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Summary. In this article we provide a uniform construction of fields with all known
u-invariants. We also obtain the new values for the u-invariant: 2r + 1, for r > 3.
The main tools here are the new discrete invariant of quadrics (so-called, elementary
discrete invariant), and the methods of [14] (which permit to reduce the questions
of rationality of elements of the Chow ring over the base field to that over bigger
field - the generic point of a quadric).

1 Introduction

The u-invariant of a field is defined as the maximal dimension of anisotropic
quadratic form over it. The problem to describe values of this invariant is one
of major open problems in the theory of quadratic forms. Using elementary
methods it is easy to establish that the u-invariant can not take values 3, 5 and
7. The conjecture of Kaplansky (1953) suggested that the only possible values
are the powers of 2 (by that time, the examples of fields with u-invariant being
any power of 2 were known). This conjecture was disproved by A.Merkurjev
in 1991, who constructed fields with all even u-invariants. The next chal-
lenge was to find out if fields with odd u-invariant > 1 are possible at all.
The breakthrough here was made by O.Izhboldin who in 1999 constructed
a field of u-invariant 9 - see [4]. Still the question of other possible values
remained open. This paper suggests a new uniform method of constructing
fields with various u-invariants. In particular, we get fields with any even u-
invariant without using the index reduction formula of Merkurjev. We also
construct fields with u-invariant 2r + 1, for all r > 3. It should be mentioned
that O.Izhboldin conjectured the existence of fields with such u-invariant, and
suggested ideas to prove the conjecture. However, this paper employes very
different new ideas. One can see the difference on the example of u-invariant
9. I would say that our method uses substantially more coarse invariants (like
generic discrete invariant of quadrics), while the original construction used
very subtle ones (like the cokernel on the unramified cohomology, etc. ...).



Thus, this paper amply demonstrates that the u-invariant questions can be
solved just with the help of “coarse” invariants. The method is based on the
new, so-called, elementary discrete invariant of quadrics (introduced in the
paper). This invariant contains important piece of information about the par-
ticular quadric, and, at the same time, is quite handy to operate. The field
with the given u-invariant is constructed using the standard field tower of
A.Merkurjev. And the central problem is to control the behavior of the el-
ementary discrete invariant while passing from the base field to the generic
point of a (sufficiently large) quadric. This is done using the general state-
ment from [14] concerning the question of rationality of small-codimensional
classes in the Chow ring of arbitrary smooth variety under similar passage.
The driving force behind all of this comes from the symmetric operations in
Algebraic Cobordism ([12],[15]).
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2 Elementary discrete invariant

In this section we assume that the base field k has characteristic different from
2. We will fix an algebraic closure k of k.

For the nondegenerate quadratic form q we will denote by the capital
letter Q the respective smooth projective quadric. The same applies to forms
p, p′, q′, .... Dimension of a quadric Q will be denoted as NQ, and if there
is no ambiguity, simply as N . We also denote dQ := [NQ/2] (respectively,
d := [N/2]). For the smooth variety X we will denote as CH∗(X) the Chow
ring of algebraic cycles modulo rational equivalence on X, and as Ch∗(X) the
Chow ring modulo 2 (see [3] for details).

To each smooth projective quadric Q/k of dimension N one can assign the
so-called generic discrete invariant GDI(Q) - see [13], which is defined as the
collection of subrings

GDI(Q, i) := image(Ch∗(F (Q, i))→ Ch∗(F (Q, i)|k)),

for all 0 6 i 6 d, where F (Q, i) is the Grassmannian of i-dimensional pro-
jective subspaces on Q, and the map is induced by the restriction of scalars
k → k. Note, that F (Q, 0) is quadric Q itself, and F (Q, d) is the last Grass-
mannian.
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For J ⊂ I ⊂ {0, . . . , d} let us denote the natural projection between partial
flag varieties F (Q, I)→ F (Q, J) as π with subindex I with J underlined inside
it. In particular, we have projections:

F (Q, i)
π(0,i)← F (Q, 0, i)

π(0,i)→ Q.

The Chow ring of a split quadric is a free Z-module with the basis hs, ls,
0 6 s 6 d, where ls ∈ CHs(Q|k) is the class of a projective subspace of
dimension s, and hs ∈ CHs(Q|k) is the class of plane section of codimension
s - see [11, Lemma 8].

In CH∗(F (Q, i)|k) we have special classes: Z
i−d

j ∈ CHj , N − d− i 6 j 6

N − i, and W
i−d

j ∈ CHj , 0 6 j 6 d− i, defined by:

Z
i−d

j := (π(0,i))∗(π(0,i))∗(lN−i−j); W
i−d

j := (π(0,i))∗(π(0,i))∗(hi+j).

Let us denote as z
i−d

j and w
i−d

j the same classes in Ch∗. We will call

classes z
i−d

j elementary. Notice, that the classes w
i−d

j always belong to
GDI(Q, i).

Let Ti be the tautological (i + 1)-dimensional vector bundle on F (Q, i).
The following Proposition explains the meaning of our classes.

Proposition 2.1. For any 0 6 i 6 d, and N − d− i 6 j 6 N − i,

c•(−Ti) =
d−i∑
j=0

W
i−d

j + 2
∑

d−i<j6N−i

Z
i−d

j .

Proof. Since T0 = O(−1) on Q, the statement is true for i = 0. Consider the
projections

F (Q, i)
π(0,i)← F (Q, 0, i)

π(0,i)→ Q.

Notice, that F (Q, 0, i) is naturally identified with the projective bundle
PF (Q,i)(Ti), and the sheaf π∗(0,i)(T0) is naturally identified with O(−1). Thus,

(π(0,i))∗(π(0,i))∗(c•(−T0)) = (π(0,i))∗(c•(−O(−1))) = c•(−Ti).

ut

Remark 2.2. In particular, for i = d we get another proof of [13, Theorem
2.5(3)].

Definition 2.3. Define the elementary discrete invariant EDI(Q) as the col-

lection of subsets EDI(Q, i) consisting of those j that z
i−d

j ∈ GDI(Q, i).
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One can visualise EDI(Q) as the coordinate d × d square, where some
integral nodes are marked, each row corresponds to particular grassmannian,
and the codimension of a “node” is decreasing up and right. The lower row
corresponds to the quadric itself, and the upper one - to the last grassmannian.
The South-West corner is marked if and only if Q is isotropic.

Example 2.4. The EDI(Q) for the 10-dimensional excellent form looks as:

• • • • ◦

• • ◦ • ◦

• • ◦ ◦ ◦

◦ • ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

The following statement puts serious constraints on possible markings.

Proposition 2.5. Let 0 6 i < d, and j ∈ EDI(Q, i). Then j, j − 1 ∈
EDI(Q, i + 1).

This can be visualised as:
• •

•

OO``@@@

Proof. The Proposition easily follows from the next Lemma. Let us temporar-
ily denote π(i,i+1) as α, and π(i,i+1) as β.

Lemma 2.6.

