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Summary. We construct a real-analytic CR supermanifold R, holomorphically em-
bedded into a superquadric Q ⊂ P3|3 × P∗3|3. A CR distribution F on R enables
us to define a tangential CR complex (Ω•

F , ∂̄).
We define a ∂̄-closed trace functional

�
: Ω•

F → � and conjecture that a Chern-
Simons theory associated with a triple (Ω•

F ⊗ Matn, ∂̄,
�
) is equivalent to N=3,

D=4 Yang-Mills theory with a gauge group U(n). We give some evidences to this
conjecture.

1.1 Introduction

Twistor methods in gauge theory have a long history (summarized in ref.
[P90]). A common feature of these methods is that spacetime is replaced by a
twistor (or ambitwistor) analytic manifold T . Equations of motion ”emerge”
(in terminology of Penrose) from complex geometry of T.

The twistor approach turns to be a very useful technical innovation. For
example difficult questions of classical gauge theory, e.g. the ones that appear
in the theory of instantons, admit a translation into a considerably more
simple questions of analytic geometry of space T. On this way classifications
theorems in the theory of instantons has been obtained (see ref. [AHDM]).

The quantum theory did not have a simple reformulation in the language of
geometry of the space T so far. One of the reasons is that the quantum theory
formulated formally in terms of a path integral requires a Lagrangian. Classical
theory, as it was mentioned earlier, provides only equations of motion whose
definition needs no metric. In contrast a typical Lagrangian requires a metric
in order to be defined. Thus a task of finding the Lagrangian in (ambi)twistor
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setup is not straightforward. In this paper we present a Lagrangian for N=3
D=4 Yang-Mills (YM) theory formulated in terms of ambitwistors.

Recall that N=3 YM theory coincides in components with N=4 YM theory.
The easiest way to obtain N=4 theory is from N=1 D=10 YM theory by
dimensional reduction. The Lagrangian of this ten dimensional theory is equal
to

(< Fij , Fij > + < D/χ, χ >)dvol (1.1)

In the last formula Fij is a curvature of connection ∇ in a principal U(n)-
bundle over R10. An odd field χ is a section of S ⊗Ad, where S is a complex
sixteen dimensional spinor bundle, Ad is the adjoint bundle, D/ is the Dirac
operator, < ., . > is a Killing pairing on u(n). The measure dvol is associated
with a flat Riemannian metric on R

10, Fij are coefficients of the curvature
in global orthonormal coordinates. The N=4 theory is obtained from this by
considering fields invariant with respect to translations in six independent
directions. The theory is conformally invariant and can be defined on any
conformally flat manifold,e.g. S4 with a round metric.

E. Witten in 1978 in ref. [W78] discovered that it is possible to encode
solutions N=3 supersymmetric YM-equation by holomorphic structures on
a vector bundle defined over an open subset U in a superquadric Q. We
shall call the latter a complex ambitwistor superspace. In this description the
action of N=3 superconformal symmetry on the space of solutions is manifest.
Symbol n|m denotes dimension of a supermanifold. More precisely the quadric
Q ⊂ P3|3 ×P∗3|3 is defined by equation

3∑

i=0

xix
i +

3∑

i=1

ψiψ
i = 0, (1.2)

in bihomogeneous coordinates

x0, x1, x2, x3, ψ1, ψ2, ψ3; x
0, x1, x2, x3, ψ1, ψ2, ψ3 (1.3)

in P3|3×P∗3|3(xi, x
j-even, ψi, ψ

j-odd, a symbol ∗ in the superscript stands
for the dual space). The quadric a is complex supermanifold. It makes sense
therefore to talk about differential (p, q)-forms Ωp,q(Q).

Let G be a holomorphic vector bundle on U . Denote by

Ω0•EndG, (1.4)

a differential graded algebra of smooth sections of EndG with coefficients in
0, p-forms.

Let ∂̄ and ∂̄′ be two operators corresponding to two holomorphic struc-
tures in G. It is easy to see that (∂̄′ − ∂̄)b = ab, where a ∈ Ω0,1EndG. The

integrability condition ∂̄
′2

= 0 in terms of ∂̄ and a becomes a Maurer-Cartan
(MC) equation:

∂̄a+
1

2
{a, a} = 0 (1.5)
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The first guess would be that the space of fields of ambitwistor version
of N=3 YM would be Ω0,1(U)EndG, where G is a vector bundle on U of
some topological type. Witten suggested in ref. [W03] that the Lagrangian
in question should be similar to a Lagrangian of holomorphic Chern-Simons
theory.

CS(a) =

∫
tr(̃(

1

2
a∂̄a+

1

6
a3))V ol (1.6)

where V ol is some integral form. The action (1.6) reproduces equations of
motion (1.5). The hope is that perturbative analysis of this quantum theory
will give some insights on the structure of N=3 YM.

The main result of the present note is that we give a precise meaning to
this conjecture.

Introduce a real supermanifold R ⊂ Q of real superdimension 8|12. It is
defined by equation

x1x̄
2 − x2x̄

1 + x3x̄
4 − x4x̄

3 +

3∑

i=1

ψiψ̄
i = 0 (1.7)

In section (1.5.1) we discuss the meaning of reality in superalgebra and geom-
etry. A tautological embedding of R into the complex manifold Q induces a
CR structure specified by distribution F . Properties of this CR structure are
discussed in section (1.2.1). A global holomorphic supervolume form vol on Q
is constructed in proposition (2). When restricted on R it defines a section of
intΩ−3

F -a CR integral form. Functorial properties of this form are discussed in
section (1.5.3). For any CR-holomorphic vector bundle G we define a differ-
ential graded algebra Ω•

FEnd(G). It is the tangential CR complex. We equip
it with a trace ∫

: a→

∫

R

tr(a) vol (1.8)

We define a CS-action of the form (1.6), where we replace an element of
Ω0•(U)End(G) by an element of Ω•

F (R)End(G). The integral is taken with
respect to the measure vol. We make some assumptions about topology of G
as it done in classical twistor theory. The space S is a superextension of S4

(see section (1.2.2) for details). There is a projection

p : R → S (1.9)

We require that G is topologically trivial along the fibers of p. It is an easy
exercise in algebraic topology to see that topologically all such bundles are
pullbacks from S4. On S4 unitary vector bundles are classified by their second
Chern classes.

Conjecture 1. Suppose G is a CR-holomorphic vector bundle on R of rank n.
Under the above assumptions a CS theory defined by the algebra Ω•

FEnd(G)
is equivalent to N=3 YM theory on S4 in a principal U(n) bundle with the
second Chern class equal to c2(End(G)).
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For perturbative computations in YM theory it is convenient to work in BV
formalism. See ref. [Sch00] for mathematical introduction and ref. [MSch06]
for applications to YM.

Conjecture 2. In assumptions of conjecture (1) we believe that N=3 YM the-
ory in BV formulation is equivalent to a CS theory defined by the algebra
Ω•

FEnd(G), where the field a ∈ Ω•
FEnd(G) has a mixed degree.

The following abstract definition will be useful

Definition 1. Suppose we are given a differential graded algebra (A, d) with
a d-closed trace functional

∫
. We can consider A as a space of fields in some

field theory with Lagrangian defined by the formula

CS(a) =

∫
(
1

2
ad(a) +

1

6
a3) (1.10)

We call it a Chern-Simons CS theory associated with a triple (A, d,
∫

)

We say that two theories (A, d,
∫

) and (A′, d′,
∫ ′

) are classically equivalent

if there is a quasiisomorphism of algebras with trace f : (A, d,
∫

) → (A′, d′,
∫ ′

)
See Appendix of [MSch05] for extension of this definition on A∞ algebras

with a trace.

Thus the matrix-valued Dolbeault complex (Ω•
F (R) ⊗ Matn, ∂̄) with a

trace defined by the formula
∫

(a) = tr
∫
r
avol would give an example of such

algebra.
We shall indicate existence of classical equivalence of N=3 YM defined

over Σ = R4 ⊂ S4 and a CS theory defined over p−1(U),
where U is an open submanifold of S with Ured = Σ.
Here is the idea of the proof.
We produce a supermanifold Z and an integral form V ol on it. We show

that a CS theory constructed using differential graded algebra with a trace
A(Z), associated with manifold Z is classically equivalent to N=3 YM theory.
We interpret algebra A(Z) as a tangential CR-complex on Z.

