a pole at v = 0, substi-
tuting v′ = 0 in (1) we get

r12(−u′, v)r13(u+ u′, v) = r23(u+ u′, 0)r12(u, v)− r13(u, v)r23(u′, 0).

Note that the right-hand side is obtained by applying φ(u, v)⊗ id⊗ id to the
right-hand side for v = v0. Applying the above equation for v = v0 we deduce
that it is equal to

(φ(u, v)⊗ id⊗ id)(r12(−u′, v0)r13(u+ u′, v0)).

On the other hand, the left-hand side can be rewritten as

[(φ(−u′, v)⊗ id)r(−u′, v0)]12[(φ(u+ u′, v)⊗ id)r(u+ u′, v)]13.

Thus, if we write r(u, v0) =
∑
Kα(u)⊗ eα, where eα is a basis of A, then we

derive

φ(−u′, v)(Kα(−u′))φ(u+ u′, v)(Kβ(u+ u′)) = φ(u, v)(Kα(−u′)Kβ(u+ u′)).

By nondegeneracy of r(u, v0) this implies (11). Taking Y = 1 in this equation
we obtain

φ(u+ u′, v)(X) = φ(u, v)(X)φ(u′, v)(1). (12)

Similarly, we deduce that

φ(u+ u′, v)(Y ) = φ(u′, v)(1)φ(u, v)(Y ).

Comparing these equation we see that φ(u′, v)(1) commutes with φ(u, v)(X)
for any X ∈ A. Using nondegeneracy of r(u, v) we derive that φ(u, v)(1) =
f(u, v) · 1 for some scalar meromorphic function f(u, v). Furthermore, we
should have
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f(u+ u′, v) = f(u, v)f(u′, v),

which implies that f(u, v) = exp(g(v)u) for some function g(v) holomorphic
near v = 0. Next, from (12) we obtain that exp(−g(v)u)φ(u, v) does not de-
pend on u. Thus, all solutions of (12) have form φ(u, v) = exp(g(v)u)ψ(v),
where for every v ψ(v) is an algebra automorphism of A or zero. By our as-
sumption φ(u, v) does not have a pole at v = 0. Therefore, ψ(v) is holomorphic
near v = 0. Now we use the fact that every algebra automorphism of A is in-
ner, and hence has determinant equal to 1 (it is enough to check this for the
conjugation with a diagonalizable matrix). Since, ψ(v0) = id this implies that
detψ(v) = 1 identically. Therefore, detψ(0) = 1 and φ(u, 0) is invertible. ut

Lemma 1.4. Let r(u, v) be a nondegenerate unitary solution of the AYBE.
Assume that r(u, v) has a pole at v = 0. Then this pole is simple and
limv→0 vr(u, v) = cP for some nonzero constant c.

Proof. Let r(u, v) = θ(u)
vk + η(u)

vk−1 + . . . be the Laurent expansion of r(u, v) near
v = 0. Considering the polar parts as v′ → 0 (resp., v → 0) in (1) we get

−θ23(u+ u′)r12(u, v) + r13(u, v)θ23(u′) = 0, (13)

θ12(−u′)r13(u+ u′, v′)− r23(u+ u′, v′)θ12(u) = 0. (14)

Let V ⊂ A be the minimal subspace such that θ(u) ∈ V ⊗A (for all u where
θ(u) is defined). Then we have r13(u, v)θ23(u′) ∈ A⊗V ⊗A. Hence, from (13)
we get θ23(u+u′)r12(u, v) ∈ A⊗V ⊗A. This implies that r12(u, v) ∈ A⊗A1,
where

A1 = {a ∈ A : (a⊗ 1)θ(u) ∈ V ⊗A for all u}.

By nondegeneracy we get A1 = A, hence AV ⊂ V . Similarly, using (14) we
derive that V A ⊂ V . Thus, V is a nonzero two-sided ideal in A, so we have
V = A. Now let us prove that the order of pole k cannot be greater that 1.
Indeed, assuming that k > 1 and considering the coefficient with v1−k in the
expansion of (1) near v = 0 we get

η12(−u′)r13(u+ u′, v′)− r23(u+ u′, v′)η12(u) + θ12(−u′)∂r
13

∂v
(u+ u′, v′) = 0.

Now looking at polar parts at v′ = 0 we get θ12(−u′)θ13(u + u′) = 0 which
contradicts to the equality V = A established above. Therefore, k = 1. Now
let us look at (13) again. Let us fix u and consider the subspace

A(u) = {x ∈ A : θ(u+ u′)(x⊗ 1) = (1⊗ x)θ(u′) for all u′}.

Then from (13) we get that r(u, v) ∈ A⊗A(u). By nondegeneracy this implies
that A(u) = A for generic u, so we get an identity

θ(u+ u′)(x⊗ 1) = (1⊗ x)θ(u′)
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for all x ∈ A. Taking x = 1 we see that θ(u) = θ is constant. Finally, any
tensor θ ∈ A ⊗ A with the property θ(x ⊗ 1) = (1 ⊗ x)θ is proportional to
P . ut

Recall that if r(u, v) is a solution of the AYBE with the Laurent expansion
at u = 0 of the form (5) then r0(v) is a unitary solution of the CYBE (see
proof of Lemma 1.2 in [7], or Lemma 2.9 of [8]). The same is true for r0(v) =
(pr⊗pr)(r0(v)) ∈ slN ⊗ slN . We will show below that the nondegeneracy of
r(u, v) implies that r0(v) is also nondegenerate, hence it is either elliptic,
trigonometric, or rational. The first two cases are distinguished from the third
by the condition that r0(v) is periodic with respect to v 7→ v + p for some
p ∈ C∗.

Recall that by an infinitesimal symmetry of an A⊗A-valued function f(x)
we mean an element a ∈ A such that [a⊗ 1 + 1⊗ a, f(x)] = 0 for all x.

Theorem 1.5. Let r(u, v) be a nondegenerate unitary solution of the AYBE
with the Laurent expansion at u = 0 of the form (5), and let r0(v) =
(pr⊗pr)(r0(v)). Then
(i) r0(v) is a nondegenerate unitary solution of the CYBE.
(ii) The following conditions are equivalent:
(a) r(u, v) satisfies the QYBE (4) in v (for fixed u);
(b) the product r(u, v)r(−u, v) is a scalar multiple of 1⊗ 1;
(c) d

dv (r0(v)− r0(v)) is a scalar multiple of 1⊗ 1.
(d) (pr⊗pr⊗pr)[r120 (v)r130 (v + v′)− r230 (v′)r120 (v) + r130 (v + v′)r230 (v′)] = 0.
(iii) The equivalent conditions in (ii) hold when r0(v) either admits a period
or has no infinitesimal symmetries in slN .

Remarks 1.6. 1. In fact, our proof shows that equivalent conditions in (ii)
hold under the weaker assumption that the system

[r0(v), a1 + a2] = [r0(v), b1 + b2 + va1] = [b, a] = 0

on a, b ∈ slN implies that a = 0.
2. Note that the implication (b) =⇒ (a) in part (ii) of the theorem holds for
any unitary solution of the AYBE (as follows easily from Lemma 1.8 below).
It is plausible that one can check condition (b) in other situations than those
considered in the above theorem. For example, we have nondegenerate unitary
solutions of the AYBE of the form

r(u, v) =
ω

un
+
P

v
,

where n ≥ 1, ω ∈ A ⊗ A satisfies ω12ω13 = 0 and ω21 = (−1)n−1ω. It is
easy to see that these solutions satisfy r(u, v)r(−u, v) = 1⊗1/v2, so they also
satisfy the QYBE. On the other hand, the solutions of the AYBE constructed
in Proposition 1.1 do not satisfy the QYBE in general.
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Lemma 1.7. Assume that N > 1. Let r(u, v) be a nondegenerate unitary
solution of the AYBE with the Laurent expansion at u = 0 of the form (5).
Then r(u, v) has a simple pole at v = 0 with the residue c · P , where c ∈ C∗.

Proof. By Lemma 1.4 we only have to rule out the possibility that r(u, v) has
no pole at v = 0. Assume this is the case. Then r(u, 0) is the solution of (8)
that has a simple pole at u = 0 with the residue 1 ⊗ 1. Let φ(u) : A → A
be the linear operator such that r(u, 0) = (φ(u)⊗ id)(P ). Then φ(u) has the
Laurent expansion at u = 0 of the form

φ(u)(X) =
tr(X) · 1

u
+ ψ(X) + . . .

for some operator ψ : A→ A. By Proposition 1.1 we have

cuφ(u)(X) + [a, φ(u)(X)] = X

for some c ∈ C∗ and a ∈ slN . Considering the constant terms of the expansions
at u = 0 we get

c tr(X) · 1 + [a, ψ(X)] = X.

It follows that [a, ψ(X)] = X for all X ∈ slN . Hence, the operator prψ|slN :
slN → slN is invertible. Taking in the above equality X ∈ slN such that
prψ(X) = a we derive that a = 0 which leads to a contradiction. ut

The next two lemmas constitute the core of the proof of Theorem 1.5.

Lemma 1.8. For a triple of variables u1, u2, u3 (resp., v1, v2, v3) set uij =
ui − uj (resp., vij = vi − vj). Then for every unitary solution of the AYBE
one has

r12(u12, v12)r13(u23, v13)r23(u12, v23)− r23(u23, v23)r13(u12, v13)r12(u23, v12) =

s23(u23, v23)r13(u13, v13)− r13(u13, v13)s23(u21, v23) =

r13(u13, v13)s12(u32, v12)− s12(u12, v12)r13(u13, v13),

where s(u, v) = r(u, v)r(−u, v).

Proof. In the following proof we will use the short-hand notation rij(u) for
rij(u, vij). The AYBE can be rewritten as

r12(u12)r13(u23)− r23(u23)r12(u13) + r13(u13)r23(u21) = 0. (15)

On the other hand, switching indices 1 and 2 and using the unitarity condition
we obtain

r23(u23)r13(u12)− r12(u12)r23(u13) + r13(u13)r12(u32) = 0. (16)

Multiplying (16) with r12(u23) on the right we get
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r23(u23)r13(u12)r12(u23)− r12(u12)r23(u13)r12(u23) + r13(u13)s12(u32) = 0.

On the other hand, switching u1 and u2 in (15) and multiplying the obtained
equation with r12(u12) on the left we obtain

s12(u12)r13(u13)− r12(u12)r23(u13)r12(u23) + r12(u12)r13(u23)r23(u12) = 0.

Taking the difference between these cubic equations gives

r23(u23)r13(u12)r12(u23)−r12(u12)r13(u23)r23(u12) = s12(u12)r13(u13)−r13(u13)s12(u32).

The other half of the required equation is obtained by switching the indices 1
and 3 and using the unitarity condition. ut

Lemma 1.9. Let r(u, v) be a unitary solution of the AYBE with the Laurent
expansion (5) at u = 0. Assume also that r(u, v) has a simple pole at v = 0
with the residue cP . Then one has

s(u, v) = r(u, v)r(−u, v) = a⊗ 1 + 1⊗ a+ (f(u) + g(v)) · 1⊗ 1

with

g(v) = − c

N
(tr⊗ tr)(

dr0(v)
dv

),

f(u) =
1
N

trµ(
∂r(u, 0)
∂u

),

a = prµ(
∂r(u, 0)
∂u

),

where µ : A ⊗ A → A denotes the product. Furthermore, a ∈ slN is an
infinitesimal symmetry of r(u, v), and if we write

r0(v) = r0(v) + α(v)⊗ 1− 1⊗ α(−v) + h(v) · 1⊗ 1,

where r0(v) ∈ slN ⊗ slN and α(v) ∈ slN , then

α(v) = α(0)− v

cN
a.

Proof. Let us write r(u, v) = cP
v + r̃(u, v), where r̃(u, v) does not have a pole

at v = 0. Then we can rewrite the AYBE as follows (where vij = vi − vj):

r13(u, v13)r23(−u+ h, v23) = r23(h, v23)r12(u, v12)− r12(u− h, v12)r13(h, v13) =

r23(h, v23)r12(u, v12)− r12(u, v12)r13(h, v13) + [r12(u, v12)− r12(u− h, v12)]r13(h, v13) =

r23(h, v23)− r23(h, v13)
v12

cP 12 + [r23(h, v23)r̃12(u, v12)− r̃12(u, v12)r13(h, v13)]+

[r̃12(u, v12)− r̃12(u− h, v12)]r13(h, v13).
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Passing to the limit v2 → v1 we derive

r13(u, v)r23(−u+ h, v) = −∂r
23

∂v
(h, v)cP 12 + [r23(h, v)r̃12(u, 0)− r̃12(u, 0)r13(h, v)]+

[r̃12(u, 0)− r̃12(u− h, 0)]r13(h, v).