α∗(Z
i−d

j ) = β∗(Z
i+1−d

j ) + c1(O(1)) · β∗(Z
i+1−d

j−1 );

α∗(W
i−d

j ) = β∗(W
i+1−d

j ) + c1(O(1)) · β∗(W
i+1−d

j−1 ), 0 6 j < d− i;

α∗(W
i−d

d−i ) = 2β∗(Z
i+1−d

d−i ) + c1(O(1)) · β∗(W
i+1−d

d−i−1 ),

where O(1) is the standard sheaf on the projective bundle

F (Q, i, i + 1) = PF (Q,i+1)(T ∨i+1),

for the vector bundle dual to the tautological one.

Proof. By definition, Z
i−d

j ,W
i−d

j have the form (π(0,i))∗(π(0,i))∗(x), for
certain x ∈ CH∗(Q|k). Since the square

F (Q, i, i + 1)
π(0,i,i+1)←−−−−−− F (Q, 0, i, i + 1)

π(i,i+1)

y yπ(0,i,i+1)

F (Q, i) ←−−−−
π(0,i)

F (Q, 0, i)
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is transversal Cartesian, (π(i,i+1))∗ of these elements is equal to

(π(0,i,i+1))∗(π(0,i,i+1))∗(π(0,i))∗(x) = (π(0,i,i+1))∗(π(0,i,i+1))∗(π(0,i+1))∗(x).

Variety F (Q, 0, i, i + 1) is naturally a divisor D on the transversal prod-
uct F (Q, 0, i + 1) ×F (Q,i+1) F (Q, i, i + 1) with O(D) = π∗(0,i,i+1)(O(h)) ⊗
π∗(0,i,i+1)(O(1)), where O(h) is the sheaf given by the hyperplane section on
Q. Then

(π(0,i,i+1))∗(π(0,i,i+1))∗(π(0,i+1))∗(x) =

c1(O(1)) · (π(i,i+1))∗(π(0,i+1))∗(π(0,i+1))∗(x)+

(π(i,i+1))∗(π(0,i+1))∗(π(0,i+1))∗(h · x).

It remains to plug in the appropriate x. ut

Notice, that the projective bundle theorem

Ch∗(PF (Q,i+1)(T ∨i+1)) = ⊕i
l=0c1(O(1))l · Ch∗(F (Q, i + 1))

implies that the element of this group is defined over k if and only if all of it’s

coordinates are. Since the cycle z
i−d

j is defined over k, by Lemma 2.6 the

cycles z
i+1−d

j and z
i+1−d

j−1 are defined too. ut

The following Proposition describes the EDI of the isotropic quadric.

Proposition 2.7. Let p′ = p ⊥ H be isotropic quadratic form (here H is a
2-dimensional hyperbolic form 〈1,−1〉). Then EDI of P and P ′ are related
as follows: for any NP − dP − i 6 j 6 NP − i

z
i−dP

j (P ) is defined ⇔ z
i+1−dP ′

j (P ′) is defined.

In other words, EDI(P ) fits well into EDI(P ′), if we glue their N-E corners.

Proof. The quadric P can be identified with the quadric of lines on P ′ passing
through the given rational point x. Then we have natural regular embedding

e : F (P, i)→ F (P ′, i + 1), with e∗(z
i+1−dP ′

j ) = z
i−dP

j and (⇐) follows.

We have natural maps F (P, i)
f← (F (P ′, i + 1)\F (P, i))

g→ F (P ′, i + 1),
where the map f sends (i + 1)-dimensional plane πi+1 to Tx,P ′ ∩ (x + πi+1))
(expression in the projective space), and g is an open embedding. It is an

exercise for the reader, to show that f∗(z
i−dP

j (P )) = g∗(z
i+1−dP ′

j (P ′)).
It remains to observe that F (P, i) has codimension (NP − i + 1) > j inside
F (P ′, i+1), and thus g∗ performes an isomorphism on Chj . This proves (⇒).

ut
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If we have a codimension 1 subquadric P of a quadric Q, the EDI’s of
them are related by the following.

Proposition 2.8.

z
i−dQ

j (Q) is defined ⇒ z
i−dP

j (P ) is defined ;

z
i−dP

j (P ) is defined ⇒ z
i+1−dQ

j (Q) is defined .

Proof. Consider the natural embedding: e : F (P, i)→ F (Q, i). Then, it follows

from the definition that e∗(z
i−dQ

j ) = z
i−dP

j . To prove the second statement
just observe that Q is a codimension 1 subquadric in P ′, where p′ = p ⊥ H
(if q = p ⊥ 〈a〉, then p′ = q ⊥ 〈−a〉), and apply Proposition 2.7. ut

Unfortunately, the Steenrod operations (see [1, 17]), in general, do not act
on the EDI(Q, i), since they do not preserve elementary classes. But they
act in the lower and the upper row: for the quadric itself, and for the last
grassmannian. Also, it follows from [13, Main Theorem 5.8] that EDI(Q, d)
carries the same information as GDI(Q, d). The same is true about EDI(Q, 0)
and GDI(Q, 0) by the evident reasons.

The action of the Steenrod operations on the elementary classes can be
described as follows.

Proposition 2.9. Let 0 6 i 6 d, and N − d− i 6 j 6 N − i, then

Sm(z
i−d

j ) =
d−i∑
k=0

(
j − k

m− k

)
z

i−d

j+m−k · w
i−d

k ,

where elementary classes of codimension more than (N − i) are assumed to
be 0.

Proof. We recall from [1] that on the Chow groups modulo 2 of smooth variety
X one has the action of Steenrod operations S• and S•, where the former
commute with the pull-backs for all morphisms, and the latter commute with
the push-forwards for proper morphisms. The relation between the upper and
the lower operations is given by

S• = S• · c•(TX).

From this (and the description of the tangent bundle for the quadric and the
projective space) one gets that S•(ls) = (1 + h)N−s+1ls. Since (π0,i)∗(O(1))
is the sheaf O(1) on F (Q, 0, i) = PF (Q,i)(Ti),

S•(π(0,i))∗(lN−i−j) = c•(−TF (Q,0,i)) · (1 + H)i+j+1 · (π(0,i))∗(lN−i−j),

where H = c1(O(1)). Since S• commutes with the push-forward morphisms,
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S•(z
i−d

j ) = S•(π(0,i))∗(π(0,i))∗(lN−i−j) =

(π(0,i))∗(c•(−Tfiber) · (1 + H)i+j+1 · (π(0,i))∗(lN−i−j)).

Recall that if V is a virtual vector bundle of virtual dimension M , and
c•(V)(t) :=

∑
k>0 ck(V) · tM−k, then for the divisor H, c•(V ⊗ O(H))(t) =

c•(V)(t + H), and c•(V ⊗O(H)) = c•(V ⊗O(H))(1) = c•(V)(1 + H).
Since c•(−Tfiber) = c•(−Ti ⊗ O(1)), by Proposition 2.1, ( mod 2) this is

equal to
∑d−i

k=0 w
i−d

k (1 + H)−i−1−k. Thus,

S•(z
i−d

j ) = (
d−i∑
k=0

w
i−d

k )(π(0,i))∗(π(0,i))∗((1 + h)j−klN−i−j) =

∑
r>0

d−i∑
k=0

(
j − k

r − k

)
z

i−d

j+r−kw
i−d

k .

ut

Remark 2.10. In particular, for i = d we get a new proof of [13, Theorem
4.1].