We shall construct a manifold Z and algebra A in two steps .
Here is a description of the steps in more details:
Step 1. We define a compact analytic supermanifold Π̃F and construct

an integral form µ on it in a spirit of [MSch05]. Let Apt be the Dolbeault

complex of Π̃F . Integration of an element a ∈ Apt against µ over Π̃F defines
a ∂̄-closed trace functional on Apt. We show that the Chern-Simons theory
associated with dga (Apt ⊗ Matn, ∂̄,

∫
⊗trMatn) is classically equivalent to

N=3 Yang-Mills theory with gauge group U(n) reduced to a point.
Step 2. From the algebra Apt we reconstruct a differential algebra A. The

algebraA⊗Matn conjecturally encodes full N=3 Yang-Mills theory with gauge
group U(n) in a sense of definition (1). If we put aside the differential d, A is
equal to Apt⊗C

∞(Σ). The integral form we are looking for is equal to V ol =
µdx1dx2dx3dx4, where Σ is equipped with global coordinates x1, x2, x3, x4.
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The manifold Z CR submanifold. We identify it with an open subset of
R.

Finally we would like to formulate an unresolved question. Restriction of
a holomorphic vector bundle G over U on U ∩ R defines a CR-vector bundle
over the intersection. Is it true that any CR-holomorphic vector bundles can
be obtained this way? The answer would be affirmative if we impose some
analyticity conditions on the CR structure on G. Presumably super Levi form
will play a role in a solution of this problem.

It is tempting to speculate that there is a string theory on Q and R defines
a D-brane in it.

We need to say few words about the structure of this note. In section (1.2)
we make definitions and provide some constructions used in formulation of
conjectures (1) and (2).

In sections (1.3) we give a geometric twistor-like description of N=3 YM
theory reduced to a point( Step 1). In Section (1.4) we do the Step 2.

Appendix contains some useful definitions concerning reality in superalge-
bra and CR-structures. The main proposition is (5).

1.2 Infinitesimal constructions

In this section we shall show that the space R is homogeneous with respect
to the action of a real form of N=3 superconformal algebra gl(4|3) . Here we
also collected facts that are needed for coordinate-free description of space R
in terms of Lie algebras of symmetry group and isotropy subgroup.

1.2.1 Real structure on the Lie algebra gl(4|3)

In this section we describe a graded real structure on gl(4|3). It will be used
later in construction of CR-structure on real super-ambitwistor space.

The reader might wish to consult section (1.5.1) for the definition of a
graded real structure. There the reader will find explanation of some of our
notations. By definition gl(4|3) is a Lie algebra of endomorphisms of a super-
space C4|3 = C4+ΠC3. Symbol Π stands for the parity change. This Lie alge-

bra consists of matrices of a block form

(
A B
C D

)
with A ∈Mat(4×4,C), D ∈

Mat(3 × 3,C), C ∈ Mat(3 × 4,C), B ∈ Mat(4 × 3,C). Elements

(
A 0
0 D

)

belong the even part gl0(4|3), elements

(
0 B
C 0

)
to the odd gl1(4|3).

In the following a symbol g(K) will stand for a Lie algebra defined over a
field K. If the field is not present it means that the algebra is defined over C.
The same applies to Lie groups.

Let g be a complex super Lie algebra. By definition a map ρ that defines
a graded real structure on on super Lie algebra g if ρ is a homomorphism:
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ρ[a, b] = [ρ(a), ρ(b)]. In ref. [Man] Yu. I. Manin suggested several definitions of
a real structure on a (Lie) superalgebra. In notations of [Man] these definitions
are parametrized by a triple (ε1, ε2, ε3), εi = ±. Our real structure correspond
to the choice ε1 = −, ε2 = ε3 = +.

The reader will find a complete classification of graded real structures on
simple Lie algebras in the work [Serg].

Define a matrix J as :

J =

(
0 id

−id 0

)
(1.11)

where id is a 2 × 2 identity matrix. A map ρ is defined as

ρ

(
A B
C D

)
=

(
J 0
0 id

) (
A B
C D

) (
−J 0
0 id

)
=

(
−JAJ JB
−CJ D

)
(1.12)

The identity ρ2 = sid is a corollary of equation J2 = −id.
It is useful to analyze the Lie subalgebra gl0(4|3)ρ of real points in

gl0(4|3) = gl(4,C) × gl(3,C). Due to (1.12) we have gl(3)ρ = gl(3,R). To
identify glρ(4) we interpret C4 = C2 + C2(whose algebra of endomorphisms
is gl(4) ) as a two-dimensional quaternionic space H + H. Let 1, i, j, k be the
standard R-basis in quaternions, < e1, e2 > be an H-basis in H+H. The space
H + H = C2 + C2 has a complex structure defined by the right multiplication
on i. The right multiplication on j defines an i-antilinear map. In a C-basis
e1, e2, e1j, e2j a matrix of right multiplication on j is equal to J . From this it
is straightforward to deduce that glρ(4) = gl(2,H).

Definition 2. Let M be a C∞ supermanifold with a tangent bundle T . Let
H ⊂ T be a subbundle equipped with a complex structure J . This data defines a
(nonintegrable) CR-structure on M . There is a decomposition 1 HC = F +F .
A CR-structure (H, J) is integrable if a space of sections of F is closed under
commutator. In this case we also say that F is integrable.

Definition 3. Let Mred denote the underlying manifold of supermanifold M .

If M is a real submanifold of a complex supermanifold N then at any
x ∈M the tangent space Tx to M contains a maximal complex subspace Hx.
If rankHx is constant along M then a family of spaces H defines an integrable
CR-structure. In our case the manifold R ⊂ Q is defined by equation (1.7).

Denote by GL(4|3) an affine supergroup with Lie algebra Lie(GL(4|3))
equal to gl(4|3)2. We will show later that R is a homogeneous space of a real
form of GL(4|3) described above. The induced CR-structure is real-analytic
and homogeneous with respect to the group action .

A CR-structure on a supermanifold enables us to define an analog of Dol-
beault complex . Suppose a supermanifold M carries a CR structure F ⊂ T C.

1 In the following a letter � in superscript denotes complexification.
2 For global description of (GL(4|3), ρ) see ref. [Pel].
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A space of complex 1-forms Ω1
M contains a subspace I of forms pointwise

orthogonal to F . It is easy to see that F is integrable iff the ideal (I) is closed
under d. Define a tangential CR-complex (Ω•

F , ∂̄) to be (Ω•/(I), d) .
A vector bundle G is CR-holomorphic if the gluing cocycle gij satisfies

∂̄gij = 0. In such case we can define a G-twisted CR-complex Ω•
FG.

Remark 1. Denote by σ an operation of complex conjugation. Define an anti-
linear map

s = σ ◦

(
J 0
0 id

)
: C

4|3 → C
4|3. (1.13)

A map a → sas−1, a ∈ gl(4|3) coincides with the real structure ρ. Let us
think about LHS of equation (1.2) as a quadratic function associated with
an even bilinear form (a, b). It is easy to see that LHS of equation (1.7) is
equal to (a, s(a)) = 0. Naively thinking the centralizer of operator s would
precisely be the real form of (gl(4|3), ρ) and it would preserve equations (1.2)
and (1.7). The problem is that we cannot work pointwise in supergeometry.
Instead we consider equations (1.2, 1.7) as a system of real algebraic equations.
We interpret them as a system of sections of some line bundles on CH manifold

M = P3|3 × P∗3|3 × P
3|3

× P
∗3|3

(see section (1.5.1) for discussion of reality
in supergeometry). The space M carries a canonical graded real structure ρ,
that leaves the space of equations invariant. The ρ-twisted diagonal action of
gl(4|3) also leaves the equations invariant.

The graded real structure induces a graded real structure ρ on gl(4|3)ρ

and makes a supermanifold R an algebraic graded real supermanifold.

1.2.2 Symmetries of the ambitwistor space

We define a space RGL(4|3) as a homogeneous space of a real supergroup
(GL(4|3), ρ). In this section we establish an isomorphism RGL(4|3)

∼= R.
In fig. (1.1) the reader can see a graphical presentation of some matrix(
A B
C D

)
∈ gl(4|3).

