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NOTES ON DIFFERENTIABLE STACKS

J. Heinloth
Mathematisches Institut, Universität Göttingen, Bunsenstr. 3-5, D–37073
Göttingen, Germany • E-mail : heinloth@uni-math.gwdg.de

Abstract . We discuss differentiable stacks and their cohomology. We try to give
all necessary definitions, avoiding technical machinery as far as possible. In the last
section we focus on the example of S1-gerbes and explain the relation to projective
(Hilbert-)bundles.

Introduction
These are notes of two lectures given at the Forschungsseminar Bunke-Schick

during the Spring term 2004. My task was to explain the notions of stacks and
twists. Since this should serve as an introduction to the subject I tried to
avoid most of the algebraic language, hoping to make the concept of stacks
more understandable. These notes do not claim much originality, all concepts
from the theory of algebraic stacks are explained in the book of Laumon and
Moret-Bailly [LMB00]. I tried to translate the differentiable setting which is
used in [LTX] and [FHT] into this language.

The plan of the text is as follows. We start with the example of the stack
classifying G−bundles, to motivate the abstract definition of stacks. This defi-
nition, given in the first section does not look very geometric, therefore we
introduce the notion of charts (sometimes called presentations) in the second
section. This allows us to define topological and differentiable stacks. In the

November 2004.
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algebraic setting, this concept was introduced by Deligne and Mumford in
their famous article on the irreducibility of the moduli space of curves. Their
definition allowed to introduce a lot of geometric notions for stacks and it
provided a way of thinking about a differentiable stack as a manifold in which
points are allowed to have automorphisms. In the third section we then compare
this approach with the groupoid–approach which seems to be better known in
topological contexts. The fourth section then defines sheaves, bundles and their
cohomology on differentiable stacks. We also provide some easy examples to
give an idea of how to do calculations in this setup.

In the last two sections we then give a definition of twists or S1−gerbes
and we show that they are classified by elements in H2( , S1). To compare
this with the approach via projective bundles, we then introduce the notion of
a local quotient stack, which is used in [FHT] to give a definition of twisted
K-theory. For S1-gerbes on a local quotient stack we give a construction of a
PU-bundle on the stack which defines the gerbe.

1. Motivation and the first definition of stacks
The simplest example of a stack is the classifying stack of G−bundles: Let

G be a topological group. In topology one defines a classifying space BG
characterized by the property that for any good space (e.g., CW-Complex):

Map(X,BG)/homotopy = {Isom. classes of locally trivial G−bundles on X}.

This defines BG uniquely up to homotopy. For finite groups G this space has
the additional property, that the homotopy classes of homotopies between two
classifying maps are identified with isomorphisms between the corresponding
G−bundles.

Such a definition of BG is not well suited for algebraic categories, because
there a good notion of homotopy is not easy to define. Moreover even in analytic
categories the spaces BG usually are infinite dimensional and therefore more
difficult to handle.

Regarding the first problem, one could ask the naive question: Why don’t
we look for a space BG for which Map(X,BG) is the set of isomorphism classes
of G−bundles on X? Of course such a space cannot exist because locally every
bundle is trivial, thus the corresponding map should be locally constant, thus
constant on connected components of X. But not every bundle is globally
trivial.
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On the other hand, this argument is somewhat bizarre, because usually
G−bundles are defined by local data. The problem only arises because we
passed to isomorphism classes of bundles.

Thus the first definition of the stack BG will be as the (2-)functor assigning
to any space X the category of G−bundles on X. The axioms for such a functor
to be a stack will be modeled on the properties of this particular example.
Namely the axioms assure that we can glue bundles given on an open covering.
This basic example should be held in mind for the following definition of a
stack.

Further, to compare this definition with usual spaces one has to keep in
mind the Yoneda lemma: Any space/manifold M is uniquely determined by
the functor Map( ,M) : Manifolds → Sets. This holds in any category (see
Lemma 1.3 below).

Therefore, instead of describing the space, we will first consider the corre-
sponding functor and try to find a geometric description afterwards.

Definition 1.1. A stack M is a (2−)functor

M : Manifolds→ Groupoids ⊂ Cat,

i.e.:
– for any manifold X we get a category M (X) in which all morphisms are

isomorphisms, and
– for any morphism f : Y → X we get a functor

f∗ : M (X)→M (Y )

(id∗ has to be the identity),
– for any Z

g−→ Y
f−→ X a natural transformation Φf,g : g∗f∗ ∼= (g ◦ f)∗,

which is associative whenever we have 3 composable morphisms.
For a stack M we require the 2-functor to have glueing-properties (to make
these more readable(1), we write |U instead of j∗, whenever U

j
↪→ X is an open

embedding):
1. We can glue objects: Given an open covering Ui of X, objects Pi ∈M (Ui)

and isomorphisms ϕij : Pi|Ui∩Uj
→ Pj |Ui∩Uj

which satisfy the cocycle condition
on threefold intersections ϕjk◦ϕij = ϕik|Ui∩Uj∩Uk

there is an object P ∈M (X)
together with isomorphisms ϕi : P |Ui

→ Pi such that ϕij = ϕj ◦ ϕ−1
i .

(1)cf. first remark below
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2. We can glue morphisms: Given objects P, P ′ ∈M (X), an open covering
Ui of X and isomorphisms ϕi : P |Ui → P ′|Ui such that ϕi|Ui∩Uj = ϕj |Ui∩Uj ,
then there is a unique ϕ : P → P ′ such that ϕi = ϕ|Ui .

Remarks 1.2.
1. Formally the glueing conditions make use of the natural transformations

for the inclusions Ui ∩ Uj ↪→ Ui ↪→ X, this is not visible above, because of our
notation |Ui∩Uj . For example write Uijk = Ui ∩Uj ∩Uk, denote jijk,ij : Uijk →
Uij , jij,i : Uij → Ui, jijk,i : Uijk → Ui the inclusions. Then we have natural
transformations

Φijk,ij,i : j∗ijk,ijj
∗
ij,i → j∗ijk,i.

In the condition to glue objects

ϕjk|Uijk
◦ ϕij |Uijk

= ϕik|Uijk

we would formally have to replace ϕij |Uijk
by the composition:

j∗ijk,iPi
Φijk,ij,i−→ j∗ijk,ijj

∗
ij,iPi

j∗ijk,ijϕij−→ j∗ijk,ijj
∗
ij,jPj

Φ−1
ijk,ij,j−→ j∗ijk,jPj

and similarly for the other maps, but this makes the condition hard to read.
2. Our functor BG, assigning to any manifold the category of G−bundles is

a stack.
3. We could replace manifolds by topological spaces in the above definition.

This is usually phrased as giving a stack over manifolds and a stack over topo-
logical spaces respectively.

4. Stacks form a 2−category: Morphisms F : M → N of stacks are given
by a collection of functors F ∗X : N (X) → M (X) and, for any f : X → Y , a
natural transformation Ff : f∗F ∗X

∼=−→ F ∗Y f
∗. Thus morphisms of stacks form a

category, morphisms between morphisms of stacks (i.e., natural transformations
ϕX : FX → GX satisfying Gf ◦ ϕX = ϕY ◦ Ff ) are written as M 44⇓

**
N .

Note that all 2-morphisms are invertible, since all maps in the categories M (X)
and N (X) are invertible.

5. The inclusion Sets → Groupoids (associating to each set the category
whose objects are elements of the set and the only morphisms are identities)
is a full embedding. By the Yoneda lemma we know that the functor Top →
Functors is a full embedding, thus we get a full embedding Top→ Stacks. This
embedding assigns to a space X the stack X defined as X(Y ) = Map(Y,X),
this is a stack, since maps can be glued, pull-back functors are given by the
composition of maps.

6. Grothendieck topology of maps with local sections: Bundles, (in fact any
stack), satisfy a better glueing condition, namely we do not need that the
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j : Ui ↪→ X are injective. Whenever we have a map ∪Ui
p−→ X such that p

has local sections (i.e., for all points x ∈ X there is a neighborhood Ux and
a section s : Ux → ∪Ui of p, in particular p is surjective). Then the glueing
condition also holds, if we replace Ui∩Uj by the fibered product Ui×X Uj . We
say that the stack is a stack for the local-section-topology. This point of view
will be important to define charts for stacks.

(If we wanted to stay in the category of manifolds instead of topological
spaces, we should require the map p to be a submersion, in order to have
fibered products.)

The following lemma shows, that with the above definition of BG we really
get a classifying object for G−bundles:

Lemma 1.3 (Yoneda lemma for stacks). Let M be a stack (defined for
manifolds or topological spaces). For any space X denote by X the associated
stack (i.e., X(Y ) = Map(Y,X)). Then there is a canonical equivalence of
categories: M (X) ∼= MorStacks(X,M ).

Proof. Given P ∈M (X) we define a morphism FP : X →M by

X(Y ) 3 (Y
f−→ X) 7→ f∗P ∈M (Y ).

For any isomorphism ϕ : P → P ′ in M (X) we define a natural transformation
Aϕ : FP → FP ′ by f∗ϕ : f∗P → f∗P ′. Conversely, given a morphism F :
X →M we get an object PF := F (idX) ∈M (X), any automorphism F → F
defines an isomorphism of PF .

One checks that the composition of these constructions is equivalent to the
identity functor.

Remark 1.4. Will often write X instead of X.

Example 1.5 (Quotient stacks). Let G be a Lie group acting on a man-
ifold X via act : G × X → X. We define the quotient stack [X/G, act] (or
simply [X/G]) as

[X/G, act](Y ) := 〈(P p−→ Y, P
f−→ X) |P → Y a G-bundle,f G-equivariant〉.

Morphisms of objects are G−equivariant isomorphisms.

Remarks 1.6.
1. For G acting trivially on X = pt the quotient [pt/G] is the stack BG

classifying G-bundles.
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2. If G acts properly and freely, i.e. X → X/G is a G−bundle, then [X/G] ∼=
X/G, because any f : P → X defines a map on the quotient P/G = Y →
X/G and the canonical morphism P → Y ×X/G X is then an isomorphism of
G−bundles.

2. Geometry I: Charts
To translate geometric concepts to the (2-)category of stacks, Deligne and

Mumford introduced a notion of charts for stacks.
In our example BG the Yoneda-lemma 1.3 shows that the trivial bundle on

a point pt defines a map pt → BG. By the same lemma any X
fP−→ BG is

given by a bundle P → X. Therefore, if we take a covering Ui → X on which
the bundle is trivial, then fP |Ui

factors through pt → BG. In particular, this
trivial map is in some sense surjective (see Definition 2.3 for a precise definition,
we will say that this map has local sections)!

Even more is true: First note that the (2-)category of stacks has fibered
products:

Definition 2.1. Given a diagram of morphisms of stacks:

M

F

��
M ′ F ′

// N

we define the fibered product M ×N M ′ to be the stack given by:

M ×N M ′(X) := 〈(f, f ′, ϕ)|f : X →M , f ′ : X →M ′, ϕ : F ◦ f ⇒ F ′ ◦ f ′〉.

Morphisms (f, f ′, ϕ)→ (g, g′, ψ) are pairs of morphisms

(ϕf,g : f → g, ϕf ′,g′ : f ′ → g′)

such that
ψ ◦ F (ϕf,g) = F ′(ϕf ′,g′) ◦ ϕ.

(We will use brackets 〈 〉 as above to denote groupoids instead of sets { })

Remark 2.2. This defines a stack, because objects of M ,N glue and mor-
phisms of N ,M ,M ′ glue.
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We calculate the fibered product in our example above: Given
X

fP

��
pt // BG

the fibered product pt×BG X as the stack given by:

pt×BG X(Y ) =

〈
Y

��

g // X

��
ϕ

y� {{
{{

{{
{

{{
{{

{{
{

pt // BG

〉

= 〈(g, ϕ)|g : Y → X and ϕ : g∗P
∼=−→ G× Y 〉

∼= {(g, s)|g : Y → X and s : Y → g∗P a section}
∼= {g̃ : Y → P} = P (Y )

The first ∼= notes that to give a trivialization of g∗P is the same as to give a
section of g∗P , in particular the category defined above is equivalent to a set.
The second ∼= assigns to g̃ the composition of g̃ with the projection P → X
and the section induced by g̃.

By the last description, we get an equivalence pt×BGX ∼= P , i.e., pt→ BG
is the universal bundle over BG.

Definition 2.3. A stack M is called a topological stack (resp. differentiable
stack) if there is a space (resp. manifold) X and a morphism p : X →M such
that:

1. For all Y →M the stack X ×M Y is a space (resp. manifold).
2. p has local sections (resp. is a submersion), i.e., for all Y → M the

projection Y ×M X → Y has local sections (resp. is a submersion).
The map X → M is then called a covering or an atlas of M (in the local-
section-topology).

The first property is very important, it therefore gets an extra name:

Definition 2.4. A morphism of stacks F : M → N is called representable
if for any Y → N the fibered product M ×N Y is a stack which is equivalent
to a topological space.

This definition is the requirement that the fibres of a morphism should be
topological spaces and not just stacks. We will see later, that for topological
stacks this condition is equivalent to the condition that the morphism F is
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injective on automorphism groups of objects. The easiest example of such a
map is the map pt → BG we have seen above. The easiest example of a map
which is not representable is the map BG → pt forgetting everything (take
Y = pt).

Example 2.5 (Quotient-stacks). The example of quotients by group ac-
tions [X/G] are topological stacks (resp. differentiable, if X,G are smooth). An
atlas is given by the quotient map X → [X/G], defined by the trivial G−bundle
G×X → X, the action map G×X act−→ X is G−equivariant.

Just as in the case of G−bundles one shows that for any Y → [X/G] given
by a G−bundle P → Y there is a canonical isomorphism Y ×[X/G]X ∼= P (the
argument is given a second time in Lemma 3.1 below).

Some easy properties of representable morphisms are:

Lemma 2.6.
1. (Composition) If F : K →M and G : M → N are representable, then

F ◦G is representable.
2. (Pull-back) If F : M → N is representable, and G : M ′ → N is

arbitrary then the projection M ′ ×N M →M ′ is representable.
3. (Locality) A morphism F : M → N of topological stacks is representable

if and only if for one atlas Y → N the product M ×N Y → M is again an
atlas.

4. If M is a topological stack, then for any two morphisms fi : Yi →M the
fibered product Y1 ×M Y2 is again a topological space.

Proof. For the first claim note that Y ×N K ∼= (Y ×N M )×M K , the latter
is a space by assumption.

The second is similar: Y ×M ′ (M ′ ×N M ) ∼= Y ×N M .
If M → N is representable, then Y ×N M is a topological space and for

any T →M we have T ×M (Y ×N M ) = T ×N Y → Y has local sections.
On the other hand, if Y ×N M → M is an atlas, then for all T → N

which factor through T → Y → N the pull back T ×N M is again a space.
For an arbitrary T → N the projection Y ×N T → T has local sections by
assumption. This shows, that the fibered product T ×N M is a stack which is
equivalent to a functor, and that there is a covering Ui of T , such that Ui×N M
is a space. Now functoriality of fibered products assures, that these spaces can
be glued, thus T ×N M is a space.

For the last statement, note that Y1 ×M Y2
∼= (Y1 × Y2) ×M×M M where

the map ∆ : M →M ×M is the diagonal map. Thus the assumption may be
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rephrased as “the diagonal ∆ : M → M ×M is representable” and then the
claim follows from (3).

Remark 2.7. In the last statement of the lemma, there is a natural map
Y1×M Y2 → Y1×Y2, but in general this is not an embedding, thus the diagonal
M →M ×M is not an embedding in general.

One should also note that the fibered product Y1 ×M Y2 represents the
functor of maps T → Y1 × Y2 together with an isomorphism of the two pull
backs of the objects p∗i (Yi →M ), therefore it is sometimes denoted

Isom(Y1
f1−→M , Y2

f2−→M )

or simply Isom(f1, f2). In particular one sees that the automorphisms of a map
f : Y →M are given by sections of the map Aut(f) := (Y ×MY )×Y×Y Y → Y ,
because a map from a space T to Aut(f) is the same as a map s : T → Y
together with an isomorphism ϕ : f ◦ s⇒ f ◦ s.

Any property of maps which can be checked on submersions can now be
defined for representable morphisms of differentiable stacks, simply requiring
that the property holds for one atlas:

Definition 2.8. A representable morphism M → N is an open embedding,
(resp. closed embedding, submersion, proper, ...) if for one (equivalently any)
atlas Y → N the map M ×N Y → Y is an open embedding (resp. closed
embedding, submersion, proper, ...).

Note that if M and N are spaces then every map is representable and we
get the usual notion of open embedding, etc.

In particular, this definition gives us a notion of open and closed substacks.

Example 2.9. For quotient-stacks [X/G] open and closed substacks are
given by open and closed G−equivariant subspaces Y ↪→ X, which define
embeddings [Y/G] ↪→ [X/G].

Properties that can be checked on coverings of the source of a map (i.e., to
have local sections, or in the differentiable category to be smooth or submersive)
can even be defined for any morphism of stacks:

Definition 2.10. An arbitrary morphism M → N of differentiable (resp.
topological) stacks is smooth (or a submersion) (resp. has local sections), if for
one (equivalently any) atlas X → M the composition X → N is smooth (or
a submersion) (resp. has local sections), i.e., for one (equivalently any) atlas
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Y → N the fibered product X ×N Y → Y is smooth (or a submersion) (resp.
has local sections).

The equivalence of the condition to be satisfied for one or for any atlas is
proved as in Lemma 2.6.

Note that we can glue morphisms of stacks, i.e., given an atlas X → M
and a morphism M → N of topological or differentiable stacks we get an
induced morphism X → N together with an isomorphism of the two induced
morphisms X ×M X // // N , which satisfies the cocycle condition on X×M

X ×M X.
Conversely, given f : X → N together with an isomorphism p1 ◦ f ⇒ p2 ◦ f

of the two induced maps X×M X → N , which satisfies p∗23ϕ◦p∗12ϕ = p∗13ϕ on
X×

3
M we get a morphism M → N as follows: For any T →M we get a map

with local sections X ×M T → T and a map X ×M T → N together with a
glueing data on X×M X×M T = (X×M T )×T (X×M T ), and by the glueing
condition for stacks this canonically defines an element in N (T ).

In particular, a morphism M → BG is the same as a G-bundle on an atlas
X together with a glueing datum on X ×M X satisfying the cocycle condition
on X×M X×M X. If M = [X/H] is a quotient stack then X×M X ∼= H×X,
thus this is the same as an H−equivariant bundle on X.

More generally, for any class of objects which satisfy descent, i.e., which can
be defined locally by glueing data, we can define the corresponding objects over
stacks to be given as a glueing-data on one atlas. For example vector bundles,
Hilbert-bundles, smooth fibrations.

Definition 2.11. A G−bundle over a stack M is given by a G−bundle PX

over an atlas X → P together with an isomorphism of the two pull-backs of
p∗1PX → p∗2PX on X×MX satisfying the cocycle condition on X×MX×MX.

The same definition applies to vector bundles, Hilbert bundles, locally trivial
fibrations with fiber F .

Remark 2.12. Note that for any f : T →M (in particular for any atlas)
this datum defines a G−bundle PT,f → T , because by definition X ×M T → T
has local sections, and we can pull-back the glueing datum to

(X ×M X ×M T ) ∼= (X ×M T )×T (X ×M T ).

Therefore this automatically defines a differentiable/topological stack P
p−→

M (and p is representable) via:

P(T ) = 〈(f : T →M , s : T → PT,f a section)〉.
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An atlas of this stack is given by (PX , s : PX
diag−→ PX ×X PX). The mul-

tiplication map glues, therefore this stack also carries a natural morphism
G×P →P.

Remark 2.13. This shows that universal bundles on stacks classifying
G−bundles or other geometric objects exist automatically. Further, since we
can glue morphisms of stacks the classifying stack will also classify G−bundles
on stacks.

Remark 2.14. Note further, that given a G−bundle P on a stack M and
a map f : T →M the glueing datum for the two pull backs of PT,f to T ×M T
defines an action of Aut(s) on f∗P = PT,f .

The notion of a G−bundle could be defined directly in the language of
stacks. These definitions tend to get clumsy, because one has to take care of
automorphisms:

Let G be a Lie group, a locally trivial G-bundle over an analytic stack M

is a stack P together with a representable morphism P
p−→ M , an action

G×P
act−→P together with an isomorphism ϕ : p ◦ act

∼=−→ p, such that act is
simply transitive on the fibers of p, an isomorphism ϕ2 making the diagram

G×G×P

m,idP

��

idG,act// P

act

��
G×P

act // P

commute, such that in the induced isomorphisms in the associativity dia-
gram coincide. Further, there has to be a two morphism making the diagram

P
e,id //

id

##HH
HH

HH
HH

H G×P

act

��
P

commute, compatible with multiplication. Finally to make a

bundle locally trivial there should exist an atlas X →M such that the induced
bundle P ×M X → X is trivial.

Claim. The two notions of G-bundles coincide. (We will never use this.)

Example 2.15. Once more, note that pt → [pt/G] is a G−bundle over
pt. The action map G × pt → pt is trivial. And we note that pt → [pt/G]
corresponds to the trivial bundle, thus a trivialization of this bundle induces
canonical isomorphisms ϕ.



12 Mathematisches Institut, Seminars, 2004-05

3. Topological stacks as topological groupoids
We can generalize the example of quotients by group actions as follows:

Given an atlas X →M , the two projections X ×M X // // X define the source
an target morphisms of a groupoid, the diagonal is the identity, interchanging
the factors the inverse and the composition is given by the projection to the
first and third factor of

X ×M X ×M X ∼= (X ×M X)×X (X ×M X)→ X ×M X.

We will denote this groupoid by X•.
Conversely, any groupoid Γ1 // // Γ0 defines a topological stack:

[Γ0/Γ1](Y ) := 〈(P p−→ Y, P
f−→ Γ0) a locally trivial Γ− bundle 〉

Recall that a locally trivial Γ-bundle is a diagram

P
f //

p

��

Γ0

Y

together with an action Γ1 ×Γ0 P → Γ0 which is equivariant with respect to
composition of morphisms in Γ1, such that there is a covering U → Y and
maps fi : U → Γ0 such that P |U ∼= f∗i Γ•. Note that such a trivialization is the
same as a section U → P (obtained from the identity section of Γ).

Since we can glue Γ-bundles this is a stack. As in the case of quotients we
have:

Lemma 3.1. The trivial Γ-bundle Γ1 → Γ0 induces a map Γ0
π−→ [Γ0/Γ1]

which is an atlas for [Γ0/Γ1], the map π is the universal Γ-bundle over [Γ0/Γ1].
The groupoids Γ and Γ0,• are canonically isomorphic.

Proof. We only need to show, that for any Y fP−→ [Γ0/Γ1] given by a bundle P ,
there is a canonical isomorphism P

∼=−→ Γ0 ×[Γ0/Γ1] Y . This is seen as before:

(Γ0 ×[Γ0/Γ1] Y )(T ) ∼= 〈(T f−→ Y, T
g−→ Γ0, ϕ : fP ◦ f → π ◦ g〉

∼= 〈(f, g, ϕ : f∗P ∼= g∗Γ1)〉
∼= {(f, f̃ : T → P )|prY ◦ f̃ = f}
∼= {f̃ : T → P} = P (T ).
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Next one wants to know, whether two groupoids Γ•,Γ′• define isomorphic
stacks. From the point of view of atlases this is easy: Given two atlases

X
p−→M , X ′

p′−→M

we get another atlas refining both, namely

X ×M ×X ′ → X →M

is again an atlas (since both maps are representable and have local sections,
the same is true for the composition).

Furthermore X ×M X ′ → X is a locally trivial X ′• bundle. This shows:

Lemma 3.2. Two groupoids Γ•,Γ′• define isomorphic stacks if and only if
there is a groupoid Γ′′• which is a left Γ• bundle over Γ′0 and a right Γ′• bundle
over Γ0 such that both actions commute.

Example 3.3. If we have a subgroup H ⊂ G acting on a space X, then
[X/H] ∼= [X×HG/G], since the maps X ← X×G→ X×HG define a G-bundle
over X and an H-bundle over X ×H G.

Similarly, if H ⊂ G is a normal subgroup, acting freely on X, such that
X → X/H is a principal H−bundle, then [X/G] ∼= [(X/H)/(G/H)], because
G×H X is a G/H-bundle over X and a G-bundle over X/H.

Finally we can identify morphisms of stacks in terms of groupoids, if the
morphism is a submersion, then in [LTX] these are called generalized homo-
morphisms.

Given a morphism M
f−→ N of topological stacks, and atlases X →

M , Y → N we can form the fibered product X ×N Y → X. Since N → Y
is a locally trivial Y• bundle, this is a (right) Y• bundle as well. Furthermore,
since the map X → N factors through M we also get a X• (left) action on
X ×N Y . Note that (by definition) the map X ×N Y → Y is a submersion if
and only if M → N is a submersion.

Conversely, suppose we are given X ← P → Y , together with commuting
actions of X• and Y• on P , such that P is a locally trivial Y• bundle over X.
Then the X• action on P is a descent datum for the Y•-bundle, which defines
a Y• bundle over M , thus a morphism M → N .

Of course, the simplest case of this is the most useful, namely a morphism
of groupoids X• → Y• induces a morphism of the associated quotient stacks,
(P as above is then obtained by pulling back Y• to X = X0).
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4. Geometry II: Sheaves, cohomology, tangent spaces,
dimension, normal bundles

Given a representable submersion M → N we define the dimension of the
fibers rel.dim(M /N ) as the dimension of the fibers of M ×N Y → Y for any
Y → N . This is well defined, because the relative dimension does not change
under pull-backs.

Given an analytic stack M define its dimension by choosing an atlasX →M
and defining dim M := dim(X) − rel.dim(X/M ). This is independent of the
atlas (check this for a submersion X ′ → X →M ).

Definition 4.1. A sheaf F on a stack is a collection of sheaves FX→M for
any X →M , together with, for any triangle

X
f //

h
⇒
��6

66
Y

g��		
	

M

with an isomorphism ϕ : g ◦ f → h, a morphism of sheaves Φf,ϕ : f∗FY→M →
FX→M , compatible for X → Y → Z (we often write Φf instead of Φf,ϕ). Such
that Φf is an isomorphism, whenever f is an open covering.

The sheaf F is called cartesian if all Φf,ϕ are isomorphisms.

Remarks 4.2.
1. Instead of giving sheaves FX→M for all X →M , we could as well only

give the global sections FX→M (X), together with restriction maps for U → X.
Thus a reader not afraid of sites, will prefer to say that F is a sheaf on the big
site of spaces over M (with the standard open topology).

2. A cartesian sheaf F is the same as a sheaf FX→M =: FX on some atlas
X → M together with a descent datum, i.e., an isomorphism Φ : pr∗1FX →
pr∗2FX on X ×M X which satisfies the cocycle condition on X×

3
M :

Given such a sheaf this defines a sheaf on every T → M , because we get
an induced descent datum on X ×M T → T , this defines a sheaf on T . Of
course, this is compatible with morphisms, since for S f−→ T → M the pull
back commutes with descent.

Conversely, given a cartesian sheaf F and an atlas X → M we get an
isomorphism Φ := Φ−1

pr2
◦ Φpr1

: pr∗1FX → pr∗2FX on X ×M X. This satisfies
the cocycle condition, since on X×

3
M we have pr∗12(Φpr1

) = Φ−1
pr12
◦ Φpr1

and
therefore pr∗12Φ = Φ−1

pr2
◦ Φpr1 .
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3. One might prefer to think only of cartesian sheaves on a stack, unfor-
tunately this category does usually not contain enough injectives. But the
subcategory of cartesian sheaves is a thick subcategory of all sheaves, i.e. a full
category closed under kernels, quotients and extensions.

We can define global sections of a sheaf on M . For cartesian sheaves we can
simply choose an atlas X →M and define

(1) Γ(M ,F ) := Ker( Γ(X,F ) //// Γ(X ×M X) ).

Lemma 4.3. For a cartesian sheaf F on M the group Γ(M ,F ) does not
depend on the choice of the atlas.

Proof. First note that the lemma holds if X is replaced by an open covering
X ′ = ∪Ui → X →M , because FX→M is a sheaf.

Secondly we only need to check the lemma for refinements, i.e. an atlas
X ′ → M which factors X ′ f−→ X → M such that f has local sections. But
then by assumption any global section defined via X ′ induces one on X.

Similarly to the above construction, one can – as for G−bundles – give a
simplicial description of cartesian sheaves on a stack as follows: Choose an
atlas X →M . Then a sheaf on M defines a sheaf on the simplicial space X•,
i.e. a sheaf Fn on all Xn, together with isomorphisms for all simplicial maps
f : [m]→ [n] from f∗Fn → Fm.

Again we call a sheaf on a simplicial space cartesian, is all f∗ are isomor-
phisms.

Conversely for any map T →M a cartesian sheaf on X• defines a sheaf on
the covering X×M T → T , via the formula 1. This formula only defines global
sections, but we can do the same for any open subset U ⊂ T .

Remark 4.4. Note that the functor Shv(M )→ Shv(X•) defined above is
exact.

Example 4.5. A cartesian sheaf on a quotient stack [X/G] is the same as
a G−equivariant sheaf on X.

The category of sheaves of abelian groups on a stack M has enough injec-
tives, so we want to define the cohomology of H∗(M ,F ) as the derived functor
of the global section functor. By the last example, for quotients [X/G] this will
be the same as equivariant cohomology on X.

As noted before, to define cohomological functors we have to consider arbi-
trary sheaves on M resp. on X•. We define global sections as:

Γ(M ,F ) := lim
←

Γ(X,FX→M )
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Where the limit is taken over all atlases X →M , the transition functions for

a commutative triangle X ′
f //

h
⇒
��7

77
X

g��		
	

M

are given by the restriction maps Φf,ϕ.

Lemma 4.6. For a cartesian sheaf F on a stack M the two notions of
global sections coincide.

Proof. For any atlas X → M the maps X ×M X → M are atlases as well.
Thus we get a map

lim
←

Γ(X ′,FX′→M )→ Ker( Γ(X,F ) // // Γ(X ×M X) ).

Conversely we have seen in lemma 4.3 that we can define a map in the
other direction as well. And it is not difficult to check that these are mutually
inverse.

One tool to compute the cohomology of a sheaf on M is the spectral sequence
given by the simplicial description above:

Proposition 4.7. Let F be a cartesian sheaf of abelian groups on a stack
M . Let X →M be an atlas and F• the induced sheaf on the simplicial space
X• then there is an E1 spectral sequence:

Ep,q
1 = Hq(Xp,Fp)⇒ Hp+q(M ,F ).

The spectral sequence is functorial with respect to morphisms X
��

// Y
��x� xx

xxxx

M // N

, for

atlases X,Y of M and N .

Proof. (e.g., [Del74],[Fri82]) For a cartesian sheaf F on M we denote by F•
the induced sheaf on X•. We first show that H∗(M ,F ) is the same as the
cohomology of the simplicial space X• with values in F•.

Recall that global sections of a sheaf F• on X• are defined as

Γ(X•,F•) := Ker( Γ(X,F ) // // Γ(X ×M X),F ).

Thus for any cartesian sheaf F on M we have H0(X•,F•) = H0(M ,F ).
We can factor the the cohomology functor on X• as follows: First Rπ•,∗

from the derived category of sheaves on X• to the derived category of simplicial
sheaves on M , then the exact functor tot taking the total complex of a simplicial
complex and finally take the cohomology over M .

Now for any U →M we can calculate (Rπ•,∗F•)|U as the direct image of the
simplicial space X•×M U

πU−→ U over U . But for any sheaf FU on U we know
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that tot(RπU,•,∗π
∗
UFU ) ∼= F , because πU has local sections: Indeed, since the

claim is local on U we may assume that πU has a section s : U → X ×M U .
But if we denote XU := X ×M U then Xn ×M U = XU ×U · · · ×U XU and
therefore the section s induces sections Xn → Xn+1 which induce a homotopy
on tot(RπU,•,∗π

∗F ) proving that this complex is isomorphic to F .
Thus we have shown that H∗(M ,F ) = H∗(X•,F•).
The spectral sequence is defined via the same construction, factoring H∗ into

RΓ•(K) := (RΓ(Kn))n, which takes values in the derived category of simplicial
complexes and the (exact) functor taking the associated total complex tot.

The spectral sequence is the spectral sequence of the double complex corre-
sponding to the simplicial complex.

This spectral sequence gives one way to transport the properties of the co-
homology of manifolds to stacks:

Proposition 4.8.
1. (Künneth Isomorphism) There is a natural isomorphism

H∗(M ×N ,Q) ∼= H∗(M ,Q)⊗H∗(N ,Q).

2. (Gysin sequence) For smooth embeddings Z ↪→M of codimension c there
is a long exact sequence:

→ Hk−c(Z ,Q)→ Hk(M ,Q)→ Hk(M −Z ,Q)→
In particular, the restriction Hk(M ,Q)→ Hk(M −Z ,Q) is an isomorphism
for k < c− 1.

This helps to do some well known cohomology computations in the language
of stacks:

Example 4.9. Let G be a group acting trivially on a space X. To give a
G−equivariant morphism from a G−bundle on a space T to X is the same as
to give a map T → X, thus [X/G] ∼= X × [pt/G]. And thus

H∗([X/G],Q) ∼= H∗(X,Q)⊗H∗([pt/G],Q).

Let T ∼= (S1)n be a torus. Then BT ∼= (BS1)n, because any T -bundle
is canonically the product of S1-bundles, once an isomorphism T ∼= (S1)n is
chosen. Thus H∗(BT,Q) ∼= H∗(BS1,Q)⊗n.

Finally we want to calculate H∗([pt/S1],Q) ∼= Q[c1] a polynomial ring with
one generator of degree 2. One way to do this is as follows: By the spectral
sequence 4.7 we see that the morphisms [C/C∗] → [pt/C∗] ← [pt/S1] induce
isomorphisms in cohomology, where the action of C∗ on C is the standard
action. This is because H∗(C × (C∗)n,Q) ∼= H∗((S1)n,Q). The same is true



18 Mathematisches Institut, Seminars, 2004-05

for [CN/C∗]→ [pt/C]. But here we can use the Gysin sequence: The inclusion
0 → CN induces a closed embedding [pt/C∗] → [CN/C∗] of codimension N .
The open complement [CN − 0/C∗] ∼= CPN−1, because the C∗ action is free
outside the origin. This proves the claim.

For the definition of f! maps in K−theory we need to define normal bundles,
at least for nice representable morphisms:

Lemma/Definition 4.10. Let f : M → N be a representable morphism
of differentiable stacks satisfying one of the following conditions:

1. f is a smooth submersion.
2. f is a smooth embedding.

Let Y p−→ N be any smooth atlas of N . Then normal bundle TM×N Y→Y

descends to a vector bundle TM→N on M . This does not depend on the choice
of Y and is called the normal bundle to f .

Proof. We only need to note that formation of the normal bundle commutes
with pull-back. Therefore the two pull backs of the normal-bundle of M×N →
Y to (M ×N Y )×M (M ×N Y ) are both canonically isomorphic to the normal
bundle to (M ×N (Y ×N Y )→ (Y ×N Y ). Therefore the bundle descends to
a bundle on M .

Since for manifolds formation of the normal bundle commutes with pull-
backs, the same holds for stacks:

Corollary 4.11. If M → N is a morphism as in the above lemma and
g : N ′ → N is an arbitrary morphism, then TM×N N ′→N ′ ∼= g∗TM→N .

Similarly one gets short exact sequences for the normal bundle of a compo-
sition, because the corresponding sequences for an atlas descend.

Tangent spaces to differentiable stacks will only be stack-versions of vector
bundles. Nevertheless define:

Lemma/Definition 4.12 (Tangent stacks). Let M be a differentiable
stack and X →M be a smooth atlas. Then we can take the tangent spaces to
the groupoid X•:

T (X ×M X ×M X) // //// T (X×MX) //// TX

by functoriality this is again a groupoid, the quotient [TX/T (X ×M X)] is
independent of the choice of X and is called TM , the tangent stack to M .
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The fibers of the projection TM → M are isomorphic to [V/W ], where
V,W are finite dimensional vector spaces, and W acts on V by some linear
map W → V , which is not injective in general.

5. S1-Gerbes or twists
Informally a gerbe(2) over some space X is a stack X → X which has the

same points as X, i.e. the points of X are isomorphism classes of objects in
X (pt). An S1-gerbe is a gerbe such that the automorphism groups of all points
pt→X are isomorphic to S1 in a continuous way.

The easiest example of such an object is [pt/S1]→ pt. More generally these
objects occur naturally in many moduli-problems, e.g. every U(n)-bundle with
flat connection on a compact Riemann surface has an automorphism group S1,
in good situations the stack of such objects is a S1-gerbe over the coarse moduli
space. This gerbe gives the obstruction to the existence of a Poincaré bundle
on the coarse moduli-space. Finally these objects seem to appear naturally in
K-theoretic constructions, since the choices of Spinc-structures on an oriented
bundle form a S1-gerbe (locally there is only one such choice, but the trivial
Spinc-bundle has more automorphisms).

Definition 5.1. Let X be a space. A stack X
π−→ X is called a gerbe over

X if
1. π has local sections, i.e., there is an open covering ∪Ui = X and sections

si : Ui →X of π|Ui
.

2. Locally over X all objects of X are isomorphic, i.e., for any two objects
t1, t2 ∈X (T ) there is a covering ∪Ui = T such that t1|Ui

∼= t2|Ui
.

A gerbe X → X is called a (continuous) S1-gerbe if for any T → X, together
with a section s : T →X there is an isomorphism Aut(s) := (T ×X T )×T×T

T ∼= S1 × T as family of groups over T , which is compatible with composition
of morphisms T ′ s′−→ T

s−→X .

Remarks 5.2.
1. As one might expect, the condition that the automorphism group of any

object is S1 implies that for any section s : T →X the map T×X T → T×X T
is an S1-bundle. Since the fibres of this map are given by two points together
with a morphism between the images in X the fibres are S1−torsors. To see
that the map is indeed a locally trivial bundle one can replace T by T ×X T

(2)Gerbe is the french word for sheaf, to avoid another wrong translation (cf. faisceaux,
champ etc.) there seems to be an agreement to keep the french word - or at least its spelling.
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in the above definition to get an isomorphism (T ×X T )×(T×XT ) (T ×X T ) ∼=
S1 × (T ×X T ) (one only has to write down, the functor represented by the
left hand side).

2. An S1-gerbe over a topological/differentiable space X is always a topolog-
ical/differentiable stack, an atlas is given by the sections si. By the previous
remark we know that Ui ×X Ui is a space and the two projections are S1-
bundles, in particular smooth.

This also shows that we might replace the condition that the automorphism
groups are isomorphic to S1 for all objects, by the same condition for sections
of one atlas of X. Representability of arbitrary fibered products T1×X T2 then
follows, since locally over X we can glue S1-bundles. (This definition will be
explained more carefully below.)

3. As in the case of bundles, one there is also a notion of discrete S1-gerbe,
simply by choosing the discrete topology for S1 in the above definition.

4. Any S1-gerbe on a contractible space is trivial, i.e. isomorphic to

X × [pt/S1]→ X.

Perhaps this is obvious. If not, one might reason as follows: Choose a
covering Ui of X with sections si : Ui → X, such that all Ui, Ui ∩ Uj are
contractible. Then Ui ×X Uj → Ui ∩ Uj is a locally trivial S1 bundle, thus
trivial. Therefore the obstruction to glue the sections si gives an element in
H2(X,S1) = 0 (the classification of gerbes will show that this H2 classifies
S1-gerbes).

5. A gerbe with a section is called neutral. Gerbes which are isomorphic to
X × [pt/G]→ X for some group G are called trivial gerbes over X.

We will need a generalization of the above, to include gerbes over topological
stacks M instead of spaces X. Again we only have to replace coverings by
representable morphisms with local sections:

Definition 5.3. Let M be a topological stack. A stack M τ π−→ M is
called a gerbe over M if

1. π has local sections, i.e. there is an atlas X →M and a section s : X →
M τ of π|X .

2. Locally over M all objects of M τ are isomorphic, i.e. for any two objects
t1, t2 ∈ M (T ) and lifts s1, s2 ∈ M τ (T ) with π(si) ∼= ti, there is a covering
∪Ui = T such that s1|Ui

∼= s2|Ui .
A gerbe M τ →M is called a (continuous) S1-gerbe if there is an atlas X p−→
M of M , a section (s : X → M τ , ϕ : π ◦ s ⇒ p) such that there is an
isomorphism Φ : Aut(s/p) := (X ×Mτ X) ×X×M X X ∼= S1 × X as family of
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groups over X, such that on X ×M X the diagram

Aut(s ◦ pr1/p ◦ pr1)
pr∗1Φ

))SSSSSSSSSSSSSS

∼= // Aut(s ◦ pr2/p ◦ pr2)
pr∗2Φ

uukkkkkkkkkkkkkk

X ×M X × S1

,

where the horizontal map is the isomorphism given by the universal property
of the fibered product, commutes (i.e. the automorphism groups of objects of
M̃ are central extensions of those of M by S1).

Example 5.4.
1. The easiest example of a S1-gerbe on a quotient stack [X/G] is given by a

central extension S1 → G̃
pr−→ G, then G̃ also acts on X and pr induces a map

[X/G̃] π−→ [X/G], which defines a gerbe over [X/G]: The atlas X → [X/G]
lifts to [X/G̃], this shows (1). And (2) follows, because locally any map T → G

can be lifted to G̃.
Finally the map S1 → G̃ induces a morphism [X/S1]→ [X/G̃] which induces

an isomorphism X × [pt/S1] ∼= [X/S1]
∼=−→ X ×[X/G] [X/G̃]. This shows the

last condition of the definition.
2. This generalizes to groupoids: An extensions of a groupoid Γ1 // // Γ0

by S1 is a groupoid Γ̃1 //// Γ0 with a morphism: Γ̃1 ////

p

��

Γ0

id

��
Γ1 //// Γ0

such that

p is an S1-bundle and the S1-action commutes with the source and target
morphisms.

As before this defines a S1-gerbe [Γ0/Γ̃1]→ [Γ0/Γ1].

Remarks 5.5.
1. As before a S1-gerbe is always a differentiable stack, the section s : X →

M τ of the particular atlas X →M is an atlas for M τ :
The map s is representable, because by base-change (Lemma 2.6) X ×M

M τ → M τ is representable and the canonical map X → X ×M M τ in-
duced by s is surjective by definition and representable since X ×X×M Mτ X ∼=
Aut(s/p) ∼= S1 ×X.

Thus the free action of Aut(s/p) induces a structure of an S1 bundle on
X ×Mτ X → X ×M X. As in remark 5.2(1) one can prove that this map is a
locally trivial S1-bundle.
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Furthermore, the last condition of the definition ensures, that this defines
an S1–extension of groupoids. Thus every S1 gerbe can be constructed as in
the example given above.

2. Since we just saw that for any T
s−→ M τ π−→ M the group Aut(s/s ◦

π) is representable, locally canonically isomorphic to S1 we get a canonical
isomorphism Aut(s/s ◦ π) ∼= S1 × T . Thus again we could have used this as a
definition of S1-gerbes.

3. Thus we can pull-back gerbes: For any N → M and any S1−gerbe
M τ → M the stack N τ := M τ ×M N is a S1-gerbe over N , since for any
T → N τ we have T ×N N τ = T ×N (N ×M M τ )T = T ×M M τ .

4. A morphism of S1-gerbes is a morphism of the corresponding stacks over-
the base stack, which induces the identity on the central S1 automorphisms of
the objects.

As before we call a gerbe neutral if it has a section. To state this in a different
way recall that for any bundle P on M̃ and any s : T → M̃ we get an action
of Aut(s) on s∗P. In particular for a line bundle L the pull back carries an
S1-action. Thus S1 acts on every fibre by a character χ = ()n : S1 → S1, where
n is some integer, constant on connected components of T resp. M̃ . A line
bundle on M̃ is called of weight n if n is constant on all connected components.