The following fact is well-known (see, for example, [2]). We will give an
independent proof below.

Proposition 2.11. The ring CH∗(F (Q, i)|k) is generated by the classes

Z
i−d

j , N − d− i 6 j 6 N − i, and W
i−d

j , 0 6 j 6 d− i.

Proof. For 0 6 l 6 i, let us denote the pull back of Z
l−d

j to F (Q, 0, . . . , i)
by the same symbol. On this flag variety we have natural line bundles Lk :=
Tk/Tk−1. Let us denote hk := c1(L−1

k ).

Lemma 2.12. Let E/k be some field extension. Suppose that Q|E is split.

Then the ring CH∗(F (Q, 0, . . . , i)|E) is generated by W
l−d

j , 0 6 l 6 i,

1 6 j 6 d− l, and Z
l−d

j , 0 6 l 6 i, N − d− l 6 j 6 N − l.

Proof. Induction on i. For i = 0 the statement is evident.

Statement 2.13. Let π : Y → X be a smooth morphism to a smooth variety
X. For x ∈ X(r), Yx be the fiber over the point x. Let ζ denote the generic
point of X, and sx : CH∗(Yζ) → CH∗(Yx) be the specialisation map. Let
B ⊂ CH∗(Y ) be a subgroup. Suppose:

(a) the map B → CH∗(Yζ) is surjective;
(b) all the maps sx are surjective.
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Then CH∗(Y ) = B · π∗(CH∗(X)).

Proof. On CH∗(Y ) we have decreasing filtration F •, where F r consists of
classes, having a representative with the image under π of codimension > r.
This gives the surjection:

⊕r ⊕x∈X(r) CH∗(Yx)→ grF• CHr+∗(Y ).

Let [x] ∈ CHr(X) be the class represented by the closure of x. Clearly, the
image of π∗([x]) ·B covers the image of CH∗(Yx) in F r/F r+1. ut

Consider the projection

π(0,...,i−1,i) : F (Q, 0, . . . , i− 1, i)→ F (Q, 0, . . . , i− 1).

Let Q{i},x/E(x) be the fiber of this projection over the point x. It is a split
quadric of dimension N − 2i. Thus, the condition (b) of the Statement 2.13 is
satisfied. Since [Ti|Q{i},ζ

] = [Li] + i · [O] = [O(−hi)] + i · [O] in K0(Q{i},ζ), it
follows from Proposition 2.1 that

Z
i−d

j |Q{i},ζ
= lN−2i−j , W

i−d

j |Q{i},ζ
= hj

i .

We can take B additively generated by Z
i−d

j , N − d − i 6 j 6 N − 2i,

and W
i−d

j , 0 6 j 6 d − i. Then the condition (a) will be satisfied too. The
induction step follows. ut

Lemma 2.6 implies that the Z
l−d

j ,W
l−d

j , for l < i are expressible in

terms of Z
i−d

k ,W
i−d

k and hm, 0 6 m 6 i. Let A ⊂ CH∗(F (Q, i)) be

the subring generated by Z
i−d

j ,W
i−d

j . Since F (Q, 0, . . . , i) is a variety
of complete flags of subspaces of the vector bundle Ti on F (Q, i), the ring
CH∗(F (Q, 0, . . . , i)) is isomorphic to

CH∗(F (Q, i))[h0, . . . , hi]/(σr(h)− cr(T ∨i ), 1 6 r 6 i + 1),

where σr(h) are elementary symmetric functions on hk. But cr(T ∨i ) ∈ A, by
Proposition 2.1. Since A and hm, 0 6 m 6 i generate CH∗(F (Q, 0, . . . , i)), A
must coincide with CH∗(F (Q, i)). ut

In particular, since the cycles W
i−d

j are defined over k, we have:

Corollary 2.14. The graded part of CH∗(F (Q, i)|k) of degree less or equal
(d− i) consists of classes which are defined over k.
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Notice, that for i = d, Ch∗(F (Q, d)|k) is generated as a ring by z
0

j ,

and moreover, GDI(Q, d) is always generated as a ring by the subset of z
0

j

contained in it - see [13, Main Theorem 5.8].
We will need one more simple fact.

Statement 2.15. The class of a rational point on F (Q, i)|k is given by the
product

2i∏
j=i

Z
i−d

N−j

Proof. Use induction on N . Let x be a fixed rational point on Q|k. Then
we have a natural regular embedding e : F (P, i − 1) → F (Q, i), where P
is the (N − 2)-dimensional quadric of lines on Q passing through x, with

e∗(1) = Z
i−dQ

NQ−i (Q), and e∗(Z
i−dQ

NQ−j (Q)) = Z
i−1−dP

NP−j+1 (P ). Thus the induction
step follows from the projection formula. The base of induction is trivial. ut

3 Generic points of quadrics and Chow groups

Everywhere below we will assume that the base-field k has characteristic 0. Al-
though, many things work for odd characteristics as well, the use of Algebraic
Cobordism theory of M.Levine-F.Morel will require such an assumption.

In this section I would like to remind the principal result of [14]. Let Q
be a smooth projective quadric, Y be a smooth quasiprojective variety, and
y ∈ Chm(Y |k). This will be our main tool in the construction of fields with
various u-invariants.

Theorem 3.1. ([14, Corollary 3.5],[15, Theorem 4.3].)
Suppose m < NQ − dQ. Then

y|
k(Q)

is defined over k(Q) ⇔ y is defined over k.

Example 3.2. Let α = {a1, . . . , an} ∈ KM
n (k)/2 be a nonzero pure symbol,

and Qα be the respective anisotropic Pfister quadric. Then in EDI(Qα) the
marked nodes will be exactly those ones which live above the main (N-W to
S-E) diagonal.

◦ • • ... • •

◦ ◦ • ... • •

◦ ◦ ◦ ... • •

... ... ... ... ... ...

◦ ◦ ◦ ... ◦ •

◦ ◦ ◦ ... ◦ ◦
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Really, over own generic point k(Qα) quadric Qα becomes hyperbolic,
and so, all the elementary cycles are defined there. Then the cycles above
the main diagonal got to be defined already over the base field, since their
codimension is smaller than NQα

− dQα
. On the other hand, the N-W corner

could not be defined over k, since otherwise all the elementary cycles on the
last grassmannian of Qα would be defined over k, but, by the Statement
2.15, the product of all these cycles is the class of a rational point on this
grassmannian. Since Qα is not hyperbolic over k, this is impossible. The rest
of the picture follows from Proposition 2.5.

The proof of Theorem 3.1 uses Algebraic Cobordisms of M.Levine-F.Morel.
Let me say few words about the latter.

3.1 Algebraic Cobordisms

In [7] M.Levine and F.Morel have constructed the universal oriented gen-
eralised cohomology theory Ω∗ on the category of smooth quasiprojective
varieties over the field k of characteristic 0, called Algebraic Cobordism.