The isotropy subalgebra a ⊂ gl(4|3) of a base point in the space RGL(4|3) is
defined as a linear space of matrices whose nonzero entries are in the darkest
shaded area of a matrix in fig. (1.1).

Lemma 1. Subspace a ⊂ gl(4|3) is a ρ-invariant subalgebra.

Proof. Direct inspection.

Let A be an algebraic subgroup of GL(4|3) with a Lie algebra a.
The space RGL(4|3) carries a homogeneous CR structure (see section (1.5.2)

for related discussion). Define a subspace p ⊂ gl(4|3) as a set of matrices with
nonzero entries in gray and dark gray areas in fig. (1.1).

Lemma 2. Subspace p ⊂ gl(4|3) is a subalgebra. It satisfies p ∩ ρ(p) = a
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*

*

*

*

Fig. 1.1.

Proof. Direct inspection.

Let P denote an algebraic subgroup with Lie algebra p . A complex super-
manifold X = GL(4|3)/P has an explicit description.

Equation (1.2) is preserved by the action of GL(4|3).

Proposition 1. There is a GL(4|3)-equivariant isomorphism X = Q.

Proof. We can identify the quadric Q with the space of partial flags C4|3 in
as it is done in purely even case (see [GH] for example). A spaces Q is a
connected component of the flag space containing the flag

F1 ⊂ F2 ⊂ C
4|3 (1.14)

with F1
∼= C1|0 and F2

∼= C3|3. This flag can be interpreted as a pair of points
F1 ∈ P3|3, F2 ∈ P∗3|3. The condition (1.14) is equivalent to (1.2).

Let us choose a standard basis e1, . . . , e7 of C4|3 such that the parities of
elements are ε(e1) = ε(e2) = ε(e3) = ε(e7) = 1, ε(e4) = ε(e5) = ε(e6) = −1.
In this notations the standard flag F has the following description:

F1 = span < e7 >

F2 = span < e2, . . . e7 >
(1.15)

The flag defines a point in the space Q. It is easy to compute a shape of the
matrix of an element from the stabilizer PF of F . The following picture is
useful
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gl(2|3)

C∗2|3 C

C rad

C1|0

C2|3

(1.16)

The Lie algebra pF of stabilizer PF is formed by matrices with zero entries be-
low thick solid line in picture (1.16). Conjugating with a suitable permutation
of coordinates t we see that ptF = p.

Remark 2. A transformation s defined in equation (1.13) acts on the space
of flags. By definition an s-invariant flag belongs to the subvariety R . A
direct inspection shows that the nonzero entries of the matrix of an element
of stabilizer are located in the darkest shaded area on fig. (1.1). The manifold
Rred fibers over P3 with connected fibers. Thus R is connected. From this
and a simple dimension count we conclude that subvariety R coincides with
RGL(4|3). Identification of CR structure also follows from this.

The Lie algebra gl(4|3) contains a subalgebra l. The elements of this subalge-
bra have nonzero entries in the darkest area on fig (1.1) and also spots marked
by ∗. This algebra is invariant with respect to the real structure ρ. Denote by
L an algebraic subgroup of GL(4|3) with Lie algebra l.

The quotient (SGL(4|3), ρ) = ((GL(4|3)/L), ρ) is a supermanifold with
(SGL(4|3))

ρ
red = S4. Indeed the real points Lρred of the group Lred are con-

jugated to quaternionic matrices of the form

(
a b
0 d

)
∈ GL(2,H). Thus the

quotient space GL(2,H)/Lρred = HP1 is isomorphic to S4. Denote by p pro-
jection

RGL(4|3) → SGL(4|3) (1.17)

An easy local exercise with Lie algebras reveals that the fibers of projection
p are CR-holomorphic and are isomorphic to P1 ×P1.

The following direct geometric description of ambitwistor space will be
useful. Let M be a C∞ 4-dimensional Riemannian manifold. A metric g de-
fines a relative quadric (the ambitwistor space) in the projectivisation of a
complexified tangent bundle A(M) ⊂ P(T C). By construction there is a pro-
jection p : A(M) → M . The space A(M) carries a CR structure (it could
be nonintegrable). Indeed a fiber of the distribution F at a point x ∈ A(M)
is a direct sum of the holomorphic tangent space to the fiber through x and
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a complex line in TC(M) spanned by x. From the point of view of topology
the space A(M) coincides with a relative Grassmannian of oriented 2-planes
in TM . A constructed complex distribution depends only on conformal class
of the metric. From this we conclude that A(S4) (S4 has a round metric) is
a homogeneous space of Conf(S4) = PGL(2,H), A(S4) = PGL(2,H)/Aρred
and the CR structure is integrable.

An appropriate super generalization of this construction is as follows . We
have an isomorphism

Wl ⊗Wr

Γ
∼= TC

M (1.18)

In the last formula Wl,Wr are complex two-dimensional spinor bundles on
M (we assume that M has a spinor structure). The isomorphism Γ is defined
by Clifford multiplication. Let T be a 3-dimensional linear space. To simplify
notations we keep Wl⊗T +Wr ⊗T ∗ for the pullback p∗(Wl ⊗T +Wr ⊗T ∗).

Define a split, holomorphic in odd directions3 supermanifold Ã(M) associated
with a vector bundle Π(Wl ⊗ T + Wr ⊗ T ∗) over A(M). To complete the
construction we define a superextension of the CR structure. Introduce odd
local coordinates θiα, θ̃

jβ (1 ≤ i, j ≤ 2, 1 ≤ α, β ≤ 3) on fibers of Π(Wl ⊗ T +
Wr ⊗T ∗). We decompose local complex vector fields Γ ( ∂

∂θi
α
⊗ ∂

∂θ̃jβ
) in a local

real basis ∂
∂xs as δβαΓ

s
ij

∂
∂xs , 1 ≤ s ≤ 4. The odd part of the CR distribution F

is locally spanned by vector fields

∂

∂θiα
+ θ̃jαΓ

s
ij

∂

∂xs

∂

∂θ̃jα
+ θjαΓ sij

∂

∂xs

(1.19)

This construction of a superextension of ordinary CR structure depends only
on the conformal class of the metric. It is convenient to formally add the
complex conjugate odd coordinates. This way we get A(M) = Π(Wl ⊗ T +
Wr ⊗ T ∗ +Wl ⊗ T +Wr ⊗ T ∗), equipped with a graded real structure. As in
the even case the symmetry analysis allows to identify CR-space A(S4) with
R.

A tangent space m to Q at a point fixed by p is formed by elements with
nonzero entries below thick solid line on the picture (1.16) . It decomposes
into a sum C2|3 + C∗2|3 + C1|0 of irreducible GL(2|3) representations.

The elements a21, a31, α41, α51, α61, a71, a72, a73, α74, α75, α76 stand for ma-
trix coordinate functions on the linear space m( coordinates a are even, α are
odd).

Proposition 2. An element

vol = da21∧da31 ∧dα41 ∧dα51 ∧dα61 ∧da71 ∧da72 ∧da73 ∧dα74 ∧dα75 ∧dα76

(1.20)
belongs to Ber(m∗). It is invariant with respect to the action of P .

3 The reader might wish to consult section (1.5.1) on this.
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Proof. Simple weight count.

We spread a generator of Ber(m∗) by the action of GL(4|3) over Q and
form a GL(4|3)-invariant section vol of BerC(Q)

1.3 Reduced theory

As a preliminary step in construction of the superspace Z we introduce a
”holomorphic” manifold Π̃F and an integral form on it (see section (1.3.2)
for the explanation of quotation marks ). The form defines a functional

∫
on

Dolbeault complex of this manifold. We prove that the CS theory constructed
by the triple (Ω0•(Π̃F )⊗Matn, ∂̄,

∫
⊗trMatn) is classically equivalent to N=3

YM theory with gauge group U(n) reduced to a point.

1.3.1 A Manifold ΠF

A manifold Π̃F is a deformation of a more simple manifoldΠF . In this section
we give relevant definitions concerning ΠF .

Denote a product P1 ×P1 by X . It has two projections pi : X → P1, i =
l, r. Let O(1) denote the dual to the Hopf line bundle over P1. The Picard
group of X is Z+Z. It is generated by the classes of line bundles π∗

l O(1) = Ll,
π∗
rO(1) = Lr that can serve as coordinates in Pic(X). Let O(a, b) denote a

line bundle L⊗a
l ⊗L⊗b

r .
Convention We denote by H•(Y,G) the cohomology of (super)manifold

Y with coefficients in a vector bundle G. It can be computed as cohomology of
Dolbeault complex Ω0•(Y )G. It is tacitly assumed that in the section (1.3) the
omitted argument Y in Ω0•(Y )G implies Y = X . If G-argument is missing
we assume that G = O.

