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1 Introduction

De Jong-Oort purity states that for a family of p-divisible groups X → S over
a noetherian scheme S the geometric fibres have all the same Newton polygon
if this is true outside a set of codimension bigger than 2. A more general result
was first proved in [JO] and an alternative proof is given in [V1]. We present
here a short proof which is based on the fact that a formal p-divisible group
may be defined by a display ([Z1], [Me2]). There are two other ingredients of
the proof which are known for a long time. One is the boundedness principal
for crystals over an algebraically closed field ([O], [V1], [V2]) and the other
is the existence of a slope filtration for a p-divisible group over a non-perfect
field ([Z2]). The last fact was already mentioned in a letter of Grothendieck
to Barsotti [G]. The boundedness property is also an important ingredient in
the proof given by Vasiu in [V1].

We discuss in detail some elementary consequences of the display structure.
The other two ingredients can be found in the literature above. Therefore
we discuss them only briefly. I thank B.Messing for pointing out the correct
formulation of Proposition 3 below.

2 Frobenius Modules

We fix a prime number p. Let R be a commutative ring, such that p is nilpotent
in R. The ring of Witt vectors with respect to p is denoted by W (R). We
write IR = V W (R) for the Witt vectors whose first component is 0. The Witt
polynomials are denoted by wn : W (R) → R. The truncated Witt vectors of
length n are denoted by Wn(R). If pR = 0 the Frobenius endomorphism F of
the ring W (R) induces an endomorphism F : Wn(R) → Wn(R).
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Definition 1. A Frobenius module over R is a pair (M,F ), where M is a
projective finitely generated W (R)-module of some fixed rank h and F : M →
M is a Frobenius-linear homomorphism, such that det F = pdε locally for
the Zariski topology on R, where ε : detM → det M is a Frobenius-linear
isomorphism and d ≥ 0 is some integer. We call h the height of the Frobenius
module and d the dimension.

This definition implies that the factorization detF = pdε exists even glob-
ally, but we will never use this. Since the kernel of w0 : W (R) → R is in the
radical of W (R), there is always a covering Spec R =

⋃
i Spec Rfi , such that

W (Rfi)⊗W (R) M is a free W (Rfi)-module for each i. Therefore we will often
consider the case where M is a free W (R)-module. If we choose a basis of M
we may view detF as an element of W (R). Then (M,F ) is a Frobenius mod-
ule iff det F = pdη for some unit η ∈ W (R). In a question which is local on
Spec R we will consider det F as an element of W (R) without futher notice.

In this article a display over R is a 3n-display in the sense of [Z1]. The
displays of [Z1] are called nilpotent displays. If P = (P,Q, F, F1) is a display
over R then (P, F ) is a Frobenius module over R.

Let X be a p-divisible over R and assume that p is nilpotent in R. If we
evaluate the Grothendieck-Messing crystal of X at W (R) we obtain a finitely
generated locally free W (R)-module MX , which is endowed with a Frobenius
linear map F : MX → MX . If X is the formal p-divisible group associated to
a nilpotent display P then (MX , F ) = (P, F ) is a Frobenius module. The pair
(MY , F ) is also a Frobenius module, if Y is an extension of an étale p-divisible
group by X.

If we assume moreover that R is a complete local noetherian ring (MX , F )
is a Frobenius module for an arbitrary p-divisible group X over R. Indeed if
the special fibre of X has no étale part then (MX , F ) comes from a display
and is therefore a Frobenius module. Since X is an extension of an étale p-
divisible group by a p-divisible group with no étale part in the special fibre,
we see that (MX , F ) is a Frobenius module in general.

By these remarks any (MX , F ) appearing in this work are Frobenius mod-
ules.

We add that Lau [L] in a forthcoming paper will associate a display to
any p-divisible group over a ring R, where p is nilpotent. Thereby he obtains
a functor from p-divisible groups to Frobenius modules. If we could use this
functor it would be more satisfying then the remark above.

The following lemma is mainly a motivation for the definitions we are
going to make:

Lemma 2. Let P and P ′ be displays over a ring R of the same height and
dimension. Let α : P → P ′ be a homomorphism.