For any smooth quasiprojective X over k, the additive group Ω∗(X) is
generated by the classes [v : V → X] of projective maps from smooth varieties
V subject to certain relations, and the upper grading is the codimensional one.
There is natural morphism of theories pr : Ω∗ → CH∗. The main properties
of Ω∗ are:

(1) Ω∗(Spec(k)) = L = MU(pt) - the Lazard ring, and the isomorphism is
given by the topological realisation functor;

(2) CH∗(X) = Ω∗(X)/L<0 · Ω∗(X).

On Ω∗ there is the action of the Landweber-Novikov operations (see [7,
Example 4.1.25]). Let R(σ1, σ2, . . .) ∈ L[σ1, σ2, . . .] be some polynomial, where
we assume deg(σi) = i. Then SR

L−N : Ω∗ → Ω∗+deg(R) is given by:

SR
L−N ([v : V → X]) := v∗(R(c1, c2, . . .) · 1V ),

where cj = cj(Nv), and Nv := −TV + v∗TX is the virtual normal bundle.
If R = σi, we will denote the respective operation simply as Si

L−N . The
following statement follows from the definition of Steenrod and Landweber-
Novikov operations - see P.Brosnan [1], A.Merkurjev [10], and M.Levine [6]

Proposition 3.3. There is commutative square:

Ω∗(X)
Si

L−N−−−−→ Ω∗+i(X)y y
Ch∗(X) −−−−→

Si
Ch∗+i(X),
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where Si is the Steenrod operation ( mod 2) ([17, 1]).
In particular, using the results of P.Brosnan on Si (see [1]), we get:

Corollary 3.4. (1) pr ◦ Si
L−N (Ωm) ⊂ 2 · CHi+m, if i > m;

(2) pr ◦ (Sm
L−N −�)(Ωm) ∈ 2 · CH2m, where � is the square operation.

This implies that ( modulo 2−torsion ) we have well defined maps pr◦Si
L−N

2

and pr◦(Sm
L−N−�)

2 . In reality, these maps can be lifted to a well defined, so-
called, symmetric operations Φti−m

: Ωm → Ωm+i - see [15]. Since over alge-
braically closed field all our varieties are cellular, and thus, the Chow groups
of them are torsion-free, we will not need such subtleties, but we will keep the
notation from [15], and denote our maps as φti−m

.

3.2 Beyond the Theorem 3.1

Below we will need to study the relation between the rationality of y and
y|

k(Q)
for codim(y) slightly bigger than NQ − dQ. The methods involved are

just the same as are employed for the proof of Theorem 3.1.
Let Y be smooth quasiprojective variety, Q be smooth projective quadric.

Let v ∈ Ch∗(Y × Q) be some element, and w ∈ Ω∗(Y × Q) be it’s arbitrary
lifting via pr. Over k, quadric Q becomes a cellular variety with basis of Chow
groups and Cobordisms given by the set {li, hi}06i6dQ

of projective subspaces
and plane sections. This implies that

CH∗(Y ×Q|k) = ⊕dQ

i=0(CH∗(Y |k) · li ⊕ CH∗(Y |k) · hi), and

Ω∗(Y ×Q|k) = ⊕dQ

i=0(Ω
∗(Y |k) · li ⊕ Ω∗(Y |k) · hi)

- see [16, Section 2]. In particular,

v =
dQ∑
i=0

(vi · hi + vi · li), and w =
dQ∑
i=0

(wi · hi + wi · li).

Denote as C̃h
∗

the ring CH∗ /(2, 2− torsion).

Proposition 3.5. Let Q be a smooth projective quadric of dimension > 4n−
1, Y be a smooth quasiprojective variety, and v ∈ Ch2n+1(Y × Q) be some
element. Then the class

v0 + S1(v1) + v1 · vNQ−2n + v0 · vNQ−2n−1

in C̃h
2n+1

(Y |k) is defined over k.

Corollary 3.6. Let Q be a smooth projective quadric of dimension > 4n− 1,
Y be a smooth quasiprojective variety, and y ∈ Ch2n+1(Y |k) is defined over
k(Q). Then, either
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(a) z
−dQ

2n+1 (Q|k(Y )) is defined; or
(b) for certain v1 ∈ Ch2n(Y |k), and for certain divisor vNQ−2n ∈ Ch1(Y |k),

the element
y + S1(v1) + v1 · vNQ−2n

in C̃h
2n+1

(Y |k) is defined over k.

Proof. Since y is defined over k(Q), there is x ∈ Ch2n+1(Y |k(Q)) such that
x = y|

k(Q)
. Using the surjection CH∗(Y ×Q) � CH∗(Y |k(Q)) lift the x to an

element v ∈ Ch2n+1(Y ×Q). Then v =
∑dQ

i=0(v
i · hi + vi · li), where v0|

k(Q)
=

y|
k(Q)

. But for any extension of fields F/k (with smaller one algebraically
closed), the restriction morphism on Chow groups (with any coefficients) is
injective by the specialisation arguments. Thus, v0 = y. It remains to apply
the Proposition 3.5, and observe that if vNQ−2n−1 ∈ Ch0(Y |k) = Z/2 · 1 is

nonzero, then the class lNQ−2n−1 = z
−dQ

2n+1 is defined over k(Y ). Really, this
class is just equal to v|

k(Y )
. ut

Remark 3.7. One can get rid of factoring (2 − torsion) in the statements
above by using the genuine symmetric operations (see [15], cf. [14]) instead of
the Landweber-Novikov operations. As was explained above, for our purposes
it is irrelevant.

Before proving the Proposition let us study a bit some special power series.
Denote as γ(t) ∈ Z/2[[t]] the power series 1+

∑
i>0 t2

i

. Then γ(t) satisfies the
equation:

γ2 − γ = t,

and generates the quadratic extension of Z/2(t). In particular, for any m > 0,
γm = amγ + bm for certain unique am, bm ∈ Z/2(t). The following statement
is clear.

Observation 3.8. (1) am+1 = am + bm, bm+1 = tam

(2) am and bm are polynomials in t of degree 6 [m− 1/2] and [m/2], respec-
tively.

For the power series β(t) let us denote as (β)6l the polynomial
∑l

j=0 βjt
j ,

and as (β)>l - the remaining part β − (β)6l.

Lemma 3.9.
am = (γm)6[m/2] = (γm)6[m−1/2]

Proof. Let m = 2k + m1, where 0 6 m1 < 2k. Then γm = γ2k · γm1 =
(am1γ + bm1) + O(t2

k

) = (1 +
∑k−1

i=0 t2
i

)am1 + bm1 + O(t2
k

). Observation
3.8 implies that (γm)6[m/2] = (1 +

∑k−1
i=0 t2

i

)am1 + bm1 . On the other hand,
γ2k

= γ + (
∑k−1

j=1 t2
j

), thus γm is equal to
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(γ + (
k−1∑
j=1

t2
j

))(am1γ + bm1) =

am1γ + am1t + (
k−1∑
j=1

t2
j

)am1γ + bm1γ + (
k−1∑
j=1

t2
j

)bm1 =

((1 +
k−1∑
i=0

t2
i

)am1 + bm1)γ + (tam1 + (
k−1∑
j=1

t2
j

)bm1).