Next, we are going to apply the operator µ⊗ id : A⊗A⊗A→ A⊗A, where
µ is the product on A. We use the following easy observations:

(µ⊗id)(x13y23) = xy, (µ⊗id)(x23y12−y12x13) = 0, (µ⊗id)(x23P 12) = 1⊗tr1(x),

where x, y ∈ A⊗A, tr1 = tr⊗ id : A⊗A→ A (the last property follows from
the identity

∑
ij eijaeji = tr(a) · 1 for a ∈ A). Thus, applying µ ⊗ id to the

above equation we get

r(u, v)r(−u+h, v) = −c·1⊗tr1(
∂r

∂v
(h, v))+(µ⊗id)

(
[r̃12(u, 0)− r̃12(u− h, 0)]r13(h, v)

)
.

Finally, taking the limit h→ 0 we derive

s(u, v) = −c · 1⊗ tr1(
dr0(v)
dv

) + µ(
∂r(u, 0)
∂u

)⊗ 1, (17)

where we used the equalities ∂r(0,v)
∂v = dr0(v)

dv and ∂er(u,v)
∂u = ∂r(u,v)

∂u . Hence, we
can write s(u, v) in the form

s(u, v) = a(u)⊗ 1 + 1⊗ b(v) + (f(u) + g(v))1⊗ 1,

where a(u) and b(v) take values in slN , and

b(v) = −cpr tr1(
dr0(v)
dv

).

The unitarity condition on r(u, v) implies that s21(−u,−v) = s(u, v). This
immediately gives the required form of s(u, v) with some a ∈ slN , as well as
the formulas for g(v), f(u), a and α(v). The fact that a is an infinitesimal
symmetry of r(u, v) follows from the second equality in the identity of Lemma
1.8. ut

Lemma 1.10. Let r0(v) ∈ A ⊗ A be a unitary solution of the CYBE of the
form

r0(v) = r0(v) + α(v)⊗ 1− 1⊗ α(−v) + h(v) · 1⊗ 1,

where r0(v) ∈ slN ⊗ slN and α(v) ∈ slN . Then

[r0(v − v′), α(v)⊗ 1 + 1⊗ α(v′)] = [α(v), α(v′)] = 0.

In particular, if α(v) depends linearly on v, i.e., α(v) = b+ v · a, then

[r0(v), a⊗ 1 + 1⊗ a] = [r0(v), b⊗ 1 + 1⊗ b+ va⊗ 1] = [b, a] = 0.
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Proof. Applying pr⊗pr⊗pr to both sides of the CYBE we see that r0 itself
satisfies the CYBE. Taking this into account the equation can be rewritten as

[r120 (v12), α1(v13) + α2(v23)] + [α1(v12), α1(v13)] + c.p.(1, 2, 3) = 0,

where vij = vi − vj (the omitted terms are obtained by cyclically permuting
1, 2, 3). Applying the operator pr⊗pr⊗ id gives

[r120 (v12), α1(v13) + α2(v23)] = 0.

Now returning to the above equality and applying pr⊗ id⊗ id we derive that
[α(v), α(v′)] = 0. ut

Proof of Theorem 1.5. (i) In the case N = 1 the statement is vacuous, so we
can assume that N > 1. By Lemma 1.7, r0(v) has a simple pole at v = 0
with the residue cP , where c ∈ C∗. Projecting to slN we deduce that r0(v) is
nondegenerate.
(ii) By Lemma 1.8, r(u, v) satisfies the QYBE iff

s23(u, v23)r13(2u, v13) = r13(2u, v13)s23(−u, v23).

Using the formula for s(u, v) from Lemma 1.9 we see that this is equivalent
to the equality

[r(u, v), 1⊗ a] = 0

which is equivalent to a = 0 by the nondegeneracy of r(u, v). Note that by
Lemma 1.9, both conditions (b) and (c) are also equivalent to the equality
a = 0. It remains to show the equivalence of (d) with this equality. To this
end we use the identity

r120 (v)r130 (v+v′)−r230 (v′)r120 (v)+r130 (v+v′)r230 (v′) = r121 (v)+r131 (v+v′)+r231 (v′)
(18)

deduced by substituting the Laurent expansions in the first variable into (1).
Let us denote the expression in the left-hand-side of (18) by AY BE[r0](v, v′).
Using the relation between r0(v) and r0(v) from Lemma 1.9 we obtain

− cN · (pr⊗pr⊗pr) (AY BE[r0](v, v′)−AY BE[r0](v, v′)) =

vr120 (v)a3 + v′r230 (v′)a1 + (v + v′)r130 (v + v′)a2,

where a1 = a⊗1⊗1, etc. Note that (18) implies that (pr⊗pr⊗pr)AY BE[r0](v, v′) =
0. Therefore, it suffices to prove that the equation

vr120 (v)a3 + v′r230 (v′)a1 + (v + v′)r130 (v + v′)a2 = 0

on a ∈ slN implies that a = 0. Passing to the limit as v → 0 and v′ → 0 we
deduce from the above equality that

(pr⊗pr⊗pr)[P 12a3 + P 23a1 + P 13a2] = 0.
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Let a =
∑
aijeij . Looking at the coefficient with eij ⊗ eji ⊗ eij we deduce

that aij = 0 for i 6= j. Finally, looking at the projection to e12 ⊗ e21 ⊗ slN we
deduce that aii does not depend on i, hence a = 0. ut

(iii) It suffices to prove that under our assumptions the infinitesimal symmetry
a ∈ slN appearing in Lemma 1.9 is equal to zero. We only have to consider
the case when r0 has a period, i.e., r0(v + p) = r0(v) for some p ∈ C∗. By
Lemma 1.10, it remains to check that the equation

[r0(v), b⊗ 1 + 1⊗ b+ va⊗ 1] = 0

on a, b ∈ slN implies that a = 0. From the periodicity of r0 we derive that

[r0(v), a⊗ 1] = 0.

By the nondegeneracy of r0, it follows that a = 0. ut

2 Solutions of the AYBE associated with simple vector
bundles on degenerations of elliptic curves

Now let us review how solutions of the AYBE arise from geometric structures
on elliptic curves and their degenerations. Let X be a nodal projective curve
over C of arithmetic genus 1 such that the dualizing sheaf on X is isomorphic
to OX . Let us fix such an isomorphism. Recall that a vector bundle V on X
is called simple if End(V ) = C. The following result follows from Theorems 1
and 4 of [7].

Theorem 2.1. Let V1, V2 be a pair of simple vector bundles on X such that
Hom0(V1, V2) = Ext1(V1, V2) = 0. Let y1, y2 be a pair of distinct smooth points
of X. Consider the tensor

rV1,V2
y1,y2

∈ Hom(V ∗1,y1
, V ∗2,y1

)⊗Hom(V ∗2,y2
, V ∗1,y2

)

corresponding to the following composition

Hom(V1,y1 , V2,y1)
-

Res−1
y1

Hom(V1, V2(y1))
-

evy2

Hom(V1,y2 , V2,y2),

where Vi,y denotes the fiber of Vi at a point y ∈ X, the map

Resy : Hom(V1, V2(y))→̃Hom(V1,y, V2,y)

is obtained by taking the residue at y, and the map evy is the evaluation at
y. Then for a triple of simple bundles (V1, V2, V3) such that each pair satisfies
the above assumptions and for a triple of distinct points (y1, y2, y3) one has

(rV3V2
y1y2

)12(rV1V3
y1y3

)13 − (rV1V3
y2y3

)23(rV1V2
y1y2

)12 + (rV1V2
y1y3

)13(rV2V3
y2y3

)23 = 0 (19)
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in Hom(V ∗1,y1
, V ∗2,y1

) ⊗ Hom(V ∗2,y2
, V ∗3,y2

) ⊗ Hom(V ∗3,y3
, V ∗1,y3

). In addition the
following unitarity condition holds:

(rV1V2
y1y2

)21 = −rV2V1
y2y1

. (20)

Remark 2.2. The tensor rV1,V2
y1,y2

in the above theorem is a certain triple
Massey product in the derived category of X, and the equation (19) follows
from the appropriate A∞-axiom (see [7]).

We are going to apply the above theorem for bundles Vi of the form Vi =
V ⊗ Li, where V is a fixed simple vector bundle of rank N on X and Li are
line bundles in Pic0(X), the neutral component of Pic(X). Also, we let points
yi vary in a connected component X0 of X. Uniformizations of X0 ∩ Xreg

and of Pic0(X) allow to describe Vi’s and yi’s by complex parameters. Thus,
using trivializations of the bundles V ∗i,yj

we can view the tensor rV1,V2
y1,y2

in the
above theorem as a function of complex variables r(u1, u2; v1, v2) ∈ A ⊗ A,
where A = Mat(N,C), ui describes Vi, vj describes yj . Note that equation
(19) reduces to the AYBE in the case when r depends only on the differences
of variables, i.e., r(u1, u2; v1, v2) = r(u1 − u2, v1 − v2).

A different choice of trivializations of V ∗i,yi
would lead to the tensor

r̃(u1, u2, v1, v2) given by

r̃(u1, u2; v1, v2) = (ϕ(u2, v1)⊗ϕ(u1, v2))r(u1, u2; v1, v2)(ϕ(u1, v1)⊗ϕ(u2, v2))−1

where ϕ(u, v) is a function with values in GLN (C). We say that tensor func-
tions r̃ and r related in this way are equivalent. Note that the condition
for functions to depend only on the differences u1 − u2 and v1 − v2 is not
preserved under these equivalences in general. However, if (a, b) is a pair
of commuting infinitesimal symmetries of r(u1 − u2, v1 − v2) then taking
ϕ(u, v) = exp(ua + vb) we do get a tensor function r̃ that depends only on
the differences, namely,

r̃(u, v) = exp[u(1⊗ a) + v(b⊗ 1)]r(u, v) exp[−u(a⊗ 1)− v(b⊗ 1)]

(this kind of equivalence shows up in Theorem 0.2(ii)).
Since we are interested in trigonometric solutions, we will be using the

multiplicative variables xi = exp(ui), yi = exp(vi). The solutions of (19)
that we are going to construct in the next section will be equivalent to those
depending only on the differences u1 − u2, v1 − v2. It will be convenient for
us also to work with the intermediate form of the AYBE

r12((x′)−1; y1, y2)r13(xx′; y1, y3)− r23(xx′; y2, y3)r12(x; y1, y2)+
r13(x; y1, y3)r23(x′; y2, y3) = 0 (21)

for the tensor r(x; y1, y2) ∈ A ⊗ A, obtained from (19) in the case when
r(x1, x2; y1, y2) = r(x1/x2; y1, y2). The corresponding unitarity condition has
form

r21(x; y1, y2) = −r(x−1; y2, y1). (22)
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3 Simple vector bundles on cycles of projective lines

Let X = X0∪X1∪ . . .∪Xn−1 be the union of n copies of P1’s glued (transver-
sally) in a configuration of type Ãn−1, so that the point ∞ on Xj is identified
with the point 0 on Xj+1 for j = 0, . . . , n − 1 (where we identify indices
with elements of Z/nZ). A vector bundle V of rank N on X is given by a
collection of vector bundles Vj of rank N on Xj along with isomorphisms
(Vj)∞ ' (Vj+1)0. Since every vector bundle on P1 splits into a direct sum of
line bundles, we can assume that

Vj = OP1(mj
1)⊕ . . .⊕OP1(mj

N )

for every j = 0, . . . , n − 1. Thus, the splitting types are described by the
N × n-matrix of integers (mj

i ).
Let (z0 : z1) denote the homogeneous coordinates on P1. We will use the

standard trivialization of the fiber of OP1(1) at 0 = (1 : 0) ∈ P1 (resp.,
at ∞) given by the generating section z0 (resp., z1). Note that a section
s ∈ OP1(1) is uniquely determined by its values s(0) and s(∞) (namely, s =
s(0)z0 + s(∞)z1).

Let us fix a splitting type matrix m = (mj
i ). For every λ ∈ C∗ we define

the rank-N bundle V λ = V λ(m) on X by using standard trivializations of
Vj = ⊕n

i=1O(mj
i ) at 0 and∞ and setting the transition isomorphisms (Vj)∞ '

(Vj+1)0 to be identical for j = 0, . . . , n− 2, and the last transition map to be

λC−1 : (V0)0 → (Vn−1)∞

where C is the cyclic permutation matrix: Cei = ei−1, where we identify the
set of indices with Z/NZ. Note that in this definition only the cyclic order on
the indices {1, . . . , N} is used. In particular, if we cyclically permute the rows
of the matrix (mj

i ) (by replacing mj
i with mj

i+1) then we get the same vector
bundle.