Locally on Spec R the element det α ∈ W (R) satisfies an equation:
F det α = ε · det α,

where ε ∈ W (R)∗ is a unit.
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Proof. We choose normal decompositions

P = L⊕ T, Q = L⊕ IRT
P ′ = L′ ⊕ T ′, Q′ = L′ ⊕ IRT ′.

Without loss of generality we may assume that L,L′, T, T ′ are free W (R)-
modules. We choose identifications

L ' W (R)l ' L′, T ' W (R)t ' T ′.

Then operators F1 and F ′
1 are given by invertible block-matrices with coeffi-

cient in W (R):

F1

(
x

V y

)
=

(
X Y
Z W

) (
F x

y

)
F ′

1

(
x

V y

)
=

(
X ′ Y ′

Z ′ W ′

) (
F x

y

)
The block-matrices are invertible by the definition of a display. We also rep-
resent α by a block matrix

α

(
x

V y

)
=

(
A B

V C D

) (
x

V y

)
Since α commutes with the operators F1 and F ′

1 we find(
X ′ Y ′

Z ′ W ′

) (
F A p F B
C F D

)
=

(
A B

V C D

) (
X Y
Z W

)
(1)

We see that
F

(
A B

V C D

)
=

(
F A F B
pC F D

)
has the same determinant as (

F A p F B
C F D

)
But then taking determinants in (1) gives the result. ut

Proposition 3. Let R be a noetherian ring such that Spec R is connected.
We assume that pR = 0. Let α : P → P ′ be a homomorphism of displays of
the same height h and the same dimension d.

If det α 6= 0 then there is a nonnegative integer u, such that locally on
Spec R the following equation holds:

det α = puε, where ε ∈ W (R)∗, u ∈ Z≥0.
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Proof. If the number u exists locally it is clearly a locally constant function.
Therefore the question is local. We may replace Spec R by a small affine
connected neighbourhood.

We set η = detα. By the last proposition we find:
F η = ζ · η for some ζ ∈ W (R)∗. (2)

We write η = V t

ξ, such that w0(ξ) 6= 0. We claim that (2) implies:

F ξ = F t

ζ · ξ. (3)

To verify this we may assume that t > 0. We obtain:

FV t

ξ = ζ V t

ξ = V t

( F t

ζξ)

Since pR = 0 the operators F and V acting on W (R) commute. Therefore we
deduce (3)

Let w0(ξ) = x and w0( F t

ζ) = e ∈ R∗. We apply w0 to the equation (3)
and obtain:

xp = ex. (4)

Since the product
x(xp−1 − e) = 0

has relatively prime factors, it follows that

D(x) ∪D(xp−1 − e) = Spec R
D(x) ∩D(xp−1 − e) = ∅.

Hence by connectedness either D(x) = Spec R or D(x) = ∅. In the first case
x is nilpotent. But then we find x = 0, by iterating the equation (4). This is a
contradiction to our choices. Therefore D(x) = Spec R and x is a unit. Then
ξ is a unit too. We find

F t

η = F tV t

ξ = ptξ.

But by (2) F t

η may be expressed as the product of η by a unit. This proves
the result. ut

Definition 4. A homomorphism as in the proposition is called an isogeny of
displays.

Let R be a ring such that pR = 0. Assume that the ideal of nilpotent elements
of R is nilpotent. Let α : P → P ′ be a homomorphism of nilpotent displays of
the same height and dimension. By the functor from the category of nilpotent
displays to the category of formal p-divisible groups ([Z1] 3.1) we obtain from
α a morphism φ : X → X ′ of p-divisible groups. It follows from loc.cit. Prop.
66 and Prop. 99 that α is an isogeny, iff φ is an isogeny of p-divisible groups.