Lemma 5.6. For a S1-gerbe π : M̃ →M the following are equivalent:
1. M̃ →M has a section s.
2. M̃ ∼= [pt/S1]×M as stacks over M .
3. There is a unitary line bundle of weight 1 on M̃ .

Proof: Of course 2. ⇒ 1.. Furthermore, the universal bundle pt → [pt/S1]
is of weight 1, thus 2.⇒ 3..

Given a unitary line bundle of weight 1 we get a morphism M̃ →M ×BS1.
This map induces an isomorphism on automorphism groups of objects, because
the kernel of the map AutM̃ → AutM is S1 and this kernel is mapped isomor-
phically to the automorphisms of S1 bundles, since we started from a bundle
of weight 1. The map is also locally essentially surjective on objects, because
locally every object of M can be lifted to an object of M̃ and locally every
S1-bundle is trivial. And finally the map is a gerbe, since locally all objects in
the fibre are isomorphic. This implies that the map is an isomorphism.

This also shows, that the total space of the S1-bundle is isomorphic to M ,
thus any line bundle of weight 1 induces a section.
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Finally, given a section M → M̃ we get an isomorphism S1×M ∼= M ×M̃
M ×M×M M M = M ×M̃ M . The compatibility condition shows, that this
makes M into an S1-bundle over M . �

Remark 5.7. The descriptions 2. and 3. of the lemma show that line
bundles on M act on trivializations of a S1-gerbe. In description 2. this is
because a morphism to [pt/S1] is the same as a unitary line bundle on M and
in description 3. one sees, that two line bundles of weight 1 differ by a line
bundle on M .

There is a description of isomorphism classes of gerbes in terms of cocycles,
see for example [Bre94] and [Cra]. We write S 1 for the sheaf of continuous
sections of the trivial bundle S1 ×M →M :

Proposition 5.8.
1. Let M be a topological stack. Then there is a natural bĳection

{Isom. classes of S1-gerbes over M } ∼= H2(M ,S 1).

The same holds if S1 is replaced by any abelian, topological group.
2. If M is a differentiable stack such that the diagonal ∆ : M → M ×

M is proper, then the boundary map of the exponential sequence induces an
isomorphism H2(M ,S 1)

∼=−→ H3(M ,Z).

Indication of the proof: The two parts of the theorem are of very different
nature, they are only put in one statement, because the cocycles in (2), called
Dixmier-Douady classes, are often used to characterize gerbes.

For the first part we will first describe how to associate a cohomology class
to a gerbe M τ .

Choose an atlas X →M which is the disjoint union of contractible spaces,
e. g., take any atlas Y and then chose a covering of Y by contractible spaces.
We use the spectral sequence Hp(X×

q+1
M ,S 1) ⇒ Hp+q(M ,S 1) to calculate

H2(M ,S 1). By the choice of X this is:

H2(X, S 1) = 0 . .

H1(X, S 1) = 0 H1(X ×M X, S 1)
d1 //

d2

++WWWWWWWWWWWW H1(X
×3

M , S 1)
.

H0(X, S 1) // H0(X ×M X, S 1)
d1 //

H0(X
×3

M , S 1)
d1 //

H0(X
×4

M , S 1)
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Where the differentials d1 are given by the alternating sum over the pull-
backs (since the spectral sequence is constructed from a simplicial object by
taking alternating sums of the simplicial maps).

As explained before the choice of a trivialization of the pull-back X
s−→

Xτ = X ×M M τ of M τ to X induces a map p̃ : X →M τ and an S1-bundle

P := X ×Mτ X = Isom(p̃ ◦ p1, p̃ ◦ p2)→ Isom(p ◦ p1, p ◦ p2) = X ×M X

thus a class in H1(X ×M X,S 1).
This actually lies in the kernel of d1, because on X×

3
M the composition

induces an isomorphism

Φ123 : Isom(p̃ ◦ p1, p̃ ◦ p2)⊗ Isom(p̃ ◦ p2, p̃ ◦ p3)
∼=−→ Isom(p̃ ◦ p1, p̃ ◦ p3).

We will see below, that the associativity of the composition exactly means
that this also lies in the kernel of d2. Furthermore we may view Φ123 as a sec-
tion of the bundle p∗12P⊗p∗23P⊗(p∗13P )−1. This shows that the choices of Φ123,
which define an associative composition form a torsor for ker(H0(X×

3
M ,S 1)→

H0(X×
4
M ,S 1)). Two such choices define isomorphic gerbes, whenever we

change Φ123 by an automorphism of P , i.e., an element of H0(X×
2
M ,S 1).

To see that this construction defines an element in H2(M ,S 1) we have to
check that the we found an element in the correct extension of the E11

2 by the
E0,2

2 term and that the differential d2 corresponds to associativity. Accepting
this for a moment, we see that the process can be reversed:

Cohomology classes as above can be used to glue a groupoid over X×MX →
X. The boundary maps in the spectral sequence assure the associativity of
the composition. (One should note that in the construction Φ123 also defines
isomorphisms P−1 ∼= tw∗P where tw = ()−1 : X ×M X → X ×M X is the
inverse map of the groupoid X×•M , and trivialization of the restriction of P to
the diagonal P |∆(X).)

To analyze the differentials of the spectral sequence we have to recall its
construction: We have to chose acyclic resolutions of S1 on X×

i
M . Thus we

choose a covering X2
α of X×M X such that all the intersections X2

α1
∩· · ·∩X2

α3

are acyclic (this condition could be avoided if we would allow for another index).
Then we chose a covering X3

β of X×3
M which has the same property, such that

all projections prij : X×
3
M → X×

2
M map X3

β to some X2
prij(β). We do the same

for X×4
M and get a covering X4

γ . Taking global sections of S1 over these spaces
we get a double complex from which the spectral sequence is induced, the
total complex calculates H∗(M ,S 1). Thus writing X2

αα′ for the intersection
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X2
α ∩X2

α′ we calculate H2(M ,S 1) as the cohomology of:⊕
α

H0(X2
α) d1−→

⊕
α,α′

H0(X2
αα′ ,S

1)⊕
⊕

β

H0(X3
β ,S

1)

d2−→
⊕

αα′α′′

H0(X2
αα′α′′ ,S

1)⊕
⊕
β,β′

H0(X3
ββ′ ,S

1)⊕
⊕

γ

H(X4
γ ,S

1)

And the differentials are the sum of the simplicial and the covering differentials.
Thus the components of d2 are:

d2(sαα′ , sβ)α,α′,α′′ = sαα′s
−1
αα′′sα′α′′

d2(sαα′ , sβ)β,β′ = pr
∗
12spr12(β)pr12(β′)pr

∗
13s

−1
pr13(β)pr13(β′)pr

∗
23spr23(β)pr23(β′) − sβ + sβ′

d2(sαα′ , sβ)γ = pr
∗
123spr123(γ)pr

∗
124s

−1
pr124(γ)pr

∗
134spr134(γ)pr

∗
234s

−1
pr234(γ)

More precisely, the indices on the right hand side depend on the projections.
If the first component is zero sαα′ defines an S1-bundle P on X ×M X. The
vanishing of the second summand assures that sβ defines a section of pr∗12P ⊗
pr13 ∗ P−1 ⊗ pr∗23P . And finally the third summand guarantees associativity
as claimed.

�(1)

The second part of the proposition depends on the existence of a Haar-
measure on compact groupoids (i.e. groupoids defining stacks with proper
diagonal M →M ×M , in particular all automorphism groups of objects are
proper over the parameter space).

Using this Crainic [Cra] shows that a generalization of the Poincaré lemma
holds for such stacks, i.e. the sheaves of continuous R-valued functions are
acyclic. Therefore by the exponential sequence H2(M ,S 1) ∼= H3(M ,Z).

�

Remark 5.9. As one might expect from the proof above, the group struc-
ture of H2(X,S 1) can also be implemented as an operation on stacks: Given
S1-gerbes M τ , M τ ′ on M one can take the fibred product M τ×M M τ ′ , which
is an S1 × S1 and forget the anti-diagonal S1−automorphisms. To avoid tech-
nical arguments we can simply choose an atlas X →M on which both gerbes
are trivial. Then we have already seen that X ×Mτ×M Mτ′ X → X ×M X is
an S1 × S1-bundle and the multiplication S1 × S1 → S1 defines an associated
S1-bundle X1 → X ×M X and it is not difficult to check, that this defines a
groupoid X1 //// X .

In the special case of quotient stacks and gerbes given by two group exten-
sions this is simply the Yoneda product of extensions.
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Another description of gerbes is via projective bundles. Given any (possibly
finite dimensional) Hilbert space H. One gets an exact sequence of groups:

1→ S1 → U(H)→ PU(H)→ 1

By the first example of gerbes this defines an S1–gerbe BU→ BPU. In parti-
cular for any PU bundle P on a space X we can pull back this gerbe to X via
the classifying morphism X → BPU. The category of sections X×BPUBU(T ) is
the category of U bundles on T together with an isomorphism of the associated
PU bundle and the pull back of P to T .

This shows that the gerbe obtained in this way corresponds to the image of
P under the boundary map δ : H1(X,PU)→ H2(X,S 1). In particular if H is
n-dimensional we may factorize this map via the sequence:

0→ Z/nZ→ SU(n)→ PU(n)→ 0,

i.e., the classes obtained in this way are n-torsion.
For the purpose of this Seminar it will be sufficient to note that the gerbes

that arise naturally in K−theory are always obtained by PU bundles, this will
be explained in the next section.

If X is a manifold (and not a stack), then the fact that BPU is a K(Z, 3)-
space (if H is an infinite dimensional Hilbert space) shows, that δ is an isomor-
phism, thus any S1 gerbe arises in this way.

This is less clear for differentiable stacks, and Proposition 2.38 in [LTX]
gives the result. Unfortunately, since I am not an analyst, their proof is to
short for me. In section 6 we will prove that all S1-gerbes arise from projective
bundles, if the stack is a local quotient stack, a notion also defined in that
section.

In K-theory one can define Thom-isomorphisms for Spinc-bundles and one
can do the same for bundles on stacks (although one has to be a bit careful
with the definition the Thom-space of a bundle). As remarked before the
choices of Spinc-structure define a S1 gerbe, simply pulling back the universal
gerbe BSpinc → BSU(n). Thus every bundle P on a a space X defines a
gerbe Xτ → X such that the pull back of P to Xτ has a canonical Spinc-
structure. (We get a stack and not a space, because the sequence of groups
is S1 → Spinc → SO in contrast to orientation problems where the cokernel
imposes the obstruction).

If the bundle is not orientable one first has to chose some Z/2 covering on
which one chooses an orientation. And then one takes the above gerbe on the
orientation covering.
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Again one has to be careful defining a group structure on these objects, since
if we have two bundles which admit Spinc-structures on the orientation cover,
their tensor product does not necessarily admit a Spinc structure on the sum
of the orientation coverings.

The obstruction comes from the universal example on BZ/2 × BZ/2 and
this gives a geometric description of the cup product of two torsion-classes:

Lemma 5.10. Given finite abelian groups A,B,C and a bilinear form <
,>: A×B → C, then:

1. <,> defines an abelian extension 0 → C → G → A × B → 0 by the
cocycle σ(a, b, a′, b′) =< a,−b′ > + < a′,−b >.

2. Given an A-bundle PA and a B-bundle PB on a space X corresponding
to classes c(PA) ∈ H1(X,A), c(PB) ∈ H1(X,B). Define a C gerbe on X, given
by the pull back of the gerbe BG→ BA×BB defined in (1), via the classifying
map X → BA×BB. The Dixmier Douady class of this gerbe is the cup product
c(PA) ∪ c(PB).

Proof. Since the cup product commutes with pull-backs, we only may assume
X = BA×BB and take PA, PB the universal bundles.

In this case the standard atlas pt→ BA×BB is acyclic, as well as all fibered
products pt×B(A×B) · · · ×B(A×B) pt.

Thus the spectral sequence we used to calculate the Dixmier-Douady classes
is a complex. The class of the universal C-gerbe therefore is given by the cocycle
s(a, b, a′, b′) =< a,−b′ > + < a′,−b >. And the same cocycle represents the
cup-product.

6. Local quotient stacks
Freed, Hopkins and Teleman define K−functors only for local quotient

stacks, so we need to introduce this concept and we show that for these stacks
any gerbe arises from a projective Hilbert bundle, and the latter is almost
uniquely determined by the gerbe. References for this section are [FHT],[LTX]
and the preprint of Atiyah and Segal [AS].

Definition 6.1. A differentiable stack M is called a local quotient stack if
there is a covering Ui of M by open substacks, such that each Ui

∼= [Ui/Gi],
where Gi is a compact Lie group acting on a manifold Ui.

Quite a lot of stacks have this property, a very general result was recently
given in [Zun]. Of course if a stack M is a local quotient stack, then the
diagonal M →M ×M is proper. We say that M has proper isotropy.
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By the standard slice theorems (e.g. [DK00] Chapter 2) to be a local
quotient stack is a local property as follows (note that we assumed the Lie
groups to be compact):

Lemma 6.2. (To be local quotient stack is a local property) Let M be a local
quotient stack, X →M an atlas. Given a point x ∈ X and x ∈ U ⊂ X open
there is an open substack U ⊂ M together with a presentation U ∼= [Y/G]
where G is a compact Lie group acting on a contractible manifold Y , and a
commuting diagram:

U // M

Y

f

OO

// [Y/G]

OO

and x ∈ Im(f).

Corollary 6.3. Any S1-gerbe on a local quotient stack is again a local quo-
tient stack.

Proof of Lemma 6.2. Shrinking M we may assume that M ∼= [X ′/G′] is a
global quotient stack. Further we may assume that X = X ′, because the
projections of the fibered product X ′ ← X ×M X ′ → X are submersions, thus
we may choose a preimage x̃ of x in the fibered product and a local section
X ′ ⊃ U → X ′ ×M X passing through x̃.

But now we can find a contractible slice of the group action, which gibes us
a local presentation as U = [D/StabG(x)] , where D is a ball and the action of
the stabilizer of x comes from the linear action on the tangent space at x.

Proof of Corollary 6.3. We may assume M = [X/G] is a global quotient. Since
gerbes on contractible spaces are trivial, we may apply the last lemma to get a
covering of M by open substacks of the form [Y/H] such that the given gerbe is
trivial on Y . Since Y is contractible, the gerbe is induced form a S1−extension
of H.

To end the section on local quotient stacks, we want to show that for these
stacks any S1-gerbe is defined by a projective bundle, which can be chosen in
an almost canonical way (up to non canonical isomorphism). To this end we
first need the concept of a universal Hilbert bundle, as defined in [FHT].
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Definition 6.4 (Freed, Hopkins, Teleman [FHT])
A Hilbert bundle H on a differentiable stack M is called universal if any

other Hilbert bundle H ′ is a direct summand of H. A universal Hilbert bundle
is called local if its restriction to any open substack is universal.

Lemma 6.5 ([FHT] C.3). A universal bundle H on a stack M has the
absorption property: For any Hilbert bundle H ′ on M there is an isomorphism
H ⊕H ′ ∼= H.

The basic proposition is:

Proposition 6.6 ([FHT] C.4). Let M be a local quotient stack. Then
there exists a universal Hilbert H bundle on M . This bundle is local, and its
group of unitary automorphisms is weakly contractible.

We sketch the argument of [FHT]: On manifolds all Hilbert bundles are
trivial, because the infinite unitary group U is contractible. Now let M be a
global quotient stack [X/G] (G a compact Lie group). Let π : X → [X/G] be
the universal G bundle on [X/G]. Then for any Hilbert bundle H on [X/G]
the bundle π∗H is trivial, and there is a canonical injection H → π∗π

∗H ,
where π∗ means the bundle of fiber wise L2 sections. Thus π∗ of the trivial
Hilbert bundle on X is a universal bundle which is local.

Now the global automorphisms of this Hilbert bundle areG-equivariant maps
from X → U(H ⊗ L2(G)), and the space of these maps is contractible ([AS]
Proposition A3.1). Thus for a local quotient stack one can glue the local bundles
and the result is unique up to isomorphism. Thus it gives a universal bundle
on M .

6.1. S1-gerbes on local quotient stacks. To see that any S1 gerbe
arises from a projective bundle one is tempted to use the cohomology sequence
coming from the short exact sequence 1→ S1 → U→ PU→ 1. Unfortunately
there is no nice definition of H2 for non-abelian groups, therefore we need some
preparations, to get canonical elements in H1(M ,PU).

First we need an absorption property for projective bundles, which I learned
from [AS].

Lemma 6.7. Let M be any topological stack.
1. The tensor product induces a map

⊗ : H1(M ,U)×H1(M ,PU)→ H1(M ,PU).
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2. The tensor product does not change the induced gerbe, i.e., denote by ∂
the boundary map ∂ : H1(M ,PU)→ H2(M ,S 1), then for any Hilbert bundle
H and any projective bundle P on M we have ∂(H ⊗ P ) = ∂(P ).

Proof. Any isomorphismH⊗H ∼= H induces a group homomorphism U×PU→
PU. This is well defined up to inner automorphisms of PU.

For the second part we only have to note that the choice of a Hilbert U
structure on P also induces one on H ⊗ P , and this is compatible with the
S1 action on U, thus the gerbes coming from the obstruction to such a lift are
isomorphic.

Definition 6.8. (Atiyah-Segal(3) [AS]) A projective Hilbert bundle P (i.e.
a PU-Bundle) on a differentiable stack M has the absorption property if for
any Hilbert bundle H on M there is an isomorphism H ⊗ P ∼= P .

We denote the set of isomorphism classes of projective bundles having the
absorption property by H1(M ,PU)abs.

Remark 6.9. If Huniv is a universal Hilbert bundle on a stack M and P
is any projective bundle, then Huniv ⊗ P has the absorption property.

Lemma 6.10. Let M be any differentiable stack. Then the map
H1(M ,PU)abs → H2(M ,S 1)

is injective.

Proof. Let P be a projective bundle, having the absorption property and let
π : M̃ →M be the S1-gerbe of Hilbert bundle structures on P . Then π∗P ∼=
P(H) for some Hilbert bundle H on M̃ .

Aside on weights: Because S1 is canonically contained in the automorphism
group of any object of M̃ , it acts on the sections of any Hilbert bundle H on
M . Thus the canonical decomposition of the sheaf of sections of H induces
a decomposition o H = ⊕i∈ZHi, according to the characters of S1, called
weights. Bundles of weight 0 – i.e. bundles for which H = H0 – are pull-backs
of Hilbert bundles on M . Bundles of weight 1 – i.e. H = H1 – are exactly
the bundles, which induce projective bundles on M whose associated gerbe is
M̃ .

Thus in our situation H is a bundle of weight 1 and we want to show, that
it has the absorption property for Hilbert bundles of weight 1 on M̃ . Let H ′

be an irreducible Hilbert bundle of weight one on M̃ . Then H ⊗H ′,∗ has

(3)In their article [AS] this property is called regular, we keep the terminology of [FHT]
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weight 0, thus H ⊗H ′∗ ∼= π∗(HM ). Since P has the absorption property,
we know that H ∼= H ⊗ π∗(H ′′∗)⊗. Thus H ⊗H ′∗ has a non vanishing
section (even countably many linear independent sections), which proves the
absorption property.

By uniqueness of universal bundles this shows that H is determined by the
gerbe.

Remark 6.11. If there is a universal Hilbert bundle on M , which is local,
then the restriction to open substacks preserves the absorption property. And
conversely it is then enough to check this property locally.

Proposition 6.12. Every S1-gerbe on a local quotient stack M comes from
a projective bundle. Moreover, the natural map

H1(M ,PU)abs → H2(M ,S 1)

is an isomorphism.

Proof. Let M̃ be an S1-gerbe on M . By Lemma 6.3 this is again a local
quotient stack and therefore it has a universal Hilbert bundle H̃ . As in the
previous lemma, we denote the direct summand of weight 1 of H̃ by H̃1. This
bundle is non-trivial, since it is locally the gerbe is defined by a group extension,
thus locally the bundle is non trivial. Thus H̃1 defines a projective bundle on
M , which gives the gerbe.
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Abstract . The goal of the present paper is the calculation of the equivariant twisted
K-theory of a compact Lie group which acts on itself by conjugations, and elements of
a TQFT-structure on the twisted K-groups. These results are originally due to D.S.
Freed, M.J. Hopkins and C. Teleman. In this paper we redo their calculations in the
framework of topological and differentiable stacks. We also show how moduli spaces
of flat connections on surfaces give rise to trivializations of twists.

1. Introduction
The present paper grew out of a seminar held in the Spring, 2004. The

goal of the seminar was to understand the recent paper by Freed, Hopkins,
and Teleman [FHT03]. The first main result of [FHT03] that we discussed
was the calculation of the twisted G-equivariant K-theory of G, where G is a
compact Lie group which acts on itself by conjugation.

While working on details we came to the conclusion that it is worth to de-
velop proofs in a more restricted formalism. The original paper [FHT03] mixes
analytic with geometric and topological arguments. We had some difficulties
to see that all constructions match in a nice manner.

In the present paper we try to give a proof of this result (which we formulate
here as Theorem 2.1) by arguments which are completely embedded in the
calculus of smooth stacks. We do not touch the question of the construction of
a K-theory functor in this framework. Rather we assume that such a functor

May 2005.
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exists and has all necessary functorial properties. Actually we only need local
quotient stacks, and the construction of the K-theory in this case was sketched
in [FHT03] (see also [TXL03] and [AS04]). A verification of all functorial
properties, in particular the construction of push-forward maps, is still a gap
in the literature.

The way the calculation is set up in the present paper opens the path to
generalizations. Since we only do geometric calculations with stacks and use
the formal properties of K-theory, the method could also be applied to other
twisted cohomology theories.

The calculation of the twisted K-theory has two basis steps. The first step
is the construction of elements of the twisted K-theory. In symbols the con-
struction is realized as the map R! ◦Φ, where Φ is defined in 2.3.4, and the map
R is introduced in 2.3. Note that this construction is purely geometric in terms
of the calculus of smooth stacks and formal properties of twisted K-theory.

The second step is a method to detect elements of the twisted K-theory.
We will construct an embedding (the map Θ introduced in 2.4.6, see Theorem
2.17) of the twisted K-theory into the representation ring of a suitable finite
group 2.4.3. This very effective tool was explained to us by C. Teleman.

The second topic of the seminar were elements of a 1+1-dimensional TQFT-
structure on the twisted K-theory. The identity, the product, and the co-form
are induced by natural geometric constructions with stacks associated to the
group. Having constructed a basis of the twisted K-theory in Theorem 2.1 it
is then a natural question to express these TQFT-operations in terms of this
basis. The results and sketches of proofs were announced again in [FHT03]
and [FHT02]. Here we reproduce the formulas working again completely inside
the stack calculus and using only formal properties of K-theory. The identity is
calculated in Theorem 2.20. The co-form is obtained in Theorem 2.23. Finally,
the calculation of the product is stated as Theorem 3.25.

The twisted K-theory of a Lie group which acts on itself by conjugation is a
module over the representation ring of the Lie group in a natural way. It follows
from the calculation that the twisted K-theory is a free Z-module and therefore
embeds in its complexification. The latter is a module over the complexified
group ring. In Theorem 2.19 we show that it is a quotient of the complexified
group ring. Actually, equipped with the product and the identity coming from
the TQFT-structure, the complexified twisted K-theory is a quotient of the
complexified representation ring as a ring.

The natural source of the TQFT-structure are correspondences given by
moduli spaces of flat connections on surfaces and their boundaries (see (3.15)).
In the present paper these correspondences were only employed to construct
isomorphisms of twists needed to define the product.
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Indeed, we had difficulties to define the K-orientations of the outgoing
boundary evaluation maps in a natural way such that they are compatible
with glueing.

In Subsection 3.1 we recall the construction of the central extension of the
restricted unitary group associated to a polarized Hilbert space. This central
extension can be viewed as a source of twists. In 3.2.4 we use this central
extension in order define in a natural way twists of the moduli stack of (flat)
G-connections on any one-dimensional compact closed oriented manifold.

The determinant line bundle over the restricted Grassmannian of the polar-
ized Hilbert space can be used as a source of trivializations of twists. For a
compact oriented surface with boundary we have an evaluation map from the
moduli stack of flat G-connections on the surface to the stack of G-connections
on the boundary. In Subsection 3.11 we construct a natural trivialization of
the pull-back of the twist via the boundary evaluation. In Propositions 3.13
and 3.18 we verify that these trivializations behave functorially with respect
to the glueing of surfaces. This approach to twists was partly inspired by the
thesis of Posthuma [Pos03].

The missing piece for a completely natural construction of the TQFT using
moduli spaces is the compatible orientation of the outgoing boundary evalua-
tion maps. Such a construction is desirable in particular, because it would give
a natural explanation for the associativity of the product.

A major topic of [FHT03] is the relation between the equivariant twisted
K-theory of the Lie group acting on itself by conjugation and the theory of
positive energy representations of the associated loop group. Because of lack
of time this was not discussed in the seminar and will therefore not be touched
upon in the present paper. Another more philosophical reason for this omission
is that according to our present knowledge this relation can not be seen purely
inside the calculus of stacks. Rather it is based on explicit cycles in order to
represent twisted K-theory classes in an appropriate model.

While working on this paper we had a very fruitful exchange with C. Tele-
man. He told us the idea how to detect elements of the twisted K-theory
groups using the restriction to finite groups. Furthermore this discussion led
to the elimination of many stupid mistakes in previous versions of these notes.

In the same seminar J. Heinloth gave an introduction to smooth stacks and
gerbes. In the present paper we freely use the language and the notation which
was set up in his talks and the review [Hei05]. Further discussions with J.
Heinloth during the preparation of the present paper were of great help.

Finally, since this will not be noted again in the text below, let us emphasize
that the main theorems discussed in the present paper and the key ideas leading
to their verifications are due to Freed, Hopkins, and Teleman.
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2. Calculation of twisted K-theory of Lie groups
2.1. Connections, gauge groups, and twists

2.1.1. Let G be a Lie group. We consider the trivial G-principal bundle
P (S1) := G× S1 → S1 .

Let F (S1) denote the space of (flat) connections on P (S1). The gauge group
G(S1) acts on F (S1). We consider the topological stack (see [Hei05], Ex. 1.5
and 2.5)

M := [F (S1)/G(S1)] .

2.1.2. Let
0→ U(1)→ Ĝ(S1)→ G(S1)→ 0

be a central extension. It gives rise to a twist (see [Hei05], Ex. 5.4.1)

τ : M̂ →M ,

where M̂ := [F (S1)/Ĝ(S1)]. The goal of the present section is a to formulate
the main result about the calculation of the twisted K-theory τK(M ).
2.1.3. Twisted K-theory associates to a topological stack M equipped with
a twist τ : M̂ → M a Z-graded group τK(M ) in a functorial way. More
precisely, if τ ′ : M̂ ′ →M ′ is another twisted topological stack, f : M ′ →M
is a morphism, and u : τ ′ → f∗τ is an isomorphism of twists, then we have
a functorial map u∗f∗ : τK(M ) → τ ′K(M ′). See [FHT03], [TXL03], and
[AS04] for a construction a twisted K-theory functor. We further assume that
twisted K-theory admits a Mayer-Vietoris sequence and is a module over the
untwisted K-theory. Our assumptions about wrong-way maps will be explained
in 2.2.9.
2.1.4. We consider G ⊂ G(S1) as the subgroup of constant gauge transforma-
tions. We assume that G is connected and choose a maximal torus T ⊂ G. Let
Ť denote the group of homomorphisms S1 → T . We can consider Ť ⊂ G(S1)
naturally. Furthermore let NG(T ) be the normalizer of T in G which we also
consider as a subgroup of G(S1). Inside G(S1) the groups Ť and NG(T ) gene-
rate a semi-direct product

0→ Ť → ŤNG(T )→ NG(T )→ 0 .

The group of connected components of ŤNG(T ) is the affine Weyl group Ŵ .
It fits into a semi-direct product

0→ Ť → Ŵ →W → 0 ,

where W := NG(T )/T is the ordinary Weyl group of the pair (G,T ).
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2.1.5. Let T̂ → T be the restriction of the central extension of G(S1) via
the embedding T ⊂ G(S1). Let X(T̂ ) denote the group of characters, and let
X1(T̂ ) ⊂ X(T̂ ) be the subset of those characters which become the identity
after restriction to the central U(1).

The torus T ⊂ G(S1) is preserved under conjugation by elements of ŤNG(T ).
Therefore ŤNG(T ) acts on X(T̂ ). In fact, this action preserves X1(T̂ ) and
factors over the affine Weyl group.
2.1.6. We call an element χ ∈ X1(T̂ ) regular, if its stabilizer in Ŵ is trivial.
Otherwise we call χ singular. Let Xreg

1 (T̂ ) denote the set of regular elements.
We call the twist τ regular, if Ŵ acts properly on X1(T̂ ) with finitely many

orbits.
Let ̂ŤNG(T )→ ŤNG(T ) be the central extension induced by the restriction

of Ĝ(S1)→ G(S1) to ŤNG(T ). By further restrictions we obtain central exten-
sions N̂G(T ) and ̂̌T of NG(T ) and Ť . We call the twist τ admissible if N̂G(T )
and ̂̌T are trivial.
2.1.7. The main result of the present section is the formulation of the following
theorem:

Theorem 2.1. Assume that G is connected, and that τ is regular and ad-
missible. Then the orbit set Xreg

1 (T̂ )/Ŵ is the index set of a Z-basis of the free
Z-module τK(M ) in a natural way.

We will finish the proof of this theorem in 2.4.10. After a choice of rep-
resentatives of the equivalence classes Xreg

1 (T̂ )/Ŵ the basis elements will be
determined uniquely up to a global sign which can be fixed by choosing an
orientation of Lie(T ).
2.1.8. Let [G/G] be the quotient stack, where G acts in itself by conjugation.
We define a map hol : M → [G/G] which on the level of spaces associates
to each connection in F (S1) its holonomy at 1 ∈ S1 measured in the positive
direction. On the level of groups it is given by the evaluation G(S1)→ G at 1.

Lemma 2.2. The map hol : M → [G/G] is an equivalence of topological
stacks.

Proof. This follows from [Hei05], Ex. 3.3 and the fact that the group
G(S1)0 ⊂ G(S1) of based gauge transformations (those which evaluate
trivially at 1 ∈ S1) acts freely and properly on F (S1) with quotient isomor-
phic to G via the holonomy map, and G(S1)/G0(S1) ∼= G via the evaluation. 2
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The composition hol∗τ := hol ◦ τ : M̂ → [G/G] is a twist of [G/G]. In this
sense Theorem 2.1 provides a calculation of hol∗τK([G/G]).
2.1.9. We consider a regular and admissible twist τ of M . Let I : [G/G] →
[G/G] be the map which is given by g 7→ g−1 on the level of spaces, and by the
identity on the level of groups. We call the twist τ odd, if I∗hol∗τ ∼= −hol∗τ .

2.2. Orientations.
2.2.1. Let E be a real euclidian vector space. By Cliff(E) we denote the asso-
ciated complex Clifford algebra. It comes with an embedding of E → Cliff(E)
and a ∗-operation. Let Cliff(E)∗ denote the group of unitary elements. We
define

Pinc(E) := {x ∈ Cliff(E)∗ | xEx∗ = E} .

This group comes as a central extension

(2.3) 0→ U(1)→ Pinc(E)→ O(E)→ 0 .

If E = Rn, then we write Pinc(n) := Pinc(Rn).
We let Spinc(E) ⊂ Pinc(E) be the pre-image of SO(E) ⊂ O(E), and set

Spinc(n) := Spinc(Rn).
2.2.2. The sequence of groups (2.3) induces a sequence of maps of stacks

[∗/U(1)]→ [∗/P inc(n)]→ [∗/O(n)] .

We furthermore have the following pull-backs (see [Hei05], Def. 2.1)

[∗/Spinc(n)] → [∗/SO(n)] → ∗
↓ ↓ ↓

[∗/P inc(n)] → [∗/O(n)] → [∗/(Z/2Z)]
.

2.2.3. A graded twist of a stack M will be a pair (σ, ρ), where σ : M →
[∗/(Z/2Z)] (is called the grading), and ρ is a twist of M .

Let E → M be a real euclidian vector bundle over a stack (see [Hei05],
2.10). Its frame bundle gives rise to a classifying map M → [∗/O(n)]. We
form the pull-back

Pinc(E) → [∗/P inc(n)]
↓ ↓

M → [∗/O(n)]
.

The stack Pinc(E) classifies Pinc-structures on E. It is a twist.
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We compose the map M → [∗/O(n)] with [∗/O(n)] → [∗/(Z/2Z)] and
obtain the pull-back

or(E) → ∗
↓ ↓

M → [∗/(Z/2Z)]

defining the stack or(E) which classifies the orientations of E.
In this way the vector bundle E gives rise to a graded twist

τ(E) := (or(E)→M , P inc(E)→M ).

2.2.4. The graded twists of a stack form a two-category. There is a natural
notion of a sum of graded twists such that there is a natural isomorphism
τ(E0 ⊕ E1) ∼= τ(E0) + τ(E1). This sum differs from the component-wise sum.
In fact, the isomorphism classes of twists are classified by a group GTW (M )
which sits in a non-trivial extension

0→ H3(M ,Z)→ GTW (M )→ H1(M ,Z/2Z)→ 0

(see the discussion in [AS04] and [Hei05], Remark 5.9).
2.2.5. Let f : M → N be a representable smooth map of smooth stacks. A
factorization of f into a smooth embedding and a smooth submersions gives
rise to a normal bundle (see [Hei05], Def. 4.10) which is a Z/2Z-graded vector
bundle E = E+ ⊕ E− over M . We define τ(E) := τ(E+) − τ(E−). Let
E′ be a normal bundle obtained by a different factorization. Then using the
diagonal embedding we get bundles A,B over M such that E ⊕A⊕ (−A) and
E′ ⊕ B ⊕ (−B) are canonically isomorphic. In particular, we get a natural
isomorphism τ(E) ∼= τ(E′).
2.2.6. Let f : M → N be a representable smooth map which admits factor-
izations in smooth embeddings and submersions. Let τ be a graded twist of
N .

Definition 2.4. A τ -K-orientation of f is a coherent choice of isomor-
phisms

f∗τ
∼→ τ(E)

of twists for all normal bundles E of f given by some factorization.

Coherence is understood here with respect to the natural isomorphisms (see
2.2.5) of twists associated to the normal bundles given by different factoriza-
tions of f . Note that a τ -K-orientation is determined by the isomorphism
f∗τ

∼→ τ(E) for one choice of E.
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2.2.7. Let
Q

q→ N
g ↓ f ↓
R

p→ M

be a cartesian diagram of smooth stacks, where f is representable and has a
factorization with normal bundle E. Then g is representable and also has a
factorization with normal bundle q∗E. If f is τ -K-oriented, then g has an
induced p∗τ -K-orientation.
2.2.8. Let us consider a composition

R
g→ N

f→M .

If E and F are normal bundles (for some factorizations) of f and g, then there
is a factorization of f ◦ g with a normal bundle g∗E⊕F . If f is τ0-K-oriented,
and g is f∗τ1-oriented, then f ◦ g is naturally τ0 + τ1 oriented. Vice versa, if f
and f ◦ g are K-oriented, then so is canonically g.
2.2.9. We assume that the twisted K-theory functor admits functorial wrong-
way maps for twisted-K-oriented proper maps. More precisely, if f : M → N
is a smooth proper (see [Hei05], Def. 2.8) map between stacks which is τ -K-
oriented for some twist τ of N , and if σ is a further twist of N , then we have
a wrong-way map

f! : f∗σ+f∗τK(M )→ σK(N ) .
We assume functoriality with respect to compositions and compatibility with
cartesian diagrams. Furthermore, we require a projection formula for the mod-
ule structure of the twisted K-theory over the untwisted K-theory.
2.2.10. Let G be a connected compact Lie group. We consider G as a G×G-
space with with the action (a, b)g = agb−1.

The group G acts on its Lie algebra Lie(G) by the adjoint representation.
We let G×G act on Lie(G) via the projection onto the second factor.

We obtain a vector bundle [Lie(G)/G × G] → [∗/G × G]. Let τ(G) be the
corresponding obstruction twist as in 2.2.4. In fact, since G is connected we do
not need the grading.

We will fix once and for all an orientation of Lie(G). It induces an orienta-
tion ofG. SinceG is connected the orientation covering or(Lie(G))→ [∗/G×G]
is trivialized.
2.2.11.

Lemma 2.5. The map q : [G/G × G] → [∗/G × G] has a natural −τ(G)-
K-orientation.
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Proof. The normal bundle of q is the tangent bundle [TG/G] → [G/G]
placed in degree one. We trivialize the tangent bundle TG ∼= G × Lie(G)
using the left action. The action of (g1, g2) ∈ G × G on (h,X) ∈ G × Lie(G)
is then given by (g1hg−1

2 , Ad(g2)(X)). Therefore we obtain an isomorphism
[TG/G×G] ∼= q∗[Lie(G)/G×G]. This gives the natural −τ(G)-K-orientation
of p. 2

2.2.12. Let d : [∗/G] → [∗/G × G] be given by the diagonal embedding G →
G×G. Then we have a cartesian diagram

[G/G] → [G/G×G]
p ↓ q ↓

[∗/G] d→ [∗/G×G]
.

The −τ(G)-K-orientation of q induces a −σ(G)-K-orientation of p : [G/G]→
[∗/G], where σ(G) := d∗τ(G). We consider the sequence

[∗/G] i→ [G/G]
p→ [∗/G] .

The canonical K-orientation of the composition p ◦ i = id and the −σ(G)-K-
orientation of p induce a p∗σ(G)-K-orientation of i.
2.2.13. The normal bundle of the map ∗ → [∗/G] is Lie(G) → ∗ placed in
degree one. We have already fixed an orientation in 2.2.10. The unique Spinc-
structure on the vector bundle Lie(G)→ ∗ induces the K-orientation of

∗ → [∗/G] .

2.2.14. Twists of [∗/G] are classified by H3([∗/G],Z) ∼= H3(BG,Z) (see
[Hei05], Prop. 5.8). In fact, the class of σ(G) is two-torsion since it
comes from a finite-dimensional vector bundle. Note that H3(BG,Z)tors

∼=
Ext(H2(BG,Z),Z), and that H2(BG,Z) ∼= π1(G). Therefore, if we assume
that 2 does not divide the order of π1(G)tors, then σ(G) is trivial.

Note further, that the isomorphism classes of trivializations of σ(G)
form a H2(BG,Z)-torsor ([Hei05], Remark 5.7), and that H2(BG,Z) ∼=
Hom(π1(Z),Z) (since G is connected). Thus, if we assume that π1(G) is finite,
then σ(G) is trivial in a unique way.
2.2.15. Let T ⊂ G be a maximal torus and NG(T ) be its normalizer.

Lemma 2.6. The map q : [T/NG(T )] → [∗/G] has a natural −σ(G)-K-
orientation.
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Proof. We represent (see [Hei05], Ex. 3.3) this map as
[(G×NG(T ) T )/G]→ [∗/G] .

Then we can write the tangent bundle of G ×NG(T ) T as associated vector
bundle

(G× T )×NG(T ) {(Lie(G)/Lie(T ))⊕ Lie(T )} .
Since the representation of NG(T ) on Lie(G)/Lie(T ) ⊕ Lie(T ) ∼= Lie(G)
extends to the adjoint representation of G we have an isomorphism of G-
equivariant bundles

(G× T )×NG(T ) {(Lie(G)/Lie(T ))⊕ Lie(T )} ∼= (G×NG(T ) T )× Lie(G) .

Therefore we can identify the vertical bundle of q with the pull-back by q of
Lie(G) → ∗ as G-equivariant bundles. This provides the natural −σ(G)-K-
orientation of q. 2

2.2.16. We consider the composition

[T/NG(T )] R→ [G/G] π→ [∗/G] ,

where R is induced by the obvious embeddings on the level of spaces and groups.
Now π has a natural −σ(G)-K-orientation by Lemma 2.5, and the composition
π ◦ R has a natural −σ(G)-K-orientation by Lemma 2.6. It follows that the
map R has a natural K-orientation.

2.3. Construction of twisted K-theory.
2.3.1. We have an embedding Lie(T )→ F (S1) as constant connections. The
group ŤNG(T ) ⊂ G(S1) preserves the image and thus acts on Lie(T ). Let
T := [Lie(T )/ŤNG(T )]. Then we have a map of stacks

R : T →M .

Let ̂ŤNG(T ) → ŤNG(T ) denote the restriction of the central extension
Ĝ(S1)→ G(S1) and set

T̂ := [Lie(T )/ ̂ŤNG(T )] .

Then we have the twist (see [Hei05], Remark 5.5.3 for the pull-back of a twist)

R∗τ : T̂ → T .

We consider the T̂ -principal bundle h : ̂ŤNG(T ) → Ŵ , where h is the
projection to the group of connected components. We let L2(h) → Ŵ be the
bundle of Hilbert spaces such that its fibre L2(h)ŵ over ŵ ∈ Ŵ is L2(h−1(ŵ)).
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Note that T̂ acts on L2(h)ŵ via the right action on the fibre. We further define
the line bundle L → Ŵ × X1(T̂ ) such that the fibre L(ŵ,χ) over (ŵ, χ) is the
χ-isotypic component L2(h)ŵ(χ) ⊂ L2(h)ŵ as a T̂ -representation.

We define an action of
̂ŤNG(T )× ̂ŤNG(T )

on
L→ Ŵ ×X1(T̂ )

as follows. Let f ∈ L2(h)ŵ(χ) = L(ŵ,χ). Then we define

(n̂1, n̂2)(f)(ĝ) := f(n̂−1
1 ĝn̂2) for all ĝ ∈ h−1(n̂1ŵn̂

−1
2 ).

We calculate that
(n̂1, n̂2)(f)(ĝt̂) = f(n̂−1

1 ĝt̂n̂2) = f(n̂−1
1 ĝn̂2n̂

−1
2 t̂n̂2)

= f(n̂−1
1 ĝn̂2)χ(n̂−1

2 t̂n̂2) = (n̂2χ)(t̂)(n̂1, n̂2)(f)(ĝ).

It follows that (n̂1, n̂2)(f) ∈ L(n̂1ŵn̂−1
2 ,n̂2χ). Therefore the projection of L be-

comes equivariant if we let ̂ŤNG(T ) × ̂ŤNG(T ) act on the base Ŵ × X1(T̂ )
by (n̂1, n̂2)(ŵ, χ) := (n̂1ŵn̂

−1
2 , n̂2χ). Since we assume that τ is admissible

we can choose a split Ŵ → ̂ŤNG(T ) of h which is a homomorphism. We
let Ŵ act on L → Ŵ × X1(T̂ ) via its embedding into the left factor of

̂ŤNG(T ) × ̂ŤNG(T ) given by the split. It acts freely, and the quotient is a
certain ̂ŤNG(T )-equivariant line bundle

L̄→ X1(T̂ ) .

Note that the central U(1) ⊂ ̂ŤNG(T ) acts on the fibres of L̄ by the identity
character (L̄ is of weight one in the language of [Hei05], Lemma 5.6) Therefore
we can consider the unit sphere bundle

[U(L̄)/ ̂ŤNG(T )]→ [X1(T̂ )/ ̂ŤNG(T )]

as a trivialization of the twist

[X1(T̂ )/ ̂ŤNG(T )]→ [X1(T̂ )/ŤNG(T )] .

We consider the space Lie(T )×X1(T̂ ) with the diagonal action of ŤNG(T ).
It gives rise to the stack

S := [Lie(T )×X1(T̂ )/ŤNG(T )] .

The projection to the first factor induces a map p : S → T . The pull-back
p∗R∗τ : Ŝ → S
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is given by
Ŝ := [Lie(T )×X1(T̂ )/ ̂ŤNG(T )] .