Lemma 3.1 below provides a criterion for simplicity of V λ(m). This result
is well-known (see [4], Theorem 5.3). For completeness we include the proof.
It is also known that every simple vector bundle on X is isomorphic to some
V λ(m) (see loc. cit.). It will be convenient to extend the N × n-matrix (mj

i )
to the matrix with columns numbered by j ∈ Z using the rule mj+n

i = mj
i−1.

Lemma 3.1. The vector bundle V λ(m) is simple iff the following two condi-
tions are satisfied:
(a) the differences mj

i −mj
i′ for i, i′ ∈ Z/NZ take values only {−1, 0, 1};

(b) for every i, i′ ∈ Z/NZ, i 6= i′, the nN -periodic infinite sequence

(mj
i −mj

i′), j ∈ Z

is not identically 0, and the occurrences of 1 and −1 in it alternate.
Furthermore, if (a) and (b) hold then V λ1(m) ' V λ2(m) iff (λ1/λ2)N = 1.
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Proof. First, we observe that if mj
i − mj

i′ = 2 then there exists a nonzero
morphism OP1(mj

i′) → OP1(mj
i ) vanishing at 0 and ∞. Viewing it as an

endomorphism of Vj we obtain a non-scalar endomorphism of V λ. Hence, the
condition (a) is necessary. From now on let us assume that (a) is satisfied.

A morphism V λ1 → V λ2 is given by a collection of morphisms Aj : Vj →
Vj , j = 0, . . . , n− 1, such that Aj(∞) = Aj+1(0) for j = 0, . . . , n− 2 and

A0(0) =
λ1

λ2
CAn−1(∞)C−1.

We can write these maps as matrices Aj = (aj
ii′)1≤i,i′≤N , where aj

ii′ ∈
H0(P1,O(mj

i−m
j
i′)). Let us allow the index j to take all integer values by using

the rule aj+n
ii′ = aj

i−1,i′−1. Note that we still have aj
ii′ ∈ H0(P1,O(mj

i −mj
i′))

because of our convention on mj
i for j ∈ Z. Then the equations on (Aj) can

be rewritten as
aj

ii′(0) = xδ(j)aj−1
ii′ (∞) (23)

for all i, i′ ∈ Z/NZ and j ∈ Z, where x = λ1/λ2, and δ(j) = 1 for j ≡ 0(n),
δ(j) = 0 otherwise. Due to condition (a) we have the following possibilities
for each aj

ii′ :
(i) if mj

i < mj
i′ then aj

ii′ = 0;
(ii) if mj

i = mj
i′ then aj

ii′ is a constant, so aj
ii′(0) = aj

ii′(∞);
(iii) if mj

i > mj
i′ then aj

ii′ is a section of O(1), so it is uniquely determined by
its values at 0 and ∞, and these values can be arbitrary.

From this we can immediately derive that (b) is necessary for V λ to be
simple. Indeed, if for some i 6= i′ we have mj

i = mj
i′ for all j ∈ Z then we

can get a solution of (23) with x = 1 by setting aj
i+k,i′+k = 1 for all j, k ∈ Z

and letting the remaining entries to be zero. This would give a non-scalar
endomorphism of V λ. Similarly, if for some i 6= i′ and some segment [j, k] ⊂ Z
we have

(mj
i −mj

i′ ,m
j+1
i −mj+1

i′ , . . . ,mk
i −mk

i′) = (1, 0, . . . , 0, 1)

then we get a solution of (23) with x = 1 by setting

aj
ii′ = z1, a

j+1
ii′ = 1, . . . , ak−1

ii′ = 1, ak
ii′ = z0

and letting the remaining entries to be zero.
Conversely, assume (a) and (b) hold. Then one can easily derive that V λ is

simple by analyzing the system (23) (with x = 1). Indeed, let us show first that
aj

ii′ = 0 for i 6= i′. It follows from (b) that in the case mj
i = mj

i′ we can either
find a segment [j1, j] ⊂ Z such that mk

i = mk
i′ for j1 < k < j and mk

j1
< mk

j1
,

or a segment [j, j2] ⊂ Z such that mk
i = mk

i′ for j < k < j2 and mk
j2
< mk

j2
. In

either case applying iteratively (23) we derive that aj
ii′ = 0 (recall that in this

case aj
ii′ is a constant). In the case mj

i > mj
i′ we can find both segments [j1, j]
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and [j, j2] as above, so that (23) implies that aj
ii′(0) = aj

ii′(∞) = 0. Hence,
aj

ii′ = 0. The remaining part of the system (23) shows that all aj
ii are equal

to the same constant, i.e., V λ has no non-scalar endomorphisms.
The above argument also shows that a morphism (aj

ii′) : V λ1(m) →
V λ2(m) has aj

ii′ = 0 (assuming conditions (a) and (b) hold), while the re-
maining components aj

ii ∈ C satisfy the equations

aj
ii = xδ(j)aj−1

ii , aj+n
ii = aj

i−1,i−1,

where x = λ1/λ2. This system has a nonzero solution iff xN = 1, in which
case the solution gives an isomorphism V λ1(m) ' V λ2(m). ut

4 Computation of the associative r-matrix arising as a
Massey product

Henceforward, we always assume that the matrix (mj
i ) satisfies the conditions

of Lemma 3.1. Given a pair of parameters λ1, λ2 ∈ C∗ and a pair of points
y, y′ ∈ X0 \ {0,∞} we want to describe explicitly the maps

Resy : Hom(V λ1 , V λ2(y)) → Hom(V λ1
y , V λ2

y ),

evy′ : Hom(V λ1 , V λ2(y)) → Hom(V λ1
y′ , V

λ2
y′ )

and especially the composition evy′ ◦Res−1
y (for generic λ1, λ2). We will iden-

tify the target spaces of both maps with N × N -matrices using trivializa-
tions of the relevant line bundles over y induced by the appropriate power of
z0 ∈ H0(P1,O(1)). We also use the global 1-form trivializing ωX that restricts
to dz/z on each P1 \ {∞} (where z = z1/z0).

A morphism V λ1 → V λ2(y) is given by a collection of morphisms

A0 : V0 → V0(y), A1 : V1 → V1, . . . , An−1 : Vn−1 → Vn−1

with same equations as before. Writing these maps as matrices we can
view Hom(V λ1 , V λ2(y)) as the space of solutions of (23), where aj

ii′ ∈
H0(P1,O(mj

i − mj
i′)) for j 6≡ 0(n) and aj

ii′ ∈ H0(P1,O(mj
i − mj

i′)(y)) for
j ≡ 0(n).

Since the component X0 plays a special role, we will use a shorthand
notation mi := m0

i , aii′ := a0
ii′ . Let us also set bii′ = Resy(aii′). Recall that

for every pair i, i′ ∈ Z/NZ we have the following three possibilities.
(i) If mi < mi′ then we have aii′ = ybii′

z1−yz0
, so that

aii′(0) = −bii′ , aii′(∞) = ybii′ . (24)

(ii) If mi = mi′ then aii′ = aii′ (∞)z−aii′ (0)y
z−y (where z = z1/z0), so we get the

relation
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aii′(∞)− aii′(0) = bii′ . (25)

(iii) If mi > mi′ then aii′ is uniquely determined by aii′(0), aii′(∞) and bii′ .
Namely, one can easily check that

aii′ =
z(bii′ + aii′(0)− yaii′(∞))− yaii′(0)

z − y
· z0 +

zaii′(∞)
z − y

· z1.

Note that in the above three cases we also have the following expressions
for aii′(y′):

aii′(y′) =


ybii′
y′−y , mi < mi′ ,
y′bii′
y′−y + aii′(0) = ybii′

y′−y + aii′(∞), mi = mi′ ,
y′bii′
y′−y + aii′(0) + y′aii′(∞), mi > mi′ .

(26)

To compute evy′ ◦Res−1
y means to express all the entries aii′(y′) in terms

of (bii′). The above formula gives such an expression in the case mi < mi′ ; in
the case mi = mi′ we need to know either aii′(0) or aii′(∞); and in the case
mi > mi′ we need to know both. Of course, in the latter two cases one has to
use equations (23). Then condition (b) of Lemma 3.1 will guarantee that we
get a closed formula for aii′(y′) in terms of all the entries bii′ . To organize the
computation it is convenient to use the complete order on the set of indices
{1, . . . , N} given by

(?) i ≺ i′ if either mi < mi′ or mi = mi′ and the first nonzero term in the
sequence (mj

i −mj
i′), j = 0, 1, . . ., is negative.

The fact that this is a complete order follows immediately from condition
(b) of Lemma 3.1. We will write (ii′) > 0 if i ≺ i′ and (ii′) < 0 if i � i′. We
will also use the notation −(i, i′) = (i′, i).

Let us define a partially defined operation on pairs of distinct indices in
Z/NZ by setting

τ(ii′) = (i− 1, i′ − 1) if (i− 1) ≺ (i′ − 1) and mj
i = mj

i′ for 0 < j < n.

Note that τ is one-to-one. We denote by τ−1 the (partially defined) inverse and
by τk the iterated maps. Condition (b) of Lemma 3.1 implies that for every
pair of distinct indices (ii′) there exists k > 0 such that τk is not defined on
(ii′).
Case 1. Assume that i ≺ i′, i.e., (ii′) > 0. Then either mi < mi′ , or there
exists j > 0 such that mj′

i = mj′

i′ for 0 ≤ j′ < j and mj
i < mj

i′ . In the first
case we can use formula (26). In the second case we have aj′

ii′ = const for
0 < j′ < j, j 6≡ 0(n), while aj

ii′ = 0. Therefore, using (23) and (25) iteratively
we get the following expression for aii′(∞):

−aii′(∞) =
∑
k≥1

x−kbτk(ii′), (27)
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where the summation is only over a finite number of k’s for which τk(ii′) is
defined. This gives the following formula

aii′(y′) =
ybii′

y′ − y
−

∑
k≥1

x−kbτk(ii′) if (ii′) > 0, (28)

that works also for the case mi < mi′ (since in this case τ is not defined on
(ii′)).
Case 2. Assume that i � i′, i.e., (ii′) < 0. Then either mi > mi′ , or there
exists j < 0 such that mj′

i = mj′

i′ for j < j′ ≤ 0 and mj
i < mj

i′ . Assume first
that mi > mi′ . Note that in this case there still exists j < 0 with the above
property, and in addition there is k > 0 such that mj′

i = mj′

i′ for 0 ≤ j′ < k
and mk

i < mk
i′ (by condition (b) of Lemma 3.1). Using equations (23) and

(25) we derive that (27) still holds and also we have

aii′(0) =
∑
k≥1

yε(στ−kσ(ii′))xkbστ−kσ(ii′), (29)

where σ is the transposition: σ(i, i′) = (i′, i), the summation is only over
those k for which τ−kσ(ii′) is defined, ε(ii′) = 1 for (ii′) > 0 and ε(ii′) = 0
otherwise. This gives

aii′(y′) =
y′bii′

y′ − y
+

∑
k≥1

yε(στ−kσ(ii′))xkbστ−kσ(ii′)−y′
∑
k≥1

x−kbτk(ii′) if (ii′) < 0.

(30)
We observe that this formula still works in the case mi = mi′ (the second
summation becomes empty in this case).
Case 3. Assume that i = i′. In this case we have relations

aii(0) = xai+1,i+1(0) + xbi+1,i+1

for all i ∈ Z/NZ. Solving this linear system for aii(0) we get

aii(0) = (1− xN )−1
N∑

k=1

xkbi+k,i+k.

Finally, we derive

aii(y′) =
y

y′ − y
bii + (1− xN )−1

N−1∑
k=0

xkbi+k,i+k. (31)

Formulas (28), (30) and (31) completely determine the map evy′ ◦Res−1
y ,

so we can compute the associative r-matrix corresponding to the family of
simple vector bundles V λ on X:
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r(x; y, y′) = rconst(x, y/y′)+∑
α>0,k≥1

[−x−ke−τk(α) ⊗ eα + yε(−τ−k(α))xkeτ−k(α) ⊗ e−α − y′x−ke−τk(−α) ⊗ e−α],

where

rconst(x, z) = z
1−z

∑
α>0 e−α ⊗ eα + 1

1−z

∑
α>0 eα ⊗ e−α+

z
1−z

∑
i eii ⊗ eii + (1− xN )−1

∑
i

∑N−1
k=0 xkei+k,i+k ⊗ eii.

(32)

In these formulas i is an element of Z/NZ, and α denotes a pair of distinct
indices in Z/NZ. By a simple rearrangement of terms we can rewrite r(x; y, y′)
in the following way:

r(x; y, y′) = rconst(x, y/y′)+∑
α>0,k≥1[x

keα ⊗ e−τk(α) − x−ke−τk(α) ⊗ eα + yxke−α ⊗ e−τk(−α) − y′x−ke−τk(−α) ⊗ e−α].
(33)

Recall that this is a solution of (21) with the unitarity condition (22).