Since pR = 0 the Frobenius endomorphism on W (R) induces a Frobenius
endomorphism on the truncated Witt vectors F : Wn(R) → Wn(R). Therefore
we may consider truncated Frobenius modules. We are going to prove a version
of Proposition 3 for truncated Frobenius modules.
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Definition 5. Let R be a ring such that pR = 0. A truncated Frobenius mod-
ule of level n, dimension d, and height h over R is a finitely generated pro-
jective Wn(R)-module M of rank h equipped with a Frobenius linear operator
F : M → M , such that locally on Spec R the determinant has the form

det F = pdε

where ε : detM → det M is a Frobenius linear isomorphism.

A Frobenius module M over R induces a truncated Frobenius module, if we
tensor it by Wn(R).

Definition 6. Let M and N be truncated Frobenius modules of level n and
of the same dimension d and height h. A morphism of Frobenius modules
α : M → N is called an isogeny if there is a natural number u < n such that
the determinant of α has locally on Spec R the form:

F d

det α = puε, ε ∈ Wn(R)∗.

The number u is called the height of the isogeny.

Proposition 7. Let M and N be truncated Frobenius modules of level n and
of the same dimension d and height h over a ring R such that Spec R is
connected and pR = 0.

Let u ≥ 0 be an integer, such that n > u + d. Let α : M → N be a
homomorphism of Frobenius modules such that

F d

det α /∈ V u+1Wn−u−1(R). (5)

Then α becomes an isogeny if we truncate it to level n− d:

α[n− d] : M [n− d] → N [n− d].

Proof. We may assume that M and N are free Wn(R)-modules. We choose
isomorphisms

det M ' Wn(R) ' det N

and view θ := detα as an element of W (R). Then we obtain a commutative
diagram

det M
θ−−−−→ det N

pdτM F

y ypdτN F

det M
θ−−−−→ det N,

where τM , τN ∈ Wn(R)∗ are units. We obtain

pdτN
F θ = θpdτM . (6)
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Using pd = V dF d in Wn(R), we can divide (6) by V d. We then obtain an
equality in Wn−d(R):

F d+1
θ[n− d] = F d

θ[n− d]ρ. (7)

Here θ[n − d] denotes the image of θ by the natural restriction Wn(R) →
Wn−d(R) and ρ ∈ Wn−d(R)∗ is a unit.

On the other hand we may write by assumption:

F d

θ = V u1
σ, (8)

where u1 ≤ u, and w0(σ) = s0 6= 0. Clearly we may assume u = u1. Since
n− d > u we obtain from equation (7)

sp
0 = s0e

for some unit e ∈ R∗. As in the proof of Proposition 3 (see: (4)) we conclude
that s0 is a unit. Then σ is a unit too. From (8) we obtain

F d+u

θ = puσ.

We truncate this equation to Wn−d(R) and use (7) to obtain

F d

θ[n− d] = puε

for some unit ε ∈ Wn−d(R)∗. ut

Let n > u be natural numbers. It is clear that a morphism of displays
α : P → P ′ is an isogeny of height u, iff the map of the truncated Frobenius
modules α[n] : (P [n], F ) → (P ′[n], F ) is an isogeny of height u.

3 Proof of Purity

For the proof of the purity theorem of de Jong and Oort for p-divisible groups
we need to recall a few facts on completely slope divisible p-divisible groups
(abbreviated: c.s.d. groups) from [Z2] and [OZ] Definition 1.2. We will use
truncated Frobenius modules of p-divisible groups over any scheme U . These
are locally free Wn(OU )-modules.

Lemma 8. Let Y be a c.s.d. group over a normal noetherian scheme U over
F̄p. Let n be a natural number. Then there is a finite morphism U ′ → U ,
such that the truncated Frobenius module MY [n] of Y over U ′ is obtained by
base change from a truncated Frobenius module over F̄p, i.e. we can find a
Frobenius module N over F̄p such that there is an isomorphism of Frobenius
modules

Wn(OU ′)⊗Wn(OU ) MY [n] ' Wn(OU ′)⊗W (F̄p) N (9)
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Proof. This is an immediate consequence of [OZ] Proposition 1.3, since it says
that this is true if we take for U ′ the perfect hull of the universal pro-étale
cover of U . Another proof is obtained by substituting in the proof of loc.cit.
Frobenius modules. ut

Proposition 9. Let T be a regular connected 1-dimensional scheme over Fp.
Then any p-divisible group X with constant Newton polygon over T is isoge-
nous to a c.s.d. group.

