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1 Introduction

De Jong-Oort purity states that for a family of p-divisible groups X — S over
a noetherian scheme S the geometric fibres have all the same Newton polygon
if this is true outside a set of codimension bigger than 2. A more general result
was first proved in [JO] and an alternative proof is given in [V1]. We present
here a short proof which is based on the fact that a formal p-divisible group
may be defined by a display ([Z1], [Me2]). There are two other ingredients of
the proof which are known for a long time. One is the boundedness principal
for crystals over an algebraically closed field ([O], [V1], [V2]) and the other
is the existence of a slope filtration for a p-divisible group over a non-perfect
field ([Z2]). The last fact was already mentioned in a letter of Grothendieck
to Barsotti [G]. The boundedness property is also an important ingredient in
the proof given by Vasiu in [V1].

We discuss in detail some elementary consequences of the display structure.
The other two ingredients can be found in the literature above. Therefore
we discuss them only briefly. I thank B.Messing for pointing out the correct
formulation of Proposition 3 below.

2 Frobenius Modules

We fix a prime number p. Let R be a commutative ring, such that p is nilpotent
in R. The ring of Witt vectors with respect to p is denoted by W(R). We
write Ir = VIWW(R) for the Witt vectors whose first component is 0. The Witt
polynomials are denoted by w,, : W(R) — R. The truncated Witt vectors of
length n are denoted by W,,(R). If pR = 0 the Frobenius endomorphism F' of
the ring W(R) induces an endomorphism F : W,,(R) — W, (R).
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Definition 1. A Frobenius module over R is a pair (M, F), where M is a
projective finitely generated W (R)-module of some fized rank h and F : M —
M is a Frobenius-linear homomorphism, such that det F = p%e locally for
the Zariski topology on R, where € : det M — det M is a Frobenius-linear
isomorphism and d > 0 is some integer. We call h the height of the Frobenius
module and d the dimension.

This definition implies that the factorization det F' = p%e exists even glob-
ally, but we will never use this. Since the kernel of wy : W(R) — R is in the
radical of W(R), there is always a covering Spec R = | J, Spec Ry,, such that
W(Ry,) @wry M is a free W (Ry,)-module for each . Therefore we will often
consider the case where M is a free W(R)-module. If we choose a basis of M
we may view det F as an element of W(R). Then (M, F) is a Frobenius mod-
ule iff det ' = p?n for some unit n € W(R). In a question which is local on
Spec R we will consider det F' as an element of W (R) without futher notice.

In this article a display over R is a 3n-display in the sense of [Z1]. The
displays of [Z1] are called nilpotent displays. If P = (P, Q, F, F) is a display
over R then (P, F) is a Frobenius module over R.

Let X be a p-divisible over R and assume that p is nilpotent in R. If we
evaluate the Grothendieck-Messing crystal of X at W(R) we obtain a finitely
generated locally free W (R)-module Mx, which is endowed with a Frobenius
linear map F : Mx — Mx. If X is the formal p-divisible group associated to
a nilpotent display P then (M, F') = (P, F) is a Frobenius module. The pair
(My, F) is also a Frobenius module, if Y is an extension of an étale p-divisible
group by X.

If we assume moreover that R is a complete local noetherian ring (Mx, F')
is a Frobenius module for an arbitrary p-divisible group X over R. Indeed if
the special fibre of X has no étale part then (Mx, F') comes from a display
and is therefore a Frobenius module. Since X is an extension of an étale p-
divisible group by a p-divisible group with no étale part in the special fibre,
we see that (Mx, F') is a Frobenius module in general.

By these remarks any (Mx, F') appearing in this work are Frobenius mod-
ules.

We add that Lau [L] in a forthcoming paper will associate a display to
any p-divisible group over a ring R, where p is nilpotent. Thereby he obtains
a functor from p-divisible groups to Frobenius modules. If we could use this
functor it would be more satisfying then the remark above.

The following lemma is mainly a motivation for the definitions we are
going to make:

Lemma 2. Let P and P’ be displays over a ring R of the same height and
dimension. Let a: P — P’ be a homomorphism.
Locally on Spec R the element det « € W(R) satisfies an equation:

Fleta = ¢ - det a,

where e € W(R)* is a unit.



De Jong-Oort Purity 689
Proof. We choose normal decompositions

P=LaT, Q=La&IxT
P=LaT,Q =L oIgT.

Without loss of generality we may assume that L, L', T,T" are free W(R)-
modules. We choose identifications

LeW(R)!~L, T~W({R)! ~T.

Then operators F; and F| are given by invertible block-matrices with coeffi-

cient in W(R): i ‘y r
a(n)=Gw)(3)

T l / F.T?

()Gl (3)

The block-matrices are invertible by the definition of a display. We also rep-
resent v by a block matrix

()= (ven) (1)

Since a commutes with the operators Fy and F] we find
XYy’ FAp¥BY AB XY (1)
z'w c fp) \VCD W
F ABY [(FfAFB
VeDp)— \ pC D
has the same determinant as
FA D FB
c FD

But then taking determinants in (1) gives the result. O

We see that

Proposition 3. Let R be a noetherian ring such that Spec R is connected.
We assume that pR = 0. Let a : P — P’ be a homomorphism of displays of
the same height h and the same dimension d.