It is trivialized (see again [Hei05], Lemma 5.6) by the U(1)-bundle

p̂r∗2[U(L̄)/ ̂ŤNG(T )]→ [Lie(T )×X1(T̂ )/ ̂ŤNG(T )] ,

where
p̂r2 : [Lie(T )×X1(T̂ )/ ̂ŤNG(T )]→ [X1(T̂ )/ ̂ŤNG(T )]

denotes the projection.
2.3.2. Let

S̄ := [Lie(T )×X1(T̂ )/Ŵ ]

and m : S → S̄ be the (non-representable) map of stacks induced by the
projection h : ŤNG(T ) → Ŵ . Finally we consider the stack I := [X1(T̂ )/Ŵ ]
and let r : S̄ → [X1(T̂ )/Ŵ ] be induced by the projection onto the second
factor. We now consider the diagram

T
p← S

m→ S̄
r→ I .

2.3.3. By our non-degeneracy assumption Ť ⊂ Ŵ acts freely on X1(T ). There-
fore we have a diagram

S̄
r→ I

∼=↓ ∼=↓ α
[(Lie(T )×X1(T̂ )/Ť )/W ] r̃→ [(X1(T̂ )/Ť )/W ]

(see [Hei05], Ex. 3.3 for the vertical isomorphisms). Now r̃ is the projection
of a vector bundle with fibre Lie(T ). By 2.2.4 it gives rise to a graded twist
−ρ̃ of [(X1(T̂ )/Ť )/W ]. We let ρ := α∗ρ̃ be the corresponding graded twist of
I .
2.3.4. The projection r is now naturally ρ-K-oriented. Moreover, r! :
Kc(S̄ )→ ρK(I ) is an isomorphism. Its inverse is the twisted Thom isomor-
phism. The subscript c stands for proper support over p. Since the fibres of p
are discrete this map is canonically K-oriented. We define

Φ := p! ◦ (t−1)∗ ◦m∗ ◦ (r!)−1 : ρK(I )→ R∗τK(T ) .

Proposition 2.7. The map Φ is an isomorphism of groups.

Proof. It suffices to show that

p! ◦ (t−1)∗ ◦m∗ : Kc(S̄ )→ R∗τK(T )
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is an isomorphism. We have an equivalence

exp : T = [Lie(T )/ŤNG(T )] ∼→ [T/NG(T )]

which is given by the exponential map on the level of spaces, and by the pro-
jection ŤNG(T )→ NG(T ) on the level of groups. We prove the proposition by
localization over open sub-stacks of [T/NG(T )] and the Mayer-Vietoris princi-
ple. Since [T/NG(T )] has contractible slices we can in fact reduce to points.
2.3.5. So let t ∈ T and NG(T )t ⊂ NG(T ) be the stabilizer. Then the local
model is the diagram of stacks

[Ť /ŤNG(T )t]
p← [Ť ×X1(T̂ )/ŤNG(T )t]

m→ [Ť ×X1(T̂ )/Ŵt] ,

where Ŵt := ŤNG(T )t/T ⊂ Ŵ , and we have identified exp−1({t}) ⊂ Lie(T )
with Ť .

The restriction of the twist to the local model is given by

τt : [Ť / ̂ŤNG(T )t]→ [Ť /ŤNG(T )t] .

It can be trivialized. We let NG(T )t act from the right on ̂ŤNG(T )t via a split
NG(T )t → ̂ŤNG(T )t. Such a split exists by our assumption that the original
twist τ is admissible. The quotient ̂ŤNG(T )t/NG(T )t is an U(1)-bundle C → Ť .
Via the left multiplication it is ̂ŤNG(T )t-equivariant. The bundle C gives the
trivialization of the restricted twist τt. We will use this trivialization in order
to identify

τtK([Ť /ŤNG(T )t]) ∼= K([Ť /ŤNG(T )t]) .

Let U → [X1(T̂ )/ ̂ŤNG(T )t] denote the restriction of [U(L̄)/ ̂ŤNG(T )] (see
??) to the local model. We form the ŤNG(T )-equivariant U(1)-bundle V :=
p̂∗C∗ ⊗ p̂r∗2U , where

p̂ : [Ť ×X1(T̂ )/ ̂ŤNG(T )t]→ [Ť / ̂ŤNG(T )t]

is the map induced by the first projection p, and

p̂r2 : [Ť ×X1(T̂ )/ ̂ŤNG(T )t]→ [X1(T̂ )/ ̂ŤNG(T )t]

is induced by the second projection. We denote by

V ⊗ : K([Ť ×X1(T̂ )/ŤNG(T )t])→ K([Ť ×X1(T̂ )/ŤNG(T )t])

the operation given by the tensor product with the line bundle associated to
V . We then must show that

p! ◦ V ⊗ ◦m∗ : K([Ť ×X1(T̂ )/Ŵt])→ K([Ť /ŤNG(T )t])
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is an isomorphism. The candidate for the inverse is Tinv ◦ (V ⊗)−1 ◦ p∗, where

Tinv : K([Ť ×X1(T̂ )/ŤNG(T )t])→ K([Ť ×X1(T̂ )/Ŵt])

takes the sub-bundle of T -invariants.
2.3.6. In the following calculation we denote by V , U , and C the complex line
bundles instead of the underlying U(1)-bundles. We start with the composition
A := Tinv ◦(V ⊗)−1◦p∗◦p!◦V ⊗◦m∗. All these operations can be applied on the
level of vector bundles. We consider a vector bundle X → [Ť ×X1(T̂ )/Ŵ ]. We
will show that A(X) ∼= X. Indeed (where the dots indicate a straight-forward
calculation)

A(X) ∼= Tinv(p̂∗C ⊗ p̂r∗2U
∗ ⊗ p∗ ◦ p!(p̂∗C∗ ⊗ p̂r∗2U ⊗m

∗(X)))
∼= Tinv(p̂r∗2(U

∗)⊗ p̂∗ ◦ p̂!(p̂r∗2(U)⊗m∗(X)))
. . .
∼= X .

We now consider the composition B := p! ◦V ⊗ ◦m∗ ◦Tinv ◦ (V ⊗)−1 ◦p∗. We
again calculate on the level of vector bundles X → [Ť /ŤNG(T )t]. We indeed
have

B(X) ∼= p!(p̂∗C∗ ⊗ p̂r∗2(U)⊗m∗ ◦ Tinv(p̂∗C ⊗ p̂r∗2U
∗ ⊗ p∗X))

. . .
∼= X .

This finishes the proof of Proposition 2.7. 2

2.3.7. Observe (see 2.2.16) that R : T →M is naturally K-oriented so that
we can consider the induction map

R! : R∗τK(T )→ τK(M ) .

Proposition 2.8. On τK(M ) we have R! ◦R∗ = id.

Proof. We have equivalences of stacks

T
exp∼= [T/NG(T )]

ind∼= [G×NG(T ) T/G]

and
M

hol∼= [G/G] ,
where ind stands for induction (see [Hei05], Ex. 3.3). Using these equivalences
we replace R by the equivalent map

R : [(G×NG(T ) T )/G]→ [G/G]
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(which we denote by the same symbol for simplicity). Thus R is represented by
the G-equivariant map (g, t) 7→ gtg−1. We can now cover G by G-equivariant
slices U on which the twist is trivializable. We show that R! ◦R∗ is an isomor-
phism, locally. Then we argue by the Mayer-Vietoris principle.
2.3.8. In fact we can use contractible slices. The model of the map between
the slices at t ∈ T is

Rt : [(G×NG(T )t
Lie(T ))/G]→ [(G×Gt

Lie(Gt))/G] .

We can obtain the map Rt by induction of
St : [(Gt ×NG(T )t

Lie(T ))/Gt]→ [Lie(Gt)/Gt]

from Gt to G. Thus we must show that (St)! ◦ S∗t is an isomorphism.
2.3.9. By homotopy invariance and induction isomorphisms we have
K([(Gt×NG(T )t

Lie(T ))/Gt]) ∼= K([Gt/NG(T )t]) ∼= K([∗/NG(T )t]) ∼= R(NG(T )t)

and
K([Lie(Gt)/Gt]) ∼= K([∗/Gt]) ∼= R(Gt) .

With this identification S∗t : R(Gt)→ R(NG(T )t) is just the usual restriction.
In particular we know that this map is injective. In fact this is part of the
assertion of Proposition 2.8 in the untwisted case and therefore a part of a
K-theoretic version of the Borel-Weyl-Bott theorem which we assume as well-
known. It therefore suffices to show that S∗t (St)!S∗t = S∗t . Now S∗t (St)! is the
multiplication with the Euler class of the normal bundle N of St. We will show
that the Euler class is equal to one.
2.3.10. We consider the following diagram of Gt-spaces.

Gt ×NG(T )t
Lie(T ) St→ Lie(Gt)

α ↓ β ↓
Gt/NG(T )t

δ→ ∗
.

Let N(St), N(α), N(β), N(δ) denote the KGt
-classes of normal bundles of the

corresponding maps. Then we have
(2.9) N(St) + S∗tN(β) = N(α) + α∗N(δ) .

Note that β, α, δ are submersions. It is therefore easy to read-off the normal
bundles as the inverses of the vertical bundles. We get

N(α) = −α∗[Gt ×NG(T )t
Lie(T )]

N(β) = −β∗[Lie(Gt)]
N(δ) = −[Gt ×NG(T ) (Lie(Gt)/Lie(T ))] .
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Note that
α∗[Gt ×NG(T )t

Lie(T )] + α∗[Gt ×NG(T ) (Lie(Gt)/Lie(T ))]

= α∗[Gt ×NG(T )t
Lie(Gt)]

= [Gt/NG(T )t × Lie(Gt)]
= S∗t β

∗[Lie(Gt)]

In view of 2.9 this implies N(St) = 0. Hence its Euler class is the identity.
This finishes the proof of Proposition 2.8 2

2.3.11. The composition
Φ−1 ◦R∗ : τK(M )→ ρK(I )

represents τK(M ) as a direct summand of ρK(I ). In order to determine this
summand we must calculate the kernel of

R! ◦ Φ : ρK(I )→ τK(M ) .

2.3.12. Let I = I reg∪I sing be induced by the decomposition of X1(T̂ ) into
regular and singular characters. Let ρs : Î sing → I sing and ρr : Î reg → I reg

be the corresponding restrictions of the grading. Then we have a decomposition
ρK(I ) ∼= ρrK(I reg)⊕ ρsK(I sing) .

Proposition 2.10. We have
ker(R! ◦ Φ) = ρsK(I sing) .

Proof.
2.3.13. The stack I decomposes into a union of Ŵ -orbits

I ∼=
⋃

[χ]∈X1(T̂ )/Ŵ

Iχ ,

where Iχ := [[χ]/Ŵ ]. Let ρχ be the restriction of ρ to Iχ. Then we have a
decomposition

K(I ) ∼=
⊕

[χ]∈X1(T̂ )/Ŵ

ρχK(Iχ) .

We consider χ ∈ X1(T̂ ). Then we must compute
R! ◦ Φ|ρχK(Iχ) = R! ◦ p! ◦ (t−1)∗ ◦m∗ ◦ (r!)−1

|ρχK(Iχ) .

In the present subsection we will show that this composition vanishes for sin-
gular characters χ. Regular characters will be discussed later in 2.4.9.
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2.3.14. For the moment, in order to set up some notation, we consider an
arbitrary character χ ∈ X1(T̂ ). Let Wχ ⊂ W be the isomorphic image of Ŵχ

under Ŵ →W . Then we have an equivalence
Iχ
∼= [(W/Wχ)/W ] ∼= [∗/Wχ] .

We let ρ̃χ : ̂[∗/Wχ] → [∗/Wχ] be the induced grading. It is given by the
character ρ̃χ : Wχ → Z/2Z, ρ̃χ(w) := detLie(T )(w).

2.3.15. To represent (r!)−1
|ρχK(Iχ) we choose a Ŵ -equivariant section s in

Lie(T )× [χ]
s↗ ↓

[χ] = [χ]
.

For this we observe that we can choose an element H ∈ Lie(T ) with WH = Wχ.
Then we define s(ŵχ) := (ŵH, ŵχ).

Let s : Iχ → S̄ denote the induced map of stacks. The normal bundle of s
is given by [Lie(T )× [χ]/Ŵ ]→ Iχ. Therefore s is canonically −ρχ-K-oriented
and we obtain a push-forward s! : ρχK(Iχ)→ K(S̄ ). We now observe that

(r!)−1
|ρχK(Iχ) = s! .

2.3.16. We have the cartesian diagram

[[χ]/ŤNG(T )] m̃→ Iχ

s̃ ↓ ↓ s
S

m→ S̄

.

Therefore we can rewrite
(2.11) R! ◦ Φ|ρχK(Iχ) = R! ◦ p! ◦ s̃! ◦ (s̃∗t)−1 ◦ m̃∗ ,
The composition R ◦ p ◦ s̃ is represented by the map

c : [(Ŵ/Ŵχ)/ŤNG(T )]→M = [F (S1)/G(S1)] .

On the level of spaces it is given by
ŵŴχ 7→ ŵH .

where ŵH is considered as a constant connection. On the level of groups it is
the embedding ŤNG(T )→ G(S1). Using the equivalences M

hol∼= [G/G] and

[(Ŵ/Ŵχ)/ŤNG(T )] ∼= [(W/Wχ)/NG(T )]
ind∼= [(G/NG(T )χ)/G]

we have an equivalent representation of c as G-equivariant map
c : [(G/NG(T )χ)/G]→ [G/G]
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which is given by [g] 7→ exp(gH). Note that this map factors over G/Gt, so
that we have a factorization of c as

[(G/NG(T )χ)/G] a→ [(G/Gt)/G] b→ [G/G] .

The map a is the induction of

a : [∗/NG(T )χ]→ [∗/Gt] .

2.3.17. From now on until the end of the proof we use the holonomy isomor-
phism M ∼= [G/G] in order to view [G/G] as the target of R. Furthermore we
will write τ for hol∗τ . We can now write

(2.12) R! ◦ Φ|ρχ K(Iχ) = b! ◦ a! ◦ (s̃∗t)−1 ◦ m̃∗ .

Note that b∗τ is already trivial. We choose any trivialization t′ : 0 ∼→ b∗τ .
Then we can further write

R! ◦ Φ|ρχK(Iχ) = b! ◦ (t′,−1)∗ ◦ a! ◦ (a∗t′)∗ ◦ (s̃∗t)−1 ◦ m̃∗ .

2.3.18. The embedding [∗/NG(T )χ] → [[χ]/ŤNG(T )] induced by ∗ 7→ χ and
the inclusion of groups NG(T )χ → ŤNG(T ) is an equivalence of stacks. The
automorphism (s̃∗t)−1 ◦ a∗t′ of the trivial twist can therefore be considered
as a NG(T )χ-equivariant line bundle on ∗. Such a line bundle determines a
character µ ∈ X(T ) which is necessarily Wχ-invariant.
2.3.19. If χ is singular, then µ is a character of T which is singular (for Gt).
In this case the composition

(a∗t′)∗ ◦ (s̃∗t)−1 ◦ m̃∗ : ρχK(Iχ)→ K([∗/NG(T )χ]) ∼= R(NG(T )χ)

produces a representations of NG(T )χ on which T acts by a singular charac-
ters, and by Borel-Weyl-Bott the induction a! : K([∗/NG(T )χ]) → K([∗/Gt])
vanishes on singular characters. This shows that R! ◦Φ vanishes on the contri-
butions of singular orbits and

ρsK(I sing) ⊂ ker(R! ◦ Φ) .

The opposite inclusion ker(R! ◦ Φ) ⊂ ρsK(I sing) will be shown in 2.4.9.

2.4. Detection of elements of twisted K-theory.
2.4.1. We start with a twist τ : M̂ → M which is given by a central U(1)-
extension Ĝ(S1)→ G(S1). By restriction (see 2.1.4 for the notation) we obtain
a central extension

0→ U(1)→ ̂ŤNG(T )→ ŤNG(T )→ 0 .
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Since we assume that τ is admissible this extension is trivial when restricted
to Ť and NG(T ).

2.4.2. Recall (see 2.1.4) that Ť acts on X1(T̂ ). We choose a splitting homo-
morphism s0 : NG(T )→ ̂ŤNG(T ) and define a bilinear form

B : Ť ⊗ T → U(1)

by

B(ť, t) :=
(ťχ)(s0(t))
χ(s0(t))

.

It is easy to check that B does not depend on the choice of χ ∈ X1(T̂ ) and the
split s0. Using the form B we can write the cocycle defining the extension

(2.13) 0→ U(1)→ ̂̌TT → Ť T → 0

in the form ω((ť, t), (ť′, t′)) = B(ť, t′) − B(ť′, t). If s1 : Ť → ̂̌T is a splitting
homomorphism of ̂̌T → Ť , then we have
(2.14) s1(ť)s0(t)s1(ť)−1 = s0(t)B(ť, t) .

Note that B is W -invariant in the sense that B(ťw, tw) = B(ť, t).
2.4.3. We define a subgroup F ⊂ T by

F := {t ∈ T |B(ť, t) = 1 ∀ť ∈ Ť} ⊂ T .

Since B is W -invariant the action of the Weyl group W on T preserves F . Note
that F only depends on the central extension Ĝ(S1) → G(S1). If the twist τ
is regular, then B is non-degenerated. In this case F is finite.
2.4.4. Let X(Ť ) be the group of characters. We have a map b : F\T → X(Ť )
given by b(Ft)(ť) = B(ť, F t)−1.

Lemma 2.15. If τ is regular, then b is an isomorphism.

Proof. By the definition of F the map b is injective. Regularity of the twist
τ (see 2.1.6) is equivalent to non-degeneracy of B. In this case this map b is
also surjective. 2

2.4.5. The restriction of the extension (2.13) to ŤF is trivialized by the choices
of s0, s1 in 2.4.2, i.e. we have a homomorphism s : ŤF → ̂̌TF given by
s(ťf) := s1(ť)s0(f).

Let χ ∈ X1(T̂ ). Then the restriction χ|F is Ť -invariant. Therefore we get a
natural map s∗ : X1(T̂ )/Ť → X(F ) which is W -equivariant.
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Lemma 2.16. If τ is regular, then the map s∗ : X1(T̂ )/Ť → X(F ) is a
bĳection.

Proof. Surjectivity follows from the following easy assertions. Let µ̄ be
a character of F . Then there exists a character of T such that µ̄ = µ|F .
Furthermore, using the split s0 : T → T̂ and T̂ ∼= U(1) × T we see that
there exists a character χµ,s ∈ X1(T̂ ) such that s∗0χµ,s = µ. It follows that
s∗χµ,s = µ̄.

Assume now that s∗χ = s∗χ′. We write χ′ = χ + λ for some λ ∈ X(T ),
where we consider X(T ) ⊂ X(T̂ ) naturally. Then s∗λ = 0. Therefore λ pulls
back from T/F . In follows from Lemma 2.15 that there exists ť ∈ Ť such that
λ(t) = B(ť, t) for all t ∈ T . Therefore, ťχ = χ′. 2

Let Xreg(F ) ⊂ X(F ) be the subset of regular characters, i.e. characters
with trivial stabilizer in W . The bĳection s∗ restricts to an identification of
W -sets s∗ : Xreg(T̂ )/Ť → Xreg(F ) and therefore induces a bĳection

Xreg(T̂ )/Ŵ ∼→ Xreg(F )/W .

2.4.6. Let us from now on assume that the twist τ is regular. We consider the
composition of maps

[Lie(T )/ŤF ] S→ [Lie(T )/ŤNG(T )] R→M .

The twist
S∗R∗τ : [Lie(T )/̂̌TF ]→ [Lie(T )/ŤF ]

is trivialized by the section s (see 2.4.5). We let u : 0 ∼→ S∗R∗τ denote the
corresponding isomorphism. Let q : [Lie(T )/ŤF ] → [∗/F ] be induced by the
projection to a point. It is representable, proper, and K-oriented once we have
fixed an orientation of Lie(T ). We can now define a map

Θ : q! ◦ u∗ ◦ S∗ ◦R∗ : τK(M )→ R(F ) .

2.4.7. Let [χ] ∈ Xreg
1 (T̂ )/Ŵ . We trivialize the twist ρχ (see 2.3.13) by choos-

ing an orientation of Lie(T ) and the representative χ of the class [χ]. In fact
this data orients the projection Lie(T ) × {χ} → {χ}, and we extend this Ŵ -
equivariantly to an orientation of [Lie(T )× [χ]/Ŵ ]→ Iχ.

We define the homomorphism sign : Ŵ → {1,−1} such that sign(ŵ) =
±1 depending on whether ŵ : Lie(T ) → Lie(T ) preserves or reverses the
orientation.

Then we consider the generator eχ ∈ ρχK(Iχ) ∼= K(∗) ∼= Z and set Eχ :=
(R! ◦ Φ)(e[χ]) ∈ τK(M ). Note that Eŵχ = sign(ŵ)Eχ for ŵ ∈ Ŵ . In the
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following we will often write the action of Weyl group elements as an exponent,
e.g. χw means wχ.

Theorem 2.17. We have

Θ(Eχ) =
∑

w∈W

sign(w)(s∗χ)w ∈ R(F ) .

Proof. By Proposition 2.8 we have R∗Eχ = Φ(eχ). We must compute
(q! ◦ u∗ ◦ S∗)(Φ(eχ)). We have a diagram

[Lie(T )/ŤF ]
p̃← [Lie(T )×X1(T̂ )/ŤF ] m̂→ [Lie(T )×X1(T̂ )/Ŵ ]

S ↓ S̃ ↓ ‖
T

p← S
m→ S̄

,

where the left square is cartesian, and the right square commutes. We have

(q! ◦ u∗ ◦ S∗)(Φ(e[χ]) = (q! ◦ u∗ ◦ S∗ ◦ p! ◦ (t−1)∗ ◦m∗ ◦ (r!)−1)(e[χ]))

= (q! ◦ p̃! ◦ (p̃∗u)∗ ◦ (t̃−1)∗ ◦ m̂∗ ◦ (r!)−1)(e[χ]) .

The trivialization S̃∗t =: t̃ : 0 → p̃∗ ◦ S∗ ◦ R∗τ is given by a ̂̌TF -equivariant
U(1)-bundle of weight one

Lie(T )×X1(T̂ )× U(1)→ Lie(T )×X1(T̂ ) ,

where F acts on the fibre over Lie(T )× {χ} by s∗χ := χ ◦ s : F → U(1).
A small calculation shows that the trivialization p̃∗u is given by a ̂̌TF -

equivariant U(1)-bundle of weight one

Lie(T )×X1(T̂ )× U(1)→ Lie(T )×X1(T ) ,

where ̂̌TF acts on the U(1)-factor via its homomorphism ̂̌TF → U(1) induced
by the split s.

We conclude that

(2.18) (q! ◦ u∗ ◦ S∗)(Φ(eχ)) =
∑

w∈W

sign(w)(s∗χ)w ∈ R(F ) .

2

2.4.8. Let R(F )(sign) ⊂ R(F ) be the subspace of elements satisfying λw =
sign(w)λ for all w ∈W . Then the image of Θ is contained in R(F )(sign).
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2.4.9. We now finish the proof of Proposition 2.10. After a choice of represen-
tatives χ ∈ Xreg

1 (T̂ ) for the equivalence classes Xreg
1 (T̂ )/Ŵ the elements eχ,

[χ] ∈ Xreg
1 (T̂ )/Ŵ , form a Z-basis of ρrK(I reg). By Theorem 2.17 and Lemma

2.16 the composition Θ ◦ R! ◦ Φ|ρr K(I reg) : ρrK(I reg) → R(F ) is injective.
This implies that ker(R! ◦ Φ) ⊂ ρsK(I sing). Thus we have finished the proof
of Proposition 2.10.
2.4.10. By a combination of Propositions 2.10, 2.8, and 2.7 we see that the
elements

Eχ := R! ◦ Φ(eχ), [χ] ∈ Xreg
1 (T̂ )/Ŵ

form a Z-basis of τK(M ). Up to a sign this basis is natural. The sign depends
on the choice of an orientation of Lie(T ). This finishes the proof of Theorem
2.1. 2

2.4.11. The group hol∗τK[G/G] is a module over K([∗/G]) ∼= R(G). Indeed,
let p : [G/G] → [∗/G] be the projection. We use the isomorphism R(G) ∼=
K([∗/G]) and the ∪-product ∪ : K([G/G])⊗ hol∗τK([G/G])→ hol∗τK([G/G]).
Then the module structure is given by U ⊗ X 7→ U • X := p∗U ∪ X, where
U ∈ R(G) and X ∈ hol∗τK([G/G]).
2.4.12. Since τK([G/G]) is a free Z-module it embeds into its complexification
τK([G/G])C := τK([G/G])⊗Z C. We let R(G)C be the complexified group ring
of G. The action • extends to a linear action

• : R(G)C ⊗C
τK([G/G])C → τK([G/G])C.

Theorem 2.19. The R(G)C-module τK([G/G])C is isomorphic to a quo-
tient of R(G)C.

Proof. Let C[F ]W ∼= C[F/W ] denote the algebra of Weyl-invariant C-valued
functions on F . We have surjective restriction homomorphisms

R(G)C → R(T )W
C → C[F ]W ∼= C[F/W ] .

Let F reg ⊂ F be the subset of elements with trivial stabilizer in W . We
consider the associated vector bundle V := F reg ×W,sign C → F reg/W . The
complexification of R(F )(sign) can be identified with the space Γ(V ) of sec-
tions of V which is a C[F/W ]-module. The complexification of Θ provides an
injection

ΘC : τK([G/G])C → R(F )(sign)C
∼→ Γ(V )

of C-vector spaces. It follows immediately from the definition of Θ, that this
is a homomorphism of R(G)C-modules. Therefore the image of ΘC becomes a
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C[F/W ]-submodule. Such a submodule is completely determined by its support
S ⊂ F reg/W . We define the ideal I ⊂ R(G)C by the sequence

0→ I → R(G)C → C[F/W ]/C[S]→ 0 .

Then have
τK([G/G])C ∼= R(G)C/I .

2

2.5. The identity.
2.5.1. We consider the map of stacks e : [∗/G] → [G/G] which on the level
of spaces is given by the identity element of G. Let τ be a twist of M and
hol∗τ be the corresponding twist of [G/G]. In the present subsection in order
to simplify the notation we will denote this twist simply by τ .

We shall assume that e∗τ is trivial and fix a trivialization t : e∗τ ∼→ 0. Note
that we can write e∗τ : [∗/Ĝ] → [∗/G] for a U(1)-central extension Ĝ → G of
G. The datum of a trivialization t is equivalent to a split ϕ : G→ Ĝ.

We assume that the twist σ(G) (see 2.2.14) is trivialized. The map e is
K-oriented once we have chosen an orientation of Lie(G) (see 2.2.12). Then
we define the element

E := e!t
∗(1) ∈ τK([G/G]) .

The goal of the present subsection is an explicit calculation of E. We obtain a
formula for E by calculating Θ(E) ∈ R(F ), where Θ and F are as in Theorem
2.17.

The element E will give the identity of the ring structure on τK([G/G])
discussed in Subsection 3.3.
2.5.2. We fix a positive root system ∆ ⊂ X(T ) of (Lie(G), Lie(T )) and let
ρ := 1

2

∑
α∈∆ α. The restriction of the split ϕ to the torus T induces a bĳection

ϕ∗ : X1(T̂ ) → X(T ). We define χϕ,ρ ∈ X1(T̂ ) by the condition ϕ∗χϕ,ρ = ρ.
According to Theorem 2.1 this character determines a basis element Eχϕ,ρ

∈
τK([G/G]).

Note that the orientation of Lie(G) induces an orientation of Lie(T ), since
Lie(G) ∼= Lie(T )⊕ Lie(G)/Lie(T ), and the choice of the positive root system
∆ fixes a complex structure (and hence an orientation) on Lie(G)/Lie(T ).
This fixes the sign of the basis element.

Theorem 2.20. We have E = Eχϕ,ρ .
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2.5.3. The remainder of the present subsection is devoted to the proof of this
formula. The character ρ of T determines an associated G-equivariant line
bundle G ×T,ρ C → G/T . Let xρ ∈ K([(G/T )/G]) denote the K-theory ele-
ment represented by this bundle. Let b : [(G/T )/G] → [∗/G] be induced by
the projection G/T → ∗. The choice of ∆ induces a G-equivariant complex
structure on the tangential bundle T (G/T ). This gives the K-orientation of b.
The following is well-known in representation theory and a consequence of the
Borel-Weyl-Bott theorem.

Lemma 2.21. We have

b!xρ = 1 ∈ K([∗/G]) ∼= R(G) .

2.5.4. We consider now the diagram

[∗/G] e→ [G/G]
b ↑ R ↑

[(G/T )/G] c→ [T/NG(T )]
.

The lower horizontal map is given by c : [(G/T )/G] ∼→ [∗/T ] c̃→ [T/NG(T )],
where c̃ is given by the identity of T on the level of spaces, and by the embedding
T 7→ NG(T ) on the level of groups. We see that

e!t
∗(1) = e!t

∗(b!xρ) = e!b!b
∗(t)∗(xρ) = R!c!b

∗(t)∗(xρ) .

Under [(G/T )/G] ∼→ [∗/T ] the element xρ corresponds to ρ ∈ R(T ) ∼= K([∗/T ]).
The trivialization t induces some trivialization v : c̃∗R∗τ ∼→ 0. Actually c̃∗R∗τ :
[∗/T̂ ]→ [∗/T ], and v is induced by a split ϕ : T → T̂ . At the moment we can
take an arbitrary split, but later (see 2.5.9) it will be important that ϕ is the
restriction of ϕ : G→ Ĝ (see 2.5.1). Using the notation of 2.4.6 we see that we
must calculate

q! ◦ u∗ ◦ S∗ ◦ c̃! ◦ v∗(ρ) ∈ R(F ) .

2.5.5. In the next paragraph 2.5.6 we perform a longer calculation of certain
pull-back diagrams. Since we will use this result in later subsections with
different input we will state it in a general form. For the purpose of the present
subsection the symbols have the following meaning.

(1) X := Lie(T ), Q := ŤNG(T )
(2) Z := ∗, L := T
(3) Y := Lie(T ), H := ŤF

We have natural homomorphisms L→ Q← H. Furthermore, we have a central
extension Q̂ → Q given by ̂ŤNG(T ) → ŤNG(T ) such that its restrictions
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Ĥ → H and L̂ → L are trivialized by sections s and ϕ. We consider the
pull-back diagram

P
a→ [Y/H]

q→ [∗/H]
d ↓ S ↓

[Z/L] c̃→ [X/Q]
.

Over the left upper corner P we have two trivializations of the twist a∗S∗R∗τ ∼=
d∗c̃∗R∗τ , namely a∗s and d∗ϕ. The composition U := a∗u ◦ d∗v is an auto-
morphism of the trivial twist and therefore a line bundle over P . Using S∗◦c̃! =
a! ◦ d∗ we see that we must calculate

q! ◦ a!([U ] ∪ (d∗ρ)) ∈ R(F ) ,

where [U ] ∈ K(P ) is the element represented by U .
2.5.6. We consider the following diagram of stacks

[Z/L]→ [X/Q]← [Y/H] .

We make the pull-back P explicit and get

[(Z ×Q)×X (Y ×Q)/L×H ×Q] → [Y/H]
↓ ↓

[Z/L] → [X/Q]
.

Here the (Z × Q) ×X (Y × Q) ⊂ Z × Q × Y × Q is defined by the equation
g1z = g2y, where (z, g1, y, g2) ∈ Z ×Q× Y ×Q. The action is given by

(l, h, g)(z, g1, y, g2) = (lz, gg1l−1, hz, gg2h
−1).

The left vertical map is given by (z, g1, y, g2) 7→ z on the level of spaces, and
by (l, h, g) 7→ l on the level of groups. The upper horizontal map is similar.

We have further pull-backs

[Z ×Q/L× Q̂] → [X/Q̂]
↓ ↓

[Z/L] → [X/Q]
,

[Y ×Q/H × Q̂] → [X/Q̂]
↓ ↓

[Y/H] → [X/Q] .

We give more details for the left square. The action is given by

(l, ĝ)(z, g) = (lz, ĝgl−1).

The left vertical map is given by (z, g) 7→ z on the level of spaces, and by
(l, ĝ) 7→ l on the level of groups. The upper horizontal map is given by (z, g) 7→
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gz on the level of spaces, and by (l, ĝ) 7→ ĝ on the level of groups. We pull-back
further:

[(Z ×Q)×X (Y ×Q)/L×H × Q̂] → [Z ×Q/L× Q̂]
↓ ↓

[(Z ×Q)×X (Y ×Q)/L×H ×Q] → [Z/L]
.

The split of ϕ : L̂ → L gives rise to an action of L on Q̂. We form the
U(1)-bundle of weight one

[Z × Q̂/L× Q̂]→ [Z ×Q/L× Q̂] ,

where the action is given by

(l, ĝ)(z, ĝ1) = (lz, ĝĝ1ϕ(l−1)).

We consider the pull-back

L := [(Z × Q̂)×X (Y ×Q)/L×H × Q̂] → [Z × Q̂/L× Q̂]
↓ ↓

[(Z ×Q)×X (Y ×Q)/L×H × Q̂] → [Z ×Q/L× Q̂]
,

with the action

(l, h, ĝ)(z, ĝ1, y, g2) = (lz, ĝĝ1ϕ(l−1), ĝg2h−1).

A similar construction with [Y/H] gives the U(1)-bundle

H := [(Z ×Q)×X (Y × Q̂)/L×H × Q̂]→ [(Z ×Q)×X (Y ×Q)/L×H × Q̂]

with the action

(l, h, ĝ)(z, g1, y, ĝ2) = (lz, ĝg1l−1, ĝĝ2s(h−1)).

The bundle of fibrewise U(1)-isomorphisms

Hom(L ,H )→ [(Z ×Q)×X (Y ×Q)/L×H × Q̂]

admits an action of L×H ×Q in a natural way.
We simplify the description of the bundle

[Hom(L ,H )/L×H ×Q]→ [(Z ×Q)×X (Y ×Q)/L×H ×Q] .

We first consider the special case

[Hom(Q̂×Q,Q× Q̂)/Q]→ [Q×Q/Q]

where Q acts diagonally. This bundle is equivalent to

Hom(Q̂,Q× U(1))→ Q .
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In our case the bundles come with an action of L×H. In the simplified picture
the action is given by

(l, h)(ψ)(ĝ) = ψ(s(h)ĝϕ(l−1))

over (l, h)(g) = hgl−1 on Q. We obtain the equivalent description in the form

[(Z × Hom(Q̂,Q× U(1)))×X Y/L×H]→ [(Z ×Q)×X Y/L×H] ,

where the action is given by
(l, h)(z, ϕ, y) = (lz, (l, h)(ϕ), hy)

over (l, h)(z, g, y) = (lz, hgl−1, hy), and the subscript×X stands for the relation
gz = y.
2.5.7. We use the calculation 2.5.6 in order to compute U . The result is

U ∼= [ ̂ŤNG(T )
∗
×Lie(T ) Lie(T )/T × ŤF ]

P ∼= [ŤNG(T )×Lie(T ) Lie(T )/T × ŤF ]

The condition ×Lie(T ) stands for n̂1 = l, where (n, l) ∈ ̂ŤNG(T )
∗
× Lie(T ).

We describe the action in the case of U , where it is given by
(t, ťf)(n̂, l) = (s(ťf)n̂ϕ(t−1), ťl) .

Using the condition we can simplify the description of U and P to

U ∼= [ ̂ŤNG(T )
∗
/T × ŤF ]

P ∼= [ŤNG(T )/T × ŤF ]

If we tensorize L with d∗ρ, then we get U(ρ) := [ ̂ŤNG(T )/T × ŤF ], where the
action is now given by

(t, ťf)(n̂) = s(ťf)n̂ϕ(t−1)ρ(t) .

2.5.8. We write
P := tw∈W [Ť Tw/T × ŤF ] .

For w ∈ W let bw : [Ť Tw/T × ŤF ] → [∗/F ] be the restriction of q ◦ a to the
corresponding component. Then we must calculate (bw)![Uw(ρ)] ∈ R(F ), where
Uw(ρ) is the restriction of U(ρ) to Ť Tw. The inclusion [∗/F ]→ [Ť Tw/T × ŤF ]
given by ∗ 7→ w on the level of spaces, and by f 7→ (fw−1

, f) on the level
of groups is an isomorphism of stacks. Let ω(f) := s(f)ϕ(f−1). Then the
restriction of Uw(ρ) to [∗/F ] is the character ρ(fw−1

)ω(f). We obtain

(2.22) Θ(E) =
∑

w∈W

sign(w)ρwω ,
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where the sign is obtained by determining the orientation of bw for all w ∈ W
back-tracing the definitions.

2.5.9. Recall that s|F : F → ̂̌TT comes as a restriction of a split s0 : T → T̂ .
For the moment we can choose s0 := ϕ. Then we have ω = 0 and there-
fore Θ(E) =

∑
w∈W sign(w)(s∗χϕ,ρ)w. This implies by Theorem 2.17 that

E = Eχϕ,ρ . 2

2.6. The anti-diagonal.
2.6.1. In the present subsection we again assume that the twist σ(G) (see
2.2.14) is trivial. We consider the homomorphism

G→ G×G , g 7→ (g, g)

and the G-equivariant map
G 7→ G×G , g 7→ (g, g−1) ,

where G acts on G and G ×G acts on G ×G by conjugation. In this way we
arrive at a map of stacks

δ : [G/G]→ [G×G/G×G]

which we call the anti-diagonal map.
2.6.2. Let τ be a twist of M . We assume that τ is regular, admissible (2.1.6),
and odd (2.1.9). The twist τ induces a twist hol∗τ of [G/G]. In the present
subsection we will simplify the notation and write τ for this twist. Let

pri : [G×G/G×G]→ [G/G]

denote the projections. We obtain a regular and admissible twist σ := pr∗1τ +
pr∗2τ of [G × G/G × G]. It is given by the central extension ̂(G×G)(S1) →
(G×G)(S1), where ̂(G×G)(S1) := Ĝ(S1)× Ĝ(S1)/U(1), and the quotient is
by the diagonal action.
2.6.3. Note that pr1 ◦ δ = id and pr2 ◦ δ = I (see 2.1.9). Since τ is odd, it
follows that δ∗σ ∼= τ + I∗τ ∼= 0. We choose a trivialization t : δ∗σ ∼→ 0. Note
that δ is representable and proper. We consider the composition

[G×G/G×G] ∼= [G/G] δ→ [G×G/G×G]→ [∗/G×G] .

Here the action of G × G on G × G in the left [G × G/G × G] is given by
(g1, g2)(h1, h2) = (g1h1g

−1
1 , g2h2). This composition is equivalent to the pro-

duct of [G/G]→ [∗/G] and ∗ → [∗/G]. By 2.2.12 and 2.2.13 and the assumption
that σ(G) = 0 these maps are K-oriented if we choose an orientation of Lie(G).
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Then by 2.2.8 also δ is K-oriented. Note that the orientation of δ is even
independent of the choice of the orientation of Lie(G).

We can now define

D := δ!t
∗(1) ∈ σK([G×G/G×G]) .

The goal of the present subsection is an explicit calculation of D.
2.6.4. The classD depends on the choice of the trivialization t. In the following
paragraph we will define a character ω ∈ X(T ) which encodes the choice of t.

We consider the diagram

[F (S1)/G(S1)] δ̃→ [F (S1)× F (S1)/G(S1)×G(S1)]
∼=↓ ∼=↓

[G/G] δ→ [G×G/G×G]

,

where the vertical equivalences are given by the holonomy maps. The pull-back
of σ to the right upper corner is given by

[F (S1)× F (S1)/ ̂G(S1)×G(S1)]→ [F (S1)× F (S1)/G(S1)×G(S1)] ,

where ̂G(S1)×G(S1) ∼= Ĝ(S1)× Ĝ(S1)/U(1) (diagonal action), and Ĝ(S1)→
G(S1) defines τ .

Let i : S1 → S1 be the inversion map. The map δ̃ is given by A 7→ (A, i∗A)
and g 7→ (g, i∗g) in the level of spaces and groups.

The lift of the pull-back δ∗σ to the left upper corner is represented by
the central extension Ĝ(S1)

d
→ G(S1), which is obtained as the restriction

of ̂G(S1)×G(S1) → G(S1) × G(S1) via the embedding (id, i∗) : G(S1) →
G(S1)×G(S1). The trivialization t is now given by a split ϕ : G(S1)→ Ĝ(S1)

d
.

Let s0 : T → T̂ denote the split which was chosen in 2.4.2. Then we define
another split s′0 : T → T̂ by the condition that ϕ(t) = [(s0(t), s0(t)′)], where
we consider T ⊂ G(S1), T̂ ⊂ Ĝ(S1), and the bracket on the right-hand side
denotes the class in T̂ ×T T̂ /U(1) ⊂ Ĝ(S1)

d
.

We define ω ∈ X(T ) by the condition that s′0(t) = ω(t)s0(t), t ∈ T .

2.6.5. Let T̂ × T → T ×T be the central extension obtained by the restriction
of ̂(G×G)(S1) to T × T ⊂ (G × G)(S1), i.e T̂ × T = T̂ × T̂ /U(1) (diagonal
action). We define a map

× : X1(T̂ )×X1(T̂ )→ X1(T̂ × T )

by (χ× χ′)([t̂, t̂′]) = χ(t̂)χ′(t̂′)−1. This map is a bĳection.
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2.6.6. The affine Weyl group of G×G is isomorphic to Ŵ × Ŵ . The product
× is equivariant in the sense that ŵχ× ˜̂w′χ′ = (ŵ, ŵ′)(χ×χ′), where ˜. . . : Ŵ →
Ŵ is the automorphism ˜̌tw := ť−1w. In particular, the product × identifies
the subset Xreg

1 (T̂ )×Xreg
1 (T̂ ) with Xreg

1 (T̂ × T ). Furthermore we see that it
descends to a map of orbits

×̄ : X1(T̂ )/Ŵ ×X1(T̂ )/Ŵ ∼→ X1(T̂ × T )/Ŵ × Ŵ .

2.6.7. We apply Theorem 2.1 to the group G×G. It provides basis elements
Eκ ∈ σK([G×G/G×G]) labeled by [κ] ∈ Xreg

1 (T̂ × T )/(Ŵ×Ŵ ). The orienta-
tion of Lie(T ×T ) ∼= Lie(T )⊕ Lie(T ) induced by a choice of an orientation of
Lie(T ) is independent of this choice. This fixes the signs of the basis elements.

Theorem 2.23. We have

D = ±
∑

[χ]∈Xreg
1 (T̂ )/Ŵ

Eχ×(χω) .

We will explain the origin of the sign during the proof 2.6.15. The idea of
the proof is to apply 2.17.
2.6.8. We consider the cartesian diagram

[T/NG(T )]
j→ [T × T/NG(T )×NG(T )]

R ↓ R×R ↓
[G/G] δ→ [G×G/G×G]

,

where j is given by the anti diagonal t 7→ (t, t−1) on the level of spaces, and by
the diagonal t 7→ (t, t) on the level of groups. The K-orientation of δ induces a
K-orientation of j. We now observe that 1 = R!R

∗(1) = R!(1). Therefore we
have D = (R×R)!j!R∗(t)∗(1).

2.6.9. Let B : Ť × T → U(1) be the bilinear form (see 2.4.2) defining ̂̌TT .
Then the form B̃ : (Ť × Ť )× (T × T )→ U(1) which defines ̂Ť T × Ť T is given
by

B̃((ť, ť′)(t, t′)) = B(ť, t)B(ť′, t′)−1 .

Let F ⊂ T be the subgroup introduced in 2.4.3. Then we must consider
F × F ⊂ T × T , correspondingly.
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2.6.10. We now consider the diagram

(2.24)

P
α→ [T/NG(T )]

p ↓ j ↓
[T × T/F × F ] S→ [T × T/NG(T )×NG(T )]

q ↓
[∗/F × F ]

,

where P is the pull-back. We choose a trivialization u : 0 → S∗(R × R)∗σ.
Then the injection Θ (Theorem 2.17) is given by

Θ = q!u
∗S∗(R×R)∗ : σK([G×G/G×G])→ R(F × F ) .