Proof. This follows from the main result of [OZ] Thm. 2.1. for any normal
noetherian scheme T . But under under the assumptions made the proof is
much easier (compare [Z2] proof of Thm. 7). Indeed let K = K(T ) be the
function field of T . Then we find by over K an isogeny to a c.s.d. group:

XK →
◦
Y (10)

Let
◦
G be the finite group scheme which is the kernel of (10) and let G ⊂ X

be its scheme theoretic closure. We set Y = X/G. Using the fact that X has
constant Newton polygon one proves that Y is c.s.d. ut

The third ingredient is the boundedness principle, which seems to have
been known for a long time [M].

Proposition 10. Let k be an algebraic closed of characteristic p field. Let h be
a natural number. Then there is a constant c ∈ N with the following property:

Let M1 and M2 be Frobenius modules of height ≤ h over k. Let n ∈ N
be arbitrary and let ᾱ : M1/pnM1 → M2/pnM2 be a morphism of truncated
Frobenius modules which lifts to a morphism of truncated Frobenius modules
M1/pn+cM1 → M2/pn+cM2. Then ᾱ lifts to a morphism of Frobenius modules
α : M1 → M2.

A weaker version of this is contained in [O], where the existence of the constant
c is only asserted for given modules M1 and M2. But one can show that for
given modules N1 resp. N2 in the isogeny class of M1 resp. M2, there are always
isogenies N1 → M1 resp. N1 → M1 whose degrees are bounded by a constant
only depending on h. This is another well-known boundedness principle. As
an alternative to this proof the reader may use the much stronger results
discussed in the introduction of [V2].

Theorem 11. (de Jong-Oort) Let R be a noetherian local ring of Krull
dimension ≥ 2 with p · R = 0. Let U = Spec R \ {m}, the complement of the
closed point. A p-divisible group X over SpecR, which has constant Newton
polygon over U has constant Newton polygon over Spec R.

Proof. It is not difficult to reduce to the case where R is complete, normal of
Krull dimension 2 with algebraically closed residue class field k = R/m ([JO]).



694 Thomas Zink

Then U is a 1-dimensional regular scheme. We find by Proposition 9 a c.s.d.
group Y over U and an isogeny

α : Y → X|U , (11)

Let d be the dimension of X let u be the height of α and let c be the number
from Proposition 10. We choose a natural number n > c+u+d.. After a finite
extension of R we may assume by Lemma 8 that the truncated Frobenius
module of Y is constant

MY [n] ' Wn(OU )⊗W (F̄p) N (12)

where N is a Frobenius module over F̄p. In particular the Newton polygons
of N and Y must be the same by the boundedness principle applied to the
field K̄, where K is the field of fractions of R.

Combining (11) and (12) we find an isogeny of height u of truncated Frobe-
nius modules

Wn(OU )⊗W (F̄p) N → Wn(OU )⊗R MX [n]. (13)

By the normality of R we find Γ (U,Wn(OU )) = Wn(R). Taking the global
section of (13) over U we obtain a morphism of truncated Frobenius modules

Wn(R)⊗W (F̄p) N → MX [n]. (14)

We know that (14) is an isogeny over K of height u. Therefore Proposition 3
is applicable to the morphism (14). We obtain therefore an isogeny of height
u of truncated Frobenius modules over R:

Wn−d(R)⊗W (F̄p) N → MX [n− d],

It is clear that the base change of an isogeny of truncated Frobenius modules
is again an isogeny. Making the base change R → k we obtain an isogeny:

Wn−d(k)⊗W (F̄p) N → Wn−d(k)⊗W (R) MX [n− d] = MXk
[n− d].

The boundedness principle shows that Xk and N have the same Newton
polygon. ut
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127–248.

[Z2] Th. Zink, On the slope filtration, Duke Math. J. Vol. 109 (2001),
79-95.