Example 4.1. Assume that n > N and the only nonzero entries of (mj
i )

are mN
1 = mN−1

2 = . . . = m1
N−1 = 1. Then the domain of definition

of τ is empty, so in this case we have r(x; y, y′) = rconst(x, y/y′). Hence,
rconst(exp(u), exp(v)) is a solution of the AYBE.

Later we will show that r(exp(u); exp(v1), exp(v2)) is equivalent to an r-
matrix depending only on the difference v1 − v2 (see Lemma 6.1), so that it
gives a solution of the AYBE.

5 Associative Belavin-Drinfeld triples associated with
simple vector bundles

The right-hand side of (33) depends only on the parameters x, y, y′ and on a
certain combinatorial structure on the set S = {1, . . . , N}. We are going to
show that this structure consists of an associative BD-structure as defined in
the introduction together with a compatible complete order (see below). Later
we will show that one can get rid of the dependence on a complete order by
passing to an equivalent r-matrix (see Lemma 6.1). However, for purposes of
studying splitting types of simple vector bundles on cycles of projective lines
the full combinatorial structure described below may be useful.

Definition 5.1. We say that a complete order on a set S is compatible with
the cyclic order given by a cyclic permutation C0 (or simply compatible with
C0) if C0 takes every non-maximal element to the next element in this order.
In other words, if we identify S with the segment of integers [1, N ] preserving
the complete order then C0(i) = i + 1 (where the indices are identified with
Z/NZ). In this case we set α0 = (smax, smin) ∈ ΓC0 , where smin (resp., smax)
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is the minimal (resp., maximal) element of S. A choice of a complete order
on S compatible with C0 is equivalent to a choice of an element α0 ∈ ΓC0 .
By an associative BD-structure on a completely ordered set S we mean an
associative BD-structure (C0, C, Γ1, Γ2) on S such that the complete order is
compatible with C0.

Note that a choice of an associative BD-structure on the completely or-
dered set [1, N ] such that α0 6∈ Γ1 and α0 6∈ Γ2, is equivalent to a choice of
a Belavin-Drinfeld triple in AN−1 equipped with an associative structure as
defined in [8].

We will need the following characterization of associative BD-structures
on completely ordered sets such that α0 6∈ Γ2.

Lemma 5.2. Let (S,<) be a completely ordered finite set equipped with a
transitive cyclic permutation C : S → S. Then to give an associative BD-
structure on S with α0 6∈ Γ2 is equivalent to giving a pair of subsets P1 and
P2 in the set of pairs of distinct elements of S, such that (C × C)(P1) = P2

and the following properties are satisfied:
(a) For every (s, s′) ∈ P2 one has s < s′.
(b) Assume that s < s′ < s′′. If (s, s′′) ∈ P1 then (s, s′), (s′, s′′) ∈ P1. The
same property holds for P2. Also, if (s′, s) ∈ P1 then (s′, s′′), (s′′, s) ∈ P1

(resp., if (s′′, s′) ∈ P1 then (s′′, s), (s, s′) ∈ P1).

The proof is left for the reader. Let us observe only that property (b)
assures that Pι is determined by Γι = Pι ∩ ΓC0 , where ι = 1, 2.

Now let us check that in the setting of section 4 we do get a completely
ordered set with an associative BD-structure.

Lemma 5.3. Let (mj
i ) be a N×n-matrix satisfying conditions of Lemma 3.1.

Equip the set S = {1, . . . , N} with the complete order ≺ given by (?) and the
cyclic permutation C(i) = i− 1. Also, let

P1 = {(ii′) | mj
i = mj

i′ for 0 < j < n and C(i) ≺ C(i′)}.

Then these data define an associative BD-structure with α0 6∈ Γ2.

Proof. We use Lemma 5.2. The only question is why property (b) holds. Let
i ≺ i′ ≺ i′′.

Assume first that (i, i′′) ∈ P2. Then mj
i+1 = mj

i′′+1 for j ∈ [1, n − 1].
Suppose there exists j ∈ [1, n − 1] such that mj

i+1 6= mj
i′+1. Consider the

maximal such j. We have eithermj
i+1 < mj

i′+1 ormj
i′+1 < mj

i′′+1. By condition
(b) of Lemma 3.1, the former assumption contradicts to i ≺ i′, while the latter
contradicts to i′ ≺ i′′. Hence, mj

i+1 = mj
i′+1 = mj

i′′+1 for all j ∈ [1, n− 1], so
that (i, i′), (i′, i′′) ∈ P2.

Assume that (i, i′′) ∈ P1. Then mj
i = mj

i′′ for j ∈ [1, n− 1]. Furthermore,
since i ≺ i′′ and i − 1 ≺ i′′ − 1 we should have m0

i = m0
i′′ (by condition
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(b) of Lemma 3.1). Suppose there exists j ∈ [0, n − 1] such that mj
i 6= mj

i′ .
Consider the minimal such j. We have either mj

i > mj
i′ or mj

i′ > mj
i′′ . But the

former contradicts to i ≺ i′, and the latter contradicts to i′ ≺ i′′. Therefore,
mj

i = mj
i′ = mj

i′′ for all j ∈ [0, n− 1], so that (i, i′), (i′, i′′) ∈ P1.
Finally, assume that (i′, i) ∈ P1 (resp., (i′′, i′) ∈ P1). Then mj

i = mj
i′

(resp., mj
i′ = mj

i′′) for j ∈ [1, n− 1]. Also, since i′ � i and i′− 1 ≺ i− 1 (resp.,
i′′ � i′ and i′′ − 1 ≺ i′ − 1), we necessarily have m0

i < m0
i′ (resp., m0

i′ < m0
i′′).

Hence, m0
i′ = m0

i′′ (resp., m0
i = m0

i′). Suppose there exists j ∈ [1, n− 1] such
that mj

i′ 6= mj
i′′ (resp., mj

i 6= mj
i′). Consider the minimal such j. Since i′ ≺ i′′

(resp., i ≺ i′), we have mj
i = mj

i′ < mj
i′′ (resp., mj

i < mj
i′ = mj

i′′). But this
contradicts to condition (b) of Lemma 3.1 (applied to i and i′′). Therefore,
mj

i = mj
i′ = mj

i′′ for all j ∈ [1, n − 1]. Since m0
i′ = m0

i′′ (resp., m0
i = m0

i′),
we have i′ − 1 ≺ i′′ − 1 (resp., i − 1 ≺ i′ − 1), and hence (i′, i′′) ∈ P1 (resp.,
(i, i′) ∈ P1). Also, i′′ − 1 ≺ i − 1 (by condition (b) of Lemma 3.1), so that
(i′′, i) ∈ P1. ut

We will need below the following two operations on associative BD-
structures.

Definition 5.4. For an associative BD-structure (C0, C, Γ1, Γ2) on a finite
set S we define
(i) the opposite associative BD-structure to be (C−1

0 , C, σ(Γ1), σ(Γ2)), where
σ is the permutation of factors in S × S (note that σ(ΓC0) = ΓC−1

0
);

(ii) the inverse associative BD-structure to be (C0, C
−1, Γ2, Γ1).

Note that under passing to the opposite associative BD-structure each set
Pι, ι = 1, 2, gets replaced with σ(Pι).

Theorem 5.5. An associative BD-structure on a completely ordered finite set
S is obtained by the construction of Lemma 5.3 from some matrix (mj

i ) (sat-
isfying conditions of Lemma 3.1) iff α0 6∈ Γ2 and C = Ck

0 for some k ∈ Z
(relatively prime to N = |S|).

Proof. “Only if”. Let us denote by ti =
∑n−1

j=0 m
j
i , i = 1, . . . , N , the sums of

entries in the rows of the matrix (mj
i ). Then we claim that for i ≺ i′ one has

ti − ti′ =

{
−1, if i− 1 � i′ − 1,
0, otherwise.

(34)

Indeed, assume first that mj
i = mj

i′ for all j ∈ [0, n−1]. Then i−1 ≺ i′−1 and
ti = ti′ , so the above equation holds. Next, assume that mj

i 6= mj
i′ for some

j ∈ [0, n− 1]. Then the first nonzero term in the sequence (mj
i −m

j
i′)j∈[0,n−1]

is −1. Since −1’s and 1’s in this sequence alternate, we have ti− ti′ = 0 (resp.,
ti − ti′ = −1) iff the last nonzero term in the sequence (mj

i − mj
i′)j∈[0,n−1]
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is 1 (resp., −1). But this happens precisely when the first nonzero term in
(mj

i−1 −mj
i′−1)j≥0 is −1 (resp., 1), so (34) follows.

Now assume that i ≺ i′ ≺ i′′. Then it follows from (34) that either C(i) ≺
C(i′) ≺ C(i′′) or C(i′) ≺ C(i′′) ≺ C(i) or C(i′′) ≺ C(i) ≺ C(i′). Since this
holds for every triple (i, i′, i′′), it is easy to deduce that C = Ck

0 for some
k ∈ Z.
“If”. First, note that the construction of the associative BD-structure on a
completely ordered set S given in Lemma 5.3 can be rewritten as follows.
Assume we are given a transitive cyclic permutation C of S and a matrix
(mj

s), where j ∈ [0, n], s ∈ S. Then we can extend the range of the index j to
Z using the rule mj+n

s = mj
C(s). Assuming that condition (b) of Lemma 3.1

holds for this extended matrix we can proceed to define the complete order
by (?) and the set P1 as in Lemma 5.3. Of course, we can always identify S
with {1, . . . , N} in such a way that C(i) = i− 1, so that we get to the setup
of Lemma 5.3. The advantage of the new point of view is that we can also
consider the set S = {1, . . . , N} with the cyclic permutation C(i) = i − k,
where k ∈ Z/NZ is relatively prime to N . Then as was noted above we have to
modify the definition of the extended matrix by using the rule mj+n

i = mj
i−k.

Note that changing (mj
i ) to (−mj

i ) changes the associative BD-structure
on S to the opposite BD-structure, and the complete order on S gets reversed.
Let us denote by w0 : S → S the permutation that reverses the order. Assume
that we have C = Ck

0 . Then conjugating by w0 the BD-structure associated
with (−mj

i ) we get a BD-structure that is obtained from the original one by
leaving the complete order the same, changing C = Ck

0 to C−k
0 , and replacing

P1 with (w0 × w0)σ(P1). Therefore, it is enough to show that Lemma 5.3
produces all associative BD-structures with C = C−k

0 , where N/2 ≤ k < N .
Next, we describe a construction of a class of matrices (mj

i ) satisfying
conditions of Lemma 3.1. Fix k, relatively prime to N , such that N/2 ≤ k <
N . Start with a sequence (a1, . . . , aN ) such that a1 = 1, aN = n − 1 (where
n > 1), and for every i ∈ [1, N − 1] one has either ai+1 = ai or ai+1 = ai + 1.
Then set m0

i = 1 for i ∈ [k + 1, N ], mai

k+1−i = 1 for i = 1, . . . , N , and let the
remaining entries to be zero. We are going to check that this matrix satisfies
conditions of Lemma 3.1 (with the modified definition of the extended matrix).

It is convenient to extend the range of the index i to Z by the rule mj
i =

mj
i+N , so that we get a matrix (mj

i ) with rows and columns numbered by Z.
Let us consider the subset Λ ⊂ [k + 1−N,N ]× [0, n− 1] defined by

Λ = ([k + 1, N ]× {0}) ∪ {(k + 1− i, ai) | i = 1, . . . , N}.

Then we have

{(i, j) ∈ Z× Z | mj
i 6= 0} = ∪a∈ZΛa, where

Λ0 = ∪b∈Z(Λ+ b(2N − k, n)), Λa = Λ0 + a(N, 0).

Note that each Λa intersects each row once, and if we denote by (i, ja(i)))
the intersection point of Λa with the ith row then either ja(i− 1) = ja(i) or
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ja(i − 1) = ja(i) + 1. In other words, as we go down one row the point of
intersection either stays in the same column or moves one step to the right.
It follows that the intersection of Λa with each column is a line segment.
Moreover, it is easy to see that the number of elements in this intersection
is at most N . Indeed, for columns corresponding to j ≡ 0(n) the intersection
segment has N − k elements. On the other hand, for j 6≡ 0(n) this number is
equal to the number of i ∈ [1, N ] such that j ≡ ai(n), so it is at most N . This
implies that Λa and Λa′ are disjoint for a 6= a′. Hence, ja(i) < ja+1(i) for all
a ∈ Z and i ∈ Z.