Hence, am = ((1 +
∑k−1

i=0 t2
i

)am1 + bm1) = (γm)6[m/2]. The second equality
follows from Observation 3.8(2) ut

ut

Lemma 3.9 implies that

γm = (γm)6[m−1/2] · γ + t(γm−1)6[m−2/2].

Lemma 3.10.
(γm)>[m/2] = tm(1 + mt) + O(tm+2)

Proof. Use induction on m and on the number of 1’s in the binary presentation
of m. For m = 2k the statement is clear. Let now m = 2k + m1, where
0 < m1 < 2k. We have: (γm)>[m/2] = ((γm+1)6[m/2])>[m/2] + t((γm)6[m−1/2] ·
γ−1)>([m/2]−1) = t(am · γ−1)>[m/2]−1.

am = (γm)6[m/2] = (γ2k ·γm1)6[m/2] = (γm1)6[m/2] = (am1γ+bm1)6[m/2],
and since degrees of am1 and bm1 are no more than [m1/2], this expression
should be equal to γm1 + am1t

2k

+ O(t2
k+1

). Then

am · γ−1 = γm1−1 + am1γ
−1t2

k

+ O(t2
k+1

) =

(am1−1γ + bm1−1) + am1γ
−1t2

k

+ O(t2
k+1

) =

(am1−1(1 +
k−1∑
i=0

t2
i

) + bm1−1) + t2
k

(am1−1 + am1γ
−1) + O(t2

k+1
).

Since the degree of am1−1 is no more than [m1/2] − 1, using Observation
3.8(1), we get:

(am · γ−1)>[m/2]−1 = t2
k

(am1−1 + am1γ
−1) + O(t2

k+1
) =

t2
k

(γm1−2 + am1−1γ
−1) + O(t2

k+1
) =

t2
k

γ−1(γm1−1 + (γm1−1)6[m1−1/2]) + O(t2
k+1

).

Consequently, (γm)>[m/2] = t2
k+1(γm1−1)>[m1−1/2] · γ−1 + O(t2

k+1
). And, by

the inductive assumption, this is equal to

t2
k+1(tm1−1(1 + (m1 − 1)t))γ−1 + O(t2

k+m1+2) = tm(1 + mt) + O(tm+2).
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ut
ut

Corollary 3.11.

(am · γ−1)>[m/2]−1 = tm−1(1 + mt) + O(tm+1)

Observe now that γ−1(t) =
∑

i>0 t2
i−1. Denote as δ(t) the polynomial

a2n+1(t). Then

δ(t)γ−1(t) = α(t) + t2n + t2n+1 + O(t2n+2), (1)

where δ(t) and α(t) are polynomials of degree 6 n. Observation 3.8(1) shows
that δ = 1 + t + . . .. For us it will be important that δ(t)γ−1(t) does not
contain monomials of degrees from (n + 1) to (2n− 1), but contains t2n and
t2n+1.

Proof (of Proposition 3.5). The idea of the proof is the following: having some
element v ∈ Ch2n(Y ×Q) we first lift it via pr to some w ∈ Ω∗(Y ×Q), then
restrict w to Y × Qs for various subquadrics Qs of Q, and apply to these
restrictions the combination of the symmetric operations φti

and (πY,s)∗ (see
below) in different order. The point is, that by adding the results with the
appropriate coefficients one can get the expression in question. In particular,
all the choices made while lifting to Ω∗ will be cancelled out. And the needed
coefficients are provided by the power series δ(t) above.

The case of dim(Q) > 4n−1 can be reduced to that of dim(Q) = 4n−1 by
considering arbitrary subquadric Q′ ⊂ Q of dimension 4n− 1, and restricting
v to Y ×Q′. So, we will assume that dim(Q) = 4n− 1.

Let Qs
es→ Q be arbitrary smooth subquadric of Q of dimension s. Denote

as w(s) the class (id× es)∗(w) ∈ Ω2n+1(Qs × Y ). Then

w(s) =
∑

06i6min(2n−1,s)

wi · hi +
∑

4n−s−16j62n−1

wj · lj−4n+s+1.

Let πY,s : Qs × Y → Y be the natural projections.
Consider the element

u := (πY,2n+1)∗φt0(w(2n + 1)) +
2n+1∑

p=n+1

δ2n+1−pφ
t2p−(2n+1)

(πY,p)∗(w(p))

in Ch2n+1(Y ), where δj are the coefficients of the power series δ above. Let
us compute u. Since we are computing modulo 2-torsion, it is sufficient to
compute 2u, which is equal to the Chow-trace of

(πY,2n+1)∗(S2n+1
L−N −�)(w(2n + 1)) +

2n+1∑
p=n+1

δ2n+1−pS
p
L−N (πY,p)∗(w(p)).
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Using multiplicative properties of the Landweber-Novikov operations:

Sa
L−N (x · y) =

∑
b+c=a

Sb
L−N (x)Sc

L−N (y),

and Proposition 3.3, we get (modulo 4):

pr(πY,2n+1)∗S2n+1
L−N (w(2n + 1)) =

2n−1∑
j=0

(
j

2n− j + 1

)
· 2 · Sj(vj)+

pr(
(

2n + 1
1

)
· S2n

L−N (w2n−1) +
(

2n + 2
0

)
· S2n+1

L−N (w2n−2)).

Codimension of vj is 2n + 1 − j, thus either
(

j
2n−j+1

)
is zero, or Sj(vj)

is, and our expression is equal to pr(S2n
L−N (w2n−1) + S2n+1

L−N (w2n−2)). Also,
( modulo 4),

pr(πY,2n+1)∗�(w(2n + 1)) = 2 · pr(w0w2n−2 + w1w2n−1).

In the same way, ( modulo 4),

prSp
L−N (πY,p)∗(w(p)) =

min(2n−1,p)∑
j=0

(
−(p + 2− j)

p− j

)
· 2 · Sj(vj)+

pr(
p−2n∑
i=0

(
−(i + 1)

i

)
Sp−i

L−N (wi+4n−1−p)).

Observe, that the second sum is empty for p < 2n, is equal ( modulo 4), to
prS2n

L−N (w2n−1) for p = 2n, and to prS2n+1
L−N (w2n−2) for p = 2n + 1 (we used

here Corollary 3.4).
Since the coefficient

(−(l+2)
l

)
is odd if and only if l = 2k − 1, for some k,

the first sum is equal to:

2
min(2n−1,p)∑

j=0

(γ−1)p−j · Sj(vj).

Taking into account that δ(t) = 1 + t + . . ., we get:

pr

2n+1∑
p=n+1

δ2n+1−pS
p
L−N (πY,p)∗(w(p)) =

2
2n+1∑

p=n+1

min(2n−1,p)∑
j=0

δ2n+1−p(γ−1)p−j · Sj(vj)+

(prS2n
L−N (w2n−1) + prS2n+1

L−N (w2n−2)) =

2
2n−1∑
j=0

(δ · γ−1)2n+1−jS
j(vj) + (prS2n

L−N (w2n−1) + prS2n+1
L−N (w2n−2)) =

2(v0 + S1(v1)) + (prS2n
L−N (w2n−1) + prS2n+1

L−N (w2n−2)),
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in the light of formula (1) and Corollary 3.4.
Putting things together (and again using Corollary 3.4), we obtain:

2u = 2(v0 + S1(v1) + v1 · v2n−1 + v0 · v2n−2).