Denote by SymV,ΛV symmetric and exterior algebras of a vector space
(bundle).

Denote by Θ a line bundle isomorphic to O(1, 1). We construct a vector
bundle F over X as a direct sum:

F = T ⊗Ll + T ∗ ⊗Lr +Θ∗

H = T ⊗Ll + T ∗ ⊗Lr.
(1.21)

As before T is a three dimensional vector space.
The reader may have noticed that the manifold X has also appeared as a

fiber of projection (1.9). We shall see this is not accidental.

1.3.2 Properties of the manifold ΠF

In this section we devise an infinitesimal deformation of a complex structure
onΠF . This deformation will be promoted to the actual deformation which we
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denote by Π̃F . The algebra Apt from the introduction is equal to Ω0•(Π̃F ).

We construct on Π̃F we construct an integral form that will enable us to
define a functional

∫
D

: Ω0•(Π̃F ) → C.
The manifold ΠF is a complex split supermanifold. The Dolbeault com-

plex (Ω0•(ΠF ), ∂̄) is defined on supermanifold ΠF , considered as a graded
real supermanifold. The complex (Ω0•(ΠF ), ∂̄) contains as a differential sub-
algebra the Dolbeault complex Ω0•ΛF ∗.

Proposition 3. Differential algebras Ω0•(ΠF ) and Ω0•ΛF ∗ are quasiisomor-
phic.

Proof. The same as a proof of proposition (8)

The canonical line bundle KX is equal to O(−2,−2). There is a nontriv-

ial cohomology class- the ”fundamental” class: α ∈ H2(X,O(−2,−2))
id
⊂

H2(X,O(−2,−2) ⊗ T ⊗ T ∗) ⊂ H2(X,Λ2(H∗) ⊗ Θ∗) ⊂ H2(X,ΛF ∗ ⊗ Θ∗).
We interpret Λ(F ∗) ⊗ Θ∗ as a sheaf of local holomorphic differentiations of
ΠF in direction of Θ∗.

A representative α = fdz̄ldz̄r
∂
∂θ

(zl, zr are local coordinates on X) of the
class [α] can be extended to a differentiation of Ω0•(ΠF ). The main properties
of D = ∂̄ + α are:
1) it is a differentiation of Ω0•(ΠF ),
2) equation D2 = 0 holds.
All of them are corollaries of ∂̄-cocycle equation for α. The operator D defines
a new ”holomorphic” structure on ΠF 4. This new complex manifold will be
denoted by Π̃F .

The manifold ΠF is Calabi-Yau. By this we mean that BerC is trivial.
Indeed the determinant line bundle of F is equal to det(T ⊗ Ll) ⊗ det(T ∗ ⊗
Lr)⊗det(O(−1,−1)) = O(3, 0)⊗O(0, 3)⊗O(−1,−1) = O(2, 2); BerCΠF =
KX ⊗ detF = O-is trivial.

It implies that the bundle BerCΠF admits a nonvanishing section volΠF .
This section is SO(4)-invariant. The action of u = C + C-the unipotent

subgroup of Borel subgroup B ⊂ SO(4) on the large Schubert cell of X is
transitive and free.

Hence the section of BerCΠF in u-coordinates is

volΠF = dzl ∧ dzr ∧ dα1 ∧ dα2 ∧ dα3 ∧ dα̃1 ∧ dα̃2 ∧ dα̃3 ∧ dθ,

4 This definition is not standard, because usually a deformation cocycle α is an
element of Ω0,1T (T is a holomorphic tangent bundle), whereas in our case α ∈
Ω0,2T . We however continue to use a traditional wording and call it a deformation
of a complex structure, though a more precise term would be deformation of the
Dolbeault algebra (Ω0•, )̄. This algebra in our approach becomes a substitute for
the underlying manifold.
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where α1, . . . , α̃3, θ are u-invariant coordinates on the odd fiber. The section
volΠF is in the kernel of D by construction.

We can construct on manifold ΠF a global holomorphic integral −2-
form the way explained in remark (9). In our case it is equal to cΠF =
α1 . . . α̃3θdα1 ∧ · · · ∧ dα̃3 ∧ dθ.

Proposition 4. The form µ = volΠF ⊗ c̄ΠF is D closed nontrivial integral
(0,−2)-form on the underlying real graded ΠF .

Proof. Direct inspection in local coordinates.

An integral form µ defines a ∂̄ + α-closed trace on Ω0•(ΠF ) ⊗Matn
∫
a = tr

∫

ΠF

aµ

Remark 3. Suppose we have an A∞ algebra A equipped with a projector π.
A homotopy H such that {d,H} = id − π can be used as an input data for
construction of a new A∞ structure on Imπ (see [Kad],[Markl] for details).
The homotopy H is not unique. The resulting A∞ algebras will have differ-
ent multiplications, depending on H . All of then will be A∞ equivalent. An
additional structure on A helps to fix an ambiguity in a choice of H . In our
case algebra A is a Dolbeault complex of a manifold with an operator π being
an orthogonal projection on cohomology. If the manifold is compact, Kähler
and a G-homogeneous there is natural choice of H : H = ∂̄∗/∆′. The operator
∂̄∗ ∆′ are build by a G-invariant metric. The operator ∆′ is equal to ∆ on
Ker∆⊥ and equal to identity on Ker∆.

Remark 4. A construction described in remark (3) admits a generalization.
Suppose an A∞ algebra A has a differential d that is a sum of two anticom-
muting differentials d1 and d2. Assume that {d1, H} = id − π and a com-
position d2H is a nilpotent operator . Then Imπ carries a structure an A∞

algebra quasiisomorphic to A. The same statement is true for A∞ algebras
with a trace. The proof goes along the same lines as in ref. [Markl], but we
allow two-valent vertices.

Technically it is more convenient to work not with algebra Ω0•(Π̃F ) but
with a quasiisomorphic subalgebra (Ω0•ΛF,D) .

In application of the constructions from the remarks (3, 4) we choose π to
be an orthogonal projector from the Hodge theory, corresponding to SO(4,R)-
invariant metric on X . We also use a decomposition D = d1 + d2 = ∂̄ + α.

The algebra of cohomology of (Ω0•ΛF, ∂̄) carries an A∞-algebra structure.
We denote it by C = H•(X,Λ(H∗)⊗Λ(Θ)). Denote by ψ a quasiisomorphism
(Ω0•ΛF, ∂̄) → C. We shall describe some properties of C. LetWl,Wr be spinor
representations of SO(4). The vector representation V is equal to Wl ⊗Wr.

The differential α induces a differential [α] on C. The ghost grading of the
group H i(X,Λk(H∗)⊗Λs(Θ)) is equal to i+s, the additional grading is equal
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to k + 2s(preserved by ∂̄ and α). We used a nonstandard ghost grading that
differs from the one used in physics on shift by one. In particular the ghost
grading of the gauge (labeled by V ) and spinor (labeled by spinors Wl, Wr)
and matter (SO(4) action is trivial ) fields is equal to one. In the table below
you will find the field content (representation theoretic description ) of C :

gh deg gh deg

0 0 H0(X,Λ0(H∗)) = C 1 2 H0(X,Λ0(H∗) ⊗ Θ) = V

1 2 H1(X,Λ2(H∗)) = Λ2(T ) + Λ2(T∗) 1 3 H0(X,Λ1(H∗) ⊗ Θ) = Wl ⊗ T +Wr ⊗ T∗

1 3 H1(X,Λ3(H∗)) = Wl +Wr 1 4 H0(X,Λ2(H∗) ⊗ Θ) = T ⊗ T∗

2 4 H2(X,Λ4(H∗)) = T ⊗ T∗ 2 5 H1(X,Λ3(H∗) ⊗ Θ) = Wl +Wr

2 5 H2(X,Λ5(H∗)) = Wl ⊗ Λ2(T ) +Wr ⊗ Λ2(T∗) 2 6 H1(X,Λ4(H∗) ⊗ Θ) = T + T∗

2 6 H2(X,Λ6(H∗)) = V 3 8 H2(X,Λ6(H∗) ⊗ Θ) = C

(1.22)
The groups H0(X,Λ2(H∗) ⊗ Θ) and H2(X,Λ4(H∗)) are contracting pairs,
they are killed by the differential [α] and should be considered as auxiliary
fields in the related CS theory.