If det o # 0 then there is a mnonnegative integer u, such that locally on
Spec R the following equation holds:

deta = p'e, where €€ W(R)*, u € Z>o.
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Proof. If the number u exists locally it is clearly a locally constant function.
Therefore the question is local. We may replace Spec R by a small affine
connected neighbourhood.

We set 17 = det a. By the last proposition we find:

Fyn=¢-n for some ¢ € W(R)*. (2)
We write n = V¢, such that wo(€) # 0. We claim that (2) implies:

Fe— F'¢oe (3)

To verify this we may assume that ¢ > 0. We obtain:

MVie=¢Vie="Y("¢

Since pR = 0 the operators F' and V acting on W(R) commute. Therefore we
deduce (3)
Let wo(§) = 2 and wo( FtC) = e € R*. We apply wy to the equation (3)
and obtain:
P =ex. (4)

Since the product
z(xP™t —e) =0

has relatively prime factors, it follows that

D(x) UD(zP~! —e) = Spec R
D()NnD@@P~t—e)= .

Hence by connectedness either D(z) = Spec R or D(z) = ). In the first case
x is nilpotent. But then we find z = 0, by iterating the equation (4). This is a
contradiction to our choices. Therefore D(x) = Spec R and z is a unit. Then
£ is a unit too. We find

t tyst
Fp=Ve=pt
But by (2) ¥ tn may be expressed as the product of n by a unit. This proves
the result. 0

Definition 4. A homomorphism as in the proposition is called an isogeny of
displays.

Let R be a ring such that pR = 0. Assume that the ideal of nilpotent elements
of R is nilpotent. Let o : P — P’ be a homomorphism of nilpotent displays of
the same height and dimension. By the functor from the category of nilpotent
displays to the category of formal p-divisible groups ([Z1] 3.1) we obtain from
« a morphism ¢ : X — X’ of p-divisible groups. It follows from loc.cit. Prop.
66 and Prop. 99 that « is an isogeny, iff ¢ is an isogeny of p-divisible groups.

Since pR = 0 the Frobenius endomorphism on W(R) induces a Frobenius
endomorphism on the truncated Witt vectors F' : W,,(R) — W, (R). Therefore
we may consider truncated Frobenius modules. We are going to prove a version
of Proposition 3 for truncated Frobenius modules.
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Definition 5. Let R be a ring such that pR = 0. A truncated Frobenius mod-
ule of level n, dimension d, and height h over R is a finitely generated pro-
jective W,,(R)-module M of rank h equipped with a Frobenius linear operator
F: M — M, such that locally on Spec R the determinant has the form

det F = pe

where € : det M — det M is a Frobenius linear isomorphism.

A Frobenius module M over R induces a truncated Frobenius module, if we
tensor it by W, (R).

Definition 6. Let M and N be truncated Frobenius modules of level n and
of the same dimension d and height h. A morphism of Frobenius modules
a: M — N is called an isogeny if there is a natural number v < n such that
the determinant of o has locally on Spec R the form:

L pte, € W,(R)".
The number u is called the height of the isogeny.

Proposition 7. Let M and N be truncated Frobenius modules of level n and
of the same dimension d and height h over a ring R such that Spec R is
connected and pR = 0.

Let w > 0 be an integer, such that n > u+d. Let « : M — N be a
homomorphism of Frobenius modules such that

F et o ¢ VU W _y_1(R). (5)
Then o becomes an isogeny if we truncate it to level n — d:
an—d] : Mn—d] — N[n—d|.

Proof. We may assume that M and N are free W, (R)-modules. We choose
isomorphisms
det M ~ W,,(R) ~ det N

and view 6 := det a as an element of W(R). Then we obtain a commutative
diagram
det M —2— detN

pdTMFl lpdTNF
det M —2 5 det N,

where Ty, 77 € W, (R)* are units. We obtain

pdTN F@ = epdTM. (6)
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Using p? = V4F? in W,,(R), we can divide (6) by V¢. We then obtain an
equality in W,,_4(R):
P — d) = P 9[n — d]p. (7)
Here 0[n — d] denotes the image of 6 by the natural restriction W, (R) —
Wh—a(R) and p € W,_4(R)* is a unit.
On the other hand we may write by assumption:

Fd@ = v a, (8)

where u; < u, and wg(o) = sp # 0. Clearly we may assume u = u;. Since
n — d > u we obtain from equation (7)

sh = spe

for some unit e € R*. As in the proof of Proposition 3 (see: (4)) we conclude
that s is a unit. Then o is a unit too. From (8) we obtain

Fd+u

0 =p“o.
We truncate this equation to W,,_4(R) and use (7) to obtain
Fd@[n —d] =p“e
for some unit € € W,,_4(R)*. O

Let n > u be natural numbers. It is clear that a morphism of displays
a : P — P’ is an isogeny of height u, iff the map of the truncated Frobenius
modules a[n] : (P[n], F) — (P'[n], F) is an isogeny of height w.