Since u is defined over the base-field k, the Proposition is proven. ut

There is another result which extends a bit Theorem 3.1.

Proposition 3.12. ([14, Statement 3.8]) Let Y be smooth quasiprojective
variety, Q smooth projective quadric over k. Let y ∈ Chm(Y |k). Suppose

z
0

NQ−dQ
(Q) is defined. Then for m 6 NQ − dQ,

y|
k(Q)

is defined over k(Q) ⇔ y is defined over k.

Proposition 3.12 extends Theorem 3.1 in the direction of the following:

Conjecture 3.13. ([14, Conjecture 3.11]) In the notations of Theorem 3.1,

suppose z
NQ−dQ−l

l (Q) is defined. Then for any m 6 l,

y|
k(Q)

is defined over k(Q) ⇔ y is defined over k.

This conjecture is known for l = NQ − dQ, NQ − 1, NQ.

3.3 Some auxiliary facts

For our purposes it will be important to be able (under certain conditions) to
get rid of the last term in the formula from Proposition 3.5. For this we will
need the following facts.

Proposition 3.14. Let 0 6 i 6 dR, and F (R, i) α← F (R, 0, i)
β→ R be the

natural projections. Let z
i−dR

NR−i is defined. Let t ∈ ChNR−i(F (R, i)) be such

that β∗α
∗(t) = 1 ∈ Ch0(R). Then β∗α

∗(t · z
i−dR

NR−i ) = li ∈ Chi(R).

Proof. Really, by the definition, z
i−dR

NR−i = α∗β
∗(l0). By the projection for-

mula,

α∗β
∗(t · z

i−dR

NR−i ) = β∗α
∗(t · z

i−dR

NR−i ) = β∗α
∗α∗(α∗(t) · β∗(l0)).

Again, by the projection formula, β∗(α∗(t) · β∗(l0)) = l0. Thus, α∗(t) · β∗(l0)
is a zero-cycle of degree 1 on F (R, 0, i), and α∗(α∗(t) · β∗(l0)) is a zero cycle
of degree 1 on F (R, i). Proposition follows. ut

ut
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Let v ∈ Chm(Y ×Q) be some element. Then

v =
dQ∑
i=0

(vi · hi + vi · li).

Statement 3.15. Suppose z
NQ−m−d

m (Q) is defined. Then for any v as above,
there exists u ∈ Chm(Y ×Q) such that u0 = v0, and uNQ−m = 0.

Proof. If vNQ−m = 0, there is nothing to prove. Otherwise, the class lNQ−m ∈
ChNQ−m(Q|k(Y )) is defined. Indeed, let

ρX : Ch∗(Y ×X) � Ch∗(X|k(Y ))

be the natural restriction. Then ρQ(v) = lNQ−m plus λ · hm, if 2m = NQ

(notice, that vNQ−m ∈ Ch0). This implies that the class lNQ−m = z
−dQ

NQ−m

is defined on Q|k(Y ). Using Proposition 2.5 and Statement 2.15, we get that
the class of a rational point is defined on F (Q,NQ − m)|k(Y ) (this proof is
somewhat longer than the standard one, but it does not use the Theorem of
Springer (see [5])!). Let x ∈ Chdim(Y )(F (Q,NQ−m)× Y ) be arbitrary lifting
of this class with respect to ρF (Q,NQ−m). Let

F (Q,NQ −m) α← F (Q, 0, NQ −m)
β→ Q

be the natural projections. Consider u′ := (β×id)∗(α×id)∗(x) ∈ Chm(Q×Y ).
Proposition 3.14 implies that the (defined over k) cycle

u” := π∗Y (πY )∗((hNQ−m × 1Y ) · (β × id)∗(α× id)∗(x · z
NQ−m−d

m (Q)))

satisfy: u”
0

= u′
0
, and (evidently) u”NQ−m = 0. Since u′NQ−m = 1 = vNQ−m,

it remains to take: u := v − u′ + u”. ut
ut

4 Even u-invariants

The fields of any given even u-invariant were constructed by A.Merkurjev
in [9] using his index-reduction formula for central simple algebras. The idea
of such construction is based on the, so-called, Merkurjev tower of fields,
which was first used in [8]. In our case, this tower is constructed as follows:
let F be any field, and let SF be the set of all (isomorphism classes of)
quadrics over F of dimesion > (M − 2). Let F ′ := limI⊂SF

F (×i∈IQi), where
the limit is taken over all finite subsets of SF via the natural restriction
maps. Then starting from arbitrary field k one constructs the tower of fields

671



k = k0 → k1 → . . . → kr → . . ., where kr+1 := (kr)′. One gets huge field
k∞ := limr kr having the property that all forms of dimension > M over it are
isotropic, and thus u(k∞) 6 M . But to get a field whose u-invariant is exactly
M , one has to start with some special field k, and since one wants to have some
anisotropic M -dimensional form p over k∞, better to have it already over k,
and then check that p will not become isotropic while passing from k to k∞.
Of course, to be able to control this, we need to know something interesting
about p. That is, we need to control some other property which implies ours.
More precisely, for a given base-field k, on the set of field extensions E/k we
should define two properties: A and B, where

A(E) is satisfied ⇔ p|E is anisotropic,

so that the following conditions are satisfied:

(1) B ⇒ A;
(2) B(E)⇒ B(E(Q)), for arbitrary quadric Q/E of dimension > dim(P );
(3) Let {Ej}j∈J be the directed system of field extensions with the limit E∞.

Then B(Ej) for all j implies B(E∞).

Then B(k) ⇒ A(k∞). So, if one finds quadratic form p of dimension M over
k and some property B satisfying the above conditions (and such that B(k)
is satisfied), then k∞ will have u invariant M .

In the case M = 2n is even A.Merkurjev takes p ∈ I2 and the following
property B:

B(E) is satisfied ⇔ C+
0 (p|E) is a division algebra,

where C+
0 (p) is the “half” of the even Clifford algebra C0(p) = C+

0 (p)×C−
0 (p)

(both factors are isomorphic here). Of course, for B(k) to be satisfied one has
to start with some form p for which C+

0 is division over the base field. The
generic form from I2 (that is, the form 〈a1, . . . , a2n−1, (−1)na1·. . .·a2n−1〉/k =
k0(a1, . . . , a2n−1)) will do the job. The condition (1) is satisfied since the
isotropy of p|E gives the matrix factor in C+

0 (p|E) ([5]), and the condition
(3) is clear. The only nontrivial fact here is the condition (2), which follows
from the index reduction formula of Merkurjev, claiming that over the generic
point of a quadric Q the index of a division algebra D can drop at most by
the factor 2, and the latter happens if and only if C0(q) can be mapped to D.
Indeed, if p is of dimension 2n, then C+

0 (p) is a central simple algebra of rank
2n−1, and C0(q) is either a simple algebra, or a product of two simple algebras
of large rank (this will not be true for odd-dimensional p!), thus there is no
ring homomorphisms C0(q) → C+

0 (p), and the index of C+
0 (p|E) is equal to

that of C+
0 (p|E(Q)).