An A∞ algebra C besides differential [α] and multiplication has higher
multiplication on three arguments (corresponding to cubic nonlinearity of
YM equation). However operations in more then tree arguments are not
present. This can be deduced from homogeneity of ∂̄ and α with respect
to the additional grading. Finally representation theory fixes structure maps
up to a finite number of parameters. The integral

∫
defines a nonzero map

tr : H2(X,Λ6(H∗) ⊗Θ) → C.
Presumably it is possible to complete this line of arguments to a full de-

scription of multiplications in C. We prefer do it indirectly through the relation
to Berkovits construction [Berk].

Remark 5. Let R10 be a linear space, equipped with a positive-definite dot-
product. Denote by S an irreducible complex spinor representation of orthog-
onal group SO(10). Denote by Γ iαβ coefficients of the nontrivial intertwiner

Sym2(S) → C10 in some basis of S and an orthonormal basis of C10. The
range of the intertwiner is complexification of tautological representation R10.
We assume that C10-basis is real.

On a superspace (R10+ΠS)⊗u(n) we define a superfunction (Lagrangian)

S(A,χ) =
∑

i<j

tr([Ai, Aj ][Ai, Aj ]) +
∑

αβi

tr(Γ iαβ [Ai, χ
α]χβ) (1.23)

A1, . . . , A10 is a collection of antihermitian matrices labeled by the basis of
C10. Similarly odd matrices χ1, . . . , χ16 are labeled by the basis of S. This
can be considered as a field theory, obtained from D=10, N=1 YM theory by
reduction to zero dimensions. We call it IKKT after the paper [IKKT] where
it has been studied. IKKT theory has a gauge invariance - invariance with
respect to conjugation. A BV version of IKKT coincides with a CS theory
associated with an A∞ algebra AIKKT that we shall introduce presently.

Definition 4. An A∞ algebra AIKKT can be considered as vector space
spanned by symbols xk, ξ

α, c, x∗k, ξ∗α, c
∗, 1 ≤ k ≤ 10, 1 ≤ α ≤ 16 with oper-
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ations µ2 (multiplication), µ3(Massey product) defined by the following for-
mulas:

µ2(ξ
α, ξβ) = Γαβk x∗k (1.24)

µ2(ξ
α, xk) = µ2(xk , ξ

α) = Γαβk ξ∗β (1.25)

µ2(ξ
α, ξ∗β) = µ2(ξ

∗
β , ξ

α) = c∗ (1.26)

µ2(xk , x
∗k) = µ2(x

∗k , xk) = c∗ (1.27)

µ3(xk , xl, xm) = δklx
∗m − δkmx

∗l (1.28)

µ2(c, •) = µ2(•, c) = • (1.29)

(1.30)

All other products are equal to zero. An element c is a unit.
All operations µk with k 6= 2, 3 vanish. The algebra carries a trace func-

tional tr equal to one on c∗ and zero on the rest of the generators. It induces
a dot-product by the formula (a, b) = tr(µ2(a, b)), compatible with µk.

By definition an A∞ algebra has a grading (we call it a ghost grading )
such that operation µn has degree 2 − n. An A∞ algebra might also have an
additional grading such that all operations have degree zero with respect to
it. See [MSch05] for details on gradings of AIKKT .

Proposition 5. A differential graded algebra with a trace (Ω0•(Π̃F ), ∂̄ +
α, trµ) is quasiisomorphic to AIKKT .

Proof. We shall employ methods developed in [MSch05]. Recall that the man-
ifold of pure spinors in dimension ten is equal to P = SO(10,R)/U(5). As
a complex manifold it is defined as a space of solutions of homogeneous
equations Γ iαβλ

αλβ = 0, where λα are homogeneous coordinates on P15. A

space P15 is a projectivisation of irreducible complex spinor representation of
Spin(10,R). We denote by R restriction on P of the twisted tangent bundle
TP15(−1). Denote by A the coordinate algebra C[λ1, . . . , λ16]/Γ iαβλ

αλβ of P .

Denote by B a Koszul complex A ⊗ Λ[θ1, . . . θ16] with differential λα ∂
∂θα . In

[MSch05] we proved that the cohomology of B of degree k in powers λα coin-
cides with Hk(Ω0•(P)Λ(R∗)). In fact we proved that the identification map
is a quasiisomorphism of differential graded algebras with a trace. In the lan-
guage of supermathematics we may say that cohomology Hk(Ω0•(P)Λ(R∗))
is Dolbeault cohomology of a split supermanifold ΠR.

In the course of the proof of quasiisomorphism we have identified the
algebra of functions on the a fiber of projection

ΠR → P (1.31)

over a point pt = (λα0 ) ∈ P with cohomology of algebraB•
pt = (Λ[θ1, . . . θ16], d)

where d = λα0
∂
∂θα . An analog of the complex B•

pt can be defined for any
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subscheme U of P as a tensor product B•
U = AU ⊗Λ[θ1, . . . θ16]. The algebra

AU is equal to
⊕

i≥0 H
0(U,O(i)). The cohomology of BU is equal to H•Bpt⊗

O(U) if O(1) is trivial on U .
We proved in [MSch06] that the algebra B with Berkovits trace tr is quasi-

isomorphic to algebra AIKKT .
We need to present a useful observation from [MSch05]. Let us decompose

a set {λ1, . . . , λ16} into a union {λα1 , . . . , λαs} ∪ {λβ1 , . . . , λβk} such that
{λα1 , . . . , λαs} is a regular sequence. Then the algebras (B, d) and (B ′, d) =
(A/(λα1 , . . . , λαs) ⊗ Λ[θβ1 , . . . , θβk ], d) are quasiisomorphic.

The following construction has been described in [MSch05].The spin rep-
resentation S of so(10) splits after restriction on gl(3) × sll(2) × slr(2) into
T ⊗Wl + T ∗ ⊗Wr + Wl + Wr. We choose coordinates on Wl + Wr- equal
to (λαi) = (w̃+

l , w̃
−
l , w̃

+
r , w̃

−
r ). They form a regular subsequence of λα . The

manifold corresponding to A/(λαi) is equal to Q ∩ P(T ⊗ Wl + T ∗ ⊗ Wr).
The intersection is isomorphic to F (1, 2) × X . The algebra of homogeneous
functions A′ = A(F (1, 2) × X) on F (1, 2) × X is generated by siα, tjα(1 ≤
αβ ≤ 3, 1 ≤ ij ≤ 2). The relations are

∑

α

siαtjα = 0, det(siα) = 0, det(tjα) = 0 (1.32)

In the formula det stands for a row of 2 × 2 minors of 2 × 3 matrix.
We plan to follow almost the same method of construction of supermani-

fold as for the Koszul complex of pure spinors. Denote by g a projection

g : F (1, 2)×X → X

We fix a point x ∈ X . The algebra A′
g−1(x) is isomorphic to

C[p1, . . . p3, u
1 . . . , u3]/(piu

i). The algebra B′
p−1(x) is isomorphic to

A′
g−1(x) ⊗ Λ[π1, . . . , π3, ν

1, . . . , ν3, π̃1, . . . , π̃3, ν̃
1, . . . , ν̃3], d (1.33)

with a differential

d = pi
∂

∂π̃i
+ ui

∂

∂ν̃i
(1.34)

The cohomology of this differential is equal to

Λ[Ex] = Λ[π1, . . . , π3, ν
1, . . . , ν3, θ]

The induced A∞ algebra structure on cohomology has no higher multiplica-
tions. The element θ is represented by a cocycle π̃iu

i. The linear space Ex
coincides with a fiber Fx of vector bundle F (1.21). The main distinction
between this computation and a computation with pure spinors is that we
encountered a noncanonical A∞ morphism ι : B′

p−1(x) → Λ[Ex], which could
be not a homomorphism of associative algebras.

Recall that we viewed the cohomology of Bpt as functions of the fiber
of projections p : ΠR → P . We have a natural identification of fibers over
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different patches of P . It gives us a consistent construction of a split manifold
ΠR.