Let us set Ei = {ja(i) | a ∈ Z} for every i ∈ Z. We have to check that
for every pair of rows, the i-th and the i′-th, where i < i′ < i + N , one has
Ei 6= Ei′ , and the subsets Ei \ Ei′ and Ei′ \ Ei in Z alternate.

To prove that Ei 6= Ei′ we recall that by the construction, for every b ∈ Z
the intersection of Λ0 with the bn-th column is the segment [k + 1 + b(2N −
k), N+b(2N−k)]. The intersections of other sets Λa with the same column are
obtained from the above segment by shifts in NZ. Since 2N − k is relatively
prime to N , it follows that for appropriate b ∈ Z the intersection of ∪aΛa

with the bn-th column contains exactly one of the numbers i and i′. Hence,
bn belongs to exactly one of the sets Ei and Ei′ .

Finally, we have to prove that subsets Ei \ Ei′ and Ei′ \ Ei alternate.
Note that for all a we have ja(i′) ≤ ja(i). Hence, our assertion would follow
once we check that for every a ∈ Z one has ja(i) ≤ ja+1(i′). Suppose we
have ja+1(i′) < ja(i). Then the intersection of Λa+1 with the ja(i)-th column
is a segment [i1, i2], where i < i1 ≤ i2 < i′. Since Λa+1 = Λa + (N, 0),
the intersection of Λa with the ja(i)-th column is [i1 − N, i2 − N ]. Hence,
i ≤ i2 −N < i′ −N , which contradicts our assumptions on i and i′.

Now given a BD-structure on a set S = {1, . . . , N} with the complete
order 1 < 2 < . . . < N and the cyclic permutation C = C−k

0 (where N/2 ≤
k < N) we define the sequence (a1, . . . , aN ) as follows. Set a1 = 1, and for
i = 1, . . . , N − 1 set

ai+1 =

{
ai if αk−i ∈ Γ1,

ai + 1 otherwise

(this uniquely defines n). It is easy to check that the corresponding matrix
(mj

i ) realizes our BD-structure. ut

6 Solutions of the AYBE and associative BD-structures

Let (S,<,C, Γ1, Γ2) be a completely ordered finite set with an associative
BD-structure such that α0 6∈ Γ2. As in the introduction, for an element α =
(i, j) ∈ S×S we set eα = eij ∈ AS ' MatN (C) (where N = |S|, the rows and
columns are numbered by S). We write (i, j) > 0 (resp., (i, j) < 0) if i < j
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(resp., i > j). Also, for α = (i, j) we set −α = (j, i). Mimicking formulas (32)
and (33) we define

rconst(x, z) = z
1−z

∑
α>0 e−α ⊗ eα + 1

1−z

∑
α>0 eα ⊗ e−α+

z
1−z

∑
i∈S eii ⊗ eii + (1− xN )−1

∑
i∈S

∑N−1
k=0 xkei,i ⊗ eCk(i),Ck(i),

(35)

r(x; y, y′) = rconst(x, y/y′)+∑
α>0,k≥1[x

keα ⊗ e−τk(α) − x−ke−τk(α) ⊗ eα]+∑
α<0,k≥1[yx

keα ⊗ e−τk(α) − y′x−ke−τk(α) ⊗ eα].
(36)

In the last formula we use the operation τ defined on P1 ⊂ S×S; the summa-
tion is extended only over those (k, α) for which τk(α) is defined. Below we
will show that r(x; y, y′) is a solution of (21) (see Theorem 6.2). To deduce
from this Theorem 0.2(i) we will use the following simple observation.

Lemma 6.1. In the above situation the AS ⊗AS-valued function

−r(exp(
u1 − u2

N
); exp(v1), exp(v2))

is equivalent to the one given in Theorem 0.2(i) for the inverse associative
BD-structure (C0, C

−1, Γ2, Γ1), where u = u1 − u2 and v = v1 − v2.

Proof. We can assume that S = [1, N ] (the segment of natural numbers) with
the standard order. Let us set

ϕ(v)ej = exp(−jv
N

)ej .

Then the corresponding equivalent matrix r̃(u1, u2; v1, v2) is obtained from
r(exp(u1−u2

N ); exp(v1), exp(v2)) by multiplying each term eij ⊗ ej′i′ with
exp( (j−i)v1−(j′−i′)v2

N ). Now we observe that rconst(x, y/y′) is a linear com-
bination of eij ⊗ ej′i′ , where j − i = j′ − i′. Such a term gets multiplied by
exp( (j−i)(v1−v2)

N ). The same is true about the terms in r(x; y, y′) not containing
y or y′. Indeed, if i < j and τk is defined on (i, j) then Ck(j)−Ck(i) = j−i. On
the other hand, the terms involving y = exp(v1) and y′ = exp(v2) are linear
combinations of ei,j⊗ej′,i′ , where j′− i′ = j− i+N . Indeed, this follows from
the fact that if i > j and τk is defined on (i, j) then Ck(j)−Ck(i) = j− i+N
(the proof reduces to the case (i, j) = (N, 1)). The only other observation we
use to rewrite −r̃ in the form given in Theorem 0.2(i) (with C replaced by C−1

and Γ1 and Γ2 exchanged) is that for 0 < m < N and for i, j ∈ [1, N ] we have
j − i ≡ m(N) iff either i < j and j = i+m, or i > j and j = i+m−N . ut

Since for every associative BD-structure on a finite set S we can choose a
compatible complete order in such a way that α0 6∈ Γ2, Theorem 0.2(i) will
follow easily from the above lemma and the next result.

Theorem 6.2. Let (S,<,C, Γ1, Γ2) be a completely ordered finite set with an
associative BD-structure such that α0 6∈ Γ2. Then the function r(x; y, y′) given
by (36) is a solution of (21) satisfying the unitarity condition (22).
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Remark 6.3. By Theorem 5.5 we already know the statement to be true if
C = Ck

0 . Also, the work [8] deals with the case when in addition α0 6∈ Γ1 (this
fact will be used below).

The rest of this section will be occupied with the proof of Theorem 6.2 (in
the end we will also explain how to deduce Theorem 0.2(i)).

Let us denote by P =
∑

i,j eij ⊗ eji the permutation tensor. Then we can
rewrite our r-matrix in the form

r(x; y, y′) = a(x) + yb(x)− y′c(x) +
y

y′ − y
P,

where

a(x) = (1− xN )−1
∑
i∈S

N−1∑
k=0

xkei,i ⊗ eCk(i),Ck(i) +
∑
α>0

eα ⊗ e−α+∑
α>0,k≥1

[xkeα ⊗ e−τk(α) − x−ke−τk(α) ⊗ eα],

b(x) =
∑

α<0,k≥1

xkeα ⊗ e−τk(α),

c(x) = b21(x−1) =
∑

α<0,k≥1

x−ke−τk(α) ⊗ eα.

Lemma 6.4. Assume that α0 6∈ Γ2. Let us set Γ ′1 = Γ1 \ {α0}, Γ ′2 = τ(Γ ′1).
Then

a(x) +
y

y′ − y
P

is exactly the r-matrix corresponding to the associative BD-structure (S ,< ,C , Γ ′1).

Proof. It is easy to see that P ′1 = {α ∈ P1 | α > 0}. Thus, the terms b(x) and
c(x) in the r-matrix associated with the new associative BD-structure vanish.
We claim that the term a(x) for the new associative BD-structure is the same
as for the old one. Indeed, it is enough to check that α ∈ P ′1 is in the domain
of definition of τk iff it is in the domain of (τ ′)k, where τ ′ : P ′1 → P ′2 is the
bijection induced by τ . But this follows immediately from the fact that P2

consists only of α > 0 (due to the assumption that α0 6∈ Γ2). ut

Let us denote by AY BE[r](x, x′; y1, y2, y3) the left-hand side of (21).

Lemma 6.5. Consider the r-matrix of the form

r(x; y1, y2) = a(x) + y1b(x)− y2c(x) +
y1

y2 − y1
P, (37)

where a21(x−1)+a(x) = P and b21(x−1) = c(x). Then r satisfies the unitarity
condition (22). Also, AY BE[r] = 0 iff the following equations are satisfied:
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(i) AY BE[a] = 0;
(ii) b12(x)b13(x′) = 0;
(iii) b13(x)b23(x′) = b21(x′)b13(xx′) + b23(xx′)b12(x);
(iv) c13(x)a23(x′) + a12((x′)−1)c13(xx′) = c23(xx′)a12(x)− a13(x)c23(x′).

Proof. The unitarity condition follows immediately from our assumptions on
a(x), b(x) and c(x). It is easy to check that

AY BE[a(x) + y1b(x)− y2c(x) +
y1

y2 − y1
P ](x, x′; y1, y2, y3) =

AY BE[a(x) + y1b(x)− y2c(x)](x, x′; y1, y2, y3)

− y1c
21(x′)P 13 − y2c

13(x)P 23 − y1b
23(xx′)P 12.

Now the conditions (i)-(iv) are obtained by equating to zero coefficients with
various monomials in y1, y2 and y3 (of degree ≤ 2). Namely, (i) is obtained
by looking at the constant term (i.e., by substituting yi = 0). Conditions (ii),
(iii) and (iv) are obtained by looking at the coefficients with y2

1 , y1y2 and y3,
respectively. To see that these conditions imply AY BE[r] = 0 we can use the
identity

AY BE[r](x, x′; y2, y3, y1)231 = AY BE[r]((xx′)−1, x; y1, y2, y3)

that holds for any r satisfying the unitarity condition (22). ut

Let us introduce the following notation. For every k ≥ 1 we denote by
P (k) ⊂ P1 the domain of definition of τk and by P (k)+ ⊂ P (k) (resp.,
P (k)− ⊂ P (k)) the set of all α > 0 (resp., α < 0) contained in P (k). Note
that P (1) = P1. The assumption α0 6∈ Γ2 implies that τ(P (k)) ⊂ P (k − 1)+.
Using this notation we can rewrite our formulas for a(x), b(x) and c(x) as
follows:

a(x) = (1− xr)−1
∑

0≤k<r,i

xkei,i ⊗ eCk(i),Ck(i) +
∑
i<j

ei,j ⊗ ej,i+∑
(i,j)∈P (k)+

[xkei,j ⊗ eCk(j),Ck(i) − x−keCk(j),Ck(i) ⊗ ei,j ],

b(x) =
∑

k≥1,(i,j)∈P (k)−

xkei,j ⊗ eCk(j),Ck(i).

c(x) =
∑

k≥1,(i,j)∈P (k)−

x−keCk(j),Ck(i) ⊗ ei,j .

The following two combinatorial observations are also going to be useful
in the proof.

Lemma 6.6. Let (i1, i2, i3) be a triple of elements of S and let k ≥ 1. Then
the following two conditions are equivalent:
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(a) (i1, i3) ∈ P (k)− and i1 < i2 (resp., i2 < i3);
(b) (i1, i2) ∈ P (k)+ and (i2, i3) ∈ P (k)− (resp., (i1, i2) ∈ P (k)− and (i2, i3) ∈
P (k)+).

The proof is straightforward and is left to the reader.

Lemma 6.7. Let k ≥ 1. Then for every (i1, i2) ∈ P (k)− one has a decompo-
sition S = S1 t S2, where

S1 = {i | i < i1, C
k(i) > Ck(i1)}, S2 = {i | i > i2, C

k(i) < Ck(i2)}.

Proof. We can assume that S = [1, N ] with the standard order. Note that the
map Ck restricts to a bijection

[i1, N ] t [1, i2]→̃[Ck(i1), Ck(i2)].

Passing to the complements we derive that the open segment (i2, i1) is the
disjoint union of its intersections with S1 and S2. Next, if i ≤ i2 then (i1, i) ∈
P (k)− (by Lemma 6.6), so that Ck(i1) < Ck(i). Hence, [1, i2] ⊂ S1 \ S2.
Similarly, [i1, N ] ⊂ S2 \ S1. ut

Proof of Theorem 6.2. Let us check that equations (i)-(iv) of Lemma 6.5 hold
in our case. Equation (i) follows from Lemma 6.4 and Theorem 3.4 of [8]. More
precisely, one can easily check that in the case when α0 6∈ Γ1 and α0 6∈ Γ2

our r-matrix coincides with the associative r-matrix constructed in [8] for the
opposite associative BD-structure on S. Equation (ii) follows from the fact
that for any (i, j), (i′, j′) ∈ P (1)− one has i′ > j and i > j′ (otherwise we
would have Γ1 = ΓS). To check equation (iii) we write

b13(x)b23(x′) = ∑
k≥1,m≥1;(i,j)∈P (k)−,(i′,j′)∈P (m)−;Ck(i)=Cm(j′)

xk(x′)mei,j ⊗ ei′,j′ ⊗ eCk(j),Cm(i′).