Let me give another construction, which does not use the index reduc-
tion formula. Instead, I will use the North-West corner of the EDI and the
property:

B(E) is satisfied ⇔ z
0

NP−dP
(P |E) is not defined,
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Statement 4.1. Let M = dim(p) is even. Then our property B satisfies the
above conditions (1)− (3).

Proof. The condition (1) follows from Proposition 2.5, since the property A(E)
is satisfied ⇔ the South-West corner of the EDI is not defined for P |E . The
condition (3) is clear, since CH∗(X|E∞) = limj CH∗(X|Ej ). Finally, suppose

z
0

n−1(P |E) is not defined. Then, by Theorem 3.1, for any form q of dimension

> M , z
0

n−1(P |E(Q)) is not defined as well (will not work for M - odd). Thus,
the condition (2) is satisfied. ut

ut

Corollary 4.2. (A.Merkurjev, [9]) For each M = 2n there is a field of u-
invariant M .

Proof. Take any form p/k of dimension M such that z
0

n−1(P ) is not defined.
One can use the generic form - see [14, Statement 3.6]. Then B(k) is satisfied
and, hence, A(k∞) is satisfied too. ut

ut

5 Odd u-invariants

Let us analyse a bit the above construction. Instead of working with the cycle

z
−dP

NP
- the class of a rational point on a quadric P , we worked with the

(smaller codimensional!) cycle z
0

NP−dP
, and used the fact that rationality of

the former implies rationality of the latter (Proposition 2.5).

Unfortunately, for odd-dimensional forms we can not use the class z
0

NP−dP
.

Really, if p is any such form, then for q := p ⊥ 〈det±(p)〉, z
0

NP−dP
(P |k(Q)) will

be defined, since the rationality of this class is equivalent to the rationality of

z
0

NQ−dQ
(Q|k(Q)) - observe that

G(Q, dQ) = G(P, dP )
∐

G(P, dP ),

and the rationality of the latter follows from the rationality of the class

z
−dQ

NQ
(Q|k(Q)) (isotropy of Q|k(Q)). So, even if we start from the form, where

our class is not defined, over the generic point of some bigger-dimensional
form it will become rational, and we can not control anisotropy of P .

But the rationality of z
−dP

NP
implies rationality not just of z

0

NP−dP
, but

of all the West edge z
−s

NP−dP +s, 0 6 s 6 dP . So, let us use these other cycles.
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Let the form p has dimension 2r + 1. In this case, one can use previous to

the last grassmannian, and the class z
−1

2r−1+1 on it.

Theorem 5.1. Let dim(p) = 2r + 1, r > 3, and EDI(P ) looks as

?g ◦ ... ◦

◦ ◦ ... ◦

... ... ... ...

◦ ◦ ... ◦

Let dim(q) > dim(p). Then EDI(P |k(Q)) has the same property.

Corollary 5.2. For any r > 3 there is a field of u-invariant 2r + 1.

Proof. Start with the generic form p over k = k0(a1, . . . , a2r+1) and the prop-
erty

B(E) is satisfied ⇔ EDI(P |E) is as in the Theorem 5.1,

Then EDI(P ) is empty. This follows from Proposition 2.5 and [14, Statement
3.6]. Thus, B(k) is satisfied. The condition (1) is satisfied by the definition of
A and B. The condition (3) is satisfied since CH∗(X|E∞) = limj CH∗(X|Ej

).
And the condition (2) is equivalent to the Theorem 5.1. Then, as we know,
A(k∞) is satisfied, and u(k∞) = 2r + 1. ut

ut

Proof (of Theorem 5.1). Let d := dP = 2r−1− 1. It follows from Theorem 3.1

that the cycles z
0

j (P |k(Q)), 1 6 j 6 d are not defined. That is, we have ◦’s
to the right of ?i. In the light of Proposition 2.5 it remains only to treat the

case of z
−1

d+2 (P |k(Q)) (that is, the node just below the ?i).
This is done as follows. If this cycle is defined over k(Q), we can lift it to a

cycle v on F (P, d− 1)×Q. Over k quadric Q becomes cellular, and our cycle
decomposes in a standard way, producing coordinates vi, vi. Using the fact
that dim(q) = 2r + 1, r > 3 one can correct v in such a way that the “last”
of these coordinates will be zero. This is done by some play with elementary
classes using Theorem 3.1, Proposition 3.12, Proposition 2.9 and other major
statements, and is the most delicate part of the proof (in particular, it is
the only place where the high specific of the dimension is used - everything
else works for dim(q) ≡ 1 (mod 4)). After this is achieved, one can apply
Proposition 3.5, and get a k-rational class on F (P, d − 1) given by the sum
of 4 terms, the last of which will be zero because of our choice of v. Now,
from the knowledge of the action of the Steenrod operations it is not difficult
to prove that the obtained k-rational class is nonzero. Finally, we use the
information about elementary classes on F (P, d) and the main result of [13]
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to conclude that our nonzero k-rational class on F (P, d− 1) should be z
−1

d+2 .
This contradiction proves the Theorem.

In more details, suppose, z
−1

d+2 (P |k(Q)) is defined. We clearly can assume
that dim(q) = dim(p) + 1 = 2r + 2. Let us denote F (P, d − 1) temporarily

as Y . We have y ∈ Chd+2(Y |k(Q)) such that y = z
−1

d+2 ∈ Chd+2(Y |
k(Q)

). Let

us lift it to v ∈ Chd+2(Y × Q) via the natural projection Chd+2(Y × Q)
ρY

�
Chd+2(Y |k(Q)).

Statement 5.3. There exists such v ∈ Chd+2(Y ×Q) that v0 = y, and vd =
0 ∈ Ch0(Y |k).

Proof. Let v be arbitrary lifting of y with respect to ρY . If vd = 0, there is

nothing to prove. Otherwise, let us show that z
−1

2r−1+1(Q) is defined over k.
Suppose vd 6= 0, then it is equal to 1 ∈ Ch0(Y |k). Then ρQ(v) = ld ∈

Chd(Q|k(Y )
) = Z/2 · ld. Thus, z

−dQ

d+2 (Q|k(Y )) is defined. By Proposition 2.5,

z
−2

3 (Q|k(Y )) is defined too (it lives in the same column above). We want to

show that z
−2

3 (Q) is defined.
Consider the two towers of fibrations:

Spec(k)← P ← . . .← F (P, 0, 1, . . . , d− 1);
Spec(k)← Q← . . .← F (Q, 0, 1, . . . , d− 1),

with the generic fibers - quadrics P = P1, . . . , Pd, Q = Q1, . . . , Qd of dimension
2d + 1, 2d− 1, . . . , 3, and 2d + 2, 2d, . . . , 4, respectively. Let us denote ka,b :=
k(F (P, 0, . . . , a− 1)× F (Q, 0, . . . , b− 1)). Then

ka+1,b = ka,b(Pa) and ka,b+1 = ka,b(Qb).