In case of the manifold X if we ignore the issues related to ambiguities
of choice of morphism ι. It is not hard to see that an isomorphism of fibers
Fx ∼= Hx can be extended to a Spin(4) equivariant isomorphism of the vector
bundles Fx ∼= Hx (use homogeneity of both vector bundles with respect to
sll(2) × slr(2) action).

we recover the manifold ΠF . In reality when we try to glue rings of func-
tions on different patches the structure isomorphisms will be A∞-morphisms.
We may claim on general grounds that we get an A∞ structure on a space
of Čech chains of ΠH ∼= ΠF . This structure can be trivialized by a twist on
a local A∞-morphism (reduced to the standard multiplication in Grassmann
algebra) on every double intersection Uij of patches (if Uij ⊂ X is sufficiently
small). An ambiguity in a choice of such twist leads to appearance of Čech
2-cocycle βijk with values in infinitesimal (not A∞ ) transformations of the
fiber ΠF . In the Dolbeault picture this cocycle corresponds to α. Finally we
use Čech-Dolbeault equivalence. This proves the claim.

Remark 6. The algebra C carries a differential d = [α]. The minimal model
of C (by definition it is a quasiisomorphic A∞ algebra without a differential)
constructed for an obvious homotopy of differential d = [α] is quasiisomorphic
to AIKKT . If we ask for a quasiisomorphism to be compatible with all gradings
that exist on both algebras this quasiisomorphism is an isomorphism.

From this is is quite easy to recover all multiplications in the algebra C.

1.4 Nonreduced theory

A manifold Z with an integral form is constructed in this section.

1.4.1 Construction of the algebra A(Z)

In this section we construct an algebraA(Z). It will be a linking chain between
YM theory and ambitwistors.

We construct a manifold Z as a direct product ΠF ×Σ. Intuitively speak-
ing the algebra Ω0•(Π̃F ) carries all information about YM theory reduced
to a point, whereas algebra C∞(Σ) contains similar information about the

space Σ. The idea is that a tensor product Ω0•(Π̃F ) ⊗ C∞(Σ) with a suit-
ably twisted differential will contain all information about 4-D YM theory.
Later we will interpret the same complex as tangential CR complex on the
manifold Z.

The linear space
ΣC = V = Wl ⊗Wr (1.35)
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has coordinates xij , 1 ≤ i, j ≤ 2. The vector space V has an SO(4,C) action
compatible with decomposition (1.35). It is induced from the SO(4,R) action
on Σ .

Define a differentiation of Ω0•(Π̃F ) ⊗ C∞(Σ) as follows.
There is an SO(4) equivariant isomorphism V ∼= H0(O(1, 1)). The line

bundle O(1, 1) is generated by its global sections. We have a short exact
sequence:

0 →M → V
m
→ Θ = O(1, 1) → 0 (1.36)

where V is considered as a trivial vector bundle with fiber V . The differenti-
ation δ of Ω0•(Π̃F ) ⊗ C∞(Σ) is equal δ = m(xij) ∂

∂xij . We interpret ∂
∂xij as

global sections of T CΣ.
Recall that the differential D in Ω0•(Π̃F ) is equal to ∂̄ + α. It becomes

clear from explicit computation of cohomology that coefficients βij in {α, δ} =
βij ∂

∂xij are ∂̄-exact.

Choose γij such that ∂̄γij = −βij . Define a differentiation γ of Ω0•(Π̃F )⊗
C∞(Σ) as γij ∂

∂xij and zero on the rest of the generators.
It follows from our construction that Dext = D + δ + γ satisfies D2

ext = 0
. Denote D′ = δ + γ.

By definition the integral form on manifold Π̃F ×Σ is :

V ol = µ⊗

2⊗

i,j=1

dxij (1.37)

Proposition 6. V ol is invariant with respect to D, D′ and therefore with
respect to Dext.

Proof. Direct inspection.

1.4.2 Proof of the equivalence

Proposition 7. Denote Z = ΠF ×Σ. We equip algebra A(Z) = Ω0•(Π̃F )⊗
C∞(Σ) ⊗Matn with a trace

∫
a = tr

∫

Z

aV ol (1.38)

The CS theory constructed by the triple (A(Z), Dext,
∫
) is classically equiv-

alent to N=3 euclidean YM with a gauge group U(n).

The equivalence should hold also on a quantum level.

Proof. We shall only outline the basic ideas.
A precise mathematical statement is about quasiisomorphism of certain

A∞ algebras. One of them is A(Z). The reader should consult [MSch06] for
information about A∞ algebra with a trace corresponding to N=3 YM theory.
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Suppose ψ : A → B is a quasiisomorphism of two A∞ algebras. Let m be
an associative algebra. Then we have a quasiisomorphism of tensor products
ψ : A⊗m→ B⊗m. Let a be a solution of MC equation in A⊗m (the reader
may consult [MSch05] for the definition). The map ψ transports solution a to
a solution ψ(a) of MC equation in B ⊗m.

In a formal interpretation of structure maps of A∞ algebra A as the Taylor
coefficients of a noncommutative vector field on noncommutative space A

solution a of MC equation corresponds to a zero of the vector field. We can
expand the vector field into series at a and get some new A∞ algebra. This
construction is particularly transparent in case of a dga. A solution of MC
equation defines a new differential d̃x = dx + [a, x]. It corresponds to a shift
of a vacuum in a physics jargon. Denote by Aa an A∞ algebra constructed by
the element a .

It is easy to see that the map ψ defines (under some mild assumptions in
a) a quasiisomorphism

ψ : A⊗ma → B ⊗mψ(a)

Denote by Diff(Σ) an algebra of differential operators on Σ. We would
like to apply construction from the previous paragraph to the tensor products
Ω0•(Π̃F ) ⊗ Diff(Σ) and C ⊗ Diff(Σ). We can interpret δ + γ as a solu-

tion of MC equation for algebra Ω0•(Π̃F ) with coefficients in Diff(Σ). The
quasiisomorphism ψ maps δ + γ into an element yij ∂

∂xij , where yij is a basis
of H0(X,Λ0(H∗) ⊗Θ) ⊂ C.

The rest is a matter of formal manipulations. It is straightforward to see
that C ⊗ Diff(Σ)ψ(a) is an A∞ mathematics counterpart of YM equation
where the gauge potential, spinors, matter fields are having their coefficients
not in functions on Σ but in Diff(Σ). This is not precisely what we have
hoped to obtain. We shall address this issue presently.

Suppose an associative algebra m contains a subalgebra m′. The previous
construction has a refinement. The noncommutative vector field on a space
Am corresponding to A∞ algebra A ⊗m is tangential to a noncommutative
subspace Am′ (because m′ is closed under multiplication). We say that a
solution of MC a ∈ A⊗m is compatible with m′ if the vector field defined by
the algebra A ⊗m is tangential to the space a + Am′ ⊂ Am. This is merely
another way to say that a linear space A ⊗m′ is a subalgebra of (A ⊗m)a.
If a is compatible with m′ the map ψ (under some mild assumptions on a)
induces a quasiisomorphism ψ : A⊗m′ → B ⊗m′

ψ(a).

We apply this construction to subalgebra C∞(Σ) ⊂ Diff(Σ) for which
mentioned above condition on δ + γ is met.

Suppose in addition that algebras A,B,m′ have a traces and a morphism
ψ : A → B is compatible with the traces. Assume moreover that the induced
A∞ structure A⊗m′

a is compatible with a trace. Then the induced morphism
ψ : A⊗m′

a → B ⊗m′
ψ(a) is compatible with traces.
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In our case the operator D′ preserves the integral form V ol and the above
conditions are met.

The CS theory associated with the algebra C ⊗ C∞(Σ) has the following
even part of the Lagrangian

< Fij , Fij > + < ∇iφ
α,∇iφα > + < [φα, φβ ],K

β
α > + < Kβ

α ,K
α
β >

The theory besides of the gauge field corresponding to connection ∇i in a
principle U(n) bundle , matter fields φα ∈ Ad⊗ T, φβ ∈ Ad⊗ T ∗ contains an
auxiliary field Kβ

α ∈ Ad⊗ T ⊗ T ∗. This theory is equivalent to N=3 YM( the
odd parts of the Lagrangians coincide ).