Note that we cannot have k = m since this would imply that i = j′ contra-
dicting the assumption that (i, j) ∈ P (k)− ⊂ P (1)− and (i′, j′) ∈ P (m)− ⊂
P (1)−. Hence, we can split the summation into two parts: one with k > m
and one with k < m. Denoting k −m (resp., m − k) by l in the first (resp.,
second) case, we can rewrite these sums as

Σ1 =
∑

l≥1,m≥1;(i,j)∈P (m+l)−,(i′,Cl(i))∈P (m)−

xl(xx′)mei,j⊗ei′,Cl(i)⊗eCm+l(j),Cm(i′),

Σ2 =
∑

l≥1,m≥1;(i′,j′)∈P (m+l)−,(Cl(j′),j)∈P (m)−

(xx′)m(x′)leCl(j′),j⊗ei′,j′⊗eCm(j),Cm+l(i′).

On the other hand, we have
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b23(xx′)b12(x) =∑
l≥1,m≥1;(i,j)∈P (l)−,(i′,Cl(j))∈P (m)−

xl(xx′)mei,j ⊗ ei′,Cl(i) ⊗ eCm+l(j),Cm(i′).

We claim that this is equal to Σ1. Indeed, the condition (i, j) ∈ P (m + l)−

is equivalent to the conjuction of (i, j) ∈ P (l)− and (Cl(i), Cl(j)) ∈ P (m)+.
Now our claim follows from Lemma 6.6 applied to the triple (i′, Cl(i), Cl(j))
(recall that Cl(i) < Cl(j) since (i, j) ∈ P (l)). Similarly, we check that
b21(x′)b13(xx′) = Σ2, which finishes the proof of equation (iii).

Finally, let us verify equation (iv). We can split both terms in the left-hand
side of this equation into four sums according to the four pieces comprising
a(x):

c13(x)a23(x′) = L1 +L2 +L3−L4, a12((x′)−1)c13(xx′) = −L5 +L6 +L7−L8,

where

L1 = (1− (x′)N )−1×∑
0≤m<N,k≥1;(i,j)∈P (k)−

x−k(x′)meCk(j),Ck(i) ⊗ eCN−m(j),CN−m(j) ⊗ ei,j ,

L2 =
∑

m≥1;i<j,(i′,j)∈P (m)−

x−meCm(j),Cm(i′) ⊗ ei,j ⊗ ei′,i,

L3 =
∑

k≥1,m≥1;(i,j)∈P (k)+,(i′,Ck(j))∈P (m)−

x−m(x′)keCk+m(j),Cm(i′) ⊗ ei,j ⊗ ei′,Ck(i),

L4 =
∑

k≥1,m≥1;(i,i′)∈P (m)−,(i′,j)∈P (k)+

x−m(x′)−keCm(i′),Cm(i) ⊗ eCk(j),Ck(i′) ⊗ ei,j ,

L5 = (1− (x′)N )−1×∑
0≤m<N,k≥1;(i,j)∈P (k)−

(x′)N−m(xx′)−keCk(j),Ck(i) ⊗ eCk+m(j),Ck+m(j) ⊗ ei,j ,

L6 =
∑

k≥1,(i,j)∈P (k)−,i′<Ck(j)

(xx′)−kei′,Ck(i) ⊗ eCk(j),i′ ⊗ ei,j ,

L7 = ∑
k≥1,m≥1;(i,j)∈P (k)−,(i′,Ck(j))∈P (m)+

(x′)−m(xx′)−kei′,Ck(i) ⊗ eCk+m(j),Cm(i′) ⊗ ei,j ,

L8 = ∑
k≥1,m≥1;(i,j)∈P (k)−,(i′,j′)∈P (m)+,Cm(i′)=Ck(j)

(x′)m(xx′)−keCm(j′),Ck(i) ⊗ ei′,j′ ⊗ ei,j .

We split each of the sums L4 and L8 into 3 parts according to the ranges
of summation k = m, k > m, and k < m (in the last two cases we make
substitutions k 7→ k +m and m 7→ k +m, respectively):
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L4 = L4,1 + L4,2 + L4,3, L8 = L8,1 + L8,2 + L8,3,

where

L4,1 =
∑

k≥1,(i,j)∈P (k)−,i′<j

(xx′)−keCk(i′),Ck(i) ⊗ eCk(j),Ck(i′) ⊗ ei,j ,

L4,2 =
∑

k≥1,m≥1;(i,i′)∈P (m)−,(i′,j)∈P (k+m)+

x−m(x′)−k−meCm(i′),Cm(i) ⊗ eCk+m(j),Ck+m(i′) ⊗ ei,j ,

L4,3 =
∑

k≥1,m≥1;(i,i′)∈P (k+m)−,(i′,j)∈P (k)+

x−k−m(x′)−keCk+m(i′),Ck+m(i) ⊗ eCk(j),Ck(i′) ⊗ ei,j ,

L8,1 =
∑

k≥1,(i,j′)∈P (k)−,j<j′

x−keCk(j′),Ck(i) ⊗ ej,j′ ⊗ ei,j ,

L8,2 =
∑

k≥1,m≥1;(i,j)∈P (k+m)−,(Ck(j),j′)∈P (m)+

x−k−m(x′)−keCm(j′),Ck+m(i) ⊗ eCk(j),j′ ⊗ ei,j ,

L8,3 =
∑

k≥1,m≥1;(i,Cm(i′))∈P (k)−,(i′,j′)∈P (k+m)+

x−k(x′)meCk+m(j′),Ck(i) ⊗ ei′,j′ ⊗ ei,Cm(i′).

Making appropriate substitutions of the summation variables and using
Lemma 6.6 one can easily check that

L2 = L8,1, L3 = L8,3.

It follows that the left-hand side of (iv) is equal to

(L1 − L5) + (L6 − L4,1) + (L7 − L4,2)− (L4,3 + L8,2).

Next, making the substitution m 7→ N − k −m in the sum L5 we find

L1 − L5 = −
∑

0<m<k,(i,j)∈P (k)−

x−k(x′)−meCk(j),Ck(i) ⊗ eCm(j),Cm(j) ⊗ ei,j .

Also, substituting i′ by Ck(i′) in L6, switching k and m in L4,2, and using
Lemma 6.6 we find that

L6−L4,1 =
∑

k≥1,(i,j)∈P (k)−,i′>j,Ck(i′)<Ck(j)

(xx′)−keCk(i′),Ck(i)⊗eCk(j),Ck(i′)⊗ei,j ,

L7 − L4,2 = ∑
k≥1,m≥1,(i,j)∈P (k)−,(Ck(i′),Ck(j))∈P (m)+,i′>j

x−k(x′)−k−meCk(i′),Ck(i) ⊗ eCk+m(j),Ck+m(i′) ⊗ ei,j .

Finally, we can rewrite the sum of the other remaining terms as follows:

L1 − L5 − L4,3 − L8,2 =

−
∑

k≥1,m≥1,(i,i′,j)∈Π(k,m)

x−k−m(x′)−keCk+m(i′),Ck+m(i) ⊗ eCk(j),Ck(i′) ⊗ ei,j ,
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where Π(k,m) is the subset of {(i, i′, j) | (i, j) ∈ P (k)−, (Ck(i), Ck(i′)) ∈
P (m)+} consisting of (i, i′, j) such that either i′ ≤ j or Ck(j) < Ck(i′). It
follows from Lemma 6.7 that

Π(k,m) = {(i, i′, j) | (i, j) ∈ P (k)−, (Ck(i), Ck(i′)) ∈ P (m)+, i′ < i}.

We deal similarly with the right-hand side of equation (iv). Namely, we
write

c23(xx′)a12(x) = R1 +R2 +R3 −R4, a13(x)c23(x′) = R5 +R6 +R7 −R8,

where the parts correspond to the summands in a(x). We also have a decom-
position R3 = R3,1 +R3,2 +R3,3 (resp., R8 = R8,1 +R8,2 +R8,3) obtained by
collecting terms with xk(xx′)−m (resp., x−k(x′)−m) with k = m, k > m and
k < m. Now one can easily check that

R6 = R3,1, R7 = R3,2.

Also, we have

R1 −R5 =
∑

m≥1,0<k≤m;(i,j)∈P (m)−

x−k(x′)−meCk(i),Ck(i) ⊗ eCm(j),Cm(i) ⊗ ei,j .

We denote by (R1 − R5)k=m and by (R1 − R5)k<m parts of this sum corre-
sponding to the ranges k = m and k < m. Then we have

(R1 −R5)k=m +R2 +R8,1 =∑
k≥1,(i,j)∈P (k)−,i≤i′ or Ck(i′)<Ck(i)

(xx′)−keCk(i′),Ck(i) ⊗ eCk(j),Ck(i′) ⊗ ei,j .

Using Lemma 6.7 it is easy to see that the condition on (i, j, i′) in this sum-
mation can be replaced by the conjuction of (i, j) ∈ P (k)−, j < i′ and
Ck(i′) < Ck(j) (same as in the formula for L6 − L4,1). Finally, we have

R8,2 −R4 =

−
∑

k≥1,m≥1,(i,j)∈P (m)−,j′<i,(Cm(i),Cm(j′))∈P (k)+

x−k−m(x′)−meCk+m(j′),Ck+m(i) ⊗ eCm(j),Cm(j′) ⊗ ei,j ,

(R1 −R5)k<m +R3,3 +R8,3 =∑
k≥1,m≥1,(i,j′,j)∈Π′(k,m)

x−k(x′)−k−meCk(j′),Ck(i) ⊗ eCk+m(j),Ck+m(j′) ⊗ ei,j ,

where Π ′(k,m) is the subset of {(i, j′, j) | (i, j) ∈ P (k)−, (Ck(j′), Ck(j)) ∈
P (m)+} consisting of (i, j′, j) such that either i ≤ j′ or Ck(j′) < Ck(i). By
Lemma 6.7, we get
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Π ′(k,m) = {(i, j′, j) | (i, j) ∈ P (k)−, (Ck(j′), Ck(j)) ∈ P (m)+, j < j′}.

Now it is easy to see that parts of the left-hand side and the right-hand side
of equation (iv) match as follows:

L6 − L4,1 = (R1 −R5)k=m +R2 +R8,1,

L7 − L4,2 = (R1 −R5)k<m +R3,3 +R8,3,

L1 − L5 − L4,3 − L8,2 = R8,2 −R4.

ut

Proof of Theorem 0.2(i). As was already observed, the fact that r(u, v) is a
unitary solution of the AYBE follows from Lemma 6.1 and Theorem 6.2. It
follows from Theorem 1.5 that r(u, v) also satisfies the QYBE for fixed u. It
remains to check the unitarity condition for the quantum R-matrix given by
(6). In view of the unitarity of r(u, v) this boils down to proving the identity

s(u, v) =
(
[exp(

v

2
)− exp(−v

2
)]−2 − [exp(

u

2
)− exp(−u

2
)]−2

)
· 1⊗ 1. (38)

To this end we observe that from Theorem 1.5 and Lemma 1.9 we know that

s(u, v) = (f(u) + g(v)) · 1⊗ 1,

where f(u) = 1
N trµ(∂r(u,0)

∂u ) and g(v) = − 1
N (tr⊗ tr)(∂r(0,v)

∂v ). Now (38) fol-
lows immediately from the equalities

f(u) =
d

du

(
1

exp(u)− 1

)
= −[exp(

u

2
)− exp(−u

2
)]−2,

g(v) =
d

dv

(
1

exp(−v)− 1

)
= [exp(

v

2
)− exp(−v

2
)]−2.

ut

Remark 6.8. The following interesting observation is due to T. Schedler.
Assume that Γ1 does not contain two consecutive elements of ΓC0 , say,
(C−1

0 (i0), i0) and (i0, C0(i0)). Then the function r(u, v) given by Theorem
0.2(i) is equivalent to the one of the form 1⊗1

exp(u)−1 + r(v). Indeed, let us de-
note by O(i0, i) the minimal k ≥ 0 such that Ck(i0) = i. Then one can easily
check that

a =
∑

i

O(i0, i)
N

eii

is an infinitesimal symmetry of r(u, v) and

exp[u(1⊗ a)]r(u, v) exp[−u(a⊗ 1)] =
1⊗ 1

exp(u)− 1
+ r(v),

where r(v) depends only on v. Note that the fact that r(u, v) is a unitary
solution of the AYBE is equivalent to the following equations on r(v):

AY BE[r](v, v′) = r13(v + v′), r21(−v) + r(v) = 1⊗ 1.
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7 Meromorphic continuation

As was shown in the proof of Theorem 6 of [7] (see also Lemma 4.14 of [8]),
a unitary solution of the AYBE with the Laurent expansion (5) at u = 0
is uniquely determined by r0(v). Therefore, it is not surprising that some
of the results from [3] about solutions of the CYBE (such as meromorphic
continuation) can be extended to solutions of the AYBE.