Therefore we must calculate

Θ(D) = q!u
∗S∗j!R

∗(t)(1) = q!p!(U) ,

where U → P is the line bundle which corresponds to the automorphism
α∗R∗(t) ◦ p∗u of the trivial twist. Note that the K-orientation of p is in-
duced from the K-orientation of j, and the K-orientation of q is given by the
orientation of Lie(T × T ).
2.6.11. We write the pull-back diagram (2.24) in the following equivalent form
(2.25)

P
α→ [Lie(T )/ŤNG(T )]

p ↓ d ↓
[Lie(T )× Lie(T )/ŤF × ŤF ]

β→ [Lie(T )× Lie(T )/ŤNG(T )× ŤNG(T )]
q ↓

[∗/F × F ]

.

The map d is given by d(l) := (l, l−1) on the level of spaces, and d(m) := (m, m̃)
on the level of groups, where m 7→ m̃ is the automorphism ŤNG(T )→ ŤNG(T )
given by ˜̌tu = ť−1u.
2.6.12. The twist (R×R)∗σ is given by the central extension

̂ŤNG(T )× ŤNG(T )→ ŤNG(T )× ŤNG(T ) .

By restriction via d we obtain a central extension

̂ŤNG(T )
d

→ ŤNG(T ) .

The restriction of the split ϕ : G(S1) → Ĝ(S1)
d

(see 2.6.4) induces a split

ϕ : ŤNG(T )→ ̂ŤNG(T )
d

⊂ ̂ŤNG(T )× ŤNG(T ).
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The restriction ̂ŤF × ŤF of ̂ŤNG(T )× ŤNG(T ) to ŤF × ŤF also admits a
section s̃ : ŤF×ŤF → ̂ŤF × ŤF . We will write s1, s2 : ŤF → ̂̌TF ⊂ ̂ŤF × ŤF
for the restrictions of s̃ to the first and the second factors. We can and will
assume that [s1(t), s2(t)] = [s0(t), s′0(t)], t ∈ T .
2.6.13. In order to calculate the bundle U → P explicitly we will employ
the general calculation 2.5.6. The symbols in 2.5.6 now have the following
meanings.

(1) X := Lie(T )× Lie(T ), Q := ŤNG(T )× ŤNG(T )
(2) Y := Lie(T )× Lie(T ), H := ŤF × ŤF
(3) Z := Lie(T ), L := ŤNG(T ).

We observe that the restriction Ĥ → H is trivialized by a section s̃ : H → Ĥ,
and that we also have a section ϕ : L→ L̂.
2.6.14. The calculation of 2.5.6 gives now the following description of the line
bundle U → P .
U ∼= [Lie(T )× ( ̂ŤNG(T )× ŤNG(T ))∗ ×Lie(T )×Lie(T ) Lie(T )× Lie(T )]/ŤNG(T )× ŤF × ŤF ]

P ∼= [Lie(T )× ŤNG(T )× ŤNG(T )×Lie(T )×Lie(T ) Lie(T )× Lie(T )]/ŤNG(T )× ŤF × ŤF ] .

Evaluating the condition ×Lie(T )×Lie(T ) we can simplify this description to

U ∼= [Lie(T )× ( ̂ŤNG(T )× ŤNG(T ))∗]/ŤNG(T )× ŤF × ŤF ]

P ∼= [Lie(T )× ŤNG(T )× ŤNG(T )]/ŤNG(T )× ŤF × ŤF ] .

Next we restrict to the section
Lie(T )× {1} × ŤNG(T ) ⊂ Lie(T )× ŤNG(T )× ŤNG(T ).

We get

U ∼= [Lie(T )× ( ̂ŤNG(T )
r

)∗]/ŤF × ŤF ]

P ∼= [Lie(T )× ŤNG(T )]/ŤF × ŤF ] ,

where ̂ŤNG(T )
r

⊂ ̂ŤNG(T )× ŤNG(T ) is the preimage of {1} × ŤNG(T ). We
describe the action for U :

(a, b)(l, m̂) = (al, s2(b̃)m̂s1(a)ϕ(a−1)) ,

where we consider s1(a)ϕ(a−1) ∈ ̂ŤNG(T )
r

in the natural way.
We now write

ŤNG(T ) = tw∈W Ť Tw .

We further restrict to the section
tw∈WTw ⊂ tw∈W Ť Tw
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We get

U ∼= [Lie(T )× tw∈W (T̂ ∗w)r]/Ť × F × F ]

P ∼= [Lie(T )× tw∈WTw]/Ť × F × F ] ,

where (T̂ ∗w)r ⊂ ̂ŤNG(T )
r

is the preimage of {1}× Tw ⊂ ŤNG(T )× ŤNG(T ).
Let us again describe the action on U :

(a, f1, f2)(l, t̂w) = (al, s2(f2)s1(fw
1 )ϕ((fw

1 )−1)s2(aw)t̂s1(aw)ϕ((aw)−1)w) ,

where we write the action of Weyl group elements as exponents. We define a
character λ : ŤF → U(1) by

λ(ťf) := s1(ťf)s2(ťf)ϕ(ťf)−1 .

By our choice of s1 and s2 we have λ|F ≡ 1.
Then using the relation (2.14) in the form t̂s2(a

w) = B(aw, t)−1t̂ (where we
must take the inverse B(aw, t)−1 since we consider the dual bundle T̂ ∗ → T )
we can write this action in the form

(a, f1, f2)(l, t̂w) = (al, s2(f2(fw
1 )−1)t̂B(aw, t)−1λ(aw)−1w) .

We trivialize T̂ ∼= T × U(1) using a split κ : T → T̂ . Let κ̃ : T̂ → U(1) be the
associated projection. We can now describe

U ∼= [Lie(T )× tw∈WTw × U(1)]/Ť × F × F ]

with the action

(a, f1, f2)(l, tw, z) = (al, f2(fw
1 )−1t, κ̃(s2(f2(fw

1 )−1))−1λ(aw)−1B(aw, t)−1z) .

For w ∈ W we consider the homomorphism κw : F × F → F × F given by
(f1, f2) 7→ (fw−1

1 , f1f2). Let Uw → Pw be the restriction of U to the component
labeled by w ∈W . Then we have

κ∗wUw
∼= [Lie(T )× (F\T )× U(1)/Ť ]⊗ [U(1)/F ]

κ∗wPw
∼= [Lie(T )× F\T/Ť ]× [∗/F ] ,

where the action of f ∈ F on U(1) is trivial, and the action of Ť on Lie(T )×
(F\T )× U(1) is here given by

(2.26) a(l, F t, z) = (al, F t, ω(aw)−1B(aw, F t)−1z) .

Moreover we can identify Pw
∼= [T × (F\T )] × [∗/F ]. The projection vw :

κ∗wPw → [∗/F × F ] is represented on the level of groups by f 7→ (f, 1).



66 Mathematisches Institut, Seminars, 2004-05

2.6.15. We have the associated line bundle

Ψw := (Lie(T )× F\T × C)/Ť → T × (F\T ) ,

where the action is given as in (2.26). We must calculate v![Ψw] ∈ K(∗) ∼= Z,
where v : T×(F\T )→ ∗ is the projection. Let X(Ť ) be the group of characters.
The map

bw : F\T → X(Ť )

which is given by bw(Ft)(ť) = B(ťw, F t)−1 is a bĳection by Lemma 2.15.
We see that we can identify Ψw → T × F\T with the Poincare bundle

P → T ×X(Ť ). It is well-known that ṽ!(P) = 1, where ṽ : T ×X(Ť )→ ∗ and
X(Ť ) is oriented as the dual torus to T . We therefore get v!(Ψw) = ±1, where
the sign depends on whether bw preserves the orientation or reverses it. We
have v!(Ψw) = ±sign(w)v!(Ψ1), where the sign ± only depends on the twist.
2.6.16. Let z : ∗ → [∗/F ] be the projection. Then z!(1) =

∑
χ∈F̂ χ ∈ R(F ).

We conclude that (vw)!(Uw) = ±sign(w)
∑

χ∈F̂ 1⊗ χ ∈ R(F × F ). Note that

κ∗w(
∑
χ∈F̂

χw−1
⊗ χ−1) =

∑
χ∈F̂

1⊗ χ .

We conclude that

q! ◦ p!(U) = ±
∑

w∈W

sign(w)
∑
χ∈F̂

χw−1
⊗ χ−1 .

Note that it suffices to sum over F̂ reg ⊂ F̂ .
2.6.17. Let us assume that

D =
∑

[χ1],[χ2]∈Xreg
1 (T̂ )/Ŵ

a[χ1],[χ2]Eχ1×χ2

with coefficients a[χ1],[χ2] ∈ Z to be determined. Then by Theorem 2.17 we
have by equation (2.18)

Θ(D) =
∑

[χ1],[χ2]∈Xreg
1 (T̂ )/Ŵ

a[χ1],[χ2]

∑
w1,w2∈W

sign(w1)sign(w2)(s̃∗(χ1×χ2))(w1,w2).

We have (see 2.6.12 for notation)

(s̃∗(χ1 × χ2))(w1,w2) = (s∗0χ1)w1 ⊗ ((s′0)
∗χ−1

2 )w2 .

Now observe that (s′0)
∗χ−1 = (s∗0χ

−1)ω−1 = s∗0(ωχ)−1 for χ ∈ X1(T̂ ).
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2.6.18. We further rewrite

q! ◦ p!(U) = ±
∑

w1,w2∈W

sign(w1)
∑

[χ]∈F̂ reg/W

(χw2)w−1
1 ⊗ (χw2)−1

= ±
∑

w1,w2∈W

sign(w1)sign(w2)
∑

[χ]∈F̂ reg/W

χw1 ⊗ (χw2)−1 .

We want to evaluate the equality Θ(D) = q!p!(U) which explicitly has the form

±
∑

w1,w2∈W

sign(w1)sign(w2)
∑

[χ]∈F̂ reg/W

χw1 ⊗ (χw2)−1

=
∑

[χ1],[χ2]∈Xreg
1 (T̂ )/Ŵ

a[χ1],[χ2]

∑
w1,w2∈W

sign(w1)sign(w2)(s∗0χ1)w1 ⊗ (s∗0(ωχ2)−1)w2 .

In view of the discussion in 2.4.5 we see that

±a[χ1],[χ2] = δ[χ1],[ωχ2] .

This finishes the proof of Theorem 2.23. 2

3. Moduli spaces and trivializations of twists
3.1. Stacks associated to polarized Hilbert spaces.

3.1.1. Let H = H+ ⊕ H⊥+ be a polarized Hilbert space, and let P+ denote
the orthogonal projection onto H+. In this situation we define the restricted
unitary group

Ures(H,H+) := {U ∈ U(H) | [U,P+] trace class} .

We obtain the basic central extension of the connected component of the iden-
tity of Ures(H,H+) in the following canonical way (see [PS86]). We first
consider the subgroup

E := {(U,Q) ∈ Ures(H,H+)× U(H+) | P+UP+ −Q trace class} .

This group sits in an extension

0→ T → E → U0
res(H,H+)→ 0 ,

where T = {Q ∈ U(H+)|1−Qtrace class}. Let det : T → U(1) be the Fredholm
determinant. Then we define

Û0
res(H,H+) := E ×T,det U(1) .
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Definition 3.1. This is the basic central extension:

(3.2) 0→ U(1)→ Û0
res(H,H+)→ U0

res(H,H+)→ 0 .

3.1.2. Let UH+ ⊂ U0
res(H,H+) be the subgroup of isometries fixing H+. Then

we have a natural split

E
s̃↗ ↓

UH+ → U0
res(H,H+)

.

given by s̃(u) := (u, P+uP+). It induces a split

(3.3)
Û0

res(H,H+)
s↗ ↓

UH+ → U0
res(H,H+)

.

3.1.3. For completeness we explain how one can extend the central extension
from U0

res(H,H+) to Ures(H,H+). Recall that Ures(H,H+) comes as a (non-
canonically split) extension (semi-direct product)

0→ U0
res(H,H+)→ Ures(H,H+)→ Z→ 0 .

Choose a unitary σ ∈ Ures(H,H+) with σ(H+) ⊂ H+ and codimH+σ(H+) =
1. We can then define a split Z 3 1 7→ σ ∈ Ures(H,H+). We extend σ ∈
Aut(U0

res(H,H+)) to an automorphism σ̃ ∈ Aut(Û0
res(H,H+)) by σ̃[(U,Q), z] =

[(σUσ−1, Qσ), z], where [U,Q] ∈ E and

Qσ :=
{
σQσ−1 on σ(H+)

1 on H+ 	 σ(H+) .

We then define
Ûres(H,H+) := Û0

res(H,H+) o Z .

This definition depends up to isomorphism on the choice of σ and is therefore
less canonical than the construction of the extension of the connected compo-
nent.
3.1.4. The upshot of the preceeding discussion is that a polarized Hilbert space
H = H+ ⊕H⊥+ gives rise to a twist

T : [∗/Ûres(H,H+)]→ [∗/Ures(H,H+)]

whose restriction to the identity component of the restricted unitary group is
canonical.
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3.1.5. We now consider the restricted Grassmannian

Grres(H,H+) := {P orthogonal projection | P − P+ trace class} .

It is a homogeneous space of Ures(H,H+). We have the pull-back

[Grres(H,H+)/Ûres(H,H+)]
p∗T→ [Grres(H,H+)/Ures(H,H+)]

p ↓ ↓
[∗/Ûres(H,H+)] T→ [∗/Ures(H,H+)]

.

Lemma 3.4. The twist p∗T is trivialized.

Proof. The Grassmannian Grres(H,H+) carries a determinant bundle
L → Grres(H,H+). It was shown in [PS86], 7.7.3, that the central extension
Ûres(H,H+) acts canonically(1) on L lifting the action of Ures(H,H+) on
Grres(H,H+). This line bundle gives the isomorphism l : 0 ∼→ p∗T . 2

3.1.6. Later we need the following fact. Recall that UH+ ⊂ U0
res(H,H+) is

the subgroup of transformations which fix P+. Via the canonical split (3.3) its
acts on the fibre of L over P+.

Lemma 3.5. The group UH+ acts trivially on the fibre of L over P+.

3.2. Moduli spaces.
3.2.1. Let C be a non-empty oriented one-dimensional closed Riemannian
manifold. Observe that C admits a natural action of S1. If V is a finite-
dimensional complex Hilbert space, then we consider the Hilbert space H :=
L2(C, V ). The group S1 acts on V in a natural way. We obtain a polarization
H = H+ ⊕H⊥+ be taking for H+ the subspace of non-negative Fourier modes.
3.2.2. Let now G be a compact Lie group. Then we consider the trivial G-
principal bundle P (C) over C. Furthermore, we let F (C) and G(C) denote
the space of flat connections and the gauge group of P (C). The group G(C) ∼=
C∞(C,G) acts on F (C). In this way we obtain the stack

M (C) := [F (C)/G(C)] .

This generalizes the construction given in 2.1.1.

(1)Note that the definition of Ûres(H, H+) and the definition of the action depend on the
same choice of σ (see 3.1.3)
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3.2.3. Let us now assume that G acts unitarily on the Hilbert space V . We ob-
tain an induced homomorphism G(C)→ U(H). It is well-known (see [PS86],
Sec. 6.3) that this homomorphism factors over the restricted unitary group
Ures(H,H+). If π1(G) is finite, then G(C) maps to U0

res(H,H+).
3.2.4. We have an induced map of stacks v : M (C)→ [∗/Ures(H,H+)] which
can be used in order to define the twist (see 3.1.4 for the definition of T )

v∗T : M̂ (C)→M (C) .

The stack M̂ (C) is isomorphic to [F (C)/Ĝ(C)], where Ĝ(C) → G(C) is the
U(1)-central extension obtained as pull-back of Ûres(H+,H) → Ures(H,H+)
via the homomorphism G(C) → Ures(H,H+). If π1(G) is finite, then v∗T is
canonical. In general at least the isomorphism class of v∗T is well-defined.
3.2.5. Recall the notion of admissibility 2.1.6.

Lemma 3.6. The twist v∗T is admissible.

Proof. It suffices to consider the case C = S1. Note that G ⊂ G(S1)
preserves H+. We therefore have a factorization G → UH+ → Ures(H,H+).
Using 3.1.2 we obtain a split G → Ĝ. In particular, then central extension
N̂G(T )→ NG(T ) is trivial.

By an explicit calculation using the definitions in the case of SU(n) and
pulling back the result to G we show that the extension ̂̌T → Ť is also trivial. 2

3.2.6. The extension Ť T ⊂ G(S1) determines a bilinear form B : Ť⊗T → U(1)
(see 2.4.2). In the present subsection we calculate this form. Note that B is
completely determined by its derivative b : Ť × Lie(T ) → Lie(S1) ∼= R with
respect to the second entry. We consider this as a homomorphism b : Ť →
Lie(T )∗. Note that Ť is a lattice in Lie(T ). Thus b has a unique extension to
a linear map b : Lie(T )→ Lie(T )∗. This is a bilinear form on Lie(T ).

An explicit calculation using the definitions yields the following formula.

Lemma 3.7. For G = SU(n) and its standard representation on Cn the
form b is given by b(X,Y ) = Tr(XY ).

From this we immediately obtain the general case if π1(G) is finite. In
fact, in this case ρ : G → SU(V ). Let ρ : Lie(G) → Lie(V ) be the derived
representation of Lie algebras. Then we have

b(X,Y ) = TrV (ρ(X)ρ(Y )) .
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3.2.7. The form (X,Y ) 7→ Tr(XY ) on Lie(SU(n)) is negative definite. It
follows that its restriction to the Lie algebra of the maximal torus of SU(n) is
non-degenerated. We conclude:

Corollary 3.8. If ρ : Lie(G) → Lie(SU(n)) is injective, then the form
b on Lie(T ) is non-degenerated. In particular, the twist v∗T is regular (see
2.1.6).

3.2.8. Let −C be C equipped with the opposite orientation. Note that
M (−C) = M (C). Let V̄ be the complex conjugated representation to V . In
the following we indicate the dependence of the Hilbert spaces H on V by
writing H(V ). Since H+ also depends on the orientation of C we will write
H+(V,C). As in 3.2.4 we have maps v : M (C) → [∗/Ures(H(V ),H+(V,C))]
and v̄ : M (C) → [∗/Ures(H(V̄ ),H+(V̄ ,−C))] which induce twists τ an τ̄ of
M (C).

Let us assume that π1(G) is finite.

Lemma 3.9. There exists a canonical isomorphism τ̄ = −τ .

Proof. The conjugate linear isomorphism V
conj∼= V̄ induces a conjugated lin-

ear isomorphism H(V )
conj∼= H(V̄ ) which identifies H+(V,C) with H+(V̄ ,−C).

We obtain a corresponding diagram of groups

Û0
res(H(V ),H+(V,C))∗ ∼= Û0

res(H(V̄ ),H+(V̄ ,−C))
↓ ↓

U0
res(H(V ),H+(V,C)) ∼= U0

res(H(V̄ ),H+(V̄ ,−C))
.

Here for an U(1)-central extension Â→ A we denote by Â∗ → A the opposite
extension. If A acts on a space X, then the twist [X/Â∗] → [X/A] is the
negative of [X/Â]→ [X/A]. The assertion now follows. 2

3.2.9. Let us assume a decomposition C = C1 ∪ C2. This induces decompo-
sitions H = H1 ⊕ H2 and H+ = H1,+ ⊕ H2,+. As in 3.2.4 we consider the
maps vi : M (Ci) → [∗/Ures(Hi,H+,i)] and define the twists τi := v∗i Ti. Let
τ := v∗T .

Let us again assume that π1(G) is finite.

Lemma 3.10. We have a canonical isomorphism

pr∗1τ1 + pr∗2τ2 = τ .
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Proof. We have a natural embedding

Ures(H1,H1,+)× Ures(H2,H2,+)→ Ures(H,H+).

Let ̂U0
res(H1,H1,+)× U0

res(H2,H2,+) → U0
res(H1,H1,+) × U0

res(H2,H2,+) be
the induced central extension. It follows from the construction 3.1.1 that we
have a canonical identification

(Û0
res(H1,H+,1)× Û0

res(H2,H+,2))/U(1) ∼= ̂U0
res(H1,H1,+)× U0

res(H2,H2,+).

Now in general, let A and B be groups acting on spaces X and Y , respec-
tively. Furthermore let Â→ A and B̂ → B be U(1)-central extensions inducing
twists α : [X/Â]→ [X/A] and β : [Y/B̂]→ [Y/B]. Then the twist pr∗Aα+pr∗Bβ

is represented by [X × Y/((Â× B̂)/U(1))]→ [X × Y/A×B], where prA, prB

are the obvious projections.
This implies the result since we have a factorization of v as

M (C) ∼= M (C1)×M (C2)
v1×v2→

[∗/U0
res(H1,H+,1)]× [∗/U0

res(H2,H+,2)]→ [∗/U0
res(H,H+)].

2

3.2.10. Let now Σ be a two-dimensional oriented Riemannian manifold with
non-empty boundary ∂Σ. Then we consider the trivial G-principal bundle
P (Σ) over Σ. Furthermore, we let F (Σ) and G(Σ) denote the space of flat
connections and the gauge group of P (Σ). The group G(Σ) acts on F (Σ). In
this way we obtain the stack

M (Σ) := [F (Σ)/G(Σ)] .

3.2.11. Evaluation at ∂Σ defines a homomorphism G(Σ) → G(∂Σ) and an
equivariant map F (Σ)→ F (∂Σ). In this way we get a map of stacks

q : M (Σ)→M (∂Σ) .

3.2.12. We fix a unitary representation V of G. Note that ∂Σ is compact,
oriented and Riemannian. Therefore we have a twist v∗T : M̂ (∂Σ)→M (∂Σ).

Proposition 3.11. The pull-back of twists q∗v∗T is trivialized.

Proof. The Riemannian metric together with the orientation of Σ gives
a complex structure on Σ. A connection A ∈ F (Σ) induces a holomorphic
structure ∂̄A on the associated bundle V (Σ) := P (Σ) ×G V . We let H(A) ⊂
H = L2(∂Σ, V ) denote the closure of the space of boundary values of continuous
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∂̄A-holomorphic sections of V (Σ). Let P (A) be the projection onto H(A). It
turns out that P (A) ∈ Grres(H,H+). We thus obtain a map

P : F (Σ)→ Grres(H,H+) .

We now observe that this map is G(Σ)-equivariant, where G(Σ) acts on the
right-hand side via its homomorphism

G(Σ)→ G(∂Σ)→ Ures(H,H+) .

Eventually we obtain the diagram of maps of stacks

(3.12)
M (Σ) P→ [Grres(H,H+)/Ures(H,H+)]
q ↓ p ↓

M (∂Σ) v→ [∗/Ures(H,H+)]
.

The required trivialization is now given by

P ∗l : 0 ∼→ P ∗p∗T ∼= q∗v∗T

with l obtained in Lemma 3.4. 2

3.2.13. Let C be a compact oriented one-dimensional Riemannian manifold.
We consider two orientation and metric preserving embeddings f0, f1 : (−1, 1)×
C → Σ with disjoint images. Then we can cut Σ at the images fi({0}×C) and
glue again interchanging the copies. In this way we obtain a compact oriented
Riemannian two-manifold Σ̃ again with two embeddings f̃0, f̃1 : (−1, 1) × C.
Note that there is a canonical identification ∂Σ ∼= ∂Σ̃.
3.2.14. We let F (Σ,∼) ⊂ F (Σ) be the space of flat connections A on Σ with
the property that f∗0A = f∗1A. We define F (Σ̃,∼) ⊂ F (Σ̃) in a similar manner.
Then we have a canonical identification F (Σ,∼) ∼= F (Σ̃,∼).

We further define G(Σ,∼) ⊂ G(Σ) as the subgroup of gauge transformations
g satisfying f∗0 g = f∗1 g. We define G(Σ̃,∼) ⊂ G(Σ̃) in a similar manner and
observe that we have a canonical identification G(Σ,∼) ∼= G(Σ̃,∼).
3.2.15. We get a diagram of maps of stacks

M (Σ)
i↗ qΣ ↘

[F (Σ,∼)/G(Σ,∼)] M (∂Σ)
ĩ↘ qΣ̃ ↗

M (Σ̃)

.
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3.2.16. In Proposition 3.11 we have constructed trivializations

t(Σ) : q∗ΣT
∼→ 0

t(Σ̃) : q∗
Σ̃
T
∼→ 0 .

Note that
i∗q∗ΣT ∼= ĩ∗q∗

Σ̃
T

canonically.

Proposition 3.13. There exists an isomorphism of trivializations

i∗t(Σ) ∼= ĩ∗t(Σ̃)

of i∗q∗ΣT ∼= ĩ∗q∗
Σ̃
T .

Proof. Recall that the trivializations t(hΣ) and t(hΣ̃) were induced by the
equivariant bundles P ∗L and P̃ ∗L (see 3.4 and 3.12 for the notation, and ˜. . .
indicates objects associated to Σ̃). It suffices to show that i∗P ∗L and ĩ∗P̃ ∗L

are isomorphic as Ĝ(Σ,∼)-equivariant bundles, where the central extension
Ĝ(Σ,∼) → G(Σ,∼) is defined as the restriction of Ĝ(Σ) → G(Σ), and the
latter is pulled back from Ĝ(∂Σ)→ G(∂Σ) (see 3.2.4). Therefore the following
Lemma implies the proposition.

Lemma 3.14. The maps i ◦ P and ĩ ◦ P̃ are G(Σ,∼)-equivariantly homo-
topic.

Proof. Let A ∈ F (Σ,∼) and ∂̄A and ˜̄∂A be the corresponding holomorphic
structures on V (Σ) and V (Σ̃). It is a by now standard trick (see [Bun95]) to
identify the spaces C(Σ, V (Σ)) and C(Σ̃, V (Σ̃)) in a G(Σ,∼)-equivariant way
so that δ := ∂̄A − ˜̄∂A is a zero-order (non-local) operator. For t ∈ [0, 1] we can
form the projection Pt(A) onto the boundary values of solutions of ∂̄A − tδ. It
provides the homotopy from P (i(A)) to P̃ (̃i(A)). 2

3.2.17. In the following paragraphs we interpret the trivialization constructed
in 3.11 and the surgery invariance 3.13 in a slightly different way. Let Σ be a
an oriented compact surface with Riemannian metric and nonempty boundary.
We assume a decomposition of the boundary into an ingoing and an outgoing
part:

∂Σ = ∂iΣ ∪ ∂aΣ .

We will equip the ingoing boundary with the orientation which is opposite to
the induced orientation.
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3.2.18. We assume that π1(G) is finite and fix an unitary representation V

of G. The construction 3.2.4 gives rise to twists τi : M̂ (∂iΣ) → M (∂iΣ) and
τa : M̂ (∂aΣ)→M (∂aΣ). We consider the correspondence

(3.15) M (∂iΣ)
qi←M (Σ)

qa→M (∂aΣ) .

Lemma 3.16. We have a canonical isomorphism r : q∗aτa
∼→ q∗i τi.

Proof. We can write q = (qi, qa) : M (Σ)→M (∂iΣ)×M (∂aΣ) ∼= M (∂Σ).
Let pri : M (∂Σ) → M (∂iΣ) and pra : M (∂Σ) → M (∂aΣ) be the projec-
tions. By Lemma 3.10 and Lemma 3.9 we have a canonical isomorphism
τ = pr∗aτa − pr∗i τi, where τ is the twist of M (∂Σ) given by 3.2.4. By Propo-
sition 3.11 we have a canonical trivialization q∗τ

∼→ 0. If we add the identity
q∗i τi
∼= q∗i τi, then we obtain an isomorphism r : q∗aτa

∼→ q∗i τi. 2

3.2.19. In this subsection we reinterpret the surgery invariance 3.13. We keep
the assumption that π1(G) is finite. We consider two compact oriented surfaces
Σn, n = 0, 1 with non-empty boundary which are equipped with Riemannian
metrics. We assume product structures near the boundaries. We assume an
orientation reversing isometry ψ : ∂iΣ1

∼→ ∂aΣ0. Then we can form the com-
pact oriented surface Σ := Σ0]∂aΣ0∼=∂iΣ1Σ1 with boundary ∂iΣ ∼= ∂iΣ0 and
∂aΣ ∼= ∂aΣ1. It comes equipped with an induced Riemannian metric.

We extend the notation introduced in 3.2.18 by an index α ∈ {0, 1} in order
to indicate the surface to which the objects belong. We consider the following
diagram

(3.17)

M (Σ)
j→ M (Σ1)

q1,a→ M (∂aΣ1)
i ↓ ψ ◦ q1,i ↓

M (Σ0)
q0,a→ M (∂aΣ0)

q0,i ↓
M (∂iΣ0)

,

where i and j are the canonical restriction maps. The following is just a
rewriting of 3.13

Corollary 3.18. We have a commutative diagram

j∗q∗1,aτ1,a
j∗(r1)→ j∗q1,iτ1,i

∼= i∗q∗0,aτ0,a
i∗(r0)→ i∗q∗0,iτ0,i

∼= ‖ ∼= ‖
q∗aτa

r−→ q∗i τi

,

where all maps denoted by ∼= are canonical identifications.
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3.3. The product.
3.3.1. In the present subsection we shall assume that π1(G) is finite. This
implies that the twists constructed in 3.2.4 and their trivializations 3.11 are
canonical.

Moreover we assume that the twist σ(G) introduced in 2.2.12 is trivial (see
2.2.14). This will imply that various maps used below are K-orientable.

We fix an orientation of the vector space Lie(G).
3.3.2. We consider the correspondence of stacks

(3.19) [G×G/G×G]
p← [G×G/G]

q→ [G/G] ,

where p is induced by the identity on the level of spaces, and by the diagonal
embedding of groups, and q is given by the multiplication on the level of spaces,
and by the identity on the level of groups. We consider a twist of [G/G]
of the form τ = hol∗v∗T . By considering an equivalent correspondence of
moduli spaces associated to a pair of pants surface and 3.16 we will obtain an
isomorphism of twists

r : q∗τ ∼→ p∗(pr∗1τ + pr∗2τ) .

We will furthermore construct a K-orientation of the proper and representable
map q such that
(3.20) m : τK([G/G])⊗ τK([G/G])→ τK([G/G])

defined by
m(x, y) := q!r

∗p∗(pr∗1x ∪ pr
∗
2y)

is an associative unital product. In fact, its complexification will coincide with
the product induced by the identification τK([G/G])C ∼= R(G)C/I given in
2.19.
3.3.3. Note that [G/G] → [∗/G] is −σ(G)-K-orientable (see 2.2.12). By our
assumption on G we have σ(G) = 0. Then [G/G] → [∗/G] is K-orientable.
Therefore [G × G/G × G] → [∗/G × G] K-orientable. By restriction to the
diagonal subgroup we see that [G × G/G] → [∗/G] is K-orientable. It follows
that q is K-orientable.
3.3.4. Let now Σ be an oriented pair of pants surface with ingoing boundary
components ∂i,αΣ, α = 1, 2, and outgoing boundary component ∂aΣ. We
assume that Σ comes with a Riemannian metric which has a product structure
near the boundary such the boundary circles are isometric to standard circles.
The correspondence

(3.21) M (∂iΣ)
p←M (Σ)

q→M (∂aΣ)
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is equivalent to (3.19). Lemma 3.16 together with 3.10 now gives the desired
isomorphism of twists

r : p∗τi
∼→ q∗τa ,

where we use the notation of 3.2.18. Note that this isomorphism may depend
on the choice of the identification of the correspondence (3.19) with the corre-
spondence (3.21).
3.3.5. We fix base points bα ∈ ∂i,αΣ, α ∈ {1, 2}, and b ∈ ∂aΣ. Using the
orientation of ∂iΣ opposite to the induced one we define the holonomy map

holi : M (∂iΣ)→ [G/G]× [G/G] .

Let hola : M (∂aΣ)→ [G/G] be the holonomy map associated to the outgoing
boundary component. The projection [G/G] → [∗/G] induces a R(G)-module
structure on τK([G/G]). Via the two projections

[G×G/G×G]→ [G/G]→ [∗/G]

we have two R(G)-module structures on pr∗1τ+pr∗2τK([G × G/G × G]), which
we write as left- and right actions. Using the identifications via the holonomy
maps we obtain corresponding actions on τaK(M (∂aΣ)) and τiK(M (∂iΣ)).

Lemma 3.22. The multiplication map m is R(G)-bilinear.

Proof.This is an immediate consequence of the commutativity of the diagram

[G×G/G×G]
p← [G×G/G]

q→ [G/G]
prα ↘ ↓ ↙

[∗/G]

and the projection formula (see 2.2.9). 2

3.3.6. In the proof of Lemma 2.19 we have identified τK([G/G])C ∼= R(G)C/I
with the space of sections Γ(S, V ), where V → F reg/W is a one-dimensional
vector bundle associated to the character sign : W → {1,−1}, and S ⊂
F reg/W . Therefore pr∗1τ+pr∗2τK([G × G/G × G])C ∼= Γ(S × S, pr∗1V ⊗ pr∗2V )
with the left and right C[S]-module structures induced by the two projections
prα : F reg × F reg → F reg. The multiplication thus induces a linear map

mC : Γ(S × S, pr∗1V ⊗ pr∗2V )→ Γ(S, V ) .

Such a map is given by structure constants Ct
r,s ∈ Hom(Vr ⊗ Vs, Vt), r, s, t ∈ S.

Since m is C[S]-bilinear we immediately conclude that Ct
r,s = 0 if not t =

s = r.
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We define the section c ∈ Γ(S, V ∗) by cs := Cs
s,s, s ∈ S, where V ∗ is the

dual bundle.
Note that all twisted K-groups are free Z-modules and therefore embed in

their complexifications. In order to determine the product (3.20) it therefore
suffices to calculate its complexification, i.e, the section c. The following prop-
erties follow from the vanishing of the off-diagonal structure constants.

Corollary 3.23. The product (3.20) is associative and commutative.

These properties in particular are independent on the choice of the K-
orientation of q and the choice of the isomorphism of twists r (see 3.3.4 for
the notation).
3.3.7. In this subsection let us write Σ1 for the pair of pants surface considered
above, q1,a for q, and q1,i for p. We furthermore consider an oriented surface Σ0

which is the union of a disk and a cylinder such that it has an ingoing boundary
component (belonging to the cylinder) and two outgoing boundary components.
We equip Σ0 with Riemannian metric which has a product structure such that
the boundary components are isometric to the standard circle. We fix an
orientation reversing isometry ψ : ∂iΣ1

∼→ ∂aΣ0 such that ∂i,2Σ1 is mapped to
the boundary of the disk. This is exactly the situation considered in 3.2.19. Let
Σ := Σ0]∂aΣ0∼=∂iΣ1Σ1 be the surface obtained by glueing. Then Σ is a cylinder.

The map q0,a : M (Σ0)→M (∂aΣ0) is equivalent to
[∗/G]× [G/G]→ [G/G]× [G/G] ∼= [G×G/G×G]

and therefore proper, representable and K-orientable. In fact, the choice of an
orientation of Lie(G) induces a K-orientation of q0,a.

Observe that the square in (3.17) is cartesian. Therefore the K-orientation
of q0,a induces a K-orientation of j, and together with the choice of a K-
orientation of q1,a a K-orientation of

qa := q1,a ◦ j : M (Σ)→M (∂aΣ).

Using Corollary 3.18 we obtain the identity of maps τK([G/G])→ τK([G/G]).
m ◦ (q0,a)! ◦ r∗0 ◦ q∗0,i = (q1,a)! ◦ r∗1 ◦ q∗1,i ◦ ψ∗ ◦ (q0,a)! ◦ r∗0 ◦ q∗0,i

= (q1,a)! ◦ r∗1 ◦ j! ◦ i∗ ◦ r∗0 ◦ q∗0,i

= (q1,a)! ◦ j! ◦ j∗(r1)∗ ◦ i∗(r0)∗ ◦ i∗ ◦ q∗0,i

= (qa)! ◦ r∗ ◦ q∗i ,(3.24)
where r is associated to the cylinder. Note that the correspondence (3.15)
associated to a cylinder is equivalent to

[G/G]
qi← [G/G]

qa→ [G/G] ,
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where all maps are the identity. In particular, there is a distinguished K-
orientation of qa, and a distinguished isomorphism of twists q∗aτ

∼→ q∗i τ .
The set of K-orientations of qa (up to sign) is then identified with

H2([G/G],Z) ∼= H2(G×G EG,Z) ⊂ H2(G,Z) ∼= Ext(π1(G),Z)

(Leray-Serre spectral sequence). Since q1,a ◦ j is an isomorphism, we see that
j∗ : H2([G×G/G],Z)→ H2([G/G],Z) is surjective. Therefore we can choose
the K-orientation of q1,a such that the induced K-orientation of qa = q1,a ◦ j
is the distinguished one up to a sign.

Using again the surjectivity of j∗ we can adjust the isomorphism of twists
r1 such that the induced isomorphism twists r : q∗aτ

∼→ q∗i τ is the distinguished
one.

We now fix the sign of the K-orientation of q1,a such that the induced
orientation of qa is the distinguished one. In this case (qa)! ◦ r∗ ◦ q∗i = id. This
fixes also the class of K-orientations used to define the product m.
3.3.8. Let ΣD ⊂ Σ0 be the component of the disk. We indicate the related
maps with the same superscript. We have an element E := (qD

a )! ◦ (rD)∗(1).
The correspondence (3.15) associated to the disk is equivalent to

∗ ← [∗/G]
qD

a→ [G/G] .

Therefore the element E is the same as the one constructed 2.5.1. The con-
struction of E in 2.5.1 depends on the choice of a section G → Ĝ. Under
the present assumptions on G there is only one such section, since G has no
non-trivial U(1)-valued characters. In the present subsection we will see why
we called E the unit.

In fact the calculation 3.24 and commutativity of the product 3.23 now gives

m(E, x) = m(x,E) = x , ∀x ∈ τK([G/G]) .

We immediately conclude that the section c is invertible and determined by

E ∼= c−1 ,

where we consider E and c−1 as sections of V . The description of the product
in terms of the basis (E[χ])[χ]∈X1(T̂ )/Ŵ is more complicated.

3.3.9. We can state the final theorem about the product. We adopt the choices
of K-orientations fixed above.

Theorem 3.25. The product m induces on τK([G/G]) a commutative and
associative ring structure with identity E. Its complexification is isomorphic to
the quotient R(G)C/I.
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UNIVERSALITY OF L-FUNCTIONS
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Departamento de Matemáticas, Universidad Autónoma de Madrid, C.
Universitaria de Cantoblanco, 28049 Madrid, Spain
E-mail : jorn.steuding@uam.es

Abstract . We survey recent results on the value-distribution of L-functions with
emphasis on aspects of universality.

1. Voronin’s theorem
In 1975 Voronin [Vor75b] discovered a remarkable analytical property of

the Riemann zeta-function ζ(s). Roughly speaking, he proved that any non-
vanishing analytic function can be approximated uniformly by certain purely
imaginary shifts of the zeta-function in the right half of the critical strip. Af-
ter significant improvements due to Reich [Rei77] and Bagchi [Bag81] the
strongest version of Voronin’s theorem has the form (see [Lau96]):

Theorem 1. Suppose that K is a compact subset of the strip D := {s ∈
C : 1

2 < Re s < 1} with connected complement, and let g(s) be a non-vanishing
continuous function on K which is analytic in the interior of K . Then, for
any ε > 0,

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

s∈K
|ζ(s+ iτ)− g(s)| < ε

}
> 0.

October 26, 2004.
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We may interpret the absolute value of an analytic function as an analytic
landscape over the complex plane. Then the universality theorem states that
any (finite) analytic landscape can be found (up to an arbitrarily small error) in
the analytic landscape of ζ(s). This remarkable property has several interesting
consequences on the value-distribution of the zeta-function. For instance, for
any n ∈ N and any fixed s with Re s ∈ ( 1

2 , 1) the set

{(ζ(s+ iτ), ζ ′(s+ iτ), . . . , ζ(n−1)(s+ iτ)) : τ ∈ R}
is dense in Cn. Moreover, it follows that the zeta-function does not satisfy any
algebraic differential equation.

In the first half of the twentieth century, Harald Bohr applied probabilistic
methods in order to study the value distribution of ζ(s). Voronin’s proof of his
universality theorem relies heavily on Bohr’s ideas. Here we sketch a variant
of the proof in the language of weakly convergent probability measures due to
Bagchi [Bag81].
Denote by γ = {s ∈ C : |s| = 1} the unit circle in the complex plane and put

Ω =
∏
p

γp,

where γp = γ for each prime number p. With product topology and point-
wise multiplication this infinite dimensional torus Ω is a compact topological
abelian group, and hence the normalized Haar measure m on the metric space
(Ω,B(Ω)) exists; here B(Ω) denotes the class of Borel sets of Ω. This induces
a probability space (Ω,B(Ω),m). Let ω(p) denote the projection of ω ∈ Ω on
the coordinate space γp. Since the Haar measure m on Ω is the product of the
Haar measures mp on the coordinate spaces,{ω(p) : p prime} is a sequence of
independent complex-valued random variables defined on (Ω,B(Ω),m). Now
denote by H (D) the set of analytic functions defined on the strip D , equipped
with the topology of uniform convergence on compacta. For Re s > 1

2 and
ω ∈ Ω, let

ζ(s, ω) =
∏
p

(
1− ω(p)

ps

)−1

.

This defines an H (D)-valued random element on the probability space
(Ω,B(Ω),m). It can be shown that for almost all ω ∈ Ω the infinite product
defining ζ(s, ω) converges uniformly on compact subsets of D .

The first step in the proof of Theorem 1 is to establish the weak convergence
of the probability measure PT , defined by

PT (A) =
1
T

meas {τ ∈ [0, T ] : ζ(s+ iτ) ∈ A} for A ∈ B(H (D)),
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to the distribution P of the random element ζ(s, ω), given by

P(A) = m{ω ∈ Ω : ζ(s+ iτ) ∈ A} for A ∈ B(H (D)),

as T →∞. For short,

(1) PT ⇒ P (T →∞).

The proof of this limit theorem relies on fundamental results from probabilty
theory, e.g. Prokhorov’s theorems, ergodic theory for random processes, and
the simple but important fact that the logarithms of different prime numbers
are linearly independent.

The support of the random element

log ζ(s, ω) =
∑

p

log
(

1− ω(p)
ps

)−1

is the closure of the set of all convergent series∑
p

log
(

1− a(p)
ps

)−1

with a(p) ∈ γ.

The second step is to prove that the set of all these convergent series is dense
in H (DM ), where DM := {s ∈ : 1

2 < Re s < 1, |Im s| < M} and M is an
arbitrary positive constant. This involves the theory of entire functions of
exponential type, a rearrangement theorem in Hilbert spaces, and the prime
number theorem. The map f 7→ exp f sends H (DM ) to{

g ∈H (DM ) : g(s) 6= 0 for 1
2
< Re s < 1

}
.

Now, roughly speaking, the limit theorem (1) ties both ends together. Since
K is a compact subset of D , there exists someM for which K ⊂ DM . It follows
that any g which is contained in the support of the random element ζ(s, ω)
and has a non-vanishing analytic continuation to DM can be approximated
uniformly by some shift ζ(s + iτ) for s ∈ K : if Φ denotes the set of ϕ ∈ H
such that

max
s∈K

|ϕ(s)− g(s)| < ε,

then

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

s∈K
|ζ(s+ iτ)− g(s)| < ε

}
> P(Φ) > 0.

The case of functions g with zeros in DM \K follows from an application of
Mergelyan’s approximation theorem). This yields the statement of Theorem 1.
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All known proofs of universality results for Dirichlet series, like the one for
the zeta-function above or those covered by Theorem 2 below, depend on some
arithmetical conditions. But is universality really an arithmetic phenomenon
or not? Reviewing the proof one might understand universality as a kind of
ergodicity on function spaces. It seems reasonable that the universality of
Dirichlet series is a common phenomenon in analysis, that it is related to Julia
rays in value-distribution theory and to ergodical dynamical systems as well.