3 Proof of Purity

For the proof of the purity theorem of de Jong and Oort for p-divisible groups
we need to recall a few facts on completely slope divisible p-divisible groups
(abbreviated: c.s.d. groups) from [Z2] and [OZ] Definition 1.2. We will use
truncated Frobenius modules of p-divisible groups over any scheme U. These
are locally free W,,(Oy)-modules.

Lemma 8. Let Y be a c.s.d. group over a normal noetherian scheme U over
Fp. Let n be a natural number. Then there is a finite morphism U’ — U,
such that the truncated Frobenius module My [n] of Y over U’ is obtained by
base change from a truncated Frobenius module over Fp, i.e. we can find a
Frobenius module N over Fp such that there is an isomorphism of Frobenius
modules

W (Ov') ®w, (0p) My [n] = Wy, (Ov) @w s,y N (9)
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Proof. This is an immediate consequence of [OZ] Proposition 1.3, since it says
that this is true if we take for U’ the perfect hull of the universal pro-étale
cover of U. Another proof is obtained by substituting in the proof of loc.cit.
Frobenius modules. a

Proposition 9. Let T' be a reqular connected 1-dimensional scheme over IF,.
Then any p-divisible group X with constant Newton polygon over T 1is isoge-
nous to a c.s.d. group.

Proof. This follows from the main result of [OZ] Thm. 2.1. for any normal
noetherian scheme 7. But under under the assumptions made the proof is
much easier (compare [Z2] proof of Thm. 7). Indeed let K = K(T') be the
function field of T'. Then we find by over K an isogeny to a c.s.d. group:

XK—>}O/ (10)

Let G be the finite group scheme which is the kernel of (10) and let G C X
be its scheme theoretic closure. We set Y = X/G. Using the fact that X has
constant Newton polygon one proves that Y is c.s.d. O

The third ingredient is the boundedness principle, which seems to have
been known for a long time [M].

Proposition 10. Let k be an algebraic closed of characteristic p field. Let h be
a natural number. Then there is a constant ¢ € N with the following property:

Let My and My be Frobenius modules of height < h over k. Let n € N
be arbitrary and let & : My /p" My — Ms/p™ My be a morphism of truncated
Frobenius modules which lifts to a morphism of truncated Frobenius modules
M, /p"teMy — My /p"t¢M,. Then & lifts to a morphism of Frobenius modules
[0 M1 — Mg.

A weaker version of this is contained in [O], where the existence of the constant
c is only asserted for given modules M; and Ms. But one can show that for
given modules Ny resp. V5 in the isogeny class of M resp. Ms, there are always
isogenies N1 — M resp. N1 — M, whose degrees are bounded by a constant
only depending on h. This is another well-known boundedness principle. As
an alternative to this proof the reader may use the much stronger results
discussed in the introduction of [V2].

Theorem 11. (de Jong-Oort) Let R be a noetherian local ring of Krull
dimension > 2 with p+- R = 0. Let U = Spec R\ {m}, the complement of the
closed point. A p-divisible group X over SpecR, which has constant Newton
polygon over U has constant Newton polygon over Spec R.

Proof. Tt is not difficult to reduce to the case where R is complete, normal of
Krull dimension 2 with algebraically closed residue class field k = R/m ([JO]).
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Then U is a 1-dimensional regular scheme. We find by Proposition 9 a c.s.d.
group Y over U and an isogeny

a:Y—>X|U, (11)

Let d be the dimension of X let u be the height of a and let ¢ be the number
from Proposition 10. We choose a natural number n > c+u+d.. After a finite
extension of R we may assume by Lemma 8 that the truncated Frobenius
module of Y is constant

My [7’7,] >~ Wn<OU) ®W(]Fp) N (12)

where N is a Frobenius module over I_Fp. In particular the Newton polygons
of N and Y must be the same by the boundedness principle applied to the
field K, where K is the field of fractions of R.

Combining (11) and (12) we find an isogeny of height u of truncated Frobe-
nius modules

Wa(Ov) ®wi,) N = Wa(Ov) ®r Mx|[n]. (13)

By the normality of R we find I'(U, W, (Oy)) = W,(R). Taking the global
section of (13) over U we obtain a morphism of truncated Frobenius modules

Wa(R) ®w e,y N — Mx|n]. (14)

We know that (14) is an isogeny over K of height u. Therefore Proposition 3
is applicable to the morphism (14). We obtain therefore an isogeny of height
u of truncated Frobenius modules over R:

and(R) ®W(]Fp) N — MX [71 - d],

It is clear that the base change of an isogeny of truncated Frobenius modules
is again an isogeny. Making the base change R — k we obtain an isogeny:

Wn_d(k) ®W(]I7‘p) N — Wn_d(k‘) QW (R) Mx [’I”L — d] = Mx, [n - d]

The boundedness principle shows that X; and N have the same Newton

polygon. a
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