First, we apply the above uniqueness principle to infinitesimal symmetries.

Lemma 7.1. Let r(u, v) be a nondegenerate unitary solution of the AYBE
with the Laurent expansion (5) at u = 0. Then the algebras of infinitesimal
symmetries of r(u, v) and of r0(v) are the same (and are contained in the
algebra of infinitesimal symmetries of r0). If in addition r0 has a period then
these coincide with the commutative algebra of infinitesimal symmetries of r0.

Proof. Let a ∈ A be an infinitesimal symmetry of r0(v). Then for any t ∈ C
the function

exp[t(a⊗ 1 + 1⊗ a)]r(u, v) exp[−t(a⊗ 1 + 1⊗ a)]

is a solution of the AYBE with the same r0-term in the Laurent expansion at
u = 0. By the uniqueness mentioned above this implies that exp[t(a⊗1+1⊗a)]
commutes with r(u, v), so a is an infinitesimal symmetry of r(u, v). Recall that
by Theorem 1.5(i), r0(v) is nondegenerate. It is easy to see that if r0 is either
elliptic or trigonometric then the algebra of infinitesimal symmetries of r0 is
commutative. Indeed, in the elliptic case this algebra is trivial (see Lemma
5.1 of [7]). In the trigonometric case this follows from the fact proven in [3]
that there exists a pole γ of r0 such that

r0(v + γ) = (φ⊗ id)(r0(v)),

where φ is a Coxeter automorphism of slN . Thus, any infinitesimal symmetry
is contained in the commutative algebra of φ-invariant elements. ut

Proposition 7.2. Let r(u, v) be a nondegenerate unitary solution of the
AYBE with the Laurent expansion (5) at u = 0, such that the equivalent
conditions of Theorem 1.5(ii) hold. Then r(u, v) admits a meromorphic con-
tinuation to D×C, where D is a neighborhood of 0 in C. If r(u, v) has a pole
at v = γ then this pole is simple and r0(v) also has a pole at v = γ.

Proof. Note that r0(v) has a meromorphic continuation to C with at most
simple poles by Theorem 1.1 of [3]. First, we want to deduce a meromorphic
continuation for r0(v). From the condition (c) in Theorem 1.5(ii) we know
that

r0(v) = r0(v) + b⊗ 1− 1⊗ b+ h(v) · 1⊗ 1, (39)
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where b is an infinitesimal symmetry of r0(v) (by Lemma 1.10). Note that
b is also an infinitesimal symmetry of r0(v). Hence, by Lemma 7.1, b is an
infinitesimal symmetry of r(u, v). Applying the equivalence transformation

r(u, v) 7→ exp[u(1⊗ b)]r(u, v) exp[−u(b⊗ 1)]

we can assume that b = 0. In this case we have

AY BE[r0](v12, v23)−AY BE[r0](v12, v23) ≡
[h(v13)− h(v23)]r120 (v12) + c.p.(1, 2, 3) mod (C · 1⊗ 1⊗ 1)

where we use the notation from the proof of Theorem 1.5 (the omitted terms
are obtained by cyclically permuting (1, 2, 3); we denote vij = vi − vj). Ap-
plying pr⊗pr⊗ id and using (18) we obtain

[h(v + v′)− h(v′)]r120 (v) = [(pr⊗pr)r1(v)]12 − (pr⊗pr⊗ id)AY BE[r0](v, v′).
(40)

Note that AY BE[r0](v, v′) is meromorphic on the entire C × C and has at
most simple poles at v = γ, v′ = γ and v+ v′ = γ, where γ is a pole of r0(v).
Also, by Lemma 1.7, r1(v) is holomorphic near v = 0. Choose a small disk D
around zero such that r1(v) is holomorphic in D and r0(v) has no poles or
zeros in D \ {0}. Assume that we already have a meromorphic continuation
of h(z) to some open subset U ⊂ C containing zero. Then the above formula
gives a meromorphic continuation of h(z) to U +D. Iterating this process we
continue h(z) meromorphically to the entire complex plane. Furthermore, it
is clear from (40) that h(v) has only simple poles and is holomorphic outside
the set of poles of r0(v). Therefore, the same is true for r0(v).

Next, considering the constant terms of the Laurent expansions of the
AYBE in u′ (keeping u fixed) we get

r120 (v12)r13(u, v13)+r13(u, v13)r230 (v23)−r23(u, v23)r12(u, v12) =
∂r13

∂u
(u, v13).

(41)
Since we already know that r0(v) is meromorphic on the entire C, we can use
this equation to get a meromorphic continuation of r(u, v). Indeed, assume
that r(u, v) is meromorphic in D×D for some open disk around zero D ⊂ C.
For fixed v13 ∈ D the above equation gives a meromorphic extension of

r23(u, v21 + v13)r21(−u, v21) = −r23(u, v23)r12(u, v12)

to D×C. By the nondegeneracy of r(u, v) this allows to extend meromorphi-
cally r(u, v) from D × U to D × (U + D). Iterating this process we get the
required meromorphic extension. The assertion about poles follows easily from
(41) by fixing v13 such that r(u, v) has no pole at v = v13 and r(u, v13 − γ) is
nondegenerate, and considering the polar parts at v12 = γ. ut

The argument in the following Lemma is parallel to that in Proposition
4.3 of [3].
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Lemma 7.3. With the same assumptions as in Proposition 7.2 for every pole
γ of r0(v) there exists an algebra automorphism φγ of A and a constant λ ∈ C
such that

r(u, v + γ) = exp(λu)(φγ ⊗ id)(r(u, v)).

Proof. From Proposition 7.2 we know that the pole of r(u, v) at v = γ is
simple. Set τ(u) = limv→γ(v− γ)r(u, v). Recall that limv→0 vr(u, v) = cP for
c ∈ C∗. Let us define an operator φ(u) ∈ End(A) by the equality

τ(u) = (φ(u)⊗ id)(cP ).

Considering polar parts near v = γ in (1) we get

τ12(−u′)r13(u+ u′, v′ + γ) = r23(u+ u′, v′)τ12(u).

The right-hand side can be rewritten as follows:

r23(u+ u′, v′)τ12(u) = c(φ(u)⊗ id⊗ id)(r23(u+ u′, v′)P 12) =

c(φ(u)⊗ id⊗ id)(P 12r13(u+ u′, v′)),

Hence, we have

τ12(−u′)r13(u+ u′, v′ + γ) = c(φ(u)⊗ id⊗ id)(P 12r13(u+ u′, v′)). (42)

Taking the residues at v′ = 0 we find

τ12(−u′)τ13(u+ u′) = c2(φ(u)⊗ id⊗ id)(P 12P 13).

This means that φ(u) satisfies the identity

φ(u1 + u2)(XY ) = φ(u1)(X)φ(u2)(Y ),

where X,Y ∈ A. Let D be a small disk around zero in C such that φ(u) is
holomorphic on D \ {0}. For every u ∈ D \ {0} we denote by I(u) ⊂ A the
kernel of φ(u). Then from the above identity we derive that I(u)A ⊂ I(u+u′)
and AI(u) ⊂ I(u+u′) whenever u, u′, u+u′ ∈ D\{0}. In particular, we deduce
that I(u) ⊂ I(u + u′), so I(u) = I ⊂ A does not depend on u ∈ D \ {0}. It
follows that I is a two-sided ideal in A. Since φ(u) is not identically zero, we
derive that I = 0. Therefore, φ(u) is invertible for every u ∈ D \ {0}. Now as
in the proof of Lemma 1.3 we derive that

φ(u) = exp(λu)φγ

for some λ ∈ C, where φγ is an algebra automorphism of A. Applying φ−1
γ ⊗

id⊗ id to (42) we derive

exp(−λu′)P 12(φ−1
γ ⊗ id⊗ id)r13(u+ u′, v′ + γ) = exp(λu)P 12r13(u+ u′, v′).

This implies the required identity. ut
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Lemma 7.4. Keep the same assumptions as in Proposition 7.2. Assume that
r0(v+p) = r0(v) for some p ∈ C∗. Then r(u, v+p) = exp(λu)r(u, v) for some
constant λ ∈ C.

Proof. Consider the decomposition (39) again. The identity (40) implies that
h(v+v′)−h(v′) is periodic in v′ with the period p. Hence, h(v+p) = h(v)+λ
for some λ ∈ C. It follows that r0(v + p) = r0(v) + λ · 1 ⊗ 1. Applying the
rescaling r(u, v) 7→ exp(−λuv)r(u, v) we can assume that r0(v + p) = r0(v).
Now Lemma 7.3 implies that r(u, v + p) = (φp ⊗ id)r(u, v), where φp is an
automorphism of A. Since r0(v) is nondegenerate (as follows from Lemma
1.7), we derive that φp = id. ut

We will use the following result in the proof of Theorem 0.3.

Proposition 7.5. Let r(u, v) be a nondegenerate unitary solution of the
AYBE with the Laurent expansion at u = 0 of the form (5) such that the
equivalent conditions of Theorem 1.5(ii) hold. Then one has

r0(v) = r0(v) + b⊗ 1 + 1⊗ b+ h(v) · 1⊗ 1,

h(v) = λv + ch0(c′v),

where b ∈ slN is an infinitesimal symmetry of r0(v), λ ∈ C, c, c′ ∈ C∗,
and h0(v) is one of the following three functions: Weierstrass zeta function
ζ(v) associated with a lattice in C; 1

2 coth(v
2 ); or 1

v . Furthermore, if r0(v) is
equivalent to a rational solution of the CYBE then h0(v) = 1

v .

Proof. The equation (18) implies that

[r120 (v12) + r230 (v23) + r310 (v31)]2 = x12(v12) + x23(v23) + x31(v31), (43)

where x(v) = r0(v)2 − 2r1(v) (and vij = vi − vj). On the other hand, it
is easy to see that x(v) is the constant term of the Laurent expansion of
s(u, v) = r(u, v)r(−u, v) at u = 0. Rescaling r(u, v) we can assume that its
residue at v = 0 is equal to P . Then we have

s(u, v) = [f(u) + g(v)] · 1⊗ 1,

where

f(u) =
1
N

trµ(
∂r(u, 0)
∂u

), g(v) = − 1
N

(tr⊗ tr)(
dr0(v)
dv

)

(see Lemma 1.9). If we change r(u, v) to exp(λuv)r(u, v) for some λ ∈ C then
f(u) changes to f(u)+Nλ (this operation also changes r0(v) to r0(v)+λv ·1⊗
1). Therefore, we can assume that f(u) has no constant term in the Laurent
expansion at u = 0. In this case we obtain x(v) = g(v) ·1⊗1. Hence, denoting

T (v1, v2, v3) = r120 (v12) + r230 (v23) + r310 (v31)

we can rewrite (43) as follows:
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T (v1, v2, v3)2 = [g(v12) + g(v23) + g(v31)] · 1⊗ 1. (44)

Viewing T (v1, v2, v3) ∈ A⊗A⊗A as an endomorphism of V ⊗ V ⊗ V , where
A = End(V ), we obtain

T (v1, v2, v3) = T0(v1, v2, v3) + [h(v12) + h(v23) + h(v31)] · idV⊗V⊗V , (45)

where T0 is a traceless endomorphism and h(v) is defined from the decompo-
sition (39). Note also that for fixed (generic) v2 and v3 we have

lim
v1→v2

(v1 − v2)T (v1, v2, v3) = P 12.

The latter operator has S2V ⊗V and
∧2

V ⊗V as eigenspaces. Therefore, for
v1 close to v2 we have a decomposition

V ⊗ V ⊗ V = W1 ⊕W2,

where dimW1 = N2(N + 1)/2, dimW2 = N2(N − 1)/2, and

(T (v1, v2, v3)− λ id)(W1) = 0, (T (v1, v2, v3) + λ id)(W2) = 0, where

λ2 = g(v12) + g(v23) + g(v31).

Comparing the traces of both sides of (45) we derive

λ = N [h(v12) + h(v23) + h(v31)].

Since g(v) = −Nh′(v), we obtain

N [h(v12) + h(v23) + h(v31)]2 + h′(v12) + h′(v23) + h′(v31) = 0.