Since we have embeddings of fields

k ⊂ k(Y ) = k(F (P, d− 1)) ⊂ k(F (P, 0, . . . , d− 1)) = kd,0,

z
−2

3 (Q|kd,0) is defined. Then by Proposition 2.5, z
0

1 (Q|kd,0) is defined. By

Theorem 3.1, z
0

1 (Q) and z
0

2 (Q) = (z
0

1 (Q))2 = S1(z
0

1 (Q)) are defined.
It follows from Corollary 2.14 that for arbitrary elements

α, β ∈ Ch∗(F (Q, d− 1)|ka−1,0
) of codimension 2 and 1, respectively, the class

S1(α) + α · β is defined over any field, where Q is defined, in particular, over
ka−1,0. It follows from Corollary 3.6 that
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z
−2

3 (Q|ka,0) is defined ⇒


either z

−2

3 (Q|ka−1,0) is defined;

or z
−dPa

3 (Pa|ka−1,d
) is defined,

and dPa 6 3.

Let us show that the second case is impossible. Really, by Proposition 2.5,

z
−dPa

3 (Pa|ka−1,d
) is def. ⇒ z

0

3−dPa
(Pa|ka−1,d

) is def.

Since 3− dPa
6 2, dim(Qb) > 4, and z

0

2 (Qd) is defined, by Proposition 3.12
and Theorem 3.1,

z
0

3−dPa
(Pa|ka−1,b

) is def. ⇒ z
0

3−dPa
(Pa|ka−1,b−1) is def.

Then z
0

3−dPa
(Pa/ka−1,0) is defined, and z

0

3−dPa
(P ) is defined (by Theorem

3.1). This contradicts to the conditions of our Theorem (here we are using the
fact that r > 3). Thus,

z
−2

3 (Q|ka,0) is defined ⇒ z
−2

3 (Q|ka−1,0) is defined,

and, consequently, z
−2

3 (Q) is defined. By Proposition 2.5, z
−1

3 (Q) is defined
too. Proposition 2.9 implies that

z
−1

2r−1+1(Q) = S2r−2
S2r−3

. . . S2(z
−1

3 (Q))

is also defined over k. Since z
−1

2r−1+1(Q) is defined, everything follows from
Statement 3.15. ut

ut

Consider v ∈ Chd+2(Y × Q) satisfying the conditions of Statement 5.3.
As above, v =

∑2r−1

i=0 (vi · hi + vi · li). Then, by Proposition 3.5, the class
v0 + S1(v1) + v1v2r−1 + v0v2r−1−1 is defined over k. But v2r−1−1 = 0. Thus
on Y we have the class v0 + S1(v1) + v1v2r−1 defined over k.

Now it is time to use the specific of Y and v. Our Y is a grassmannian
F (P, d − 1). In particular, it is a geometrically cellular variety, and the map

Ch∗(Y |k)→ Ch∗(Y |
k(Q)

) is an isomorphism. Thus, v0 = z
−1

d+2 . On the other

hand, v2r−1 = vd+1 belongs to Ch1(Y |k), and so is equal either to 0, or to

w
−1

1 . So, on F (P, d− 1) we have class either of the form z
−1

d+2 + S1(v1), or

of the form z
−1

d+2 +S1(v1)+ v1w
−1

1 defined over k. The following Statement
shows that such class should be nonzero.
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Statement 5.4. Let R be a smooth projective quadric of dimension 4n − 1.

Then z
−1

NR−dR+1(R) belongs to the image of neither of two maps:

S1, (S1 + w
−1

1 · ) : ChNR−dR(F (R, dR − 1))→ ChNR−dR+1(F (R, dR − 1))

Proof. We can assume that k = k. Consider the natural projections:

F (R, dR − 1) α← F (R, dR − 1, dR)
β→ F (R, dR).

The map β provides F (R, dR−1, dR) with the structure of the projective bun-
dle PF (R,dR)(T ∨dR

), and the Chern classes of TdR
are divisible by 2 - see Proposi-

tion 2.1 (and [13]). Thus, Ch∗(F (R, dR−1, dR)) = Ch∗(F (R, dR))[h]/(hdR+1),
where h = c1(O(1)). By Lemma 2.6,

α∗(z
−1

NR−dR+1) = β∗(z
0

NR−dR
) · h, and h = α∗(w

−1

1 ).

The first fact now is simple, since

S1(α∗(z
−1

NR−dR+1)) = S1(β∗(z
0

NR−dR
) · h) = β∗(z

0

NR−dR
) · h2,

by Proposition 2.9, and the latter element is nonzero. Thus, even α∗(z
−1

NR−dR+1)
can not be in the image of S1, since S1 ◦ S1 = 0.

To prove the second fact, observe that

α∗(z
−1

NR−dR+1) = β∗(z
0

NR−dR
) · h = (S1 + h · )(β∗(z

0

NR−dR
)).

Let u ∈ ChNR−dR(F (R, dR−1)) be such that (S1 +w
−1

1 · )(u) = z
−1

NR−dR+1.

Then (S1 + h · )(β∗(z
0

NR−dR
) − α∗(u)) = 0. Since dR is odd, the differ-

ential (S1 + h · ) acts without cohomology on Ch∗(F (R, dR))[h]/(hdR+1).

Consequently, (β∗(z
0

NR−dR
) − α∗(u)) = (S1 + h · )(w), for certain w ∈

ChNR−dR−1(F (R, dR − 1, dR)). This implies

α∗β
∗(z

0

NR−dR
) = α∗(S1 + h · )(w),

since α∗α
∗ = 0. Notice that α : F (R, dR − 1, dR) → F (R, dR − 1) is

a conic bundle with relative tangent sheaf α∗(O(w
−1

1 )) = O(h). Thus,

α∗(S1 + h · )(w) = S1(α∗(w)), and α∗α∗(β∗(z
0

NR−dR
)) = S1(α∗α∗(w)). But

α∗α∗(β∗(z
0

NR−dR
)) = hNR−dR−1 = hdR , and this element is not in the image

of S1, as one can easily see. The contradiction shows that u as above does not
exist. ut

ut
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It follows from the Statement 5.4 that in Chd+2(F (P, d − 1)|k) we have
nonzero class x defined over k. Then α∗(x) ∈ Chd+2(F (P, d − 1, d)|k) will
be also nonzero class defined over k. But the subring of k-rational classes in
Ch∗(F (P, d− 1, d)|k) is GDI(P, d)[h]/(hd+1), and by the main result of [13],

GDI(P, d) as a ring is generated by the elementary classes z
0

j contained in

it. By the conditions of our Theorem, among such classes only z
0

d+1 could
be defined over k. Then the degree = (d + 2) component of the subring of

k-rational classes in Ch∗(F (P, d−1, d)|k) is contained in Z/2 · (β∗(z
0

d+1) ·h) =

Z/2 · α∗(z
−1

d+2 ). Thus, if x is nonzero, it got to be z
−1

d+2 . But this class is
not defined over k by the condition of the Theorem. And the contradiction

shows that the class z
−1

d+2 is not defined over k(Q) as well. Theorem 5.1 is
proven. ut
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