1.4.3 Relation between a CR structure on Z and an algebra A(Z)

In this section we give a geometric interpretation of the algebra A =
Ω0•(Π̃F ) ⊗ C∞(Σ).

Fibers of projection
p : X ×Σ → Σ (1.39)

have holomorphic structure. Denote Tvert a bundle of p-vertical vector fields.
We define a distribution G as T 1,0

vert ⊂ TC
vert

Choose a linear basis e1, . . . , e4 ∈ Σ. Define ∂
∂xs the differentiations in the

direction of es. Restrict a map m from short exact sequence (1.36) on Σ ⊂ V ,
then m(es) is a set of holomorphic sections of Θ.

For any point x ∈ X we have a subspace Hx ⊂ TC

Σ spanned by

4∑

i=1

m(es)x
∂

∂xd
(1.40)

A union of such subspaces defines a complex distribution H on X ×Σ .
Define an integrable distribution F = G + H ⊂ T C

X×Σ.
The reader can see that the CR structure on the space X × Σ literally

coincides with the CR structure on ambitwistor space A(Σ) defined in section
(1.2.2).

In light of this identification an element θ (a local coordinate on Θ∗) can
be interpreted as a local CR-form with nonzero values on H.

Restriction of the vector bundle H∗ (used in the construction of superman-
ifold F in equation (1.21)) on X×Σ is holomorphic along F . Additionally we

can interpret component α in the differential D on Ω0•(Π̃F ) as a contribution
from a superextension of the CR structure defined in (1.19).

From this we deduce that the algebra A(Z) = (Ω0•(Π̃F )⊗C∞(Σ), Dext)
we have constructed coincides with the CR tangential complex on an open
subset of the manifold RGL(4|3).

The integral form V ol is the only CR-holomorphic form invariant with
respect to SU(2) × SU(2) n R4.
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From this we deduce that it coincides (up to a multiplicative constant)
with the integral form defined by vol

It is possible reconstruct an action of the super Poincare group SP on A.
The reader will find explanations of why the measure is not invariant with
respect to the full superconformal group in section (1.5.3).

1.5 Appendix

1.5.1 On the definition of a graded real superspace

A tensor category of complex superspaces CC (see ref.[DMiln] for introduction
to tensor categories) has two real forms. The first is a category of real super-
spaces CR. It is more convenient to think about objects of this category as of
complex superspaces, equipped with an antiholomorphic involution σ.

Another tensor category related to CC is formed by complex superspaces,
equipped with an antilinear map ρ

Definition 5. Suppose V is a Z2-graded vector space over complex numbers.
An antilinear map ρ : v → v̄ is a graded real structure if

ρ2 = sid

sid(v) = (−1)|v|v
(1.41)

we denote by |v| a parity of v.
An element v is real iff v̄ = v. Only even elements can be real with respect

to a graded real structure. A graded real superspace is a pair (V, ρ). Grader
real superspaces form a tensor category CH

We shall be mostly interested in categories CC and CH.
The categories CC CH are related by tensor functors.
The first functor is complexification CH ⇒ CC, V ⇒ V C. It forgets about

the map ρ.
The second functor is CC ⇒ CH, V ⇒ V H. The object V H is a direct sum

V +V . There is an antilinear isomorphism σ : V → V . For v = a+ b+ c+ d ∈

V 0 + V 1 + V
0

+ V
1

define

ρ(a+ b+ c+ d) = σ−1(c) − σ−1(d) + σ(a) + σ(b) (1.42)

By construction ρ2 = sid.
A language of tensor categories can be used as a foundation for developing

Commutative Algebra and Algebraic Geometry. If we start off in this direction
with a category CC the result will turn to be Algebraic Supergeometry.

A category CH provides us with some real form of this geometry.
First of all a CH or a real graded manifold is an algebraic supermanifold

M defined over C. The manifold M carries some additional structure. The
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manifold Mred is equipped with an antiholomorphic involution ρred. There is
also an antilinear isomorphism of sheaves of algebras

ρ : ρ∗redO → O, (1.43)

such that ρ2 = sid.
There is a C∞ version of a CH manifold. It basically mimics a stricture

of C∞ completion of algebraic CH manifold at locus of ρred fixed points. Any
C∞ manifold admits a noncanonical splitting: M ∼= ΠE, where E is some
complex vector bundle over Mred. A CH-structure manifests in an antilinear
automorphism ρ of E, that satisfies ρ2 = −id. Observe that ρ, together with
multiplication on i defines a quaternionic structure on E.

For any complex algebraic supermanifold M there is the underlying CH

manifold. As an algebraic supermanifold it is equal to M × M . There is a
canonical antiinvolution on (M ×M)red. The morphism of sheaves (1.43) in
local charts is defined by formulas similar to (1.42).

This construction manifests itself in C∞-setting as follows. Any complex
supermanifold M defines a C∞ supermanifold M̃ that is holomorphic in odd
directions. It is a C∞-completion of M ×Mred near diagonal of Mred×Mred.
Suppose ΠE is a splitting of M̃ , where E is a complex vector bundle on M̃red.
The vector bundle E + E has a natural quaternionic structure and defines a
C∞ CH-manifold Π(E + E). This manifold is isomorphic to completion of
M ×M . Sometimes it is more convenient to work with the manifold M̃ .

1.5.2 On homogeneous CR-structures

Suppose we are given an ordinary real Lie group and a closed subgroup A ⊂ G
with Lie algebras a ⊂ g. Additionally we have a complex subgroup P ⊂ GC

in complexification of G, with Lie algebras p ⊂ gC. We assume that the map

p : G/A→ GC/P (1.44)

is a local embedding. By construction GC/P is a holomorphic homogeneous
space. It tangent space Tx, x ∈ G/A contain a subspace Hx = Tx ∩ JTx.
The operator J is an operator of complex structure on GC/P . Due to G-
homogeneity spaces Hx have constant rank and form a subbundle H ⊂ T . We
can decompose H⊗C = F +F . It follows from the fact that p is a subalgebra
that the constructed distribution F is integrable and defines a CR-structure.

A condition that the map p (1.44) is a local embedding is equivalent to
g ∩ p = a. In other words

p ∩ p̄ = aC (1.45)

It is easy to see that a fiber Fx at a point x is isomorphic to p/aC

This construction of CR-structure can be extended to a supercase. A con-
sistent way to derive such extension is to use a functorial language of ref.
[DM].
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However since this exercise, which we leave to the interested reader, is
quite straightforward we provide only the upshot.

We start off with description of a data that defines a homogeneous space
of a supergroup.

A complex homogeneous space X of a complex supergroup G with Lie
algebra g is encoded by :

1.Global data: An isotropy subgroup H ⊂ Gred (closed, analytic, pos-
sibly nonconnected ). This data defines an ordinary homogeneous space
Xred = Gred/H ;

2.Local data: a pair of complex super Lie algebras p ⊂ g such that
p0 = Lie(H), Lie(Gred) = g0 .

In the cases when we specify only Lie algebra of isotropy subgroup is clear
from the context.

A real graded structure on a homogeneous space X = G/A is encoded by
an antiholomorphic involution on Gred that leaves subgroup Ared invariant; a
graded real structure ρ on g,such that ρ(a) ⊂ a.

If we are given a real subalgebra (a, ρ) ⊂ (g, ρ) and a complex subalgebra
p ⊂ g such that a = p ∩ ρ(p) we claim that a supermanifold G/A carries a
(G, ρ)-homogeneous CR-structure.

1.5.3 General facts about CR-structures on supermanifolds

In this section we will discuss mostly general facts about CR structures specific
to supergeometry. Suppose M is a supermanifold equipped with an integrable
CR distribution F . We present some basic examples of F-holomorphic vector
bundles on M .

Example Sections of vector bundle T C/F is a module over Lie algebra of
sections of F . Thus the gluing cocycle of this bundle is CR-holomorphic. It
implies that the bundle Ber((T C/F)∗) is also CR-holomorphic.

Suppose we have a trivial CR-structure on Rn1|n2 × Cm1|m2 . We assume
that the space is equipped with global coordinates xi, ηj , zk, θl. The alge-
bra of tangential CR complex Ω•

F (Rn1|n2 × Cm1|m2) has topological gen-
erators xi, ηj , zk, θl, z̄k, θ̄l, dz̄k, dθ̄l. Denote by A a subalgebra generated by
xi, ηj , zk, θl, z̄k, , dz̄k and by K a subalgebra generated by θ̄l, dθ̄l. We have
Ω0• = A ⊗K. The algebra K has trivial cohomology. As a result projection
Ω0• → A is a quasiisomorphism.

