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In this paper we study principally polarized abelian varieties that admit
an automorphism of order 3. It turns out that certain natural conditions on
the multiplicities of its action on the differentials of the first kind do guarantee
that those polarized varieties are not jacobians of curves. As an application,
we get another proof of the (already known) fact that intermediate jacobians
of certain cubic threefolds are not jacobians of curves.

1 Principally polarized abelian varieties that admit an
automorphism of order 3

Let ζ3 = −1+
√
−3

2 be a primitive (complex) cubic root of unity. It generates
the multiplicative order 3 cyclic group µ3 of cubic roots of unity.

Let g > 1 be an integer and (X, λ) a principally polarized g-dimensional
abelian variety over the field C of complex numbers, δ an automorphism of
(X, λ) that satisfies the cyclotomic equation δ2+δ+1 = 0 in End(X). In other
words, δ is a periodic automorphism of order 3, whose set of fixed points is
finite. This gives rise to the embeddings

Z[ζ3] ↪→ End(X), 1 7→ 1X , ζ3 7→ δ,

Q(ζ3) ↪→ End0(X), 1 7→ 1X , ζ3 7→ δ.

By functoriality, Q(ζ3) acts on the g-dimensional complex vector space Ω1(X)
of differentials of the first kind on X. This provides Ω1(X) with a structure
of Q(ζ3)⊗Q C-module. Clearly,
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Q(ζ3)⊗Q C = C⊕C

where the summands correspond to the embeddings Q(ζ3) → C that send ζ3

to ζ3 and ζ−1
3 respectively. So, Q(ζ3) acts on Ω1(X) with multiplicities a and

b that correspond to the two embeddings of Q(ζ3) into C. Clearly, a and b
are non-negative integers with a + b = g.

Theorem 1.1. If g+2 < 3 | a−b | then (X, λ) is not the jacobian of a smooth
projective irreducible genus g curve with canonical principal polarization.

Proof. Suppose that (X, λ) ∼= (J(C), Θ) where C is an irreducible smooth
projective genus g curve, J(C) its jacobian with canonical principal polariza-
tion Θ. It follows from the Torelli theorem in Weil’s form [10, 11] that there
exists an automorphism φ : C → C, which induces (by functoriality) either
δ or −δ on J(C) = X. Replacing φ by φ4 and taking into account that δ3

is the identity automorphism of X = J(C), we may and will assume that φ
induces δ. Clearly, φ3 is the identity automorphism of C, because it induces
the identity map on J(C) and g > 1. The action of φ on C gives rise to the
embedding

µ3 ↪→ Aut(C), ζ3 7→ φ.

Let P ∈ C be a fixed point of φ. Then φ induces the automorphism of the
corresponding (one-dimensional) tangent space TP (C), which is multiplication
by a complex number cP . Clearly, cP is a cubic root of unity.

Lemma 1.2. Every fixed point P of φ is nondegenerate, i.e., cP 6= 1.

Proof (of Lemma 1.2). The result is well-known. However, I failed to find a
proper reference.

Suppose that cP = 1. Let OP be the local ring at P and mP its maximal
ideal. We write φ∗ for the automorphism of OP induced by φ. Clearly, φ3

∗ is
the identity map. Since φ is not the identity map, there are no φ∗-invariant
local parameters at P . Clearly, φ∗(mP ) = mP , φ∗(m2

P ) = m2
P . Since TP (C)

is the dual of mP /m2
P and cp = 1, we conclude that φ∗ induces the identity

map on mP /m2
P . This implies that if t ∈ mP is a local parameter at t (i.e., its

image t̄ in mP /m2
P is not zero) then t′ := t + φ∗(t) + φ2

∗(t) is φ∗-invariant and
its image in mP /m2

P equals 3t̄ 6= 0. This implies that t′ ia a φ∗-invariant local
parameter at P . Contradiction.

Corollary 1.3. D := C/µ3 is a smooth projective irreducible curve. The map
C → D has degree 3, its ramification points are exactly the images of fixed
points of φ and all the ramification indices are 3.

Lemma 1.4. D is biregularly isomorphic to the projective line.

Proof (of Lemma 1.4). The map C → D induces, by Albanese functorialy,
the surjective homomorphism of the corresponding jacobians J(C) → J(D)
that kills all the divisors classes of the form (Q) − (φ(Q)) (Q ∈ C). This
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implies that it kills (1 − δ)J(C). On the other hand, 1 − δ : J(C) → J(C)
is, obviously, an isogeny. This implies that the image of J(C) in J(D) is zero
and the surjectiveness implies that J(D) = 0. This means that the genus of
D is 0.

Corollary 1.5. The number h of fixed points of φ is g + 2.

Proof (of Corollary 1.5). Applying Hurwitz formula to C → D, we get

2g − 2 = 3 · (−2) + 2 · h.

Lemma 1.6. Let φ∗ : Ω1(C) → Ω1(C) be the automorphism of Ω1(C) in-
duced by φ and τ its trace. Then

τ = aζ3 + bζ−1
3 .