2. Zeros and the Riemann hypothesis
Since any non-vanishing analytic function possesses an analytic logarithm,

it follows that log ζ(s) is strongly universal, i.e., log ζ(s) can uniformly approx-
imate functions having zeros; in fact, we have almost given a proof of this fact
in the previous section. It is natural to ask whether ζ(s) is also strongly uni-
versal. The answer is negative. We give a heuristic argument which can be
made waterproof with a bit more effort by the techniques of Section 5.

Assume that g(s) is an analytic function on |s| 6 r, where 0 < r < 1
4 , which

has a zero ξ with |ξ| < r but which is non-vanishing on the boundary. Then,
whenever the inequality

max
|s|6r

∣∣∣∣ζ (
s+

3
4

+ iτ

)
− g(s)

∣∣∣∣ < ε < min
|s|6r

|g(s)|;

holds, ζ
(
s+ 3

4 + iτ
)

has to have a zero inside |s| 6 r. This can be seen as
follows. By the maximum principle the maximum on the left hand side of the
inequality above is taken on the boundary. The second inequality holds for
sufficiently small ε (since the zeros of an analytic function form a discrete set
or the function vanishes identically). Consequently, an application of Rouché’s
theorem yields the existence of a zero of ζ(s+ 3

4 + iτ) inside |s| 6 r. If now for
any ε > 0

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

|s|6r

∣∣∣∣ζ (
s+

3
4

+ iτ

)
− g(s)

∣∣∣∣ < ε

}
> 0,

then we expect� T many complex zeros of ζ(s) in the strip 3
4−r < Re s < 3

4 +r
up to height T . This contradicts classical density estimates: for any σ > 1

2 , the
number of zeros ρ = β + iγ satisfying β > σ, 0 < γ 6 T is known to be o(T )
as T →∞. Thus, uniform approximation of a function g(s) with a zero by the
zeta-function is impossible.

Bohr [Boh22] discovered an interesting relation between the Riemann hy-
pothesis and almost periodicity. He showed that if χ is non-principal character,
then the Riemann hypothesis for the associated Dirichlet L-function L(s, χ)
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(i.e., the non-vanishing of L(s, χ) for Re s > 1
2 ) is equivalent to the almost

periodicity of L(s, χ) in the half-plane Re s > 1
2 . Because of the restriction on

non-principal characters χ this result does not cover the case of ζ(s). More
than half a century later Bagchi [Bag81] proved that the same criterion holds
also for ζ(s), namely that Riemann’s hypothesis is true if and only if for any
compact subset K of the strip 1

2 < Re s < 1 with connected complement and
for any ε > 0

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

s∈K
|ζ(s+ iτ)− ζ(s)| < ε

}
> 0.

The crucial implication of Bagchi’s proof relies essentially on Voronin’s univer-
sality theorem, which, of course, was unknown to Bohr.

3. The Selberg class
Meanwhile, it is known that there exists a rich zoo of universal Dirichlet

series; for a list we refer to [Lau96], [Mat04], [Ste04]. It was conjectured by
Linnik and Ibragimov that all functions given by Dirichlet series and analyt-
ically continuable to the left of the half plane of absolute convergence, which
satisfy some natural growth conditions, are universal. In this section we are
interested in the universality of L-functions.

In 1989 Selberg [Sel92] defined a general class S of Dirichlet series having
an Euler product, analytic continuation and a functional equation of Riemann-
type, and formulated some fundamental conjectures concerning them. His aim
was to study the value-distribution of linear combinations of L-functions. In the
meantime this so-called Selberg class became an important object of research.
All known examples of functions in the Selberg class are automorphic (or at
least conjecturally automorphic) L-functions, and for all of them it turns out
that the related Euler factors are the inverse of a polynomial in p−s. This spe-
cial shape of the Euler product is related to Langlands’ reciprocity conjecture.
In the sequel we will consider a subclass of polynomial Euler products.

The class S̃ consists of Dirichlet series

L (s) :=
∞∑

n=1

a(n)
ns

satisfying the following axioms:
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– Polynomial Euler product: for 1 6 j 6 m and each prime p there exist
complex numbers αj(p) with |αj(p)| 6 1 such that

L (s) =
∏
p

m∏
j=1

(
1− αj(p)

ps

)−1

;

– Mean-square: there exists a positive constant κ such that

lim
x→∞

1
π(x)

∑
p6x

|a(p)|2 = κ;

– Analytic continuation: there exists a non-negative integer k such that
(s− 1)kL (s) is an entire function of finite order;

– Functional equation: there are positive real numbers Q,λj , and there
are complex numbers µj , ω with Reµj > 0 and |ω| = 1, such that

ΛL (s) = ωΛL (1− s),
where

ΛL (s) := L (s)Qs

f∏
j=1

Γ(λjs+ µj).

It should be noted that the axiom on the mean-square is intimately related to
Selberg’s conjectures (see [Sel92]). We expect that S̃ contains all non-constant
functions from the Selberg class: S̃ = S \ {1}.

The degree of any non-constant function L ∈ S (and so in S̃ ) is defined
by

d L = 2
f∑

j=1

λj .

This quantity is well-defined. If NL (T ) counts the number of zeros of L ∈ S
in the rectangle 0 6 Re s 6 1, |Im s| 6 T (counting multiplicities) one can show
by standard contour integration

NL (T ) ∼ d L

π
T log T,

in analogy to the classical Riemann-von Mangoldt formula for ζ(s). It is con-
jectured that the degree is always a positive integer (provided that L is not
constant one).

The functions of degree one in S̃ are the Riemann zeta-function and shifts
of Dirichlet L-functions L(s + iθ, χ) attached to primitive characters χ with
θ ∈ R. Examples of degree two are normalized L-functions associated with
holomorphic newforms; normalized L-functions attached to non-holomorphic
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newforms are expected to lie in S̃ . The Rankin-Selberg L-function of any two
holomorphic newforms is an element of the Selberg class of degree 4. Further
examples are Dedekind zeta-functions to number fields K; their degree is equal
to the degree of the field extension K/Q.

In [Ste04] the following generalization of Voronin’s universality theorem was
proved.

Theorem 2. Let L ∈ S̃ and K be a compact subset of the strip

DL :=
{
s ∈ C : max

{
1
2
, 1− 1

d L

}
< Re s < 1

}
with connected complement, and let g(s) be a non-vanishing continuous function
on K which is analytic in the interior of K . Then, for any ε > 0,

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

s∈K
|L (s+ iτ)− g(s)| < ε

}
> 0.

This theorem may be regarded as a verification of the Linnik-Ibragimov con-
jecture for Dirichlet series in the Selberg class.

4. The strip of universality
Besides the arithmetic axioms on the polynomial Euler product and on the

mean-square, a further important ingredient in the proof of Theorem 2 is the
second moment bound

lim sup
T→∞

1
T

∫ T

1

|L (σ + it)|2 dt <∞.

In [Ste04] an asymptotic formula for L ∈ S̃ in the range DL was proved. If
d L > 2, the strip DL does not cover the right half of the critical strip; any
extension of this strip to the left would imply universality in this extended strip.
However, the critical line is a natural boundary for universality of L ∈ S̃ (at
least in the sense of Theorem 2).

In particular cases of functions L ∈ S̃ with degree d L > 2 the existence of
the mean-square covering the strip DL is known. For instance, let L(s, χ) be an
arbitrary Dirichlet L-function to a primitive character χ. Then ζ(s)2L(s, χ) is
an element of S̃ of degree 3, so Theorem 2 gives universality for 2

3 < Re s < 1.
Using Montgomery’s estimates for the fourth moment of Dirichlet L-functions
and Ivić’s eigth-moment estimate for ζ(s), the Cauchy-Schwarz inequality yields∫ T

1

|ζ(σ + it)2L(σ + it, χ)|2 dt� T
11−8σ

12 + 1
2+ε � T
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for any σ > 5
8 . Thus ζ(s)2L(s, χ) is universal in the strip 5

8 < Re s < 1. If the
generalized Lindelöf hypothesis is true for L ∈ S̃ , i.e.,

L

(
1
2

+ it

)
� tε

for any ε > 0 as t → ∞, then the strip of universality can be extended to the
full open right half of the critical strip.

5. Effectivity
The known proofs of universality theorems are ineffective, giving neither an

estimate for the first approximating shift τ nor bounds for the positive lower
density. There are some remarkable attempts due to Garunkštis [Gar03], Good
[Goo81], and Laurinčikas [Lau00], however, their results are either restricted
to rather small classes of functions or conditional subject to certain unproved
hypotheses. Following [Ste03] we now consider the problem of effective upper
bounds for the upper density of universality.

Denote by Br the closed disc of radius r > 0 with center in the origin. We
define for a meromorphic function L(s), an analytic function g : Br → C with
fixed r ∈

(
0, 1

4

)
, and positive ε the densities

d (ε, g, L) = lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

|s|6r

∣∣∣∣L(
s+

3
4

+ iτ

)
− g(s)

∣∣∣∣ < ε

}
,

and

d (ε, g, L) = lim sup
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

|s|6r

∣∣∣∣L(
s+

3
4

+ iτ

)
− g(s)

∣∣∣∣ < ε

}
.

We consider analytic isomorphisms g : Br → B1, i.e., the inverse g−1 exists
and is analytic. Obviously, such a function g has exactly one simple zero ξ in
the interior of Br. By the Schwarz lemma any such g has a representation

g(s) = r exp(iϕ)
ξ − s
r2 − ξs

with ϕ ∈ R and |ξ| < r.

Denote by Ar the class of analytic isomorphisms from Br (with fixed 0 < r < 1
4 )

to the unit disc. Further, let NL(σ1, σ2, T ) count the number of zeros of L(s)
in 1

2 < σ1 < Re s < σ2 < 1, 0 6 t < T (counting multiplicities).

Theorem 3. Suppose that g ∈ Ar. Assume that L(s) is analytic in Re s >
3
4 − r except for at most o(T ) many singularities inside Re s > 3

4 − r, 0 6
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Im s 6 T , as T → ∞, and that d (ε, g, L) > 0 for all ε > 0. Then, for any
ε ∈

(
0, 1

2r

(
1
4 + Re |ξ|

))
,

d (ε, g, L) 6
8r3ε

r2 − |ξ|2
lim sup
T→∞

1
T
NL

(
3
4

+ Re ξ − 2rε,
3
4

+ Re ξ + 2rε, T
)
.

We sketch the proof (which is a bit in the spirit of Section 2). The zero ξ of g is
related to some zeros of L(s) in 1

2 < Res s < 1. Since g maps the boundary of
Br onto the unit circle, Rouché’s theorem implies the existence of one simple
zero λ of L(z) in

Kτ :=
{
z = s+

3
4

+ iτ : s ∈ Br

}
,

whenever

max
s∈Br

∣∣∣∣L(
s+

3
4

+ iτ

)
− g(s)

∣∣∣∣ < ε < 1 = min
s∈Br

|g(s)|.

We may say that the zero λ of L(s) is generated by the zero ξ of g(s). Uni-
versality is a phenomenon that happens in intervalls. Suppose that a zero λ
of L(s), generated by ξ, lies in two different sets Kτ1 and Kτ2 . Then one can
show that

|τ1 − τ2| <
8r4ε

r2 − |ξ|2
.

Now denote by Ij(T ) the disjoint intervalls in [0, T ] such that (1) is valid
exactly for τ ∈

⋃
j Ij(T ) =: I (T ). By the latter estimate, in every intervall

Ij(T ), there lie at least

1 +
[
r2 − |ξ|2

8r3ε
meas Ij(T )

]
>
r2 − |ξ|2

8r3ε
meas Ij(T )

zeros λ of L(s) in the strip 1
2 < Re s < 1. Therefore, the number N (T ) of such

zeros λ satisfies the estimate

(2)
8r3ε

r2 − |ξ|2
N (T ) > meas I (T ).

The value distribution of L(z) in Kτ is ruled by that of g(s) in Br. This
gives a restriction on the real parts of the zeros λ. One can show that∣∣Reλ− 3

4 − Re ξ
∣∣ < 2rε. This yields

N (T ) 6 NL

(
3
4

+ Re ξ − 2rε,
3
4

+ Re ξ + 2rε, T
)
.

Since d (ε, g, L) > 0, this leads via (2) to the estimate of the theorem. Note that
the set of singularities of L(s) in σ > 3

4 − r has zero density but d (ε, g, L) > 0.
So the singularities do not affect the above observations.
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Theorem 3 relates the density of universality to the value-distribution of L.
In the case of the Riemann zeta-function we can be more explicit. In view of
classical density theorems the set of singularities of log ζ(s) has density zero.
Hence, we may apply Theorem to L(s) = log ζ(s). By Bohr and Jessen [BJ32],
Hilfssatz 6, the limit

lim
T→∞

1
T
Nlog ζ

(
3
4

+ Re ξ − 2rε,
3
4

+ Re ξ + 2rε, T
)

exists, and tends to zero as ε→ 0. Hence, under the above assumptions
d (ε, exp g, ζ(s)) = o(ε).

Thus, the decay of d (ε, exp g, ζ) with ε→ 0 is more than linear in ε.

6. Joint universality
We conclude with another interesting problem concerning universality of

L-functions.
Voronin [Vor75a] also obtained joint universality for Dirichlet L-functions,

that is simultaneous uniform approximation by a family of L-functions associ-
ated with non-equivalent characters; the non-equivalence of the characters as-
sures a certain independence of the related L-functions, and this independence
is necessary for joint universality. Recently, Laurinčikas & Matsumoto [LM04]
proved a joint universality theorem for L-functions associated with newforms
twisted by characters. It is natural to ask for joint universality in the Selberg
class. However, all known jointly universal families are given by (multiplicative
or additive) twists of a single universal Dirichlet series by characters. In some
sense, Selberg’s Conjecture B (see [Sel92]) states that primitive functions form
an orthonormal system in the Selberg class. As proved by Bombieri & Hejhal
[BH95], this implies the statistical independence of primitive functions. There
is some hope that this can be used as substitute for the independence induced
by non-equivalent characters in order to prove joint universality for distinct
primitive L-functions from the Selberg class.

For 1 6 j 6 m, assume that the L-functions

Lj(s) =
∞∑

n=1

aLj
(n)
ns

from S̃ satisfy the orthogonality condition

(3)
∑
p6x

aLj
(p)aLk

(p)
p

= δjkκj log log x+O(1),
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where κj is a positive constant depending on Lj , and δjk = 1 if j = k and
δjk = 0 otherwise. This condition is known to hold for several families of L-
functions in S̃ , for example for Dirichlet L-functions associated with pairwise
non-equivalent characters (in which case it is nothing else than the orthogonal-
ity relation for characters); it is expected to hold for any two distinct primitive
L-functions from the Selberg class (Selberg’s Conjecture B). Moreover, (3) may
be regarded as an extension of the axiom on the mean square in the definition
of S̃ .
Conjecture. Suppose that L1, . . . ,Lm are elements of S̃ satisfying condition
(3). For 1 6 j 6 m let gj(s) be a continuous function on Kj which is non-
vanishing in the interior, where Kj is a compact subset of the strip

D :=
{
s : max

{
1
2
, 1− 1

d

}
< Re s < 1

}
with connected complement, and d is the maximum of the degrees of the Lj (a
quantity determined by the functional equation for Lj). Then, for any ε > 0,

lim inf
T→∞

1
T

meas
{
τ ∈ [0, T ] : max

16j6m
max
s∈Kj

|Lj(s+ iτ)− gj(s)| < ε

}
> 0.
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Abstract . We study the connection between Massey products and relations in pro-
p-groups and give an arithmetical example, thereby obtaining a cohomological inter-
pretation of the Rédei symbol.

1. Masseyprodukte und Relationen in pro-p-Gruppen
In diesem Abschnitt verallgemeinern wir den bekannten Zusammenhang

zwischen dem Cupprodukt in der Kohomologie von pro-p-Gruppen und Darstel-
lungen von pro-p-Gruppen durch Erzeugende und Relationen.

Sei p eine Primzahl und G eine endlich erzeugte pro-p-Gruppe. Wir werden
im folgenden Gebrauch von den Kohomologiegruppen Hi(G,Z/pZ) machen
und diese der Einfachheit halber mit Hi(G) bezeichnen. Wir setzen n =
dimZ/pZ H

1(G). Es ist wohlbekannt, daß dies der Erzeugendenrang von G
ist ([NSW00], Prop. 3.9.1). Sei

1 −−−−→ R −−−−→ F −−−−→ G −−−−→ 1

eine minimale Darstellung von G, wobei F eine freie pro-p-Gruppe auf Erzeu-
gern x1, . . . , xn sei. Aus der Hochschild-Serre-Spektralsequenz erhalten wir die
exakte Sequenz

0 −−−−→ H1(G) inf−−−−→ H1(F ) res−−−−→ H1(R)G tg−−−−→ H2(G) −−−−→ 0.

October 28, 2004.
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Aufgrund der Minimalität der obigen Darstellung ergibt sich, daß die Inflations-
abbildung

inf : H1(G)→ H1(F )
ein Isomorphismus ist, wir werden beide Gruppen im folgenden miteinander
identifizieren. Insbesondere ist auch die Transgressionabbildung

tg : H1(R)G → H2(G)

ein Isomorphismus. Für jedes Element ρ ∈ R erhalten wir die sogenannte
Spurabbildung

trρ : H2(G)→ Z/pZ, ϕ 7→ (tg−1 ϕ)(ρ).
Es sei I der Kern der Augmentationsabbildung Fp[[F ]] → Fp, wobei Fp[[F ]]

die vollständige Gruppenalgebra von F über Fp bezeichne. Durch
F(m) = {f ∈ F | f − 1 ∈ Im}

ist eine Filtrierung auf F gegeben, die sogenannte Zassenhaus-Filtrierung.
Es ist wohlbekannt, daß die Cupprodukt-Paarung

H1(G)×H1(G) ∪→ H2(G)

Informationen über R liefert: Bezeichnet χ1, . . . , χn die zu x1, . . . , xn duale
Basis von H1(F ) = Hom(F,Z/pZ), dann gilt für jedes ρ ∈ R die Gleichung
([NSW00], Prop. 3.9.13)

ρ ≡
n∏

k=1

xpbkk

k

∏
16k<l6n

(xk, xl)bkl mod F(3)

(hierbei ist (xk, xl) der Kommutator x−1
k x−1

l xkxl), mit
trρ(χk ∪ χl) = −bkl.

Wir werden im folgenden studieren, was passiert, wenn das Cupprodukt
trivial ist. In diesem Fall gibt es Dreifach-Masseyprodukte, welche wie folgt
definiert sind. Es seien u1, u2, u3 ∈ H1(G) mit u1 ∪ u2 = 0, u2 ∪ u3 = 0. Dann
existieren 1-Koketten u12, u23, so daß auf dem Niveau von 2-Koketten

u1 ∪ u2 = ∂u12, u2 ∪ u3 = ∂u23,

gilt, und wir setzen
〈u1, u2, u3〉 = [u1 ∪ u23 + u12 ∪ u3] ∈ H2(G),

wobei [·] die Kohomologieklasse des entsprechenden Kozykels bedeutet. Hierbei
ist 〈u1, u2, u3〉 unabhängig von den getroffenen Auswahlen. Dies verallgemein-
ernd kann man Masseyprodukte 〈u1, . . . , um〉 der Länge m für u1, . . . , um ∈
H1(G) definieren ([Mor04],[Vog]), im allgemeinen liegt 〈u1, . . . , um〉 jedoch
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in einem Quotienten von H2(G). Wir werden ein Kriterium angeben, wann
〈u1, . . . , um〉 in H2(G) liegt, und in solch einem Fall trρ〈u1, . . . , um〉 berechnen.
Dazu benötigen wir die Notationen des Foxschen Differentialkalküls. Bezeich-
net Zp[[F ]] die vollständige Gruppenalgebra von F über Zp und ψ : Zp[[F ]]→ Zp

die Augmentationsabbildung, dann existieren für jedes i = 1, . . . , n eindeutig
bestimmte Abbildungen

∂

∂xi
: Zp[[F ]]→ Zp[[F ]],

die sogenannten freien Ableitungen, so daß für jedes α ∈ Zp[[F ]] die Gleichung

α = ψ(α)1Zp[[F ]] +
n∑

i=1

∂α

∂xi
(xi − 1)

erfüllt ist ([Iha86]). Für 1 6 i1, . . . , im 6 n definieren wir

ε(i1,...,im) : F → Zp, f 7→ ψ

(
∂mf

∂xi1 · · · ∂xim

)
mod p.

Es gilt der folgende Satz ([Mor04],[Vog]).

Satz 1.1. Es gilt R ⊆ F(m) genau dann, wenn alle Masseyprodukte bis zur
Länge m− 1 trivial sind. In diesem Fall liegen alle Masseyprodukte der Länge
m in H2(G), und für u1, . . . , um ∈ H1(G), ρ ∈ R gilt

trρ〈u1, . . . , um〉 = (−1)m−1
∑

16i1,...,im6n

u1(xi1) · . . . · um(xim)ε(i1,...,im)(ρ),

insbesondere also

trρ〈χi1 , . . . , χim〉 = (−1)m−1ε(i1,...,im)(ρ)

Für ρ ∈ F(m) hängen die ε(i1,...,im)(ρ) eng mit dem Bild von ρ in F(m)/F(m+1)

zusammen. Wir geben hierfür das folgende Beispiel.

Beispiel 1.2. Ist ρ ∈ F(3) und p 6= 3, dann gilt

f ≡
∏

16k<l6n
m6l

((xk, xl), xm)p−ε(l,k,m)(f)
∏

16k<l6n

((xk, xl), xl)ε(k,l,l)(f) mod F(4).
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2. 2-Erweiterungen mit beschränkter Verzweigung
In diesem Abschnitt studieren wir ein Beispiel für ein Dreifach-Masseyprodukt
aus der Zahlentheorie. Zu diesem Zwecke betrachten wir die Relationenstruktur
der maximalen außerhalb einer Primstellenmenge S unverzweigten 2-Erweite-
rung von Q.

Sei S = {l1, . . . , ln,∞}, wobei die li ungerade Primzahlen seien. Wir be-
zeichnen die maximale außerhalb von S unverzweigte 2-Erweiterung von Q
mit QS(2), und wir setzen GS(2) = G(QS(2)/Q). Ein Ergebnis von Koch
beschreibt die Struktur von GS(2) durch Erzeugende und Relationen. Dazu
fixieren wir Fortsetzungen Li von li nach QS(2). Für i = 1, . . . , n bezeichne
σi ∈ GS(2) einen Lift des Frobenius von Li (der zusätzlich einer gewissen
klassenkörpertheoretischen Bedingung genügen muß) und τi ∈ GS(2) einen
Erzeuger der Trägheitsgruppe von Li (auch hier ist noch eine Normierung er-
forderlich). Dann gilt der folgende

Satz 2.1 (Koch, [Koc78]). Es gibt eine minimale Darstellung

1 −−−−→ R −−−−→ F
π−−−−→ GS(2) −−−−→ 1

von GS(2), wobei F eine freie pro-2-Gruppe auf Erzeugern x1, . . . , xn ist und
die Abbildung π durch π(xi) = τi für i = 1, . . . , n gegeben ist. Ein minimales
System von Erzeugern von R als Normalteiler ist durch ρ1, . . . , ρn gegeben, mit

ρm = xlm−1
m (x−1

m , y−1
m ).

Dabei ist ym ∈ F ein Urbild von σm. Es gilt

ρm ≡ xlm−1
m

∏
j 6=m

(xm, xj)`m,j mod F(3),

mit

(−1)`m,j =
(
lm
lj

)
.

Wir betrachten den Fall, daß die Relationengruppe R in F(3) liegt. Im ersten
Abschnitt haben wir gesehen, wie eng in dieser Situation die Beschreibung von
Elementen aus R modulo F(4) mit Dreifach-Masseyprodukten zusammenhängt.
Eine arithmetische Interpretation der Paarungen

H1(GS(2))×H1(GS(2))×H1(GS(2))
〈,·,·,·〉→ H2(GS(2)) tr∗→ Z/2Z

(hierbei sei Hi(GS(2)) = Hi(GS(2),Z/2Z)) wird durch das Rédeisymbol gege-
ben. Dieses wurde in den dreißiger Jahren des letzten Jahrhunderts von Rédei
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eingeführt ([Réd34]) und ist wie folgt definiert. Wir betrachten Primzahlen
p1, p2, p3 mit pi ≡ 1 mod 4, und(

p1

p2

)
=

(
p1

p3

)
=

(
p2

p3

)
= 1.

Es sei α = x+ y
√
p1, wobei x, y ∈ Z Lösungen von

x2 − p1y
2 − p2z

2 = 0

seien, die noch den Nebenbedingungen ggT(x, y, z) = 1, 2|y und x − y ≡ 1
mod 4 genügen sollen. Dann existiert ein Primideal p3 in k1 = Q(

√
p1) über

p3, so daß p3 unverzweigt in k1(
√
α) ist, und wir definieren das Rédeisymbol

[p1, p2, p3] durch

[p1, p2, p3] =
{

1, falls p3 in k1(
√
α) zerfällt,

−1, falls p3 in k1(
√
α) träge ist.

Das Rédeisymbol ist unabhängig von den getroffenen Wahlen ([Réd34]). Es
gilt der folgende Satz (siehe [Vog]).

Satz 2.2. Sei S = {l1, . . . , ln,∞} mit li ≡ 1 mod 4, i = 1, . . . , n, und gelte(
li
lj

)
= 1 für alle 1 6 i, j 6 n, i 6= j.

Sei 1 6 i, j, k 6 n. Für m = 1, . . . , n gilt

ρm ≡
∏

16i<j6n,
k<j

((xi, xj), xk)ei,j,k,m mod F(4),

mit

(−1)ei,j,k,m =

 [li, lj , lk], falls m = j und m 6= k, oder m 6= j und m = k,
oder m = i und j = k, oder m = j = k,

1 sonst.
Bezeichnet χ1, . . . , χn die zu x1, . . . , xn duale Basis von

H1(GS(2)) = H1(GS(2),Z/2Z),

dann gilt für das Dreifach-Masseyprodukt

〈·, ·, ·〉 : H1(GS(2))×H1(GS(2))×H1(GS(2))→ H2(GS(2))

die folgende Identität

(−1)trρm 〈χi,χj ,χk〉 =


[li, lj , lk] falls m = i und m 6= k, oder m 6= i und m = k,

1 sonst.
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Beispiel 2.3. Für S = {13, 61, 937,∞} haben wir
ρ1 ≡ ((x2, x3), x1) mod F(4),

ρ2 ≡ ((x1, x3), x2) mod F(4),

ρ3 ≡ ((x1, x3), x2)((x2, x3), x1) ≡ ((x1, x2), x3) mod F(4)

Ein ähnlicher Satz wie der obige existiert auch für den 2-Klassenkörperturm
imaginärquadratischer Zahlkörper, siehe [Vog]. Bezeichnet K einen imaginär-
quadratischen Zahlkörper und K∅ seine maximale unverzweigte 2-Erweiterung,
dann kann die vom Masseyprodukt und der Spurabbildung induzierte Paarung
H1(G(K∅/K))×H1(G(K∅/K))×H1(G(K∅/K))→ H2(G(K∅/K))→ Z/2Z
ebenfalls durch das Rédeisymbol beschrieben werden. Insbesondere erhalten
wir Paarungen

(Cl(K)/2)∗ × (Cl(K)/2)∗ × (Cl(K)/2)∗ → Z/2Z,
wobei Cl(K) die Idealklassengruppe von K und ∗ das Pontrjagin-Dual beze-
ichnen.
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FINITE FLAT COMMUTATIVE GROUP SCHEMES
OVER COMPLETE DISCRETE VALUATION FIELDS:
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Abstract . This is a summary of author’s results on finite flat commutative group
schemes. The properties of the generic fibre functor are discussed. A complete classi-
fication of finite local flat commutative group schemes over mixed characteristic com-
plete discrete valuation rings in terms of their Cartier modules (defined by Oort) is
given. We also state several properties of the tangent space of these schemes. These
results are applied to the study of reduction of Abelian varieties. A finite p-adic
semistable reduction criterion is formulated. It looks especially nice in the ordinary
reduction case. The plans of the proofs are described.

Notation. Throughout, K is a mixed characteristic complete discrete
valuation field with residue field of characteristic p, L is a finite extension of
K; OK ⊂ OL are their rings of integers, e is the absolute ramification index
of L, s = [logp(e/(p − 1))], e0 = [L : (Knr ∩ L)] (e0 = e(L/K) in the perfect
residue field case), l′ = s + vp(e0) + 1, l = 2s + vp(e0) + 1; L denotes the
residue field of OL; M is the maximal ideal of OL; π ∈M is some uniformizing
element of L.

A ’group scheme’ will (by default) mean a finite flat commutative group
scheme, S/OL means a finite flat commutative group scheme over OL. For
finite group schemes S, T we write S /T if S is a closed subgroup scheme of T .

November 13, 2004.
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1. The category of finite flat commutative group schemes; the
generic fibre results

We denote by FGSR the category of finite flat commutative p-group schemes
(i.e. annihilated by a power of p) over a base ring R.

The goal of this paper is the study of FGSOL
and of Abelian varieties over

L. We note that a certain classification of FGSOL
for L being perfect was

given by Breuil (see [Bre00]); yet that classification is inconvenient for several
types of problems.

It is well-known that any finite flat group scheme over L is étale; hence
FGSL is equivalent to the category of finite modules over the absolute Galois
group of L. In particular, this category is abelian. Hence it is natural to
consider the generic fibre functor

GF : S → SL = S ×Spec OL
SpecL.

The functor GF is faithful and defines a one-to-one correspondence between
closed subgroup schemes of S and closed subgroup schemes of SL (see [Ray74]).

It was also proved by Raynaud in the case e < p− 1 that GF is full; besides
FGSOL

is an Abelian category. Neither of this facts is true for larger values of
e. Moreover, one cannot apply Raynaud’s methods in the case e ≥ p− 1.

Yet the following important result is valid.

Theorem 1.1. If S, T/OL are group schemes, g : SL → TL is an L-group
scheme morphism, then there exists an h : S → T over OL such that hL = psg.

Note that s = 0 for e < p− 1; therefore Theorem 1.1 generalizes the fullness
result of Raynaud. Hence GF is ’almost full’. One easily checks that the result
is sharp, i.e. the value of s its the best possible.

Theorem 1.1 also can be considered as a finite analogue of fullness of the
generic fibre functor for p-divisible groups (proved by Tate). Besides, it implies
Tate’s result (see [Tat67]) immediately.

The main tool of the proof is the Cartier module functor for finite local
group schemes. It will be defined below. A similar statement for Ext1 follows
easily from Theorem 1.1 and the Cartier module theory for group schemes.

2. Formal groups; Cartier modules
Our basic method is resolving finite group schemes by means of p-divisible

groups (in particular, by finite height formal group laws). We recall the Cartier
module theory for formal group laws. Here we describe a modified version that
was used in [BV03] and [V.05] (cf. [Haz78] and [Zin84]).
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We denote by C the category of additive subgroups of L[[∆]]m, m > 0. For
C1, C2 ∈ C, dimCi = mi we define

C(C1, C2) = A ∈Mm2×m1OK : AC1 ⊂ C2.

For h ∈ (L[[∆]])m, the coefficients of h are equal to hi =
∑

l≥0 cil∆
l, cil ∈ L,

we define
(1) h(x) = (hi(x)), 1 ≤ i ≤ m, where hi(x) =

∑
l≥0

cilx
pl

.

For an m-dimensional formal group law F/OL we consider
DF = {f ∈ L[[∆]]m : expF (f(x)) ∈ OL[[x]]m},

where expF ∈ L[[X]]m is the composition inverse to the logarithm of F . In
particular, for m = 1 we have

∑
ai∆i ∈ DF ⇐⇒ expF (

∑
aix

pi

) ∈ OL[[x]].
Then the Cartier theory easily implies the following fact.

Proposition 2.1.
1. F → DF defines a full embedding of the category of formal groups over

OL into C.
If f : F1 → F2, f ≡ AX mod deg 2, A ∈ Mm2×m1OL, then the associated

map f∗ : DF1 → DF2 is the multiplication by A.
2. DF1 = DF2 if and only if the groups F1 and F2 are strictly isomorphic,

i.e. there exists an isomorphism whose Jacobian is the identity matrix.

Now we briefly recall the notion of the Cartier ring. For a commutative ring
Q and a Q-algebra P one can introduce the following operators on P [[∆]]. For
f =

∑
i≥0 ci∆

i ∈ P [[∆]], a ∈ Q we define

Vf = f∆; ff =
∑
i>0

pci∆i−1; 〈a〉f =
∑

api

ci∆i.

Cart(Q) (the Cartier p-ring, see [Haz78]) is the ring that is generated by
V, f , 〈a〉, a ∈ Q and factorized modulo certain natural relations (see [Haz78],
Sect. 16.2, [M.V04a], [M.V04b], [M.V04c]). If M is a Cart(Q)-module, then
M/VM has a natural structure of a Q-module defined via a · (x mod VM) =
〈a〉x mod VM for any x ∈ M . We introduce an important definition (see
[M.V04a]).

Definition 2.2.
1. For Cart-modules M ⊂ N we write M / N , if for any x ∈ M,Vx ∈ N ,

we have x ∈M . We call M a closed submodule of N .
2. Cart-module N is called separated if {0} / N , i.e. N has no V-torsion.
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We denote Cart(OL) by Cart; we call Cart-modules Cartier modules. Note
that we don’t define closed subsets of Cartier modules. Yet we could define
a topology on any Cart-module M whose closed subsets would be C ⊂ M :
Vx ∈ C =⇒ x ∈ C. Then any Cart-map would be continuous.

We define the closure of a subset N of a Cartier module M as the smallest
closed Cart-submodule of M that contains N .

Proposition 2.3.
1. For any F/OL the group DF is a Cart-module via the action of opera-

tors defined above; it is canonically Cart-isomorphic to the module of p-typical
curves for F (see [Haz78] and [Zin84]).

2. C(DF1 , DF2) = Cart(DF1 , DF2).
3. M ∈ C is equal to DF for some m-dimensional F/OL iff C /L[[∆]]m and

C mod ∆ = OL
m.

In the papers [V.05] and [BV03] two functors on the category of formal
groups were defined. The first (called the fraction part) was similar to those
defined by Grothendieck, Messing and Fontaine; yet it was defined in a quite
different way and was described more precisely than the functor in the book
[Fon77]. The behaviour of the fraction part is (in some sense) linear.

The second functor (denoted by MF ) described the obstacle for the
Fontaine’s functor to be an embedding of categories. For a finite height
formal group F the value of MF can be described by means of DFπ

. Here
Fπ = π−1(πX, πY ). Since the coefficients of Fπ tend to 0 quickly, the ob-
stacle functor is ’finite’. One may say that its complexity is killed by fs (see
Proposition 3.2.2 of [M.V04a]).

3. Cartier-Oort modules of local group schemes
Let S be a local group scheme over OL; let 0 → S → F → G → 0 be

its resolution by means of finite height formal groups. We define C(S) =
Coker(DF → DG). In the paper [Oor74] it was proved that S → C(S) is a
well-defined functor on the category of local (finite flat commutative) group
schemes over OL; it defines an embedding of this category into the category
of Cart-modules. We call C(S) the Oort module of S. The theory of Oort
also can be used when the base ring is a field of characteristic p. In this case
f corresponds to the Frobenius, V corresponds to the Verschiebung operator
(see [Zin84]).

Now we state the main classification result. It completely describes the
properties of the Oort functor.
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Theorem 3.1.
I 1. Closed submodules of C(S) are in one-to-one correspondence

with closed subgroup schemes of S.
2. If M = C(S), N = C(H) /M , where H /S, then M/N ≈ C(S/H).
3. Conversely, exact sequences (as fppf-sheaves, i.e. the inclusion is a

closed embedding) of local schemes induce exact sequences of Oort mod-
ules.

II If f : S → T is a local group scheme morphism, then Ker f∗ = C(Ker f),
where f∗ is the induced Oort modules homomorphism; we consider the kernel
in the category of flat group schemes.

III A Cart-module M is isomorphic to C(S) for S being a finite flat com-
mutative local group scheme over OL if and only if M satisfies the following
conditions.

1. M/VM is a finite length OL-module.
2. M is separated.
3. ∩i≥0ViM = {0}.
4. M = ClM (〈π〉M).

IV The minimal dimension of a finite height formal group F such that S
can be embedded into F is equal to dimOL

(C(S)/VC(S)) (i.e. to the number
of indecomposable OL-summands of C(S)/VC(S)).

V M = C(Ker[pr]F ) for an m-dimensional formal group F if and only if in
addition to the conditions of III, prM = 0 and M/VM ≈ (OL/p

rOL)m.
VI If S, T are local, then Ext1(S, T ) = Ext1Cart(C(S), C(T )). Here we con-

sider extensions in the category of finite flat group schemes, whence the defini-
tion of an exact sequence is the same as always.

We introduce a natural definition of the tangent space TS for a finite group
scheme S.

Definition 3.2. For a finite flat groups scheme S we denote by TS the OL-
dual of J/J2 (i.e. HomOL

(J/J2, L/OL)), where J is the augmentation ideal of
the affine algebra of S.

It is well-known that the tangent space of a group scheme is equal (i.e.
naturally isomorphic) to the tangent space of its local part. Besides, if P
is any (unitial commutative) OL-algebra then the (suitably defined) tangent
space of SP = S ×Spec OL

SpecP is canonically isomorphic to TS ⊗OL
P .

We state the main properties of the tangent space functor.
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Theorem 3.3.
I TS is naturally isomorphic to C(S0)/VC(S0), where S0 is the local part

of S.
II f : S → T is a closed embedding of local group schemes if and only if the

induced map on the tangent spaces is an embedding.
III If 0 → H → S → T → 0 is an exact sequence of local group schemes

(in the category of fppf-sheaves, i.e. H /S) then the corresponding sequence of
tangent spaces is also exact.

IV For a local group scheme S the following numbers are equal.
1. The OL-dimension of J/J2.
2. The OL-dimension of C(S)/VC(S).
3. The minimal dimension of a finite height formal group F such that

S / F .
V A local group scheme S is equal to Ker[pr]F for some m-dimensional finite

height formal group F/OL if and only if prS = 0, and TS ≈ (OL/p
rOL)m.

4. Finite criteria for reduction of Abelian varieties
As an application of the results on finite group schemes certain finite p-adic

criteria for semistable and ordinary reduction of Abelian varieties were proved.
We call these criteria finite because in contrast to Grothendieck’s criteria (see
[Gro72]) it is sufficient to check certain conditions on some finite p-torsion
subgroups of V (instead of the whole p-torsion).

We recall that an Abelian variety (over OK or OL) is called an ordinary
reduction one (or just ordinary) if the connected component of 0 of the re-
duction of the Néron model of A is an extension of a torus by an ordinary
Abelian variety (over L). In particular, an ordinary variety has semistable re-
duction. For example, a semistable reduction elliptic curve is either ordinary
or supersingular.

Let V be be an Abelian variety of dimension m over K that has semistable
reduction over L.

Theorem 4.1.
I V has semistable reduction over K if and only if for there exists a finite

flat group scheme H/OK such that THOL
⊃ (OL/p

lOL)m (i.e. there exists an
embedding) and a monomorphism g : HK → Ker[pl]V,K .
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II V has ordinary reduction over K if and only if for some HK ⊂ Ker[pl]V,K

and M unramified over K we have HM
∼= (µpl,M )m. Here µ denotes the group

scheme of roots of unity.

Part I is a generalisation of Theorem 5.3 of [Con99] where the case e < p−1,
V of good reduction over OL, was considered.

Finite l-adic criteria (see [SZ00]) seem to be easier to use; yet they don’t
allow to check whether the reduction is ordinary.

If the reduction of A over L is good then l can be replaced by l′.

5. Ideas of proofs
Proposition 2.3 is an easy consequence of the usual Cartier theory. It easily

implies parts I and II of Theorem 3.1, and parts I – III of Theorem 3.3. The
proof the necessity of conditions of part III in Theorem 3.1 is also more-or-less
easy.

To prove sufficiency of conditions of part III in Theorem 3.1 one applies the
explicit description of the Cartier module of a formal group (see Section 27.7
of [Haz78]) and constructs a formal group F such that M is a Cart-factor of
DF . A formal group of dimension dimOL

(M/VM) can be chosen. Next one
proves that a finite height formal group can be chosen. In this case M will be
equal to DF /N for some N / DF such that N is Cart-isomorphic to DG for a
finite height formal group G. Lastly one verifies that M = C(S) for S being
the kernel of a certain isogeny h : G → F . Under the conditions of part V of
Theorem 3.1 (and Theorem 3.3) one obtains that G ≈ F , and h = Ker[pr]F .

Parts IV and V of Theorem 3.3 are reformulations of the corresponding parts
of Theorem 3.1 in terms of tangent spaces. Part VI of Theorem 3.1 follows from
the fact the the conditions of part III are preserved by extensions.

Now we sketch the proof of Theorem 1.1. First the following important
results on the reductions of group schemes are proved.

Proposition 5.1.
1. If the map h : S → T of OL-group schemes is injective on the generic

fibre, then the kernel of the reduction map (as a kernel of a group scheme
morphism over L) is annihilated by fs.

2. If the map h : S → T of OL-group schemes is surjective on the generic
fibre, then the cokernel of the reduction map is annihilated by Vs.

In the imperfect residue field case we extend L so that Fr−s(Cokerh) will
be defined over L.
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Part 1 is proved by an analysis of the properties of the ’obstacle’ functor
(see the end of §2); part 2 follows immediately as the dual of part 1.

In the proof of Proposition 5.1 (and in several other places) the local-étale
exact sequence for finite flat commutative group schemes is used to reduce the
problem to the case of local group schemes (and hence to formal groups). Some
of these reductions are quite complicated.

Next one proceeds to the proof of Theorem 1.1 using the fact fsVs = ps.
For the proofs of reduction criteria explicit Cartier module descent is used.
In [M.V04b] the following lemmas were were proved. For the first an explicit

descent reasoning for DF was used; the second is an easy flat descent exercise.

Proposition 5.2.
1. Let F be a finite height formal group over OL. Suppose that its generic

fibre (as a p-divisible group) FL = F ×Spec OL
SpecL is defined over K, i.e.

there exists a p-divisible group ZK over K such that
(2) ZK ×Spec K SpecL ∼= FL.

Suppose that for t = vp(e0) + 1 and some group scheme T/OK we have
Ker[pt]Z ≈ T ×Spec OK

SpecK. Suppose also that this isomorphism com-
bined with the isomorphism (2) is the generic fibre of a certain isomorphism
T ×Spec OK

Spec OL
∼= Ker[pt]F . Then ZK ≈ F ′K for some formal group

F ′/OK .
2. Let V be a p-divisible group over OL. Suppose that its generic fibre is

defined over K. Then V is defined over OK if and only if its local part is.

Using this, Theorem 1.1, and Cartier modules of group schemes one can
prove a certain good reduction criterion for Abelian varieties (see [M.V04b]).
We don’t formulate that criterion here.

Using Proposition 5.2 and a certain tangent space argument one proves the
following fact.

Proposition 5.3. Let V be a p-divisible group over K, let Y be a p-divisible
group of dimension m over OL (i.e. its local part is a formal group of dimen-
sion m). Suppose that V ×Spec K SpecL ∼= Y ×Spec OL

SpecL. The following
conditions are equivalent:

I There exists a p-divisible group Z over OK such that V ∼= Z ×Spec OK

SpecK.
II For some (finite flat commutative) group scheme H/OK we have THOL

≈
(OL/p

l′OL)m and there exists a monomorphism g : HK → Ker[pl′ ]V,K .
III We have THOL

⊃ (OL/p
l′OL)m (i.e. there exists an embedding); there

exists a monomorphism g : HK → Ker[pl′ ]V,K .
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Note that II =⇒ III is obvious; I =⇒ II follows immediately from part V
of Theorem 3.3.