Replacing h(v) by h(Nv) we get

[h(v12) + h(v23) + h(v31)]2 + h′(v12) + h′(v23) + h′(v31) = 0. (46)

We are interested in solutions of this equation for an odd meromorphic func-
tion h(v) in the neighborhood of zero having a simple pole at v = 0. It is
easy to see that the Laurent expansion of h(v) at v = 0 should have form
h(v) = 1/v + c3v

3 + . . .. As shown in the proof of Theorem 5 of [7], all such
solutions of (46) have form c · h0(cv), where h0 is one of the three functions
described in the formulation.1

Finally, if r0(v) is rational then its only pole is v = 0 (see [3]). Therefore,
by Proposition 7.2, r0(v) also cannot have poles outside zero, which implies
that h0(v) = 1

v . ut

Remark 7.6. In the case when r0(v) is either elliptic or trigonometric the
assertion of the above proposition can also be deduced from the explicit for-
mulas for r(u, v) (the elliptic case is discussed in [7], sec.2; the trigonometric
case is considered in Theorem 0.2).

1Solutions of (46) were first described by L. Carlitz in [5].
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8 Classification of trigonometric solutions of the AYBE

Recall (see [3]) that to every nondegenerate trigonometric solution r0(v) of
the CYBE for slN with poles exactly at 2πiZ Belavin and Drinfeld associate
an automorphism of the Dynkin diagram AN−1 by considering the class of
the automorphism φ of slN defined by

r0(v + 2πi) = (φ⊗ id)(r0(v)). (47)

They also show that φ is a Coxeter automorphism. The next lemma shows
that in the case of trigonometric solutions coming from a solution of the AYBE
the automorphism of the Dynkin diagram is always trivial.

Lemma 8.1. Let r(u, v) be a nondegenerate unitary solution of the AYBE
with the Laurent expansion (5) at u = 0. Assume that r0(v) is a trigonometric
solution of the CYBE with poles exactly at 2πiZ. Then the automorphism φ
in (47) is inner.

Proof. This follows immediately from Lemma 7.3, since every algebra auto-
morphism of A is inner. ut

Now let us recall the Belavin-Drinfeld classification of trigonometric solu-
tions of the CYBE for slN corresponding to the trivial automorphism of AN−1.
Let us denote by h0 ⊂ slN the subalgebra of traceless diagonal matrices. For
every Belavin-Drinfeld triple (Γ1, Γ2, τ) for ÃN−1 we have the corresponding
series of solutions

r0(v) = t+ 1
exp(v)−1 (pr⊗pr)

∑
0≤m<N,j−i≡m(N) exp(mv

N )eij ⊗ eji+∑
0<m<N,k≥1;j−i≡m(N),τk(i,j)=(i′,j′)[exp(−mv

N )eji ⊗ ei′j′ − exp(mv
N )ei′j′ ⊗ eji],

(48)
where t ∈ h0 ⊗ h0 satisfies

t12 + t21 = (pr⊗pr)P 0, (49)

[τ(α)⊗ id+ id⊗α]t = 0, α ∈ Γ1, (50)

where P 0 =
∑

i eii⊗eii. The result of Belavin and Drinfeld in [3] is that every
nondegenerate unitary trigonometric solution of the CYBE for slN that has
poles exactly at 2πiZ and the residue (pr⊗pr)P at 0, is conjugate to

exp[v(b⊗ 1)]r0(v) exp[−v(b⊗ 1)],

where r0(v) is one of the solutions of the form (48) and b ∈ slN is an infinites-
imal symmetry of r0.

It is easy to see that the solution of the CYBE for slN obtained from the
associative r-matrix in Theorem 0.2(i) for S = [1, N ] and C0(i) = i + 1 is
given by the above formula with
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t =
1
2
(pr⊗pr)P 0 + sC , (51)

where
sC =

∑
0<k<N,i

(
1
2
− k

N
)eii ⊗ eCk(i),Ck(i) ∈ h0 ∧ h0.

The proof of the next result is almost identical to that of Lemmas 4.19 and
4.20 in [8]. Let us denote by ei : h → C the functional on diagonal matrices
given by ei(ejj) = δij .

Lemma 8.2. Let r(u, v) be a nondegenerate unitary solution of the AYBE
with the Laurent expansion (5), such that r0(v) is given by (48). Then there
exists a unique transitive cyclic permutation C of [1, N ] such that (51) holds.
Furthermore, for any (i, i + 1) ∈ Γ1 with τ(i, i + 1) = (i′, i′ + 1) one has
C(i) = i′ and C(i+ 1) = i′ + 1 (i.e., τ is induced by C × C).

Proof. We will make use of the identity

(pr⊗pr⊗pr)(AY BE[r0]) = 0 (52)

that follows from Theorem 1.5. First, considering the projection of AY BE[r0]
to h⊗ h⊗ h we get

(pr⊗pr⊗pr)(AY BE[
1

exp(v)− 1
P 0 + t]) = 0.

Using the fact that t12 + t21 ≡ P 0 mod (C · 1⊗ 1) this can be rewritten as

(pr⊗pr⊗pr)(AY BE[t]) = 0.

Therefore, we have

[(ei − e1)⊗ (ej − e1)⊗ (ek − e1)](AY BE[t]) = 0 (53)

for all i, j, k. Set t =
∑

i,j tijeii⊗ejj . Note that tij+tji = 0 for i 6= j and tii = 1
2

for all i. Let us set t′ij = tij − t1j − ti1. Then substituting tij = t′ij + t1j − t1i

into t and then into (53) we deduce that

t′ijt
′
ik − t′jkt

′
ij + t′ikt

′
jk =

1
4
, 1 < i, j, k ≤ N. (54)

As shown in the proof of Lemma 4.20 in [8], the above equation implies that
t′ij = ± 1

2 for 1 < i, j ≤ N , i 6= j, and there is a unique complete order ≺ on
[2, N ] such that t′ij = 1

2 iff i ≺ j (for i, j ∈ [2, N ], i 6= j). We define the cyclic
permutation C of [1, N ] by the condition that it sends each element of [2, N ]
to the next element with respect to this complete order. As in the proof of
Lemma 4.20 in [8] this easily implies that t− 1

2P
0 ≡ sC mod (C · 1⊗ 1).

Next, we want to check that τ is induced by C × C. Assume that τ(i, i+
1) = (j, j + 1) and consider the coefficient Aijk with ei+1,i ⊗ ej,j+1 ⊗ ekk in
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AY BE[r0]. Let us denote by 〈elm ⊗ enp, r(v)〉 the coefficient with elm ⊗ enp

in r(v). Then we have

Aijk = 〈ei+1,i ⊗ ej,j+1, r(v12)〉〈eii ⊗ ekk, r(v13)〉
−〈ejj ⊗ ekk, r(v23)〉〈ei+1,i ⊗ ej,j+1, r(v12)〉+
〈ei+1,i ⊗ ek,k+1, r(v13)〉〈ej,j+1 ⊗ ek+1,k, r(v23)〉.

(55)

Note that we cannot have τn(j + 1, j) = (i+ 1, i) since this would imply that
Γ1 (resp., Γ2) is the complement to (j, j + 1) (resp., (i, i + 1)), N is even,
j − i ≡ N/2(N), and τ(l, l + 1) = (l + N/2, l + 1 + N/2), in which case the
nilpotency condition is not satisfied. Therefore,

〈ei+1,i ⊗ ej,j+1, r(v)〉 = exp(− v

N
),

〈ej,j+1 ⊗ ei+1,i, r(v)〉 = − exp(
v

N
).

Next, we claim that the third summand in the right-hand side of (55) is zero
unless k = i or k = j. Indeed, τ (resp., τ−1) cannot be defined on both (k, k+1)
and (k + 1, k). This leaves only two possibilities with k 6= i and k 6= j: either
τn1(i, i+1) = (k, k+1) and τn2(k, k+1) = (j, j+1), or τn1(j+1, j) = (k+1, k)
and τn2(k+ 1, k) = (i, i+ 1) (where n1, n2 > 0). The latter case is impossible
since j 6= k. In the former case we derive that τn1+n2(i, i+1) = (j, j+1) which
contradicts to our assumption that τ(i, i+ 1) = (j, j + 1) (since n1 + n2 ≥ 2).
Thus, recalling that

〈ei+1,i ⊗ ei,i+1, r(v)〉 =
exp( (N−1)v

N )
exp(v)− 1

,

〈ej,j+1 ⊗ ej+1,j , r(v)〉 =
exp( v

N )
exp(v)− 1

,

we can rewrite (55) as follows:

Aijk = exp(−v12
N

)[tik − tjk +
δik

exp(v13)− 1
− δjk

exp(v23)− 1
]

− δik exp(
v23
N

)
exp( (N−1)v13

N )
exp(v13)− 1

+ δjk exp(−v13
N

)
exp(v23

N )
exp(v23)− 1

.

Hence,
exp(

v12
N

)Aijk = tik − tjk − δik.

Since pr⊗pr⊗pr(AY BE[r0]) = 0, it follows that Aijk does not depend on k.
Therefore,

tik − tjk − δik = [(ei − ej)⊗ ek]sC −
1
2
(ei + ej , ek)
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does not depend on k (note that (ei, ej) = δij), i.e.,

[(ei − ej)⊗ α]sC =
1
2
(ei + ej , α) (56)

for all roots α ∈ Γ . Repeating the above argument for the coefficient with
ej,j+1 ⊗ ei+1,i ⊗ ekk in AY BE[r0] we derive that

[(ei+1 − ej+1)⊗ α]sC =
1
2
(ei+1 + ej+1, α) (57)

for all α ∈ Γ . As shown in the proof of Lemma 4.20 in [8], (56) and (57) imply
that C(i) = j and C(i+ 1) = j + 1. ut

Lemma 8.3. Assume that N > 1. Then a nondegenerate unitary solution
r(u, v) of the AYBE with the Laurent expansion at u = 0 of the form (5)
such that r0(v) ≡ r0(v) mod (C · 1⊗ 1), is uniquely determined by r0, up to
rescaling r(u, v) 7→ exp(λuv)r(u, v).

Proof. This follows from the proof of Theorem 6 in [7]: one only has to observe
that r0(v) is nondegenerate by Theorem 1.5(i), so it has rank > 2 generically.

ut

Proof of Theorem 0.2(ii). Let r(u, v) be a nondegenerate unitary solution of
the AYBE with the Laurent expansion at u = 0 of the form (5) such that r0(v)
is trigonometric. Changing r(u, v) to cr(cu, c′v) we can assume that r0(v) has
poles exactly at 2πiZ and limv→0 vr0(v) = (pr⊗pr)P . Recall that we are
allowed to change r(u, v) to an equivalent solution

r̃(u, v) = exp[u(1⊗ a) + v(b⊗ 1)]r(u, v) exp[−u(a⊗ 1)− v(b⊗ 1)],

where a and b are infinitesimal symmetries of r(u, v) (note that a and b al-
ways commute by Lemma 7.1). This operation changes r0(v) to an equiv-
alent solution in the sense of Belavin-Drinfeld [3] and also changes r0(v)
to r0(v) − a ⊗ 1 + 1 ⊗ a. Therefore, in view of Lemma 8.1 and of (39),
changing r(u, v) to an equivalent solution we can achieve that r0(v) ≡ r0(v)
mod (C · 1 ⊗ 1) and r0(v) has the form (48). Note that in this case any in-
finitesimal symmetry of r0(v) is diagonal (since it has to commute with the
corresponding Coxeter automorphism φ from (47)). It remains to use Lemmas
8.2 and 8.3. ut

Proof of Theorem 0.3. Let r(v) be a nondegenerate unitary solution of the
AYBE, not depending on u. Then one can easily check that

r(u, v) =
1⊗ 1
u

+ r(v)

is also a nondegenerate unitary solution of the AYBE. By Lemma 1.4, r(u, v)
(and hence, r(v)) has a simple pole at v = 0 with the residue cP , where c 6= 0.
Now applying Lemma 1.9 we obtain
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s(u, v) = −1⊗ 1
u2

+ g(v) · 1⊗ 1,

where g(v) = − c
N (tr⊗ tr)(dr(v)

dv ). Hence, by Theorem 1.5, r(u, v) is a solution
of the QYBE and r(v) is a nondegenerate solution of the CYBE. It is easy to
see that r(v) cannot be equivalent to an elliptic or a trigonometric solution.
Indeed, if this were the case then r(u, v) would have a pole of the form u = u0

with u0 6= 0 (in the elliptic case this follows from the explicit formulas for
elliptic solutions in [7], sec.2; in the trigonometric case this follows from The-
orem 0.2(ii)). Now Proposition 7.5 gives the required decomposition of r(v).
Therefore, g(v) = −c2/v2, which shows that R(u, v) = (1/u + c/v)−1r(u, v)
satisfies unitarity condition (7). ut

Remark 8.4. The function of the form r(v) = P
v + r, where r ∈ A⊗ A does

not depend on v, is a unitary solution of the AYBE iff r is a skew-symmetric
constant solution of the AYBE for A = Mat(N,C). Some information about
such solutions can be found in [2], sec.2 (including the classification for N = 2,
see Ex. 2.8 of loc. cit.).
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