Proof (of Lemma 1.6). Pick a φ-invariant point P0 and consider the regular
map

α : C → J(C), Q 7→ cl((Q)− (P0)).

It is well-known that α induces an isomorphism of complex vector spaces

α∗ : Ω1(X) ∼= Ω1(C).

Clearly,
φ∗ = α∗δ∗α∗−1

where δ∗ : Ω1(J(C)) = Ω1(J(C)) is the automorphism induced by δ. This
implies that the traces of φ∗ and δ∗ do coincide. Now the very definition of a
and b implies that the trace of φ∗ equals aζ3 + bζ−1

3 .

End of proof of Theorem 1.1. Let B be the set of fixed points of φ. We
know that #(B) = g + 2. By the holomorphic Lefschetz fixed point formula
[2, Th. 2], [6, Ch. 3, Sect. 4] (see also [9, Sect. 12.2 and 12.5]) applied to φ,

1− τ̄ =
∑
P∈B

1
1− cP

where τ̄ is the complex-conjugate of τ . Recall that every cP is a (primitive)
cubic root of unity and therefore

| 1− cP |=
√

3, | 1
1− cP

|= 1√
3

and
| 1− τ̄ |≤ g + 2√

3
.

Now
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| 1− τ̄ |2= (a + b + 2)2 + 3(a− b)2

4
=

(g + 2)2 + 3(a− b)2

4
.

This implies that
(g + 2)2

3
≥ (g + 2)2 + 3(a− b)2

4
.

It follows that (g + 2)2 ≥ 9(a− b)2 and we are done.

2 Cubic threefolds

Let S : F (x0, x1, x2, x3) = 0 ⊂ P3 be a smooth projective cubic surface over
C [7]. (In particular, F is an irreducible homogeneous cubic polynomial in
x0, x1, x2, x3 with complex coefficients.) Then the equation

y3 = F (x0, x1, x2, x3)

defines a smooth projective threefold T ⊂ P4 provided with the natural action
of µ3 that arises from multiplication of y by cubic roots of unity [1] (see also
[3, 8]). We have the µ3-invariant Hodge decomposition

H3(T,C) = H3(T,Z)⊗C = H1,2(T )⊕H2,1(T )

and the µ3-invariant non-degenerate alternating intersection pairing

(, ) : H3(T,C)×H3(T,C) → C.

In addition, both H1,2(T ) and H2,1(T ) are 5-dimensional isotropic subspaces
and µ3 acts on H2,1(T ) with multiplicities (4, 1), i.e. ζ3 ∈ µ3 acts as diago-
nalizable linear operator in H2,1(T ) with eigenvalue ζ3 of multiplicity 4 and
eigenvalue ζ−1

3 of multiplicity 1 ([3, Sect. 5], [1, Sect. 2.2 and Lemma 2.6]).
(The proof is based on [5, Th. 8.3 on p. 488]; see also [4, pp. 338–339].)

Since both H1,2(T ) and H2,1(T ) are isotropic and the intersection pairing
is non-degenerate, its restriction to H1,2(T ) × H2,1(T ) gives rise to the non-
degenerate µ3-invariant C-bilinear pairing

(, ) : H1,2(T )×H2,1(T ) → C. (1)

It follows that µ3 acts on H1,2(T ) with multiplicities (1, 4). (This assertion
also follows from the fact that H1,2(T ) is the complex-conjugate of H2,1(T ).)
In particular, the action of µ3 on H1,2(T ) extends to the embedding

Z[µ3] ↪→ EndC(H1,2(T )). (2)
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3 Intermediate jacobians

Let (J(T ), θT ) be the intermediate jacobian of the cubic threefold T [4, Sect.
3]; it is a principally polarized five-dimensional complex abelian variety. By
functoriality, µ3 acts on J(T ) and respects the principal polarization θT . As
complex torus,

J(T ) = H1,2(T )/p(H3(T,Z)), (3)

where

p : H3(T,C) = H3(T,Z)⊗C = H1,2(T )⊕H2,1(T ) → H1,2(T )

is the projection map that kills H2,1(T ). The imaginary part of the Riemann
form of the polarization coincides with the intersection pairing on H3(T,Z) ∼=
p(H3(T,Z)).

It follows from (2) that the action of µ3 on J(T ) extends to the embedding

Z[µ3] ↪→ End(J(T )).

Combining (1) and (3), we conclude that the µ3-modules Ω1(J(T )) =
HomC(H1,2(T ),C) and H2,1(T ) are canonically isomorphic. Now the asser-
tions of Sect. 2 about multiplicities imply that Z[ζ3] acts on Ω1(J(T )) with
multiplicities (4, 1).

Since 3× | 4 − 1 |> 5 + 2, it follows from Theorem 1.1 that (J(T ), θT ) is
not isomorphic to the canonically polarized jacobian of a curve. Of course,
this assertion was proven by completely different methods in [4] for arbitrary
smooth projective cubic threefolds.
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