Now we sketch the proof of Theorem 4.1. Let YL denote the finite part of
Tp(V ) (the p-torsion of V ) considered as a p-divisible group over L.

If V has semistable reduction over K then YL corresponds to a certain
m-dimensional p-divisible group Y defined over OK . Therefore we can take
H = [Ker pl]Y,OK

. It will be multiplicative if V is ordinary.
For the converse implication a certain tangent space argument along with

Proposition 5.3 proves that YL is defined over OK . Dualizing, we obtain
that Tp(V ) is Barsotti-Tate of echelon 2 over OK . Then Proposition 5.13c
of [Gro72] proves part I.

Lastly it remains to note that a p-divisible group Y over OL is multiplicative
iff Ker[p]Y is. Then an easy tangent space calculation proves part II.

References
[Bre00] C. Breuil – Groupes p-divisibles, groupes finis et modules filtrés, Ann. of

Math. (2) 152 (2000), no. 2, p. 489–549.
[BV03] M. V. Bondarko & S. V. Vostokov – Explicit classification of for-

mal groups over local fields, Tr. Mat. Inst. Steklova 241 (2003), no. Teor.
Chisel, Algebra i Algebr. Geom., p. 43–67.

[Con99] B. Conrad – Finite group schemes over bases with low ramification, Com-
positio Math. 119 (1999), no. 3, p. 239–320.

[Fon77] J.-M. Fontaine – Groupes p-divisibles sur les corps locaux, Société Math-
ématique de France, Paris, 1977, Astérisque, No. 47-48.

[Gro72] A. Grothendieck – Groupes de monodromie en géométrie algébrique. I,
Springer-Verlag, Berlin, 1972, Séminaire de Géométrie Algébrique du Bois-
Marie 1967–1969 (SGA 7 I), Avec la collaboration de M. Raynaud et D. S.
Rim, Lecture Notes in Mathematics, Vol. 288.

[Haz78] M. Hazewinkel – Formal groups and applications, Pure and Applied
Mathematics, vol. 78, Academic Press Inc., New York, 1978.

[M.V04a] B. M.V. – Finite flat commutative group schemes over complete discrete
valuation fields I: the generic fibre functor, 2004, (Russian).

[M.V04b] , Finite flat commutative group schemes over complete discrete val-
uation fields II: good reduction of Abelian varieties, 2004, (Russian).

[M.V04c] , Finite flat commutative group schemes over complete discrete val-
uation rings III: classification, tangent spaces, and semistable reduction of
Abelian varieties, 2004, Göttingen.

[Oor74] F. Oort – Dieudonné modules of finite local group schemes, Nederl. Akad.
Wetensch. Proc. Ser. A 77=Indag. Math. 36 (1974), p. 284–292.



108 Mathematisches Institut, Seminars, 2004-05

[Ray74] M. Raynaud – Schémas en groupes de type (p, . . . , p), Bull. Soc. Math.
France 102 (1974), p. 241–280.

[SZ00] A. Silverberg & Y. G. Zarhin – Reduction of abelian varieties, in The
arithmetic and geometry of algebraic cycles (Banff, AB, 1998), NATO Sci.
Ser. C Math. Phys. Sci., vol. 548, Kluwer Acad. Publ., Dordrecht, 2000,
p. 495–513.

[Tat67] J. T. Tate – p−divisible groups., in Proc. Conf. Local Fields (Driebergen,
1966), Springer, Berlin, 1967, p. 158–183.

[V.05] B. M. V. – Explicit classification of formal groups over complete discrete
valuation fields with imperfect residue field, 2005, (Russian), to appear in
Trudy St. Peterburgskogo Matematicheskogo Obsh’estva, vol. 11.

[Zin84] T. Zink – Cartiertheorie kommutativer formaler Gruppen, Teubner-Texte
zur Mathematik, vol. 68, BSB B. G. Teubner Verlagsgesellschaft, Leipzig,
1984.



Mathematisches Institut, Seminars, (Y. Tschinkel, ed.), p. 109–115
Universität Göttingen, 2004-05

TORIC REDUCTION AND TROPICAL GEOMETRY

A. Szenes
ME Institute of Mathematics, Geometry Department, Egry József u. 1, H Ép.,
H-1111 Budapest, Hungary • E-mail : szenes@math.bme.hu

Abstract . In this note, I review a result obtained in joint work with Michèle Vergne
on a duality principle in toric geometry. I will demonstrate the essential points of our
work on a concrete example.

1. Toric varieties and quotients
The basic data is a real vector space g endowed with a basis [ω1, ω2, . . . , ωn],

and an exact sequence

0 −→ a
ι−→ g

π−→ t −→ 0

of real vector spaces of dimensions r, n and d, such that the three lattices

gZ = ⊕n
i=1Zωi, tZ = π(gZ) , aZ = ker(π|gZ).

have maximal rank in the corresponding vector spaces. Clearly, we have n−d =
r. This construction gives rise to two sequences of vectors

A = [α1, . . . , αn] ⊂ a∗Z, αi = ι∗(ωi)

where ωi is the dual basis in g∗, and

B = [β1, . . . , βn] ⊂ tZ, βi = π(ωi)

One says that A and B are Gale dual to each other in this situation.

November 4, 2004.
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We will assume that A is projective, i.e. there is γ ∈ a such that 〈αi, γ〉 > 0
for i = 1, . . . , n. This is equivalent to the condition that the origin is contained
in the convex hull of B.

We can write down our maps as integer matrices [ι] and [π] if we choose
bases of aZ and tZ. Then the set of αis are the column vectors of [ι] and the
βis are the row vectors of [π].

It is a pleasant exercise to check that a pair of matrices [ι] and [π] with
integer coefficients represents an exact sequence as described above if the g.c.d
of the r-by-r minors of [ι] is 1, the same condition holds for [π], and

[ι] · [π] = 0

We will consider the following example of this setup:

[ι0] =
(

0 1 0 1
1 1 1 0

)
[π0] =


0 1
−1 0
1 −1
1 0


Denoting the coordinates on a by x and y, we can list the αis as follows:

A0 = [α1 = y, α2 = x+ y, α3 = y, α4 = x]

The set B0 may be read off the matrix [π0]. We obtain the following pictures:
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Next we introduce the set of Bases(A) as those subsets σ ∈ [1, n] for which
{αi; i ∈ σ} is a basis of a∗; we used the notation [1, n] = {1, . . . , n} here. The
set of chambers C(A), by definition, is the set of connected components the
open subset

n∑
i=1

R>0αi

∖ ⋃
σ∈Bases(A)

∂

(∑
i∈σ

R>0αi

)
,

which is thus the complement of the boundaries of r-dimensional simplicial
cones spanned by the vectors from A. In our example |Bases(A0)| = 5 and
|C(A0)| = 2.

The following statement describes the Gale dual picture:

Proposition 1.1. There is a one-to-one correspondence between the cham-
bers C(A) and complete simplicial fans in t whose one-dimensional faces form
a subset of B.

One can associate a projective orbifold toric variety to each complete sim-
plicial simplicial fan ([Ful93]). One can give a quotient construction of this
variety using the Gale dual A-data as follows. Let the coordinates on gC = Cn

be x = (x1, . . . , xn), and define a diagonal action of the complexified torus
Ta = aC/aZ on Cn by the formula

s ∈ aC,x ∈ Cn 7→ (exp(2π
√
−1〈αi, s〉)xi, i = 1, . . . , n).

Given a chamber c ∈ C(A), define the open subset

Uc =

{
x ∈ Cn;

∏
i∈σ

xi 6= 0 for some σ for which c ⊂
∑
i∈σ

R>0αi

}
,

of Cn. Then Uc is clearly Ta-invariant, and we can define the d-dimensional
compact variety

Vc = Uc/Ta.

As an exercise, one may find the two fans corresponding to the two chambers
of our example A0, and one may check that the corresponding two surfaces are
P2 and the blow-up of P2 at a point.

Remark 1.2. Another data often used to describe toric varieties are poly-
topes. In our setup they appear as follows. Let θ ∈ c ∩ aZ and define the
partition polytope

Πθ =

{
(γ1, . . . , γn) ∈ (R>0)n;

n∑
i=1

γiαi = θ

}
.

This polytope is polar to the corresponding fan in t.
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Now we introduce the vector κ =
∑n

i=1 αi ∈ aZ. In the simplest case,
which we will consider here, κ will be in one of the chambers of A. The fan
corresponding to this special chamber is the one induced by the faces of the
convex hull of B. The general case is more complicated [BM02, SV04].

2. Intersection numbers of toric varieties
One can go one step further with the quotient construction of the previous

section: given θ ∈ a∗Z one can define the (orbi)-line-bundle Lθ over Vc as

Lθ = Uc ×Ta Cθ,

where Cθ is the character of Ta corresponding to θ. Taking the Chern class of
this bundle, we obtain a map

χ : a∗Z → H2(Vc,Q),

which may be extended multiplicatively to a map

χ : C[a]→ H∗(Vc,R),

i.e. to polynomials on a.
We are interested in the intersection numbers of the classes χ(θ), θ ∈ a∗Z;

this means that we are looking for a formula for the map

Q 7→
∫

Vc

χ(Q)

for homogeneous degree d polynomials Q on a.
First we write this intersection number as

(2.1)
∫

VA(c)

χ(Q) = JKc

(
Q∏n

i=1 αi

)
,

where JKc is a functional on the space CA[a] of rational functions which are
regular on the complement of the hyperplane arrangement

U(A) = {u ∈ aC; αi(u) 6= 0, i ∈ [1, n]}.

This functional is defined implicitly as follows: for any r-element subset σ ⊂
[1, n] we set

(2.2) JKc

(∏
i∈σ

1
αi

)
=

{
vola(σ)−1

, if c ⊂
∑

i∈σ R>0αi,

0, if c ∩
∑

i∈σ R>0αi = ∅,

where vola(σ) is the volume of the parallelepiped
∑

i∈σ[0, 1]αi as measured by
the lattice αZ. We also declare that JKc vanishes on fuctions of degree different
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from −r; using the multidimensional partial fraction expansion, it is easy to
show that this defines a unique functional JKc on CA[a].

Let us turn to our example. Consider the chamber c(κ) containing κ =
2x+ 3y. Then we obtain∫

Vc

χ(x2) = JKc(κ)

(
x2

x(x+ y)y2

)
= JKc(κ)

(
1
y2
− 1

(x+ y)y

)
= 0− 1 = −1.

Similarly, we find that
∫

Vc
χ(y2) = 0 and

∫
Vc
χ(xy) = 1.

This functional distinctly has the flavor of a residue. From this point of
view, one would like to find a cycle Z[c] for every c ∈ C(A), which has the
property that

(2.3) JKc(f) =
∫

Z[c]

f drϕ,

where drϕ is the translation invariant holomorphic r form normalized using the
lattice aZ and an orientation of a. In our example, we can let d2ϕ = dx ∧ dy.
Our main result is an explicit description of such a cycle as a solution set of r
polynomial equations. A priori, it is not at all clear that such a presentation
exists, but here it is.

Theorem 2.1. Let c ∈ C(A) be such that κ ∈ c̄. Then for a sufficiently
generic ξ ∈ c and small ε > 0, the real algebraic subvariety of U(A)

Zε(ξ) =

{
u ∈ U(A);

n∏
i=1

|αi(u)|〈αi,λ〉 = ε〈ξ,λ〉 for every λ ∈ aZ

}
,

when appropriately oriented, is a compact cycle which satisfies (2.3).

Remark 2.2.
1. Formally, it looks like we imposed infinitely many conditions on Zε(ξ), but,
in fact, because of the multiplicativity of both sides of the equations, one can
reduce the number of equations to r. This results in an r-dimensional real
cycle.
2. The condition κ ∈ c̄ is crucial. Otherwise Zε(ξ) might be non-compact!
3. Nevertheless, by repeating some of the αs sufficiently many times we can
achieve the condition κ ∈ c̄, thus we can write down a cycle for any of the
chambers this way.

Returning to our example, pick ξ = x + 2y ∈ c(κ) choose a basis (λ1, λ2)
dual to (x, y). Our equations then have the following form

(2.4) |x(x+ y)| = ε, |y2(x+ y)| = ε2.
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Naturally, the cycle for the other chamber may be realized by the system of
equations where x and y are exchanged.

The proof of this theorem is somewhat technical, but the central idea is that
of the “tropical Ansatz”:

|x| = εa, |y| = εb, |x+ y| = εc.

Then the equations (2.4) imply the equalities

(2.5)
{
a+ c = 1,
2b+ c = 2.

These, naturally, do not determine a, b and c, but we observe that for small
enough ε, if x+ y is very small compared to x, then x and y should be rather
close. This argument gives us the following three possibilities:

1. c� a, b, which implies a ∼ b
2. b� a, c, which implies a ∼ c
3. a� c, b, which implies c ∼ b.

Here by � we mean significantly greater, and by ∼ we mean rather close.
Now we can go back to our system (2.5), and solve it under the three possible
scenarios a = b, a = c, or b = c. We obtain the following three solutions

(1, 1, 0), (1/2, 3/4, 1/2), (1/3, 2/3, 2/3).

However, only the second of these equations satisfies the corresponding inequal-
ities! Thus we, informally, conclude, that for ξ = x+2y the cycle Zε(ξ) consists
of a torus which is very close to the torus {|y| = ε3/4, |x| = ε1/2} ⊂ C2. Inte-
gration over such a torus is equivalent to an algebraic operation called iterated
residue, which means ordering an r-tuple of αs and then taking the usual one-
dimensional residue with respect to each variable, one by one, while assuming
all subsequent (from right to left) variables to be nonzero constants. Thus one
check of our result is the equality

JKc(κ)(f) = Res
x

Res
y
f dx dy,

which is easy to see.
All is not as simple as it appears, however. Take another ξ, say, let ξ =

3x+ 4y. Completing the above computation, we obtain two solutions: (1, 1, 2)
and (5/3, 4/3, 4/3) instead of one!!!

It looks like there is an error but no: the union of the two tori we obtain
this way is, in fact, homologous in {(x, y) ∈ C2; x, y, x + y 6= 0} to the single
torus we computed above.
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If you are intrigued, check out [SV04, SV] for details and proofs! In [BM02,
BM03] you can learn what all this has to do with mirror symmetry, and
[Stu02] will explain why this method is called tropical.
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A SPECTRAL INTERPRETATION FOR THE ZEROS OF
THE RIEMANN ZETA FUNCTION

R. Meyer
Mathematisches Institut, Westfälische Wilhelms-Universität Münster,
Einsteinstrasse 62, 48149 Münster, Germany
E-mail : rameyer@math.uni-muenster.de

Abstract . Based on work of Alain Connes, I have constructed a spectral interpre-
tation for zeros of L-functions. Here we specialise this construction to the Riemann
ζ-function. We construct an operator on a nuclear Fréchet space whose spectrum is
the set of non-trivial zeros of ζ. We exhibit the explicit formula for the zeros of the
Riemann ζ-function as a character formula.

1. Introduction
The purpose of this note is to explain what the spectral interpretation for

zeros of L-functions in [Mey] amounts to in the simple special case of the
Riemann ζ-function. The article [Mey] is inspired by the work of Alain Connes
in [Con99]. We will construct a nuclear Fréchet space H 0

− and an operator D−
on H 0

− whose spectrum is equal to the set of non-trivial zeros of the Riemann
ζ-function ζ(s) =

∑∞
n=1 n

−s. By definition, the non-trivial zeros of ζ are the
zeros of the complete ζ-function
(1) ξ(s) = π−s/2Γ(s/2)ζ(s).

In addition, the algebraic multiplicity of s as an eigenvalue of D− is the zero
order of ξ at s. Thus D− is a spectral interpretation for the zeros of ξ.

November 11, 2004.
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We construct D− as the generator of a smooth representation ρ− of R×+ ∼= R
on H 0

− . Although the single operator D− is more concrete, it is usually better
to argue with the representation ρ− instead. Let D(R×+) be the convolution
algebra of smooth, compactly supported functions on R×+. The integrated form
of ρ− is a bounded algebra homomorphism ∫ρ− : D(R×+)→ End(H 0

− ). We show
that ρ− is a summable representation in the notation of [Mey]. That is, ∫ρ−(f)
is a nuclear operator for all f ∈ D(R×+). The character χ(ρ−) is the distribution
on R×+ defined by χ(ρ−)(f) = tr ∫ρ−(f). The representation ρ− is part of a
virtual representation ρ = ρ+ 	 ρ−, where ρ+ is a spectral interpretation for
the poles of ξ. That is, ρ+ is 2-dimensional and its generatorD+ has eigenvalues
0 and 1. We interpret ρ as a formal difference of ρ+ and ρ− and therefore define
χ(ρ) := χ(ρ+)− χ(ρ−).

The spectrum of ρ consists exactly of the poles and zeros of ξ, and the
spectral multiplicity (with appropriate signs) of s ∈ C is the order of ξ at s,
which is positive at the two poles 0 and 1 and negative at the zeros of ξ. The
spectral computation of the character yields

χ(ρ)(f) =
∑
s∈C

ordξ(s)f̂(s), where f̂(s) :=
∫ ∞

0

f(x)xs dx

x
.

If an operator has a sufficiently nice integral kernel, then we can also compute
its trace by integrating its kernel along the diagonal. This recipe applies to
∫ρ−(f) and yields another formula for χ(ρ−). Namely,

χ(ρ) = W =
∑
p∈P

Wp +W∞,

where P is the set of primes,

Wp(f) =
∞∑

e=1

f(p−e)p−e ln(p) +
∞∑

e=1

f(pe) ln(p),(2)

W∞(f) = pv

∫ ∞
0

f(x)
|1− x|

+
f(x)
1 + x

dx.(3)

The distribution W∞ involves a principal value because the integrand may have
a pole at 1. Equating the two formulas for χ(ρ), we get the well-known explicit
formula that relates zeros of ξ and prime numbers.

We do not need the functions ζ and ξ to define our spectral interpretation.
Instead we use an operator Z, called the Zeta operator, which is closely related
to the ζ-function. This operator is the key ingredient in our construction. In
addition, we have to choose the domain and target space of Z rather carefully.
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It is possible to prove the Prime Number Theorem using the representation ρ in-
stead of the ζ-function. The only input that we need is that the distribution W
is quantised, that is, of the form

∑
n(s)f̂(s) with some function n : C→ Z (see

[Mey]).
Our constructions for the ζ-function can be generalised to Dirichlet L-func-

tions. We indicate how this is done in the last section. We run into problems,
however, for number fields with more than one infinite place. There are also
other conceptual and aesthetic reasons for prefering adelic constructions as in
[Mey]. Our goal here is only to make these constructions more explicit in a
simple special case.

2. The ingredients: some function spaces and operators
Let S (R) be the Schwartz space of R. Thus f : R → C belongs to S (R)

if and only if all its derivatives f (n) are rapidly decreasing in the sense that
f (n)(x) = O(|x|−s) for |x| → ∞ for all s ∈ R+, n ∈ N. We topologise S (R) in
the usual fashion. The convolution turns S (R) into a Fréchet algebra.

We remark that we neither gain nor loose anything if we view S (R) as a
bornological vector space as in [Mey]. All function spaces that we shall need
are Fréchet spaces, so that bornological and topological analysis are equivalent.
The bornological point of view only becomes superior if we mix S (R) with
spaces like S (Qp), which are not Fréchet.

We use the natural logarithm ln to identify the multiplicative group R×+
with R. This induces an isomorphism between the Schwartz algebras S (R×+)
and S (R). The standard Lebesgue measure on R corresponds to the Haar
measure d×x = x−1 dx on R×+. We always use this measure in the following.

We let
S (R×+)s = S (R×+) · x−s = {f : R×+ → C | (x 7→ f(x)xs) ∈ S (R×+)}

for s ∈ R and
S (R×+)I =

⋂
s∈I

S (R×+)s

for an interval I ⊆ R. We will frequently use that
S (R×+)[a,b] = S (R×+)a ∩S (R×+)b.

The reason for this is that S (R×+) is closed under multiplication by (xε+x−δ)−1

for ε, δ ≥ 0.
Hence S (R×+)[a,b] becomes a Fréchet space in a canonical way. Exhausting I

by an increasing sequence of compact intervals, we may turn S (R×+)I into a
Fréchet space for general I. Since x 7→ xs is a character of R×+, the spaces
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S (R×+)s for s ∈ R are closed under convolution. Hence S (R×+)I is closed
under convolution as well and becomes a Fréchet algebra. We are particularly
interested in

H− = O(R×+) := S (R×+)]−∞,∞[,

S> := S (R×+)]1,∞[,

S< := S (R×+)]−∞,0[.

We also let

H+ := {f ∈ S (R) | f(x) = f(−x) for all x ∈ R}.

The spaces H± will be crucial for our spectral interpretation; the spaces S>

and S< only play an auxiliary role as sufficiently large spaces in which the
others can be embedded.

Given topological vector spaces A and B, we write A ≺ B to denote that A
is contained in B and that the inclusion is a continuous linear map. Clearly,

S (R×+)I ≺ S (R×+)J if I ⊇ J .

The group R×+ acts on S (R×+)I and H+ by the regular representation

λtf(x) := f(t−1x) for t, x ∈ R×+.

Its integrated form is given by the same formula as the convolution:

∫λ(h)f(x) :=
∫ ∞

0

h(t)f(t−1x) d×t.

We denote the projective complete topological tensor product by ⊗̂ (see
[Gro55]). If V and W are Fréchet spaces, so is V ⊗̂W . We want to know
S (R×+)I ⊗̂S (R×+)J for two intervals I, J . Since both tensor factors are nuclear
Fréchet spaces, this is easy enough to compute. We find

(4) S (R×+)I ⊗̂S (R×+)J

∼= {f : (R×+)2 → C | f(x, y) · xsyt ∈ S ((R×+)2) for all s ∈ I, t ∈ J}

with the canonical topology. This follows easily from S (R) ⊗̂S (R) ∼= S (R2)
and the compatibility of ⊗̂ with inverse limits.

We shall need the Fourier transform

(5) F : S (R)→ S (R), Ff(y) :=
∫

R
f(y) exp(2πixy) dx.

Notice that Ff is even if f is. Hence F restricts to an operator on H+ ⊆ S (R).
In the following, we usually restrict F to this subspace. It is well-known that
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F−1f(y) = Ff(−y) for all f ∈ S (R), y ∈ R. Hence

(6) F2 = id as operators on H+.

Since F is unitary on L2(R, dx), it is also unitary on the subspace of even
functions, which is isomorphic to L2(R×+, x d×x).

We also need the involution

(7) J : O(R×+)→ O(R×+), Jf(x) := x−1f(x−1).

We have J2 = id. One checks easily that J extends to a unitary operator on
L2(R×+, x d×x) and to an isomorphism of topological vector spaces

(8) J : S (R×+)I

∼=→ S (R×+)1−I

for any interval I. Especially, J is an isomorphism between S< and S>.
We have

(9) ∫λ(h) ◦ F = F ◦ ∫λ(Jh), ∫λ(h) ◦ J = J ◦ ∫λ(Jh)

for all h ∈ D(R×+). Hence the composites FJ and JF = (FJ)−1, which are uni-
tary operators on L2(R×+, x d×x), commute with the regular representation λ.

A multiplier of S (R×+)I is a continuous linear operator on S (R×+)I that
commutes with the regular representation.

Proposition 2.1. Viewing H+ ⊆ L2(R×+, x d×x), we have
(10)

H+ = {f ∈ L2(R×+, x d×x) | f ∈ S (R×+)]0,∞[ and JF(f) ∈ S (R×+)]−∞,1[}.

– The operator FJ is a multiplier of S (R×+)I for I ⊆ ]0,∞[.
– The operator JF is a multiplier of S (R×+)I for I ⊆ ]−∞, 1[.
– Hence FJ and JF are invertible multipliers of S (R×+)I for I ⊆ ]0, 1[.

Proof. We first have to describe S (R×+)I more explicitly. For simplicity, we
assume the interval I to be open. LetDf(x) := x·f ′(x). This differential opera-
tor is the generator of the representation λ of R×+ ∼= R. Let f ∈ L2(R×+, x d×x).
Then f ∈ S (R×+)I if and only if Dm(f · xs) · (lnx)k ∈ L2(R×+, d×x) for all
m, k ∈ N, s ∈ I. Using the Leibniz rule, one shows that this is equivalent to
Dm(f) · xs · (lnx)k ∈ L2(R×+, d×x) for all m, k ∈ N, s ∈ I. Since I is open,
we may replace xs by xs+ε + xs−ε for some ε > 0. This dominates xs(lnx)k

for any k ∈ N, so that it suffices to require (Dmf) · xs ∈ L2(R×+, d×x) for all
m ∈ N, s ∈ I.

This description of S (R×+)I easily implies H+ ⊆ S (R×+)]0,∞[. Since F

maps H+ to itself and J maps S (R×+)]0,∞[ to S (R×+)]−∞,1[, we get “⊆” in (10).
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Conversely, f ∈ H+ if and only if f and Ff are both O(x−s) for |x| → ∞ for
all s ∈ N. This yields “⊇” in (10) and finishes the proof of (10).

In the following computation, we describe O(R×+) ⊗̂ S (R×+)I as in (4).
Choose any ψ ∈ O(R×+) with

∫∞
0
ψ(x) d×x = 1. Then σf(x, y) := ψ(x)f(xy)

defines a continuous linear map from S (R×+)I to O(R×+) ⊗̂ S (R×+)I by (4).
This is a section for the convolution map

∫λ : O(R×+) ⊗̂S (R×+)I → S (R×+)I , (∫λf)(x) =
∫ ∞

0

f(t, t−1x) d×t.

We have O(R×+) = JO(R×+) ⊂H+ = FH+ ⊂ S (R×+)I if I ⊆ ]0,∞[. Hence we
get a continuous linear operator

S (R×+)I
σ−→ O(R×+) ⊗̂S (R×+)I

FJ⊗̂id−→ S (R×+)I ⊗̂S (R×+)I
∫λ−→ S (R×+)I .

The last map exists because S (R×+)I is a convolution algebra. If we plug f0∗f1
with f0, f1 ∈ O(R×+) into this operator, we get FJ(f0∗f1) because σ is a section
for ∫λ and because of (9). Since products f0 ∗f1 are dense in O(R×+), the above
operator on S (R×+)I extends FJ on O(R×+).

Now (8) implies the continuity of JF = J(FJ)J on S (R×+)I for I ⊆ ]−∞, 1[.
Hence both JF and FJ are multipliers of S (R×+)I for I ⊆ ]0, 1[. They are
inverse to each other on S (R×+)I because they are inverse to each other on
L2(R×+, x d×x).

3. The Zeta operator and the Poisson Summation Formula
In this section we study the properties of the following operator:

Definition 3.1. The Zeta operator is defined by

Zf(x) :=
∞∑

n=1

f(nx) =
∞∑

n=1

λ−1
n f(x)

for f ∈H+, x ∈ R×+.

Let ζ̌ be the distribution
∑∞

n=1 δ
−1
n : ψ 7→

∑∞
n=1 ψ(n−1). Then

ζ̌ (̂s) =
∞∑

n=1

n−s = ζ(s), Zf = ∫λ(ζ̌)(f).

Thus the data Z, ζ, and ζ̌ are equivalent.
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The Euler product expansion of the ζ-function takes the following form in
this picture. Let P be the set of prime numbers in N∗. We have

Z =
∏

p∈P

∞∑
e=0

λp−e =
∏

p∈P

(1− λ−1
p )−1.

Hence we get a candidate for an inverse of Z:

Z−1f(x) =
∏

p∈P

(1− λ−1
p )f(x) =

∞∑
n=1

µ(n)f(nx).

Here µ(n) is the usual Möbius function; it vanishes unless n is square-free, and
is (−1)j if n is a product of j different prime numbers.

The following assertion is equivalent to the absolute convergence in the re-
gion Re s > 1 of the Euler product defining ζ(s).

Proposition 3.2. Z and Z−1 are continuous linear operators on S> that
are inverse to each other.

Proof. Let Df(x) = xf ′(x). We have observed above that f ∈ S> if and only
if Dmf ∈ L2(R×+, x2s d×x) for all m ∈ N, s > 1. We check that Z and Z−1

preserve this estimate. The operator λt for t ∈ R×+ has norm ‖λt‖s = ts

on L2(R×+, x2s d×x) for all s ∈ R. Hence the same estimates that yield the
absolute convergence of the Euler product for ζ(s) also show that the products∏

p∈P(1 − λ−1
p )±1 converge absolutely with respect to the operator norm on

L2(R×+, x2s d×x) for s > 1. Since all factors commute with D, this remains true
if we replace L2(R×+, x2s d×x) by the Sobolev space defined by the norm

‖f‖m,s
2 :=

∫ ∞
0

|Dmf(x)|2x2s d×x.

Thus Z and Z−1 are continuous linear operators on these Sobolev spaces for
all m ∈ N and all s > 1. This yields the assertion.

Next we recall the Poisson Summation Formula. It asserts that∑
n∈Z

f(xn) = x−1
∑
n∈Z

Ff(x−1n)

for all x ∈ R×+ and all f ∈ S (R). For f ∈H+, this becomes

(11) f(0)/2 + Zf(x) = JZFf(x) + x−1 · Ff(0)/2.

Let
H∩ := {f ∈ S (R) | f(0) = Ff(0) = 0}.
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This is a closed, λ-invariant subspace of S (R). If f ∈H∩, then (11) simplifies
to Zf = JZFf .

Let h0 : R×+ → [0, 1] be a smooth function with h0(t) = 1 for t � 1 and
h0(t) = 0 for t� 1. Let H∪ be the space of functions on R×+ that is generated
by H− = O(R×+) and the two additional functions h0 and x−1 · h0. The
regular representation extends to H∪. Writing C(xs) for C equipped with the
representation by the character xs, we get an extension of representations

(12) H− � H∪ � C(x0)⊕ C(x1).

Theorem 3.3. The Zeta operator is a continuous linear map Z : H+ →
H∪. Even more, this map has closed range and is a topological isomorphism
onto its range. We have Zf ∈H− if and only if f ∈H∩.

Proof. Proposition 2.1 yields H+ ≺ S>. By Proposition 3.2, Z is continuous
on S>. Hence we get continuity of Z : H+ → S>. Similarly, JZF is a con-
tinuous linear operator H+ → S<. By (11), Z restricts to a continuous linear
map

H∩ → S> ∩S< = H−.

Equation (11) also implies that Zf still belongs to H∪ for arbitrary f ∈ H+

and that Zf ∈H− if and only if f ∈H∩.
It remains to prove that Z is a topological isomorphism onto its range. This

implies that the range is closed because all spaces involved are complete. It
suffices to prove that the restriction Z : H∩ → H− is an isomorphism onto
its range. Equivalently, a sequence (fn) in H∩ converges if and only if (Zfn)
converges in H−. One implication is contained in the continuity of Z. Suppose
that the sequence (Zfn) converges in H−. Hence it converges in both S>

and S<. Equation (11) yields Zfn = JZFfn. Using (8), we get that both
(Zfn) and (ZFfn) converge in S>. Proposition 3.2 yields that (fn) and (Ffn)
converge in S>.

Therefore, (Dmfn·xs) and (DmFfn·xs) converge in L2(R, dx) for all s > 1/2,
where Df(x) = xf ′(x). Hence xk(d/dx)lfn and (d/dx)k(xlfn) converge if k, l ∈
N satisfy k > l + 1. The first condition implies convergence in S (R \ ]−1, 1[)
because x ≥ 1 in this region. The second condition contains convergence of
(d/dx)kfn in L2([−1, 1], dx). Hence both conditions together imply convergence
in S (R) as desired.

We now discuss the close relationship between the above theorem and the
meromorphic continuation of the ζ-function and the functional equation (see
also [Tat67]). Recall that f̂(s) :=

∫∞
0
f(x)xs d×x. This defines an entire
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function for f ∈H−. We have described Z as the convolution with the distri-
bution ζ̌ on R×+, which satisfies ζ̌ (̂s) = ζ(s). Therefore,

(13) (Zf) (̂s) = ζ(s)f̂(s)

for all f ∈ S>, s ∈ C with Re s > 1. The Poisson Summation Formula
implies Zf ∈ H− for f ∈ H∩, so that ζ(s)f̂(s) extends to an entire function.
Especially, this holds if f ∈H− satisfies f̂(1) = 0. For such f , the function f̂(s)
is an entire function on C as well. Therefore, ζ has a meromorphic continuation
to all of C. For any s 6= 1, there exists f ∈ H− with f̂(1) = 0 and f̂(s) 6= 0.
Therefore, the only possible pole of ζ is at 1.

It is easy to see that (Jf) (̂s) = f̂(1− s). Hence (11) implies

(14) ζ(1− s)(JFf) (̂s) = ζ(s)f̂(s)

for all s ∈ C, f ∈H∩. This equation still holds for f ∈H+ by R×+-equivariance.
Now we plug in the special function f(x) = 2 exp(−πx2), which satisfies Ff = f

and f̂(s) = π−s/2Γ(s/2). Thus ζ(s)f̂(s) = ξ(s) is the complete ζ-function.
Equation (14) becomes the functional equation ξ(1− s) = ξ(s).

4. The spectral interpretation
Let ZH+ ⊆ H∪ be the range of Z. This is a closed subspace of H∪ and

topologically isomorphic to H+ by Theorem 3.3. Moreover,
ZH∩ = ZH+ ∩H−, H∪ = ZH+ + H−.

We define
H 0

+ := H+/H∩ ∼= H∪/H−

H 0
− := H−/ZH∩ ∼= H∪/ZH+.

We equip H 0
± with the quotient topology from H± or from H∪ (both topologies

on H 0
± coincide) and with the representations ρ± of R×+ induced by λ on H±

or H∪. We view the pair of representations (ρ+, ρ−) as a formal difference
ρ+ 	 ρ−, that is, as a virtual representation of R×+.

A smooth representation of R×+ ∼= R is determined uniquely by the action
of the generator of the Lie algebra of R×+. This generator corresponds to the
scaling invariant vector field Df(x) = xf ′(x) on H∪. We let D± be the op-
erators on H 0

± induced by D on H∪. We claim that the operators D± are
spectral interpretations for the poles and zeros of the complete ζ-function ξ
defined in (1). This is rather trivial for D+. Since

H 0
+
∼= C(x0)⊕ C(x1),
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the operator D+ is equivalent to the diagonal 2× 2-matrix with eigenvalues 0,
1. Hence it is a spectral interpretation for the two poles of ξ. To treat H 0

− , we
identify the Fourier-Laplace transforms of H− and ZH∩. Recall that f̂(s) =∫∞
0
f(x)xs d×x.

Theorem 4.1. The operator f 7→ f̂ identifies H− with the space of entire
functions h : C → C for which t 7→ h(s + it) is a Schwartz function on R for
each s ∈ R.

The subspace ZH∩ is mapped to the space of those entire functions h for
which

t 7→ h(s+ it)
ζ(s+ it)

and t 7→ h(s+ it)
ζ(1− s− it)

are Schwartz functions for s ≥ 1/2 and s ≤ 1/2, respectively. (In particular,
this means that h(z)/ζ(z) has no poles with Re z ≥ 1/2 and h(z)/ζ(1− z) has
no poles with Re z ≤ 1/2.)

Proof. It is well-known that the Fourier transform is an isomorphism (of topo-
logical vector spaces) S (R×+) ∼= S (iR). Hence f 7→ f̂ is an isomorphism
S (R×+)s

∼= S (s+iR) for all s ∈ R. It is clear that f̂ is an entire function on C
for f ∈ H−. Since H− =

⋂
s∈R S (R×+)s, we also get f̂ ∈ S (s + iR) for all

s ∈ R. Conversely, if h is entire and h ∈ S (s+ iR) for all s ∈ R, then for each
s ∈ R there is fs ∈ S (R×+)s with h(s + it) = f̂s(s + it) for all t ∈ R. Using
the Cauchy-Riemann differential equation for the analytic function h(s + it),
we conclude that fs is independent of s. Hence we get a function f in H− with
f̂ = h on all of C. This yields the desired description of (H−) .̂

The same argument shows that S (R×+)Î for an open interval I is the space
of all holomorphic functions h : I + iR→ C with h ∈ S (s+ iR) for all s ∈ I.

Proposition 2.1 asserts that f ∈ H+ if and only if f ∈ S (R×+)]0,∞[ and
JFf ∈ S (R×+)]−∞,1[. Since JF is invertible on S (R×+)s for 0 < s < 1, this
is equivalent to f ∈ S (R×+)s for s ≥ 1/2 and JFf ∈ S (R×+)s for s ≤ 1/2.
Moreover, these two conditions are equivalent for s = 1/2. We get f ∈ ZH+ if
and only if Z−1f ∈ S (R×+)s for s ≥ 1/2 and JFZ−1f ∈ S (R×+)s for s ≤ 1/2.

Now let h : C → C be an entire function with h ∈ S (s + iR) for all s ∈ R.
Thus h = f̂ for some f ∈ H−. Equation (13) implies f ∈ ZH∩ if and only
if h/ζ ∈ S (s + iR) for s ≥ 1/2 and (JFf) /̂ζ ∈ S (s + iR) for s ≤ 1/2. The
functional equation (14) yields (JFf) (̂z)/ζ(z) = h(z)/ζ(1− z).

Let (H 0
− )′ be the space of continuous linear functionals H 0

− → C and let
tD− ∈ End((H 0

− )′) be the transpose of D−.
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Corollary 4.2. The eigenvalues of the transpose tD− ∈ End((H 0
− )′) are

exactly the zeros of the complete Riemann ζ-function ξ. The algebraic multi-
plicity of λ as an eigenvalue of tD− is the zero order of ξ at λ. Here we define
the algebraic multiplicity as the dimension of

⋃
k∈N ker(tD− − λ)k.

Proof. We can identify (H 0
− )′ with the space of continuous linear functionals

on H− that annihilate ZH∩. Let l : H− → C be such a linear functional.
In the Fourier-Laplace transformed picture, we have D−h(s) = s · h(s) for all
s ∈ C. Hence l is an eigenvector for the transpose tD− if and only if it is of
the form h 7→ h(s) for some s ∈ C. Similarly, (tD− − s)k(l) = 0 if and only if
l(h) =

∑k−1
j=0 ajh

(j)(s) for some a0, . . . , ak−1 ∈ C. It follows from the functional
equation ξ(s) = ξ(1 − s) that the zero orders of ξ at s and 1 − s agree for all
s ∈ C. Moreover, ξ and ζ have the same zeros and the same zero orders for
Re s > 0. Hence the assertion follows from Theorem 4.1.

5. A geometric character computation
Our next goal is to prove that the representation ρ is summable and to

compute its character geometrically.

Definition 5.1 ([Mey]). Let G be a Lie group and let D(G) be the space
of smooth, compactly supported functions on G. A smooth representation ρ
of G on a Fréchet space is called summable if ∫ρ(f) is nuclear for all f ∈ D(G)
and if these operators are uniformly nuclear for f in a bounded subset of D(G).

The theory of nuclear operators is due to Alexandre Grothendieck and rather
deep. Nuclear operators are analogues of trace class operators on Hilbert
spaces. It follows easily from the definition that f ◦ g is nuclear if at least
one of the operators f and g is nuclear. That is, the nuclear operators form
an operator ideal. For the purposes of this article, we do not have to recall the
definition of nuclearity because of the following simple criterion:

Theorem 5.2. An operator between nuclear Fréchet spaces is nuclear if and
only if it can be factored through a Banach space.

The spaces S (R×+)I and H+ are nuclear because S (R) is nuclear and nucle-
arity is hereditary for subspaces and inverse limits. Hence Theorem 5.2 applies
to all operators between these spaces.

The character of a summable representation ρ is the distribution on G de-
fined by χρ(f) := tr ∫ρ(f) for all f ∈ D(G). The uniform nuclearity of ∫ρ(f)
for f in bounded subsets of D(G) ensures that χρ is a bounded linear func-
tional on D(G). This is equivalent to continuity because D(G) is an LF-space.



128 Mathematisches Institut, Seminars, 2004-05

If ρ is a virtual representation as in our case, we let tr ∫ρ(f) be the supertrace
tr ∫ρ+(f)− tr ∫ρ−(f).

One can see from the above arguments and definitions that summability of
representations really has to do with bounded subsets of D(G) and bounded
maps, not with open subsets and continuous maps. The same is true for the
concept of a nuclear operator. That is, the theory of nuclear operators and
summable representations is at home in bornological vector spaces. We can
still give definitions in the context of topological vector spaces if we turn them
into bornological vector spaces using the standard bornology of (von Neumann)
bounded subsets. Nevertheless, topological vector spaces are the wrong setup
for studying nuclearity. The only reason why I use them here is because they
are more familiar to most readers and easier to find in the literature.

We need uniform nuclearity because we want χρ(f) to be a bounded linear
functional of f . In the following, we will only prove nuclearity of various op-
erators. The same proofs yield uniform nuclearity as well. We leave it to the
reader to add the remaining details. Suffice it to say that there are analogues
of Theorem 5.2 and Theorem 5.5 below for uniformly nuclear sets of operators.

In order to prove the summability of our spectral interpretation ρ, we define
several operators between H± and the space S> ⊕S<. As auxiliary data, we
use a smooth function ϕ : R+ → [0, 1] with ϕ(t) = 0 for t � 1 and ϕ(t) = 1
for t � 1. Let Mϕ be the operator of multiplication by ϕ. We assume for
simplicity that ϕ(t) + ϕ(t−1) = 1, so that

Mϕ + JMϕJ = id.

It is easy to check that Mϕ is a continuous map from S> into O(R×+). We warn
the reader that our notation differs from that in [Mey]: there the auxiliary
function 1− ϕ is used and denoted ϕ.

-

6
1

1
Figure 1. The auxiliary function ϕ
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Now we can define our operators:

ι+ : H+ → S> ⊕S<, ι+f := (Zf, JZFf);

ι− : H− → S> ⊕S<, ι−f := (f, f);

π+ : S> ⊕S< →H+, π+(f1, f2) := (MϕZ
−1f1,FMϕZ

−1Jf2);

π− : S> ⊕S< →H−, π−(f1, f2) := (Mϕf1, JMϕJf2).

It follows from Equation (8) and Proposition 3.2 that these operators are well-
defined and continuous. The operators ι± are λ-equivariant, the operators π±
are not. We compute

π−ι− = Mϕ + JMϕJ = idH− ,

π+ι+ = Mϕ + FMϕF = idH+ +Mϕ − FJMϕJF,

ι−π− =
(
Mϕ JMϕJ
Mϕ JMϕJ

)
,

ι+π+ =
(

ZMϕZ
−1 ZFMϕZ

−1J
JZFMϕZ

−1 JZMϕZ
−1J

)
.

Thus π− is a section for ι− and ι−π− ∈ End(S> ⊕S<) is a projection onto
a subspace isomorphic to H−. The proof of Theorem 3.3 shows that ι+ has
closed range and is a topological isomorphism onto its range. Although π+ is
not a section for ι+, it is a near enough miss for the following summability
arguments. I do not know whether there exists an honest section for ι+, that
is, whether the range of ι+ is a complemented subspace of S> ⊕S<.

Lemma 5.3. The operator ∫λ(f)(Mϕ − ZMϕZ
−1) on S> is nuclear for

f ∈ S>.
The operator ∫λ(f)Mϕ : S> → S< is nuclear for f ∈ S<.
The operator ∫λ(f)(Mϕ − FJMϕJF) on H+ is nuclear for f ∈ O(R×+).

Proof. We have ∫λ(f)Z(h) = f ∗ ζ̌ ∗h = (Zf)∗h = ∫λ(Zf)(h) for all f, h ∈ S>.
Hence

∫λ(f)(Mϕ − ZMϕZ
−1) = [∫λ(f),Mϕ]− [∫λ(f)Z,Mϕ]Z−1

= [∫λ(f),Mϕ]− [∫λ(Zf),Mϕ]Z−1,

We are going to show that [∫λ(f),Mϕ] is a nuclear operator on S> for all
f ∈ S>. Together with the above computation, this implies the first assertion
of the lemma because Z−1 is continuous on S> and f, Zf ∈ S>.
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One checks easily that

[∫λ(f),Mϕ](h)(x) =
∫ ∞

0

f(xy−1)
(
ϕ(y)− ϕ(x)

)
h(y) d×y.