It turns out that this construction exists in a more general context of
an arbitrary CR-manifold. Informally we may say s think that a super-CR
manifold is affine in holomorphic odd directions. It parallels with the complex
case.

The construction requires a choice of C∞-splitting of CR-manifold M .
Suppose Y is an ordinary manifold, E is a vector bundle. Denote by ΠE

supermanifold isomorphic to the total space of E with opposite parity on the
fibers. Such supermanifold is called split. By construction it admits projection
p : ΠE → Y . Any C∞ manifold is split, but the splitting is not unique. A
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space of global functions on ΠE is isomorphic to a space of sections of the
Grassmann algebra ΛE∗ of vector bundle E.

To make a connection with our considerations we identify Y = Mred.

Denote Fred = F
0

red + F
1

red restriction of F on Mred. In terms of the
splitting operator ∂̄ can be encoded by a pair of operators of the first order
∂̄ev : C∞(Mred) → ΛE∗ ⊗Fred, ∂̄odd : E∗ → ΛE∗ ⊗Fred.

The lowest degree component in powers ΛiE∗ of the operator ∂̄odd is

∂̄0
oddE

∗ → F
1

red. It is a C∞(Y ) linear map, with a locally free image. The

image S0 of a splitting F
1

red → E∗ can be used to generate a differential ideal
(S) of ΩF . Denote the quotient ΩF/S by ΩsF .

The complex ΩsF is a differential graded algebra. We can interpret it as
a space of functions on some superspace L. A possibility to split ∂̄0

odd implies
smoothness of L.

Proposition 8. The map ΩF → ΩsF is a quasiisomorphism.

Proof. Follows from consideration of a spectral sequence associated with fil-
tration F iΩpF = (S0)

i−pΩpF (we denote by (S0)
k the k-th power of the ideal

generated by S0 ).

A CR-manifold M is locally embeddable to Cm|n if in a neighborhood of a
point there is a collection of z1, . . . , zm even and θ1, . . . , θn odd function that
are annihilated by ∂̄ and whose Jacobian is nondegenerate.

Definition 6. Let us assume that F1|Mred
+ F

1
|Mred

= TC1(superscript 1
denotes the odd part),i.e. dimension of the odd part of CR distribution is
maximal possible.

We can locally generate ideal S0 by elements θ1, . . . , θn and take S as a ∂̄
closure of S0. It is not hard to check that under such assumptions proposition
(8) holds. Denote by sM a submanifold specified by S0

Remark 7. The Lie algebra of infinitesimal automorphisms of CR-structure
is equal to AutF = {a ∈ TC|[a, b] ∈ F , for all b ∈ F}} with OutF =
AutF/F . In purely complex case the quotient construction can be replaced
by Outcomplex = {a ∈ F|[a, b] ∈ F , for all b ∈ F}} and the extension

0 → InnF → AutF → OutF → 0 (1.46)

has a splitting. By construction elements θ1, . . . , θn are invariant along vector
fields from distribution F . We can guarantee that differential ideal generated
by θi is invariant with respect to elements of Outcomplex. As a result we
can push the action of Outcomplex to Ω•

sF -this is familiar fact from super
complex geometry . This contrasts with absence of an action of AutF or
OutF on the ideal S and on Ω•

sF for a general CR structure. One can prove
however that Ω•

sF admits an A∞ action of AutF . A partial remedy is to

consider subalgebra ÕutF = {a ∈ F|[a, b] ∈ F , for all b ∈ F}} ⊂ OutF . This
subalgebra acts upon Ω•

sF . However this algebra is trivial if the Levi form of
F is not degenerate
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Supergeometry provides us with a complex of CR-integral forms. Let ΛF
be the super Grassmann algebra of F . Let Ber be the Berezinian line bundle
of a real manifold M . Denote intΩ−p

F the tensor product Ber⊗ΛF . There is a

pairing (ω, ν) =
∫
M
< ω, ν > between sections ω ∈ Ωp

F and ν ∈ intΩ−p
F . The

symbol < ., . > denotes contraction of a differential form with a polyvector
field. The operation< ., . > takes values in sections of Ber. The value< ω, ν >
can be used as an integrand for integration over M .

The orthogonal complement to the ideal S ⊂ Ωp
F is a subcomplex

intΩ−p
sF ⊂ intΩ−p

F . It is a differential graded module over Ωp
sF .

Proposition 9. Let M be a supermanifold with a CR distribution F of di-
mension (n|k). There is an isomorphism i : intΩp−nsF → ΩpsFBer((T

C/F)∗)
compatible with a stricture of Ω•

sF -module. The isomorphism is unique.

Proof. Using C∞ splitting we can identify Ω•
sFBer((T

C/F)∗) and intΩp−nsF

with sections of some vector bundles Ap and Bp overMred. It is fairly straight-
forward to establish an isomorphism of Ap and Bp with the help of the split-
ting. In particular there is a C∞ isomorphism Ber((TC/F)∗) = intΩ−n

sF .
One can think about Ω0

sF as of a space of functions on a supermanifold
sM . Then a space of sections Ber(sM) coincide with Ωn

sFBer((T
C/F)∗)). It

elements can be integrated over sM . The integral defines a pairing (., .)s :

Ω•
sF ⊗Ω•

sFBer((T
C/F)∗))

�
<.,.>s

→ C, which is nondegenerate.
An element a ∈ intΩ0

sF defines a functional f →
∫
M
af (f ∈ C∞(sM)).

We may think about it as of an integral
∫
sM

fi(a) , where i(a) ∈ Ωn
sFBer((T

C/F)∗).
Such interpretation of the integral uniquely specifies map i. Since Ωn

sF is in-
vertible the induced isomorphism i : Ber((T C/F)∗) = intΩ−n

sF is compatible
with ∂̄ (use pairings (., .), (., .)s to check this).

Suppose that a super CR-manifold M is CR embedded into a complex super
manifold N . Denote by J an operator of complex structure in tangent bundle
TN . We assume

TM + JTM = TN|M . Denote by BerC(N) the complex Berezinian
of N . An easy local computation shows that BerC(N)|M is isomorphic to

Ber((TC/F)∗). Suppose N is a Calabi-Yau manifold , i.e. it admits a global
nonvanishing section vol of BerC(N). A restriction of vol on M defined a
global CR-holomorphic section of Ber((T C/F)∗). An isomorphism of propo-
sition (9) provides a ∂̄ closed section of intΩ−n

sF ⊂ intΩ−n
F .

Remark 8. The proof proposition (9) parallels with the proof of Serre dual-
ity in super case given in ref. [HW]. Haske and Wells used sheaf-theoretic
description of a complex supermanifold, which significant simplify the argu-
ment . The main simplification comes from the local Poincare lemma, which
is absent is CR-case.

It is worthwhile to mention that there is no canonical (AutF or OutF
equivariant) map Ω•

FBer((T
C/F)∗) → intΩ•

F [−n]. This seems to be one of
fundamental distinctions of purely even and super cases.
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We think the reason is that the only known construction of this map is
through the intermediate complex Ω•

sFBer((T
C/F)∗). As have have already

mentioned in remark (7) the complex Ω•
sF carries only A∞ action of AutF .

A real line bundle Ber on a complex super manifold is a tensor product
BerC ⊗BerC, where BerC is a holomorphic Berezinian.

A decomposition TC = T = T implies that

intΩ−k = Ber⊗

Λk(T ) =
⊕

i+j=k

BerC ⊗ Λi(TC) ⊗BerC ⊗ Λj(T C) =
⊕

i+j=k

intΩ−i,−j (1.47)

Remark 9. Suppose M is a complex n-dimensional manifold, E is an k-
dimensional vector bundle. On the total space ΠE there is a canonical section
of cΠE ∈ BerC ⊗ Λn(T ). In local odd fiberwise coordinates θi it is equal to

cΠV = θ1 . . . θkdθ1 ∧ · · · ∧ dθk. (1.48)

Proposition 10. The forms cΠV and c̄ΠV are ∂̄-closed.

Proof. Since the formula (1.48) does not depend on a choice of coordinates
on M one can do a local computation, which is trivial.
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