Thus our operator has the smooth integral kernel f(xy−1)
(
ϕ(y)− ϕ(x)

)
. If f

had compact support, this integral kernel would also be compactly supported.
If only f ∈ S>, we can still estimate that our kernel lies in S> ⊗̂S (R×+)−s

for any s ∈ ]1,∞[. Thus [∫λ(f),Mϕ] factors through the embedding S> ⊆
L2(R×+, x2s d×x) for any s > 1. This implies nuclearity by Theorem 5.2 and
finishes the proof of the first assertion of the lemma.

To prove the second assertion, we let L2
I =

⋂
s∈I L

2(R×+, x2s d×x). This is
a Fréchet space. We claim that ∫λ(f) is a continuous linear operator L2

I →
SI for any open interval I. (Actually, SI is the Gårding subspace for the
representation λ on L2

I .) This follows from the description of SI in the proof
of Proposition 2.1 and Dm(f ∗ h) = (Dmf) ∗ h. Therefore, we have continuous
linear operators

S> ≺ L2
s

Mϕ−→ L2
]−∞,s] ≺ L

2
]−∞,0[

∫λ(f)−→ S<

for any s > 1. Thus ∫λ(f)Mϕ factors through the Hilbert space L2
s. This yields

the assertion by our criterion for nuclear operators, Theorem 5.2.
We claim that ∫λ(f)(Mϕ − FJMϕJF) as an operator on H+ factors con-

tinuously through L2
1/2
∼= L2(R×+, x d×x). This implies the third assertion. To

prove the claim, we use H+ = S> ∩ FJ(S<). That is, the map
H+ → S> ⊕S<, f 7→ (f, JFf)

is a topological isomorphism onto its range. We have already seen this during
the proof of Theorem 3.3. Hence we merely have to check the existence of
continuous extensions
∫λ(f)(Mϕ−FJMϕJF) : L2

1/2 → S>, JF◦∫λ(f)(Mϕ−FJMϕJF) : L2
1/2 → S<.

We write

∫λ(f)(Mϕ − FJMϕJF) = −∫λ(f)(M1−ϕ − FJM1−ϕJF)

= −∫λ(f)M1−ϕ + ∫λ(FJf)M1−ϕJF.

Proposition 2.1 yields FJf ∈ S>. Moreover, J and F are unitary on L2
1/2.

Hence we get bounded extensions L2
1/2 → S> of both summands by the same

argument as for the second assertion of the lemma. Similarly, both summands
in

JF ◦ ∫λ(f)(Mϕ − FJMϕJF) = ∫λ(JFf)Mϕ − ∫λ(f)MϕJF
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have bounded extensions L2
1/2 → S< as desired.

Corollary 5.4. The operator ∫λ(f)◦(ι−π−− ι+π+) on S>⊕S< is nuclear
for all f ∈ O(R×+).

The operator ∫λ(f) ◦ (id− π+ι+) on H+ is nuclear for all f ∈ O(R×+).

Proof. We have

∫λ(f) ◦ (ι−π− − ι+π+)

=
(
∫λ(f)(Mϕ − ZMϕZ

−1) ∫λ(f)J(Mϕ − JZFMϕZ
−1)J

∫λ(f)(Mϕ − JZFMϕZ
−1) ∫λ(f)J(Mϕ − ZMϕZ

−1)J

)
.

The upper left corner is nuclear by the first assertion of Lemma 5.3. Since

∫λ(f)(J(Mϕ − ZMϕZ
−1)J) = J(∫λ(Jf)(Mϕ − ZMϕZ

−1))J,

we also get the nuclearity of the lower right corner. We have ∫λ(f)JZF =
∫λ(JZFf) because JZF is λ-invariant. Proposition 2.1 and Proposition 3.2
yield JZF(f) ∈ S<. Hence the two summands ∫λ(f)Mϕ and ∫λ(f)JZFMϕZ

−1

in the lower left corner are nuclear by the second assertion of Lemma 5.3.
The assertion for the upper right corner follows by a symmetric argument.
The nuclearity of ∫λ(f) ◦ (id − π+ι+) on H+ is exactly the third assertion of
Lemma 5.3.

In order to apply this to the representation ρ, we need a general fact about
nuclear operators. Let W1,W2 be Fréchet spaces and let V1 ⊆W1 and V2 ⊆W2

be closed subspaces. If T : W1 → W2 maps V1 into V2, we write T |V1,V2 and
T |W1/V1,W2/V2 for the operators V1 → V2 and W1/V1 →W2/V2 induced by T .

Theorem 5.5 ([Gro55]). If T is nuclear, so are T |V1,V2 and T |W1/V1,W2/V2 .
If V1 = V2 = V and W1 = W2 = W , then trT = trT |V + trT |W/V .

Proposition 5.6. The representation ρ : R×+ → Aut(H 0) is summable and

χ(ρ)(f) = tr ∫λ(f)(id− π+ι+)− tr ∫λ(f)(ι−π− − ι+π+).

Proof. The embeddings of H+ and H− in S> ⊕ S< agree on the common
subspace H∩ ∼= ZH∩ and hence combine to an embedding of H∪. Thus
we identify H∪ with the subspace ι+H+ + ι−H− of S> ⊕ S<. Let T :=
∫λ(f)(ι−π− − ι+π+). The range of T is contained in H∪. Therefore, its trace
as an operator on S> ⊕ S< agrees with its trace as an operator on H∪ by
Theorem 5.5. Write

T |H∪ = ∫λ(f)(idH∪ − ι+π+|H∪)− ∫λ(f)(idH∪ − ι−π−|H∪).
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Since ι−π− is a projection onto H− ⊂H∪, Theorem 5.5 yields

tr ∫λ(f)(idH∪ − ι−π−|H∪) = tr ∫λ(f)|H∪/H− = χ(ρ+)(f).

Similarly, since ι+π+ maps H∪ into H+ we get

tr ∫λ(f)(idH∪ − ι+π+|H∪) = tr ∫λ(f)|H∪/H+ + tr ∫λ(f)(idH+ − ι+π+|H+)

= χ(ρ−)(f) + tr ∫λ(f)(idH+ − π+ι+).

Hence

tr ∫λ(f)(ι−π− − ι+π+) = χ(ρ−)(f) + tr ∫λ(f)(idH+ − π+ι+)− χ(ρ+)(f).

Along the way, we see that the operators whose trace we take are nuclear. That
is, ρ+ and ρ− are summable representations.

It remains to compute the traces in Proposition 5.6 explicitly. We need the
following definitions. For a continuous function f : R×+ → C, let τ(f) := f(1)
and ∂f(x) = f(x) lnx. This defines a bounded derivation ∂ on S (R×+)I for
any interval I, that is, ∂(f1 ∗ f2) = ∂(f1) ∗ f2 + f1 ∗ ∂(f2). This derivation is
the generator of the dual action t · f(x) := xitf of R. Notice that τ(∂f) = 0.
The obvious extension of ∂ to distributions is still a derivation.

Lemma 5.7. Let f0, f1 ∈ S (R×+)s for some s ∈ R. Then ∫λ(f0)[Mϕ, ∫λ(f1)]
is a nuclear operator on L2(R×+, x2s d×x) and S (R×+)s and

tr ∫λ(f0)[Mϕ, ∫λ(f1)] = τ(f0 ∗ ∂f1).

Proof. The operators of multiplication by x±s are unitary operators between
L2

s and L2
0. We can use them to reduce the general case to the special case s = 0.

We assume this in the following. We have checked above that [Mϕ, ∫λ(f1)] has
an integral kernel in S (R×+) ⊗̂S (R×+). Therefore, so has ∫λ(f0)[Mϕ, ∫λ(f1)].
This implies nuclearity as an operator from L2(R×+, d×x) to S (R×+) by Theo-
rem 5.2. Moreover, the operator has the same trace on both spaces. Explicitly,
the integral kernel is

(x, y) 7→
∫ ∞

0

f0(xz−1)f1(zy−1)
(
ϕ(z)− ϕ(y)

)
d×z.

We get

tr ∫λ(f0)[Mϕ, ∫λ(f1)] =
∫ ∞

0

∫ ∞
0

f0(xz−1)f1(zx−1)
(
ϕ(z)− ϕ(x)

)
d×z d×x

=
∫ ∞

0

f0(x)f1(x−1)
∫ ∞

0

ϕ(z)− ϕ(xz) d×z d×x.



R. Meyer: Spectral interpretation 133

We compute
∫∞
0
ϕ(z) − ϕ(xz) d×z. If ϕ had compact support, the λ-invari-

ance of d×z would force the integral to vanish. Therefore, we may replace ϕ
by any function ϕ′ with the same behaviour at 0 and ∞. We choose ϕ′ to
be the characteristic function of [1,∞[. If x ≤ 1, then ϕ′(z) − ϕ′(xz) is the
characteristic function of the interval [1, x−1[, so that the integral is ln(x−1).
We get the same value for x ≥ 1 as well. Hence tr ∫λ(f0)[Mϕ, ∫λ(f1)] =∫∞
0
f0(x)f1(x−1) ln(x−1) d×x = τ(f0 ∗ ∂f1).

Theorem 5.8. Define the distributions Wp for p ∈P and p =∞ as in (2)
and (3). Then∑

z∈C
ordξ(z)f̂(z) = χ(ρ)(f) =

∑
p∈P

Wp(f) +W∞(f)

for all f ∈ O(R×+). Here ordξ(z) denotes the order at z of the complete ζ-func-
tion ξ, which is positive at poles and negative at zeros of ξ.

Proof. The trace of a nuclear operator on a nuclear Fréchet space is equal to the
sum of its eigenvalues counted with algebraic multiplicity (see [Gro55]). Since
tr(A) = tr(tA) for any nuclear operator A, the first equality follows from Corol-
lary 4.2. It remains to show χ(ρ)(f) =

∑
p∈P Wp(f)+W∞(f). Proposition 5.6

yields

(15) χ(ρ)(f) = − tr ∫λ(f)(ι−π− − ι+π+) + tr ∫λ(f)(id− π+ι+)

= − tr ∫λ(f)(Mϕ − ZMϕZ
−1)|S> − tr ∫λ(f)J(Mϕ − ZMϕZ

−1)J |S<

− tr ∫λ(f)(Mϕ − FJMϕJF)|H+ .

It suffices to check that this agrees with W (f) if f = f0 ∗ f1 because such
elements are dense in O(R×+). We compute

− tr ∫λ(f0 ∗ f1)(Mϕ − ZMϕZ
−1)|S>

= tr ∫λ(f0)[Mϕ, ∫λ(f1)]− tr ∫λ(f0)[Mϕ, ∫λ(Zf1)]Z−1

= tr ∫λ(f0)[Mϕ, ∫λ(f1)]− tr ∫λ(Z−1f0)[Mϕ, ∫λ(Zf1)]

because tr(AB) = tr(BA) if A is nuclear. This is a nuclear operator L2
s → S>

for any s > 1. Hence it has the same trace as an operator on S> and L2
s.

Lemma 5.7 yields

− tr ∫λ(f0 ∗ f1)(Mϕ − ZMϕZ
−1)|S>

= τ(f0 ∗ ∂f1)− τ(Z−1f0 ∗ ∂(Zf1))

= −τ(f0 ∗ f1 ∗ Z−1∂(Z)) = τ(f0 ∗ f1 ∗ Z∂(Z−1))
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where ∂(Z) is defined in the obvious way. We also use ∂(Z−1) = −Z−2∂(Z),
which follows from the derivation property. Now we use the Euler product for
the Zeta operator and the derivation rule:

Z ∗ ∂(Z−1) = Z ∗ ∂
( ∏

p∈P

(1− λ−1
p )

)
=

∑
p∈P

(1− λ−1
p )−1∂(1− λ−1

p )

=
∑
p∈P

ln(p)λ−1
p (1− λ−1

p )−1 =
∑
p∈P

∞∑
e=1

ln(p)λ−e
p .

Hence

− tr ∫λ(f)(Mϕ−ZMϕZ
−1)|S>

= τ

(
f∗

∑
p∈P

∞∑
e=1

ln(p)λ−e
p

)
=

∑
p∈P

∞∑
e=1

ln(p)f(pe).

The second summand in (15) is reduced to this one by

tr ∫λ(f)J(Mϕ − ZMϕZ
−1)J |S<

= tr J∫λ(f)J(Mϕ − ZMϕZ
−1)|S>

= tr ∫λ(Jf)(Mϕ − ZMϕZ
−1)|S>

.

Hence

− tr ∫λ(f)J(Mϕ − ZMϕZ
−1)J |S< =

∑
p∈P

∞∑
e=1

ln(p)p−ef(p−e).

These two summands together equal
∑

p∈P Wp.
Now we treat the third summand in (15). The same arguments as above

yield

− tr ∫λ(f0 ∗ f1)(Mϕ − FJMϕJF)|H+

= tr ∫λ(f0)[Mϕ, ∫λ(f1)]− tr ∫λ(f0)[Mϕ, ∫λ(FJf1)]JF

= τ(f0∗∂f1)−τ(JF(f0)∗∂(FJf1)) = −τ(f0∗f1∗JF∂(FJ)) = τ(FJ∂(JF(f0∗f1))).

Here we use τ(∂f) = 0. Explicitly,
τ(FJ∂(JFf)) = FMln(x−1)F

−1f(1) = −F(lnx)†f(1) = −〈F(lnx), y 7→ f(1−y)〉.

Here Mln(x−1) denotes the operator of multiplication by ln(x−1) = − lnx and †
denotes convolution with respect to the additive structure on R. Thus it re-
mains to compute the Fourier transform of lnx. Since ψ 7→

∫
R ψ(x) lnx dx

defines a tempered distribution on R, F(lnx) is a well-defined tempered dis-
tribution on R. The covariance property ln(tx) = ln(t) + ln(x) for t, x ∈ R×+
implies
(16) 〈F(lnx), λtψ〉 = 〈F(lnx), ψ〉 − ln(t)ψ(0).
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Especially, F(lnx) is λ-invariant on the space of ψ ∈ S (R) with ψ(0) = 0.
Thus

〈F(lnx), ψ〉 = c

∫
R×
ψ(x) d×x

for some constant c ∈ R for all ψ ∈ S (R) with ψ(0) = 0.
We claim that c = −1. To see this, pick ψ ∈ S (R) with ψ(0) 6= 0 and

consider ψ − λtψ for some t 6= 1. Equation (16) yields

c

∫
R×
ψ(x)− ψ(t−1x) d×x = ln(t)ψ(0).

As in the proof of Lemma 5.7, this implies c = −1. Thus the distribution
F(lnx) is some principal value for the integral −

∫
R×ψ(x)|x|−1 dx. This princi-

pal value can be described uniquely by the condition that F2(lnx)(1) = 0. See
also [Con99] for a comparison between this principal value and the one that
usually occurs in the explicit formulas.

Finally, we compute

−tr ∫λ(f)(Mϕ−FJMϕJF)|H+ = −〈F(lnx), y 7→ f(1−y)〉 = pv

∫
R×
f(1−y)dy

|y|

= pv

∫ ∞
−∞

f(x)
dx

|1− x|
= pv

∫ ∞
0

f(x)
|1− x|

+
f(x)
1 + x

dx = W∞(f).

Plugging this into (15), we get the desired formula for χ(ρ).

6. Generalisation to Dirichlet L-functions
We recall the definition of Dirichlet L-functions. Fix some d ∈ N≥2 and let

(Z/dZ)× be the group of invertible elements in the finite ring Z/dZ. Let χ be
a character of (Z/dZ)×. Define χ : N→ C by χ(n) := χ(n mod d) if (n, d) = 1
and χ(n) := 0 otherwise. The associated Dirichlet L-function is defined by

Lχ(s) :=
∞∑

n=1

χ(n)
ns

.

We suppose that d is equal to the conductor of χ, that is, χ does not factor
through (Z/d′Z)× for any proper divisor d′ | d. In particular, χ 6= 1.

The constructions for the Riemann ζ-function that we have done above work
similarly for such L-functions. We define the space H− as above and let

H+ := {f ∈ S (R) | f(−x) = χ(−1)f(x)}
be the space of even or odd functions, depending on χ(−1) ∈ {±1}. The
Fourier transform on S (R) preserves the subspace H+, and the assertions of
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Proposition 2.1 remain true. However, now F2 = χ(−1), so that we have to
replace F by F∗ = χ(−1)F in appropriate places to get correct formulas.

Of course, the L-function analogue of the Zeta operator is defined by

Lχf(x) :=
∞∑

n=1

χ(n) · f(nx),

for f ∈H+. We now have the Euler product expansion

Lχ =
∞∑

n=1

χ(n)λn−1 =
∏

p∈P

∞∑
e=0

χ(p)eλp−e =
∏

p∈P

(1− χ(p)λp−1)−1.

The same estimates as for the Zeta operator show that this product expansion
converges on S> (compare Proposition 3.2).

The Poisson Summation Formula looks somewhat different now: we have

Lχ(f) = κ · d1/2λ−1
d JLχF(f),

where κ is some complex number with |κ| = 1. The proof of Theorem 3.3
then carries over without change. We also get the holomorphic continuation
and the functional equation for Lχ. If χ(−1) = −1, we have to use the special
function 2x exp(−πx2) instead of 2 exp(−πx2) to pass from Lχ to the complete
L-function. The results in Section 4 carry over in an evident way. Now H 0

+ =
{0} because Lχ does not have poles, and the eigenvalues of tD− are the non-
trivial zeros of Lχ, with correct algebraic multiplicity.

Some modifications are necessary in Section 5. We define ι− and π− as
above. Since we want the embeddings ι± to agree on H∩ ∼= LχH∩, we should
put

ι+(f) := (Lχ(f), κ · d1/2λ−1
d JLχFf)

and modify π+ accordingly so that π+ι+ = Mϕ +F∗MϕF. With these changes,
the remaining computations carry over easily. Of course, we get different local
summands Wp in the explicit formula for Lχ. You may want to compute them
yourself as an exercise to test your understanding of the arguments above.

Even more generally, we can replace the rational numbers Q by an imaginary
quadratic extension like Q[i] and study L-functions attached to characters of
the idele class group of this field extension. Such fields have only one infinite
place, which is complex. A character of the idele class group restricts to a
character of the circle group inside C×. The space H+ is now replaced by the
homogeneous subspace of S (C) defined by that character.

Once there is more than one infinite place, we need the more general setup
of [Mey]. In addition, the adelic constructions in [Mey] provide a better
understanding even for Q because they show the similarity of the analysis at
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the finite and infinite places. The explicit formula takes a much nicer form
if we put together all characters of the idele class group. The resulting local
summands that make up the Weil distribution are of the same general form

Wv(f) = pv

∫
Q×v

f(x)
|1− x−1|

d×x

at all places v (with Q∞ = R) and can also be interpreted geometrically as a
generalised Lefschetz trace formula (see [Con99]).
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Abstract . We relate questions in birational algebraic geometry to representation
theory.

In the first part we show how some geometric questions can be translated
to the language of representation theory. There will be three categories of rep-
resentations of G: SmG ⊃ IG ⊃ A dm, roughly corresponding to birational
geometry, to birational motivic questions (like the structure of Chow groups of
0-cycles) and to “finite-dimensional” birational motivic questions (in particular,
description of “classical” motivic categories). This part is rather motivational,
there will be many conjectures, few particular results, and almost no proofs.

In the second part it is explained in more detail, how appropriate representa-
tion theory could be developed by means of semi-linear representations. Main
results suggest an explicit description of the category of admissible semi-linear
representations, which is conjecturally sufficient for geometric applications.

Notation. Let k be an algebraically closed field of characteristic zero, F/k a
universal domain, i.e., an algebraically closed extension of k of countable tran-
scendence degree, and G = GF/k = Aut(F/k) the field automorphism group of
F over k with the base of open subgroups {GF/k(x) = Aut(F/k(x)) | x ∈ F}.
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1. Translating geometric questions to the language of
representation theory

We are interested in representations of G. To specify the type of these
representations, we have to ask a geometric question. There will be three
categories of representations of G.

1.1. SmG . In general, geometry deals with varieties. To any variety X
over k one can associate the G-module Q[X(F )], i.e. the Q-vector space of
0-cycles on X ×k F .

This representation is huge, but this is just a starting point.
Note that it is smooth, i.e. its stabilizers are open, so all representations we

are going to consider will be smooth.
The first question to ask is: what are the finite-dimensional smooth repre-

sentations of G?

Theorem 1.1 ([Rov05]). Any finite-dimensional smooth representation of
G is trivial.

This follows from the (topological) simplicity of G:

Theorem 1.2 ([Rov05]). Any closed normal proper subgroup of G is triv-
ial.

Remarks 1.3.

1. One has Q[X(F )] =
⊕

x∈X Q[{k(x)
/k
↪→ F}], so Q[X(F )] reflects rather

the class of X in the Grothendieck group K0(V ark) of partitions of varieties
over k than X itself.

2. It is not clear, whether the birational type of X is determined by the
G-module Q[{k(X)

/k
↪→ F}] of generic 0-cycles on X. E.g., if X = Z × P1,

Y = Z ′ × P1 and Z ′ is a twofold cover of Z then there exist embeddings in
both directions

Q[{k(X)
/k
↪→ F}] ↪→ Q[{k(Y )

/k
↪→ F}] ↪→ Q[{k(X)

/k
↪→ F}].

What is in common between X and Y is that their primitive motives coincide
(and vanish).

However, we will see later how to extract “birational motivic” invariants
“modulo isogenies”, like Alb(X), Γ(X,Ω•X/k), out of Q[{k(X)

/k
↪→ F}].
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1.2. A dm. Now consider a more concrete geometric category: the category
of motives.

(Effective) pure covariant motives are pairs (X,π) consisting of a smooth
projective variety X over k with irreducible components Xj and a projector
π = π2 ∈

⊕
j B

dim Xj (Xj×kXj) in the algebra of correspondences onX modulo
numerical equivalence. The morphisms are defined by

Hom((X ′, π′), (X,π)) =
⊕
i,j

πj ·Bdim Xj (Xj ×k X
′
i) · π′i.

The category of pure covariant motives has an additive and a tensor structure:

(X ′, π′)
⊕

(X,π) := (X ′
∐

X,π′⊕π), (X ′, π′)⊗(X,π) := (X ′×kX,π
′×k π).

A primitive q-motive is a pair (X,π) with dimX = q and π·Bq(X×kY ×P1) = 0
for any smooth projective variety Y over k with dimY < q. For instance, the
category of the primitive 1-motives is equivalent to the category of abelian
varieties over k with morphisms tensored with Q. It follows from a result of
Jannsen [Jan92] that any pure motive is semi-simple and admits “primitive”
decomposition

⊕
i,j Mij ⊗ L⊗i, where Mij is a primitive j-motive and L =

(P1,P1 × {0}) is the Lefschetz motive.

Definition 1.4. A representation W of a topological group is called admis-
sible if it is smooth and the fixed subspaces WU are finite-dimensional for all
open subgroups U .

Denote by A dm the category of admissible representations of G over Q.

Theorem 1.5 ([Rov05]). There is a fully faithful functor B•:{
pure covariant motives over k

} B•−→
{

graded semi-simple admissible
G-modules of finite length

}
.

The grading corresponds to powers of the motive L in the “primitive” decom-
position above.

Roughly speaking, the functor B• is defined by spaces of 0-cycles defined
over F modulo “numerical equivalence over k”. More precisely,

B• = ⊕graded
j lim

L−→
Hom

(
[L]prim ⊗ L⊗j ,−

)
is a graded direct sum of pro-representable functors. Here L runs over all
subfield of F of finite type over k, and [L]prim is the quotient of the motive of
any smooth projective model of L over k by all submotives of type M ⊗ L for
all effective motives M .
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Example 1.6. The motive of the point Spec(k) is sent to the trivial repre-
sentation Q of degree 0. The motive of a smooth proper curve C over k is sent
to Q⊕ JC(F )/JC(F )⊕Q[1], where JC is the Jacobian of C and Q[1] denotes
the trivial representation in degree 1.

So, this inclusion is already a good reason to study admissible representa-
tions. Moreover, it is expected that

Conjecture 1.7. The functor B• is an equivalence of categories.

Of course, it would be more interesting to describe in a similar way the
abelian category MM of mixed motives over k, whose semi-simple objects
are pure. This is one more reason to study the category A dm of admissible
representations of G.

Theorem 1.8 ([Rov05]). The category A dm is abelian.

Proposition 1.9. For any W ∈ A dm and, conjecturally, for any effective
motive M one has

Ext>0
A dm

(Q, W ) = 0 Ext>0
MM

(Q, M) = 0

Ext1A dm(
A(F )
A(k) , W ) =

HomZ(A(k),W G)
HomG(A(F )/A(k),W/W G)

Ext1MM (H1(A), M) =
A(k)⊗W0M

HomMM (H1(A),M/W0M)

Ext
≥2
A dm

(A(F )/A(k), W ) = 0 Ext
≥2
MM

(H1(A), M) = 0

So we see that admissible representations of finite length should be related
to effective motives. At least the Ext’s between some irreducible objects are
dual.

1.3. IG . The formal properties of A dm are not very nice. In particular,
to prove Theorem 1.8 and Proposition 1.9 and to give an evidence to Conjecture
1.7, one uses the inclusion of A dm to a bigger full subcategory in the category
of smooth representations of G.

Definition 1.10. An object W ∈ SmG is called “homotopy invariant” (in
birational sense) if WG/L = WG/L′ for any purely transcendental subextension
L′/L in F/k. Denote by IG the full subcategory in SmG with “homotopy
invariant” objects.

Remark 1.11. One can show that in this definition one can restrict oneself
to L′’s of finite type over k, cf. [Rov05], §6.
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Example 1.12. For any smooth variety X over k one has CH∗(XF )Q ∈
IG, because of the descent property CH∗(XF )GF/L

Q = CH∗(XL)Q.

Theorem 1.13 ([Rov05]).
1. The category IG is a Serre subcategory in SmG.
2. A dm ⊂ IG.
3. There exists a left adjoint functor I : SmG → IG to the inclusion

IG ↪→ SmG.
4. There are enough projectives in IG. Namely, the objects

Ck(X) := I Q[{k(X)
/k
↪→ F}]

for all smooth irreducible varieties X over k form a system of projective gen-
erators of IG.

5. For any smooth proper variety X over k there is a canonical filtration
Ck(X) ⊃ F 1 ⊃ F 2 ⊃ . . . , canonical isomorphisms Ck(X)/F

1 = Q and
F 1/F 2 = Alb(XF )Q, and a non-canonical splitting

Ck(X)
∼= Q⊕Alb(XF )Q ⊕F 2.

The term F 2 is determined by these conditions together with

HomG(F 2,Q) = HomG(F 2, A(F )/A(k)) = 0

for any abelian variety A over k.
6. For any smooth proper variety X over k there is a canonical surjection

Ck(X) → CH0(XF )Q, which is an isomorphism for X unirational over a curve
(and in some other cases).

7. There exist (co-) limits in IG.

Proof of (2). LetW ∈ A dm, L an extension of k in F of finite type and x, y ∈
F are algebraically independent over L. Then the finite-dimensional space
WGF/L is included into the finite-dimensional spaces WGF/L(x) and WGF/L(y) ;
and the latter ones are included into the finite-dimensional space WGF/L(x,y) .
As the group GF/L(x+y,xy) is an extension of the group

{1, α} = Gal(L(x, y)/L(x+ y, xy))

(so αx = y and αy = x) by GF/L(x,y), one has WGF/L(x+y,xy) =
(
WGF/L(x,y)

)〈α〉.
As the subgroups GF/L(x+y,xy) and GF/L(x,y) are conjugated in G, the spaces
WGF/L(x+y,xy) and WGF/L(x,y) are of the same dimension. This implies that
WGF/L(x+y,xy) = WGF/L(x,y) , and thus, α acts trivially on WGF/L(x,y) .
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Notice, however, that α permutes WGF/L(x) and WGF/L(y) , so WGF/L(x) =
WGF/L(y) . One can show that the group generated by GF/L(x) and GF/L(y) is
dense in GF/L, and therefore, WGF/L = WGF/L(x) .

Together with the following two conjectures, this is a good reason to study IG.

Conjecture 1.14. For any smooth proper variety X over k the natural sur-
jection Ck(X) −→ CH0(X ×k F )Q is an isomorphism.

Remarks 1.15.
1. This, together with the motivic conjectures, implies that B• is an equiv-

alence of categories (Conjecture 1.7).
2. Conjecture 1.14 implies that IG admits the following commutative as-

sociative tensor structure: W1 ⊗I W2 := I (W1 ⊗ W2), and, in particular,
Ck(X) ⊗I Ck(Y ) = Ck(X×kY ).

Conjecture 1.16. Any irreducible object of IG is contained in the algebra
Ω•F/k.

“Corollary” 1.17. Any irreducible object of IG is admissible. So “IG ≈
A dm”.

This conjecture 1.16 also has a geometric

“Corollary” 1.18. If Γ(X,Ω≥2
X/k) = 0 for a smooth proper variety X over

k then the Albanese map induces an isomorphism CH0(X)0 ∼−→ Alb(X). In
that case Ck(X) = CH0(XF )Q.

This follows from the fact that HomG(Ck(X),Ω•F/k) = Γ(X,Ω•X/k).

Conjecture 1.16 is one of the main motivations for what follows.

2. From linear to semi-linear representations
Look at the representation Ω•F/k. It carries an additional structure, of an

F -vector space, so it is an example of semi-linear representation.

Definition 2.1. A semi-linear representation of G over F is an F -vector
space V endowed with an additiveG-actionG×V → V such that g(fv) = gf ·gv
for any g ∈ G, v ∈ V and f ∈ F .
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Denote by C the category of smooth semi-linear representations of G over F .

Once again, we are interested in linear representations of G, especially in
irreducible ones, and more particularly, in irreducible “homotopy invariant”
representations, i.e. objects of IG. But how to study (the irreducible objects
of) SmG using C , and why C ?

One has the faithful functor C
for−→ SmG admitting a left adjoint functor

SmG
⊗F−→ C , so W ↪→ for(W ⊗ F ).

Of cource, W ⊗F can be reducible, even if W is irreducible, but there is an
irreducible semi-linear quotient V of W ⊗ F with an inclusion W ⊂ V , so any
irreducible object of SmG is contained in an irreducible object of C .

It is well-known (Satz 90) that any smooth semi-linear Galois representation
is trivial.

This gives a hint that, dispite the existence of non-trivial smooth semi-linear
representations of G over F , it is easier to study them than the (Q-)linear
representations of G.

Example 2.2 (of simplification). Let A be an abelian variety over
k. Any sufficiently general 1-form η ∈ Γ(A,Ω1

A/k) gives an embedding
A(F )/A(k) ↪→ Ω1

F/k by sending the point k(A) σ→ F to ση ∈ Ω1
F/k.

Thus, all representations of G corresponding to pure 1-motives are contained
in the irreducible object Ω1

F/k of C .

Now, we begin the study of smooth semi-linear representations of G.

Theorem 2.3 ([Rov05]). Any finite-dimensional smooth semi-linear rep-
resentation of G over F is trivial.

(In fact, any smooth G-torsor under the smooth G-group B(F ) is trivial
for any algebraic k-group B, cf. [Rov05]. The principal part of the proof is
to show that there is a representative with values in B(k) of the class of any
smooth torsor in H1(G,B(F )). And then one applies the simplicity of G. )

A natural extension of the notion of finite-dimensional semi-linear represen-
tation is the notion of admissible semi-linear representation.

Definition 2.4. A smooth semi-linear representation V ofG over F is called
admissible if, for any open subgroup U ⊆ G, the fixed subspace V U is finite-
dimensional over the fixed subfield FU .
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Proposition 2.5. The admissible semi-linear representations of G over F
form an additive tensor category, denoted by A .

This follows from the formula (V1 ⊗F V2)GF/L = V
GF/L

1 ⊗L V
GF/L

2 for any
subfield k ⊆ L = L ⊆ F and any V1, V2 ∈ C , cf. [Rov], which is again based
on the simplicity of G.

Example 2.6. The objects Ω•F/k and
⊗q

F Ω1
F/k are admissible for any q ≥

0.

The rest of these notes is concerned with the category A . The questions
are: what one could expect of this category, and what are the reasons for that?

We shall see in Theorem 4.5 that the category A is abelian, and F is its pro-
jective object (this is Proposition 4.4). There will be explained some evidences
for the following

Conjecture 2.7.

1. The functors HomC (⊗q
F Ω1

F/Q,−) are exact on A for any q ≥ 0.
2. Irreducible objects of A are direct summands of the tensor algebra

⊗•
F Ω1

F/k.

It follows from this conjecture that if V, V ′ are irreducible objects of A
and Extj

A (V, V ′) 6= 0 then there is a surjection V ′ ⊗F

⊗j
F Ω1

F/k → V and
Extj

A (Ωj+q
F/k,Ω

q
F/k) = Homk(Symj

kΩ1
k, k). If k = Q is the field of algebraic

numbers then A is semi-simple.

The isomorphism Ext1A (Ω1
F/k, F ) = Der(k) associates to any non-zero

derivation η : Ω1
k → k the class of extension

0→ F
·η−1(1)
−−−→ Ω1

F / ker η ⊗k F → Ω1
F/k → 0.

Remarks 2.8.
1. There exist smooth irreducible semi-linear representations that are not in⊗•
F Ω1

F/k. For instance, anyone containing an irreducible quotient of the cyclic
module Q[k(x) | x ∈ F − k]◦ of formal linear combinations over Q of degree
zero of algebraically closed subfield in F of transcendene degree 1 over k. So
one cannot replace the category A in the part 2 of Conjecture 2.7 by the whole
category C .



M. Rovinsky: Representation of field automorphisms 147

2. Assuming the part 2 of Conjecture 2.7, one can reformulate Conjecture
1.16 in the following linguistically more convencing form:

Any irreducible object of A dm is contained in an irreducible object of A .

This reformulation is based on the following fact.

Proposition 2.9 ([Rov]). Any G-morphism from an object of IG to ten-
sor algebra

⊗•
F Ω1

F/k factors through the exterior algebra Ω•F/k.

3. Sketch of the proofs and the source of Conjecture 2.7
Here I start explaining the source of Conjecture 2.7. Fix a transcendence

basis x1, x2, x3, . . . of F over k. Set Kn = k(x1, . . . , xn). Consider the towers

A1
k ← A2

k ← A3
k ← . . .⋃ ⋃ ⋃

Y1 ← Y2 ← Y3 ← . . .

where Yn := Spec(k[x±1
1 , . . . , x±1

n ]) ⊂ An
k := Spec(k[x1, . . . , xn]). Let

Pn
k ⊃ An

k be the natural compactification with respect to the affine coor-
dinates x1, . . . , xn.

Any object of A induces a finite-dimensional semi-linear representation
Vn := V GF/Kn of the group Gn := Aut(Pn

k/k) ∼= PGLn+1k over Kn. Our
goal is to find out exactly, which one.

In fact, Vn is a (non-degenerate) semi-linear representation of the semi-group
of dominant rational self-maps of Pn

k . In particular, of

Enddom(Yn/k) ∼= Matdet 6=0
n×n Z n Tn,

where Tn ⊂ Gn is the maximal torus acting freely on Yn, acts on Vn. “Non-
degenerate” means that the action of any element of the semi-group is injective.

Proposition 3.1 ([Rov]). Any finite-dimensional semi-linear representa-
tion Vn of the semi-group Enddom(Yn/k) over Kn is induced by a k-linear
representation.

Let, for each integer ` 6= 0 the element σ` ∈ Enddom(Yn/k) raises all xj ’s to
the `-th power. Then for any τ ∈ Tn one has σ`τ

` = τσ`. From this we get

Corollary 3.2. The restriction of Vn to Tn is induced by a unipotent rep-
resentation V

T tors
n

n .
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Proof. One has σ`τ
` = τσ`, where σ`xj = x`

j for any 1 ≤ j ≤ n and τ ∈ Tn.
Varying integer ` ≥ 2, we see that for any representation

ρ : Enddom(Yn/k)→ GLNk

the element ρ(τ) ∈ GLNk is conjugated to its arbitrary power, so ρ(τ) is
unipotent.

Scheme of the proof of the proposition. This is a game with cocycles with
the goal to make them constant.

1. Reduction to the case n = 1 (and any algebraically closed k of character-
istic zero).

2. Reduction to the local claim: H1(N,GLNk)
∼−→ H1(N,GLNk((t))).

Let (fσ) ∈ Z1(Z6=0 n k×,GLNk(t)). We embed k(t) into k((t)). Assuming
that fξ is regular at 0: fξ ∈ GLNk[[t]], where ξt = t` for some ` ≥ 2, there is
an explicit (cf. below) Φ ∈ GLNk[[t]] such that Φ ≡ 1 mod t and Φ ·fξ ·ξΦ−1 =
fξ(0) ∈ GLNk.

Using functional equations (the cocycle condition) and assuming that k is
the field of complex numbers, one shows that Φ is meromorphic on P1, i.e.
rational. We may, thus, assume that fξ ∈ GLNk. Commutation relations in
Z6=0 n k× imply that fσ ∈ GLNk for any σ.

3. Proof of the local claim. The first step:

H1(S,GLNk)
∼−→ H1(S,GLNk[[t]])

for any sub-semigroup S ⊆ N.
Proof. Let S 6= {1}, p ∈ S − {1} and (f`) ∈ Z1(S,GLNk[[t]]). Set Φ =

lim
s→∞

fps(0)fps(t)−1. This is the same element of 1+tglNk[[t]] as in 2. Then Φ(t)·
fp(t) · Φ(tp)−1 = fp(0), so we may suppose that fp ∈ GLNk. As f−1

p f`(t)fp =
f`(tp), we get f` ∈ GLNk for any ` ∈ S.

Thus, we get a functor A → SLu
n, where SLu

n is the category of finite-
dimensional Kn-semi-linear Gn-representations whose restrictions to the max-
imal torus Tn in Gn are induced by unipotent representations. We shall see
that A is abelian and that this functor is exact.

Clearly, SLu
n is an abelian neutral tannakian category with the fibre functor

H0(T tors
n ,−) : SLu

n → V eck.

Theorem 3.3 ([Rov]). For any integer n ≥ 2 there exists a fully faithful
functor

SLu
n

S→ {coherent Gn-sheaves on Pn
k}.
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The composition of S with the generic fibre functor is the identical full embed-
ding of SLu

n to the category of finite-dimensional Kn-semi-linear Gn-represen-
tations.

(One says that V is a Gn-sheaf if it is endowed with a collection of iso-
morphisms αg : V

∼−→ g∗V for each g ∈ Gn satisfying the chain rule: αhg =
g∗αh ◦ αg for any g, h ∈ Gn.)

Proof. Consists of checking that S (V )|Yn
:= H0(T tors

n , V ) ⊗k OYn
⊂ V

happily glue together, when Yn varies. The main step is to show that
H0(U0,−) : SLu

n → V eck

is also a fibre functor, where U0 is a lattice over a cyclotomic subfield of k in
the unipotent radical of the stabilizer of a hyperplane in Pn

k . (This fibre functor
will be used in the proof of Lemma 4.1.)

Proposition 3.4. If n ≥ 2 then any irreducible object of SLu
n is the generic

fibre of an irreducible coherent Gn-equivariant sheaf on Pn
k , i.e., a direct sum-

mand of the semi-linear representation HomKn
((Ωn

Kn/k)⊗M ,
⊗•

Kn
Ω1

Kn/k) for
an appropriate M .

Proof. We have to check that the Tn-action on V T tors
n = Γ(Yn,V )Ttors is

rational, i.e. trivial (since it is unipotent) for any irreducible object V of SLu
n.

As Gn is generated by a finite number of conjugates of Tn, this will imply
that V is equivariant, i.e., the action Gn × tot(V )→ tot(V ) is a morphism of
k-varieties.

Let E be the total space of the vector bundle on Pn
k with the sheaf of sec-

tions S (V ). The Gn-structure on E is a homomorphism τ : Gn → Autlin(E)
splitting the projection Autlin(E) → Gn. Here Autlin(E) is the group of au-
tomorphisms of the k-variety E over k inducing linear transforms between the
fibres. It is not hard to deduce from the irreducibility of V that the Zariski
closure τ(Gn) of τ(Gn) is reductive.

For a commutative finite k-algebra A denote by RA/k the Weil functor of
restriction of scalars on A-schemes, cf. [DG70], I, §1, 6.6. To proceed futher
in the proof, we need the following theorem of Borel–Tits.

Theorem 3.5 ([BT73], Théorème 8.16). Let G be a simply connected
absolutely almost simple k-group, and G′ be a reductive k-group, τ : G(k) →
G′(k) a homomorphism with Zariski dense image. Let G′1, . . . , G′m be the almost
simple normal subgroups of G′.

Then there exist field embeddings ϕi : k → k, an isogeny β :
∏m

i=1
ϕiG→ G′

(here ϕiG := G ×k,ϕi
k) and a homomorphism µ : G(k) → ZG′(k) such that
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β(ϕiG) = G′i and τ(h) = µ(h) · β(
∏m

i=1 ϕ
◦
i (h)) for any h ∈ G(k) (here ϕ◦i :

G(k)→ ϕiG(k) is the canonical homomorphism).

Taking G = SLn+1k and G′ = Autlin(E) in Theorem 3.5, we get

Corollary 3.6. In the above notation the Zariski closure of τ(T (k)) is a
torus in Autlin(E) for any torus T ⊂ Gn.

Any rational representation of a torus is semi-simple, which implies that
V T tors

n is a trivial representation of Tn, and thus, completes the proof of Propo-
sition 3.4, since the generic fibres of irreducible Gn-equivariant sheaves on Pn

k

are exactly of the desired type.

Theorem 3.7 ([Rov04]). For any irreducible F -semi-linear representa-
tion
F 6∼= V ∈ A any irreducible subquotient of the Kn-semi-linear Gn-
representation V GF/Kn is a direct summand of

⊗≥1
Kn

Ω1
Kn/k.

This is an evidence for Conjecture 2.7 part 2.

Proof. Keeping in mind Proposition 3.4 we have only to eliminate Kn and
the “negative twists” by powers of Ωn

Kn/k. Kn will be eliminated later in Propo-
sition 4.4. One has V GF/Kn ⊆ (V GF/Kn+1 )H , where H = Gn+1 ∩ GKn+1/Kn

,
so it suffices to show that (SλΩ1

Kn+1/k ⊗ (Ωn+1
Kn+1/k)⊗(−s))H = 0 for a Young

diagram λ with no columns of height n+ 1 and some integer s > 0.

The latter follows from

Lemma 3.8. Let W be an (n+ 1)-dimensional k-vector space, L ⊂W be a
one-dimensional subspace,

Hlin = ker[GL(W,L)→ GL(W/L)] ∼= k× n Hom(W/L,L).

For any Young diagram λ with no columns of height n+ 1 one has

(SλW∨ ⊗k (detW )⊗s)Hlin =
{
Sλ(W/L)∨ if s = 0,
0 otherwise

4. Extensions in SLu
n and in A

Denote by Aff(`)
n Q the subgroup of Gn consisting of the Q(µ`)-affine substi-

tutions of x1, . . . , xn with Jacobian in the group µ` of `-th roots of unity in k,
and by SAff(`)

n Q the evident subgroup of index `.
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Lemma 4.1. Let n ≥ 2 and ` ≥ 2. Then restriction of any object V ∈ SLu
n

to SAff(`)
n Q is induced by a rational representation of its reductive quotient

SLnQ(µ`) over k. Irreducible rational representations of SLnQ(µ`) over k in-
duce irreducible semi-linear representations of SAff(`)

n Q over Kn. In particular,
any extension in SLu

n splits as an extension of Kn-semi-linear representations
of SAff(`)

n Q.

Proof. It is shown in [Rov] that H0(U0,−) is the fibre functor on SLu
n,

where U0 is the unipotent radical of SAff(`)
n Q, so V = V U0 ⊗k Kn and the

restriction of V to SAff(`)
n Q is induced by a k-linear representation V U0 of

SLnQ(µ`) for any V ∈ SLu
n.

By Proposition 3.4, the irreducible subquotients of V restricted to SAff(`)
n Q

are induced by rational irreducible representations of SLnQ(µ`), so the irre-
ducible subquotients of V U0 are rational and induce irreducible semi-linear
representations of SAff(`)

n Q over Kn.
It follows from Theorems 3.5 and 4.7 that the k-linear representation V U0

of SLnQ(µ`) is semi-simple.

Lemma 4.2. Let n, ` ≥ 2 and s be some integers such that ` does not divide
s+1. Let V = Sλ

Kn
Ω1

Kn/k⊗Kn
(Ωn

Kn/k)⊗s for a Young diagram λ with columns
of height < n.

Then (V H (`)
n )Aff

(`)
n−1Q = V Aff(`)

n Q, where H
(`)

n := GKn/Kn−1 ∩Aff(`)
n Q.

Proof. Consists of a direct computation using Lemma 3.8.

Lemma 4.3 ([Rov], Lemma 7.1). Let n > m ≥ 0 be integers and H be
a subgroup of GF/k preserving Kn and projecting onto a subgroup of GKn/k

containing the permutation group of the set {x1, . . . , xn}. Then the subgroup
in GF/k generated by GF/Km

and H is dense.

For any U ∈ A and m ≥ 0 set Um = UGF/Km .

Proposition 4.4. If U ∈ A and there is a subquotient of Un ∈ SLu
n iso-

morphic to Kn then there is an embedding F ↪→ V in A . One has
H1

smooth(GF/k, V ) = 0, for any V ∈ A .

Proof. By Lemma 4.3, UGF/k = U
Aff

(`)
n+1Q

n+1 ∩ Un for any even ` ≥ 2. By

Theorem 3.7, Lemma 4.1 and Lemma 4.2, (U
H

(`)
n+1

n+1 )Aff(`)
n Q = U

Aff
(`)
n+1Q

n+1 for any

sufficiently big `, so, as Un ⊆ U
H

(`)
n+1

n+1 , one has UGF/k = U
Aff(`)

n Q
n , and thus,

UGF/k 6= 0 if there is a subquotient of Un ∈ SLu
n isomorphic to Kn.



152 Mathematisches Institut, Seminars, 2004-05

Clearly, H0(G,−) = HomG(Q,−) = HomC (F,−) and

H1
smooth(G,−) = Ext1S mG

(Q,−) = Ext1C (F,−)

on C , so we have to show that any smooth F -semi-linear extension

0→ V → U → F → 0

splits. Fix n > 1 such that Un surjects onto Kn. By Theorem 3.7 and Lemma
4.1 the semi-linear representation Un of Aff(`)

n Q over Kn splits as Kn⊕Vn, and
thus, UGF/k projects onto k.

Theorem 4.5. The category A is abelian.

Proof. Let V ∈ A and V
π→ V ′ be a surjection of F -semi-linear represen-

tations of GF/k. By Proposition 4.4, for any K ⊂ F of finite type over k and
any v ∈ (V ′)GF/K − {0}, the extension

0→ kerπ → π−1(F · v)→ F → 0

of F -semi-linear representations of GF/K splits. This implies that the natural
projection V GF/K

πK−→ (V ′)GF/K is surjective, and thus, V ′ is also an admissible
semi-linear representation.

4.1. Extensions in SLu
n . Now we need the following particular case of

Bott’s theorem.

Theorem 4.6 (Bott). If V is an irreducible Gn-equivariant coherent sheaf
on Pn

k then there exists at most one j ≥ 0 such that Hj(Pn
k ,V ) 6= 0. If

Hj(Pn
k ,V )Gn 6= 0 then V ∼= Ωj

Pn
k /k.

And the following elaboration of Remark 8.19 of [BT73] and [Tit74], §5.1:

Theorem 4.7 ([LR01], Theorem 3). Let G be a simple simply connected
Chevalley k-group, G a connected algebraic k-group and τ : G(k) → G (k) a
homomorphism with Zariski dense image. Assume that the unipotent radical
Gu of G is commutative and the composition G(k) τ→ G (k) → G′(k), where
G′ = G /Gu, is induced by a rational k-morphism λ : G → G′. Let A =
k[ε1, . . . , εr]/(ε21, . . . , ε

2
r) and H = RA/k(G×kA) ∼= Gng⊕r, where g = Lie(G)

is the adjoint representation of G, and r = dim Gu/dimG′.
Then Gu splits into a direct sum of r copies of the adjoint representation of

G′; and there exist derivations δ1, . . . , δr of k and a k-isogeny µ : H → G such
that τ = µ ◦ ηδ, where ηδ : G(k) → H (k) is induced by the ring embedding
id+

∑r
j=1 δjεj : k → A.
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Using these theorems and the functor S of Theorem 3.3, it is not hard
to deduce by techniques similar to that of the proof of Proposition 3.4 the
following

Proposition 4.8 ([Rov04]). Let n ≥ 2. Suppose that Ext1SLu
n
(Kn, V◦) 6= 0

for some irreducible object V◦ of SLu
n. Then either V◦ ∼= Ω1

Kn/k, or V◦ ∼=
Der(Kn/k). One has

Ext1SLu
n
(Kn,Ω1

Kn/k) = k and Ext1SLu
n
(Kn,Der(Kn/k)) = Der(k).

References
[BT73] A. Borel & J. Tits – Homomorphismes “abstraits” de groupes algébriques

simples, Ann. of Math. (2) 97 (1973), p. 499–571.
[DG70] M. Demazure & P. Gabriel – Groupes algébriques. Tome I: Géométrie

algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeur, Paris,
1970, Avec un appendice Corps de classes local par Michiel Hazewinkel.

[Jan92] U. Jannsen – Motives, numerical equivalence, and semi-simplicity, Invent.
Math. 107 (1992), no. 3, p. 447–452.

[LR01] L. Lifschitz & A. Rapinchuk – On abstract homomorphisms of Chevalley
groups with nonreductive image. I, J. Algebra 242 (2001), no. 1, p. 374–399.

[Rov] M. Rovinsky – Semi-linear representations of PGL, math.RT/0306333.
[Rov04] , Admissible semi-linear representations, 2004, Preprint MPIM2004-

122, Bonn.
[Rov05] , Motives and admissible representations of automorphism groups of

fields, Math. Z. 249 (2005), no. 1, p. 163–221.
[Tit74] J. Tits – Homorphismes “abstraits” de groupes de Lie, in Symposia Math-

ematica, Vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM,
Rome, 1972), Academic Press, London, 1974, p. 479–499.





Mathematisches Institut, Seminars, (Y. Tschinkel, ed.), p. 155–195
Universität Göttingen, 2004-05

∞–GROUPOIDS, STACKS, AND SEGAL CATEGORIES
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Göttingen, Germany • E-mail : clarkbar@gmail.com

Résumé . Motivated by descent problems for K–theory and derived categories, and
inspired by insights in the theory of infinite loop spaces, I introduce a robust theory
of (∞, n)–categories and (∞, n)–stacks, and I formulate several important results and
conjectures within this framework.

These are heavily revised and reorganized notes for a five–part series of talks
I gave at the Mathematisches Institut Göttingen, in early December 2004. I
thank Y. Tschinkel and M. Spitzweck for making my visit possible. I thank
M. Spitzweck and G. Racinet for many discussions during which I was able to
revise my presentation of the facts introduced in these notes. Finally, I thank
J. P. May for inviting me to the University of Chicago for a week, where many
of the revisions to these notes were made.

1. Descent Problems for ∞–Categories.
Let us be glad we don’t work in algebraic geometry.—J. F. Adams.

I should begin by apologizing for what will be at times very elementary and
occasionally rigorless notes. When one is attempting to introduce a new forma-
lism or piece of machinery, it is nothing more than good citizenship to begin by
motivating an audience who otherwise would not have taken an interest in the
formalism. This will be my sole focus in this talk. I intend to discuss two pro-
blems that exhibit a need for a more “complete” theory of descent. I will rather

December 2004.
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frequently recite theorems and definitions that are well–known to everyone, and
I will almost certainly offend members of the audience by omitting important
but (for my purposes, at least) irrelevant details. Nevertheless, I would like to
open with two problems that should be of interest to Göttingeners.

1.1 (A naïve view of K–theory). As I was originally to present this talk
in a seminar ostensibly intended for talks on L–functions and the like, I feel I
should begin by giving a brief history of an interesting problem, whose origins
lie in the theory of ζ–functions. In fact, this problem is by now very probably
solved, but it may come as little surprise that there are aspects of the proof
that seem less than ideal.

1.1.1. Suppose :
F a number field with
r1 real embeddings and
r2 pairs of complex embeddings ;
OF the ring of integers of F ;
cF the class numberof F .

Recall that the Dedekind ζ–function

ζF (s) =
∑

0 6=a�OF

1
#(OF /a)

is a natural generalization of Riemann’s ζ–function ζ = ζQ, and is convergent
for <s > 1. As with Riemann’s ζ–function, ζF :

— can be extended to a meromorphic function on all of C,
— has a simple pole at s = 1, and
— satisfies a beautiful functional equation relating ζF (s) and ζF (1− s).

1.1.2. Examination of this functional equation reveals the following inter-
esting facts :

— ζF has a zero of order r1 + r2 − 1 at the origin.
— The first nonzero coefficient in a Taylor expansion about an integer
1 − n for n > 0 is the special value of ζF at 1 − n, denoted ζ?(1 − n).
Even for n = 1, this special value contains some remarkable arithmetic
information about the field F , as one can see from Dirichlet’s Analytic
Class Number Formula. Dirichlet defined a regulator map

ρD
F : O×F /µF

//Rr1+r2−1 ,

which is a logarithmic embedding of the lattice O×F /µF into the vector
space Rr1+r2−1 ; the covolume of the image lattice is the Dirichlet regulator
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DRF . Dirichlet’s Analytic Class Number Formula then states that

ζ?(0) = − cF
#µF

DRF .

— The order of vanishing of ζF at 1− n, for n > 1, is

dn =

{
r1 + r2 if n is odd ;
r2 if n is even.

Moreover the values of ζF at the positive integers are determined by its
special values at the negative integers.

1.1.3. Since they determine the values of the ζ function at all integers, one
may well expect that the special values ζ?(1−n) contain even more arithmetic
data about F for n > 1. To try to generalize Dirichlet’s formula appropriately,
it seems necessary to introduce some other arithmetic invariants of rings, and
to play with them. This leads us to K–theory, to which we now turn.

1.1.4. Suppose R is a commutative, unital ring. Grothendieck defined the
K–theory K0(R) to be the free abelian group generated by the isomorphism
classes of finitely generated projective R–modules, modulo the relation that for
any short exact sequence

0 // M // P // N // 0,

[M ]+[N ] = [P ]. Since any short exact sequence of finitely generated projective
R–modules is split, this relation amounts to the equation [M ]+[N ] = [M⊕N ].
One easily verifies that two projective R–modules are equal as elements in
K0(R) iff they are stably isomorphic, in the sense that there exists an isomor-
phism between M ⊕R⊕n and N ⊕R⊕n for some integer n > 0.

Example 1.1.5. Easy : If R is a principal ideal domain or a local
ring, the rank function gives rise to an isomorphism K0(R) //Z .
Hard : If R is a Dedekind domain, then K0(R) is isomorphic to Z⊕Cl(R),
where of course Cl(R) denotes the Dedekind class group of R.

1.1.6. For the purposes of reinterpreting and generalizing Dirichlet’s for-
mula, I actually require much more than K0. The failure of certain moduli
spaces to be representable in algebraic geometry shows that it is rarely en-
ough to work with isomorphism classes of objects. One must be, in some sense,
conscientious of their automorphisms. Since K0 measures the failure of the uni-
queness of representatives of stable isomorphism types of projective modules,
there is a similar loss of information here ; one would like also a measurement of
the failure of the uniqueness of these isomorphisms. In other words, one should
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like to work not with a group, but perhaps with a groupoid whose objects are
“stable” projective modules, and whose morphisms are somehow “stable” iso-
morphism between them. An invariant, K1, would then be the “fundamental
group” of this groupoid, classifying equivalence classes of automorphisms.

1.1.7. Historically, a definition for K1 actually appeared before that of K0,
as K1 arises quite naturally in cobordism theory, and its definition is quite
simple. The most efficient definition is as the abelianization of the infinite
general linear group :

K1(R) = GL(R)/[GL(R),GL(R)].

The commutator [GL(R),GL(R)] is, by a lemma of Whitehead, equal to the
subgroup E(R) of GL(R) generated by the elementary matrices.

Example 1.1.8. Easy : The determinant yields an isomorphism

K1(R) // R× ⊕ SL(R)/E(R).

Hard : If R is the ring of integers in a number field, then in fact
SL(R)/E(R) is trivial. (This follows from the Bass–Milnor–Serre solution
of the congruence subgroup problem for SLn.) Thus for a number field F ,
K1(OF ) = O×F .

1.1.9. It is now possible to reinterpret Dirichlet’s formula, viz. :

ζ?(0) = −|K0(OF )tors|
|K1(OF )tors|

DRF .

1.1.10. It was Quillen who realized that K0 and K1—or even the groupoid
of which they are π0 and π1—would not suffice. Quillen realized that an auto-
morphism might be equivalent to another in a multitude of ways, and these
differences are important, for example, to give suitable long exact sequences.
To make all of this work, Quillen said, it is necessary to work with some much
more robust : a simplicial set. The 0–cells of such a simplicial set should be the
“stable” projective modules, the 1–cells should be the “stable” isomorphisms
between them, the 2–cells should be equivalences between these isomorphisms,
and so on. In other words, Quillen was looking for an ∞–groupoid, which he
imagined as a simplicial set. From this, he believed, it should be possible to
extract the K–groups as the homotopy groups of this simplicial set. A variant
of the following definitions, which appeared in print for the first time in a paper
by Waldhausen, was in fact known to Quillen long before his Q construction.
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Definition 1.1.11. A category with cofibrations A = (A, cof A) consists
of a pointed category A and a subcategory cof A that contains ιA, whose
morphisms are called cofibrations such that the following axioms hold.

— For any object X of A, the unique morphism ? //X is a cofibration.
— For any cofibration X //Y and any morphism X //Z , the pushout

X //

��

Y

��
Z // Y tX Z

exists, and the canonical morphism Z //Y tX Z is a cofibration.

Definition 1.1.12. A morphism Y //Z of A for which there exists a cofi-
bration X //Y such that the square

X //

��

Y

��
? // Z

is a pushout square is called a fibration, and in this case, such an object Z
(which is unique up to a canonical isomorphism) will be suggestively denoted
by Y/X, and the sequence X //Y //Y/X is called a cofibration sequence.

Example 1.1.13. Any exact category is a category with cofibrations in
which the cofibrations are the exactly the admissible monomorphisms. Thus for
a ring R, the category of finitely generated projective R–modules is a category
with cofibrations.

Example 1.1.14. A pointed category with all finite colimits is a category
with cofibrations in which every morphism is a cofibration.

Definition 1.1.15. For any nonnegative integer p, let p denote also the
category [0 //1 // . . . //p ]. I will use the functor category p1, which is sometimes
referred to as the “arrow category” of p. Its objects are pairs (i, j) with 0 6 i 6
j 6 p. Suppose now A a category with cofibrations ; then a functor X : p1 //A
is said to be a p–filtered object of A iff the following axioms are satisfied.

— For every 0 6 j 6 p, X(j, j) = ?.
— For every 0 6 i 6 j 6 k 6 p, the morphism X(i, j) //X(i, k) is a
cofibration.
— For every 0 6 i 6 j 6 k 6 p, the square

X(i, j)

��

// X(i, k)

��
X(j, j) // X(j, k)
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is a pushout.
Thus the sequence X(i, j) //X(i, k) //X(j, k) is a cofibration sequence, and to
give a p–filtered object of A is to give a sequence of cofibrations

X(0, 1) // X(0, 2) // . . . // X(0, p)

together with a choice of subquotients X(i, j) = X(0, i)/X(0, j).

Definition 1.1.16. For any nonnegative integer p and any category with
cofibrations A, let SpA denote the full subcategory of the functor category
Ap1 spanned by the p–filtered objects. This gives a simplicial category S•A,
i.e., a simplicial object in the category of categories. Thus ObjS•A is a sim-
plicial set, with a unique 0–cell. (It is canonically pointed.) One then defines
K(A), the K–theory of the category with cofibrations A as the simplicial set
Ex∞Ω(ObjS•A).

Exercise 1.1.17 (Easy). Use Kan’s loop description of the fundamental
group of a space with only one zero simplex to show that if R is a ring, and
A is the category with cofibrations of finitely generated projective R–modules,
then K0(R) is in fact isomorphic (naturally, in fact) to π0K(A) = π1 ObjS•A.

Example 1.1.18. Hard : In fact K1(R) is isomorphic to π1K(A).
Probably the quickest way to write a proof is to observe the following.
Key : Quillen’s K–theory of an exact category (using the Q–construction)
and the one I have given for the corresponding category with cofibrations
are naturally homotopy equivalent.

Definition 1.1.19. One thus defines the higher algebraic K–theory of a
ring R by Ki(R) = πiK(A), where A is the category with cofibrations of
finitely generated projective R–modules.

1.1.20. This description, though perhaps a little abstract, has several be-
nefits, which together make it my favorite approach to algebraic K–theory. I
list some.

— This approach clearly exhibits the categorical origins of higher K–
theory. We see that K–theory has nothing to do with additivity.
— This description can be used to give more than a mere simplicial
set : K(A) is in fact an infinite loop space. This can be easily seen from
this construction. Indeed, by naturality, the S• construction extends to
(multi)simplicial categories with cofibrations. One can define the cofibra-
tions of S•A in a very natural way, and therefore it is possible to iterate the
construction. Now simply let S(m)

• A be the application of S• to S(m−1)
• A.
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It is easy to see that the inclusion of the 1–cell ObjA gives rise to a natural
map

S1 ∧ObjA // S1 ∧ObjS•A.

It follows that the spaces (K′A)m = diag(S(m)
• A define a spectrum, and,

by permuting the application of the S•, one effortlessly makes it a symme-
tric spectrum. The K–theory spectrum KA is then the loop spectrum of
this spectrum. KA is quickly seen to be an Ω–spectrum, and so it follows
that KA is the infinite loop space of this spectrum.
— Still more is true : if A is a symmetric monoidal category, a multi-
plicative structure on KA is induced, making KA into a symmetric ring
spectrum.
— This construction can also be used in a subtler way (yielding the wS•
construction), which can be applied to Waldhausen categories, which come
equipped with certain “weak equivalences.” Rather than give the technical
definition, let it suffice to say that the full subcategory of cofibrant–fibrant
objects of a pointed, proper closed model category forms a Waldhausen ca-
tegory, and all known examples of Waldhausen categories can be construc-
ted in this way. This machine can therefore be applied to the category of
bounded chain complexes in an abelian category A with an injective mo-
del structure, in which the weak equivalences are quasi–isomorphisms, and
the cofibrations are degreewise admissible monomorphisms. Again this S•–
construction of Waldhausen can be made, and the resulting K–theory is,
by a theorem of Waldhausen, Gillet, and Thomason, homotopy equivalent
to the K–theory of A, viewed as a category with cofibrations as above.

1.1.21. Borel demonstrated that for a number field F , Km(OF ) for m even
and positive is finite.

1.1.22. Generalizing Dirichlet’s regulator map, Borel constructed higher re-
gulator maps

ρB
F : K2n−1(OF ) //Rdn

for n > 0 (where, recall, dn is the order of vanishing of ζF at 1−n), and showed
that the kernel is finite, and the image is a lattice in Rdn , whose covolume is
the Borel regulator BRF . When n = 0, the Borel regulator and the Dirichlet
regulator correspond. Borel used this regulator to show that :

— K2n−1 has rank dn, and
— ζ?

F (1− n) = qnBRF for some rational number qn.
This last result is clearly a weakened generalization of Dirichlet’s theorem.
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Conjecture 1.1.23 (Lichtenbaum). Lichtenbaum proposed in 1971 a
strict generalization of Dirichlet’s theorem, namely,

ζ?
F (1− n) = ±#K2n−1(OF )tors

#K2n−2(OF )tors
BRF ,

for any n > 0, up to a power of 2.

1.1.24. As a consequence of Wiles’ proof of the main conjecture of Iwasawa
theory, we have the following result. Suppose that F is a totally real number
field, n a positive even integer. Then

ζ?
F (1− n) = ±

#(
∏

pH
2
ét(OF ,Zp(n)))

#H0(F,Q/Z(n))
up to powers of 2. Thus a good approach might be to make use of some rela-
tionship between K–theory and étale cohomology.

1.1.25. Such a relationship already exists : Grothendieck’s general theory
of Chern classes gives the étale Chern characters for each prime number p

χp
i,n : K2n−i(OF [ 1p ]) //Hi

ét(OF ,Zp(n)) ,

which have been shown to be surjective for i = 1, 2, 2n > i, and either p odd
or
√
−1 ∈ F by Soulé and Dwyer–Friedlander.

Conjecture 1.1.26 (Quillen–Lichtenbaum). The étale Chern character
χp

1,n is an isomorphism if p is an odd prime.

1.1.27. An immediate corollary of the Quillen–Lichtenbaum conjecture is
that the Lichtenbaum conjecture is true for a totally real number field. It would
therefore be very nice to have a proof of this conjecture. In fact, the Quillen–
Lichtenbaum conjecture is a consequence of the Kato conjecture, which is the
assertion that a particular Galois symbol is always an isomorphism. Neverthe-
less, there is something unsettling about this conjecture. The Chern character
is produced by a general result in homological algebra, which is somewhat mys-
terious. Fortunately, we can rephrase this conjecture in a manner that is more
concrete, and more general.

Conjecture 1.1.28 (Quillen–Lichtenbaum, General Concrete Ver-
sion)

Suppose F a field, GF its absolute Galois group of cohomological dimension
d. Suppose ` is a prime different from the characteristic of F . Then there is a
natural morphism of ring spectra

KF ∼
// (KF )GF // (KF )hGF ,
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where (KF )hGF is the homotopy fixed point set MorG(EG,KF ). The statement
of the conjecture is : the induced morphism

K̂F `
// ̂(KF )hGF

`

induces a “co-d” weak equivalence, i.e., it induces an isomorphism on all ho-
motopy groups πi for i > d. Since there is a spectral sequence converging to
πp+q((KF )hGF ) whose E2 term is

Ep,q
2 = H−p(GF , πq((̂KF )`)),

this spectral sequence must converge to πp+q(K̂F `) for p+ q > d.

1.1.29. A simple question is the following : Is this spectral sequence in any
sense a descent spectral sequence for the Galois descent of K–theory ? It seems
to be, but how can one make this precise ?

1.2 (Chain complexes when the base varies). I have been informed
that in the model category seminar, the projective model structure on the
category of unbounded R–modules for a ring R has been constructed. I will
denote this category Cplx(R). I am interested in what happens when the base
varies.

1.2.1. Suppose f : R //S a homomorphism of rings. Then the functor

f? = −⊗R S : Cplx(R) // Cplx(S)

has a right adjoint f?, which is the forgetful functor. Observe that f? preserves
objectwise epimorphisms and quasi–isomorphisms, so (f?, f?) defines a Quillen
adjunction.

Exercise 1.2.2. Show that a ring homomorphism f induces a Quillen equi-
valence (f?, f?) iff it is an isomorphism.

1.2.3. One can think of the assignment R � //Cplx(R) as a kind of
“presheaf” in model categories on the category of affine schemes. Such
a presheaf is sometimes called a left Quillen presheaf. The assignment
R

� //D(R) = HoCplx(R) is a kind of “presheaf” in categories. One can ask
whether such a thing is a stack. This would indicate, in particular, that it is
possible to “glue” complexes up to quasi–isomorphism.

Definition 1.2.4. Suppose C a category. Then a pseudofunctor L on C
(taking values in the category of categories) consists of the following data :

— an assignment of a category LX to any object X ∈ C,
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— an assignment of a functor Lf : LX //LY to any morphism f : X //Y
in C, and
— an assignment of a natural isomorphism γg,f : L(gf) //Lg ◦ Lf to any
pair of morphisms

X
f // Y

g // Z

in C,
subject to the following axioms :

— for any morphism f : X //Y in C, γf,1X
= 1Lf = γ1Y ,f , and

— for any triple of morphisms

A
f // B

g // C
h // D

the diagram

L(h ◦ g ◦ f)
γh◦g,f //

γh,g◦f

��

L(h ◦ g) ◦ Lf

γh,g·Lf

��
Lh ◦ L(g ◦ f)

Lh·γg,f

// Lh ◦ Lg ◦ Lf

commutes.

Definition 1.2.5. A stack (in categries) L on a site (T, τ) is a contravariant
pseudofunctor on T satisfying the following properties.

— L is a separated prestack : for any object X of S , and for any pair
of objects F,G ∈ LX, the presheaf of sets on the site S /X that assigns
to any U

i //X the set MorLU (F |U , G|U ) is a sheaf (i.e., one can glue
morphisms).
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— For any covering family {Ui
//U }i∈I , any family of objects {Fi ∈

LUi}i∈I , and any family of isomorphisms θij : Fi|Ui×U Uj
//Fj |Ui×U Uj sa-

tisfying the cocycle condition, i.e., the commutativity of

Fk|Uj×U Uk
|Ui×U Uj×U Uk

∼
��

θjk // Fj |Uj×U Uk
|Ui×U Uj×U Uk ∼

// Fj |Ui×U Uj×U Uk

Fk|Ui×U Uj×U Uk
Fj |Ui×U Uj |Ui×U Uj×U Uk

∼

OO

θij

��
Fk|Ui×U Uk

|Ui×U Uj×U Uk

∼

OO

θjk

��

Fi|Ui×U Uj
|Ui×U Uj×U Uk

∼
��

Fi|Ui×U Uk
|Ui×U Uj×U Uk

∼ // Fj |Ui×U Uj×U Uk

there exist F ∈ LU and isomorphisms θi : F |Ui
//Fi such that the diagram

F |Ui
|Ui×U Uj

θi

��

∼
// F |Ui×U Uj

F |Uj
|Ui×U Uj∼

oo

θj

��
Fi|Ui×U Uj θij

// Fj |Ui×U Uj

commutes (i.e., one can glue objects).

1.2.6. Is, then, the assignment R
� //D(R) a stack on the Zariski site of

affine schemes ? Consider what this would mean for an affine scheme X and
an affine open cover {U0, U1, U2, U3} thereof. Unpacking the above definition
carefully, we see that in order for D to be a stack, then, given the following
data :

— for each 0 6 i 6 3, complexes of H0(OUi
)–modules C•i ,

— for each 0 6 i 6 j 6 3, a quasi–isomorphism fij : C•i |Uj ∼
//C•j |Ui , and

— for each 0 6 i 6 j 6 k 6 3, a chain homotopy hijk : fjk ◦ fij ' fik,
there must exist a complex of H0(OX)–modules C• such that C•|Ui is quasi–
isomorphic to Ci. But observe that if this were the case, then the homotopies
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hijk could be chosen so that the following square of homotopies commutes :

f23 ◦ f12 ◦ f01
h123·f01

xxqqqqqqqqq f23·h012

&&MMMMMMMMM

f13 ◦ f01

h013 &&MMMMMMMMM f23 ◦ f02

h023xxqqqqqqqqq

f03.

Imagine the resulting combinatorics if we had had an open cover of cardinality
5. Then there would be 6 diagrams not given as part of the data ! This certainly
seems to be too much to hope for, and it is.

Exercise 1.2.7. Show that D is not a stack. (Hint : an easy example can
be given using an open cover of cardinality 4 of A4

k.) Grothendieck said of the
objects of the derived category that they were “de nature essentiellement non
recollables.”

1.2.8. The problem with D is, in a very precise sense, the same problem as
the problem with K0. We have lost “higher homotopical” data in passing to K0

and the to the derived category. But how do write down a descent condition
for left Quillen presheaves ?

1.3 (Toward ∞–groupoids). Having given two motivating examples, I
now turn to the design of a suitable theory of ∞–categories that will yield the
proper setting in which to formulate (and, eventually, answer) the questions of
descent. The notion of an ∞–category is one that, for the moment, I intend
to use heuristically ; morally, an ∞–category consists of a set(1) of objects, a
set of morphisms between any two objects, sets of 2–morphisms between any
two morphisms, 3–morphisms between any two 2–morphisms, and so on. The
n–morphisms should be composable, up to a coherent (n+ 1)–morphism, and
the composition law should be associative up to a natural coherent (n + 1)–
morphism.

I shall consider only (∞, n)–categories—i.e., ∞–categories in which the i–
morphisms are invertible up to an (i + 1)–morphism for all i > n—, as these
are the kinds of ∞–categories that typically arise in algebraic geometry. Ma-
king this notions precise for n = 0 will be the focus of this section. In order

(1)Here I neglect any set–theoretic difficulties, which are aptly handled by the use of closed
model categories and Grothendieck universes.
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to motivate the definition, it is convenient to discuss and interpret the nerve
construction of Grothendieck.

1.3.1. Let Cat denote the category of (small) categories ; observe that ∆
is isomorphic to the full subcategory of Cat spanned by the categories p =
[ 0 //1 // . . . //p ]. Composing the ordinary enrichment functor

Mor : Catop ×Cat //Set

with the natural functor

∆op ×Cat //Catop ×Cat ,

yields, by adjunction, a functor Cat //sSet , called the nerve functor, ν•.

Proposition 1.3.2. The functor ν• is fully faithful and has a left adjoint.

Proof. One recovers a category C from its nerve ν•C in the following manner.
Its set of objects is ν0C ; for any two objects X and Y of C, the set MorC(X,Y )
is the fibre of the morphism (d1, d0) : ν1C //ν0C × ν0C over the pair (X,Y ).
The compostion law is given by the composite map

ν1C ×ν0C ν1C ∼
// ν2C

d1 // ν1C.

It is now easy to check that the natural map

MorCat(C,D) // MorsSet(ν•C, ν•D)

is a bĳection. ,

Lemma 1.3.3. If C is a small category, then ν•C is a 2–coskeleton. That
is, for any simplicial set X•, the natural map

MorsSet(X•, ν•C) // MorsSet(sk2X•, ν•C)

is a bĳection.

Proof. Using the previous proposition, one sees that this lemma holds when X•
is a standard simplicial set ∆n. Since any simplicial set is a colimit of standard
simplicial sets, the result follows. ,

Proposition 1.3.4. The nerve of a small category C is a Kan simplicial
set iff C is a groupoid. Moreover, a functor C //D between groupoids is an
equivalence iff the induced morphism ν•C //ν•D is a weak equivalence.



168 Mathematisches Institut, Seminars, 2004-05

Proof. By the lemma, it suffices to verify the Kan condition for morphisms
Λn[k] //ν•C when n 6 3. Proceeding case by case, one sees that this is equiva-
lent to the invertibility of any morphism. The final sentence of the proposition
follows from the observation that for fibrant simplicial sets, homotopies and
simplicial homotopies are the same. ,

Theorem 1.3.5 (Thomason). Cat is a closed model category, wherein a
functor F : C //D is a weak equivalence or a fibration iff the induced morphism

Ex2ν•C //Ex2ν•D

of simplicial sets is so.

About the Proof. Thomason demonstrated this directly, by presenting genera-
ting sets of cofibrations and of trivial cofibrations, and using the small object ar-
gument. Unfortunately, Thomason’s proposed class of cofibrations is not stable
under retracts, an error noticed and repaired in a recent note of Cisinski. ,

1.3.6. The interpretation I have in mind for these facts is the following.
Fibrant simplicial sets are models for weak ∞–groupoids ; a 0–simplex of a
simplicial set should be viewed as an object of the ∞–groupoid ; a 1–simplex
y is a 1–isomorphism from d1y to d0y ; a 2–simplex is a 2–morphism ; etc. Of
course, this particular avatar of the notion of n–morphism may be unfamiliar,
since under this interpretation, n–morphisms do not have only a source and
target, but have (n+ 1) faces instead.

The role of the Kan condition is to guarantee composability. Indeed, given
two 1–morphisms of an ∞–groupoid, A //B //B , there should exist a “com-
posite up to homotopy,” A //C ; more precisely, for any pair of 1–simplices
x1 and x2 with d0x1 = d1x2, there should exist a 2–simplex x with d1x = x1

and d2x = x2—the composite up to homotopy is then d0x. This is precisely
the Kan condition in dimension 2. In higher dimensions, the Kan condition
guarantees up–to–homotopy composability for certain configurations of (n+ 1)
n–morphisms. This leads to the following definition.

Definition 1.3.7. A (weak) ∞–pregroupoid is a simplicial set. A (weak)
∞–groupoid is a fibrant simplicial set.

Example 1.3.8. If R is a ring (commutative, unital), and A is the category
with cofibrations of finitely generated projective R–modules, then K(A) is an
∞–groupoid
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1.4 (S–categories and simplicial localization). S–categories are cate-
gories enriched over simplicial sets, and therefore fibrant S–categories can
be viewed as models for certain (∞, 1)–categories. The simplicial localization
construction of Dwyer and Kan gives a canonical way to convert categories
with weak equivalences into S–categories.

Definition 1.4.1. An S–category is a category enriched over sSet. Functors
that preserve the simplicial structure are called S–functors. The category of
small S–categories is denoted S−Cat.

1.4.2. Any ordinary category can be viewed as an S–category in the obvious
way. This defines a functor

Cat // S−Cat

whose left adjoint is the functor that to any S–category C assigns the category
whose objects are exactly those of C and whose Mor–set from an object X
to an object Y is the set π0 MorC(X,Y ). For brevity, denote this left adjoint
simply by π0.

Definition 1.4.3. An S–equivalence is an S–functor F : C //D that satis-
fies the following conditions.

— (Full faithfulness) For any objects X and Y of C, the induced mor-
phism or simplicial sets MorC(X,Y ) // MorD(FX,FY ) is a weak equi-
valence.
— (Essential surjectivity) The induced functor π0C //π0D is essentially
surjective.

Proposition 1.4.4 (Bergner). There exists a cofibrantly generated closed
model structure on S−Cat with the following properties.

— The weak equivalences are exactly the S–equivalences.
— The fibrations are those S–functors F : A //B such that

– the induced morphisms MorA(x, y) // MorB(Fx, Fy) are fibra-
tions for every pair of objects (x, y), and
– for any object a′ of A, any object b of B, and any equivalence
e : Fa′ //b , there exists an object a of A and an equivalence d : a′ //a
such that Fd = e.

About the Proof. Such a model structure has been believed to exist for some
time now. Dwyer and Kan sketched a faulty proof, by providing generating
sets of cofibrations and of trivial cofibrations. Unfortunately, their suggested
generating trivial cofibrations are not weak equivalences. Bergner repaired this
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fault in the overture to her thesis, providing correct generating sets of cofibra-
tions and of generating cofibrations and proving the existence of this model
structure directly, by means of the small object argument. ,

Corollary 1.4.5. The fibrant objects of S−Cat are exactly the categories
enriched in ∞–groupoids.

1.4.6. A category enriched in∞–groupoids can be viewed as an (∞, 1)–cate-
gory, wherein the n–morphisms are the (n− 1)–cells of the Mor–sets. Observe
that the morphisms of such (∞, 1)–categories are strictly composable, and their
composition law is strictly associative, so one might correctly call these strict
(∞, 1)–categories (or, more precisely, but altogether less linguistically practical,
“weak–∞–strict–1–categories”). The basic source of examples is the simplicial
localization, to which I now turn.

Definition 1.4.7. A quasihomotopical category C = (C, wC) consists of
a category C and a full subcategory wC—whose morphisms are called weak
equivalences—satisfying the two-out-of-three axiom. A functor F : C //D is
homotopical iff for any weak equivalence f of C, Ff is a weak equivalence of
D.

Definition 1.4.8. Suppose C = (C, wC) is a quasihomotopical category.
For any pair of objects X and Y in C and any odd number n > 0, I define a
category wMorn

C(X,Y ). The objects of wMorn
C(X,Y ) are strings of morphisms

X = X0 X1
oo // X2

. . .oo // Xn−1 Xn = Yoo

such that each morphism X2i X2i+1
oo is contained in wC. Morphisms between

two such sequences are simply commutative diagrams of the form

X1

zzuuu

��

// X2

��

. . .oo // Xn−1

��
X Y

yysss
s

ffLLLL

X ′1

ccHHH
// X ′2 . . .oo // X ′n−1

,

wherein the vertical maps are in wC. The hammock localization of C is the
S–category LC whose objects are exactly those of C, with

MorLC(X,Y ) = Ex∞ colimn ν•(wMorn
C(X,Y ))

for any objects X and Y .

1.4.9. This construction is clearly pseudofunctorial with respect to homo-
topical functors.
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It is obvious that π0LC is the Gabriel–Zisman localization C[wC−1]. Mo-
reover, there is a canonical S–functor C //LC that is universal in a sense that
is more or less immediate.

1.4.10. A priori, this construction seems nightmarish, because the colimit
in question seems unmanageable. Fortunately, for model categories, it is not
necessary to compute wMorn for n > 3.

Lemma 1.4.11 (Dwyer–Kan). If M is a closed model category (cmc),
then for any two objects X and Y of M, the canonical morphism

ν•(wMor3M(X,Y )) // MorLM(X,Y )

is a weak equivalence.

About the Proof. This is a more general fact that holds for any quasi-
homotopical category possessing a 3–arrow calculus, in the sense of Dwyer and
Kan. It follows easily from the existence of functorial factorizations. ,

1.4.12. Recall that if M is a cmc, then sM and cM each have a Reedy
closed model structure. The cosimplicial resolution functor q• is the composite

M // cM // (cM)c

and, dually, the simplicial resolution functor r• is the composite

M // sM // (sM)f .

Lemma 1.4.13. Suppose X and Y objects of a cmc M. Then the functors

MorM(q•X,−) : Mf // sSet

and
MorM(−, r•Y ) : Mc

// sSet

are homotopical.

Scholium 1.4.14 (Dwyer–Kan). Suppose M a cmc. There are S–
equivalences

L(Mcf )

��

// L(Mf )

��
L(Mc) // LM
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and there are natural weak equivalences of the simplicial sets

MorM(q•X, rY )

++WWWWWWWW
MorM(qX, r•Y )

ssgggggggg

diag MorM(q•X, r•Y )

hocolim(m,n) MorM(qmX, rnY )

OO

��
ν•wMor3M(X,Y )

��
MorLM(X,Y ),

where q and r are the cofibrant and fibrant replacement functors in M.

About the Proof. This chain of weak equivalences follows quickly from the
Bousfield–Kan theory of homotopy colimits. ,

Corollary 1.4.15. If M is a simplicial closed model category, then the S–
category Mcf is S–equivalent to LM.

Definition 1.4.16. Suppose A an S–category, κ a regular cardinal. Then A
is κ–presentable if A is cocomplete, and if there exists a κ–small sub–S–category
Ac spanned by κ–compact objects that generates A by κ–filtered colimits. A is
said to be presentable if it is κ–presentable for some regular cardinal κ.

Theorem 1.4.17 (Simpson). Suppose A an S–category. Then the follo-
wing are equivalent.

— There exists a cofibrantly generated cmc M such that A is S–
equivalent to LM.
— A is presentable.

About the Proof. This is a very technical result, whose proof requires the use
of the theory of Segal 1–categories, which I will introduce momentarily. ,

Example 1.4.18. For any ring R, the category Cplx(R) of unbounded
chain complexes of R–modules is a combinatorial closed model category. The
simplicial localization LCplx(R) is therefore a presentable S–category.

1.5 (Bousfield localization). There are two canonical ways to add weak
equivalences to a closed model category in a minimal way. The existence proofs
are often distractingly technical, so I shall not have much to say about them.
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Definition 1.5.1. Suppose M a cmc, and suppose C a class of morphisms
in M.

— The left Bousfield localization of M with respect to C is a cmc LCM
equipped with a left Quillen functor M //LCM that is initial among all
left Quillen functors F : M //N with the property that for f ∈ C, Ff is
a weak equivalence.
— The left Bousfield localization of M with respect to C is a cmc RCM
equipped with a right Quillen functor M //LCM that is initial among all
left Quillen functors F : M //N with the property that for f ∈ C, Ff is
a weak equivalence.

Proposition 1.5.2 (Cole). Suppose M a category with two model struc-
tures M and M′ such that wM ⊂ wM′ and fibM ⊂ fibM′. Then the right
Bousfield localization RwM′M exists ; the underlying category of RwM′M is
again M , and w(RwM′M) = wM′ and fib(RwM′M) = fibM.

Likewise, if N is a category with two model structures N and N′ such that
wN ⊂ wN′ and cofN ⊂ cofN′, then the left Bousfield localization LwN′N
exists ; the underlying category of LwN′N is again N , and w(LwN′N) = wN′

and cof(LwN′N) = cofN.

Proof. This proof is left as an easy exercise in the axioms of closed model
categories. ,

Definition 1.5.3. Suppose C a quasihomotopical category ; suppose S a
class of morphisms thereof ; and suppose K a class of objects thereof.

— An object X of C is S–local (resp., S–colocal if for any element
A //B of S, the induced morphism MorLC(B,X) // MorLC(A,X)

(resp., the induced morphism MorLC(X,A) // MorLC(X,B) ) is a weak
equivalence. The class of S–local objects is denoted S − loc, and the class
of S–colocal objects is denoted S − col.
— A morphism C //D of C is said to be K–local if for any element Y
of K, the induced morphism MorLC(D,Y ) // MorLC(C, Y ) (resp., the
induced morphism MorLC(Y,C) // MorLC(Y,D) ) is a weak equivalence.
The class of S–local morphisms is denoted S − loc, and the class of S–
colocal morphisms is denoted S − col.
— For P a class either of objects or of morphisms of M, I define the left
hull lh(P ) of P as the class (P − loc)− loc and the right hull rh(P ) as the
class (P − col)− col.



174 Mathematisches Institut, Seminars, 2004-05

Lemma 1.5.4. If P is a class either of objects or of morphisms of a cmc
M, then P ⊂ lh(P ), and if S is a class of morphisms, the left Bousfield locali-
zation LSM is naturally isomorphic to the left Bousfield localization Llh(S)M.

Dually, P ⊂ rh(P ), and if S is a class of morphisms, the right Bousfield
localization RSM is naturally isomorphic to the right Bousfield localization
Rrh(S)M.

Definition 1.5.5. Suppose M a cmc, κ a regular cardinal. Then a class of
morphisms S in C is κ–sequential if S is closed under colimits of κ–sequences,
i.e., if for any κ–sequence of cofibrations Xα in M, and any sequence of mor-
phisms Xα

//Y of S, the morphism from the transfinite composition

colimαXα
//Y

is a morphism of S as well. If the set of fibrations is κ–sequential, then one says
simply that M has κ–sequential fibrations.

Theorem 1.5.6 (Christensen–Isaksen). If M is a right proper cmc and
K is a set of objects thereof such that there exists a regular cardinal κ with the
following properties :

— M has κ–sequential fibrations, and
— each element of K is κ–small relative to the cofibrations,

then the right Bousfield localization RK−colM exists ; the underlying category
is the same as the underlying category of M, and w(RK−colM) = K − col
and fib(RK−colM) = fibM. The cofibrant objects of RK−colM are exactly the
K − col–colocal objects.

About the Proof. This was proved under rather more restrictive hypotheses
(right properness and cellularity) in Hirschhorn’s book. The proofs there are
easily translated, mutatis mutandis, to this more general setting. ,

Corollary 1.5.7. If M is a cofibrantly generated cmc, and K is a set of
objects of M, then the right Bousfield localization RK−colM exists.

Definition 1.5.8. A cmc is combinatorial if it is cofibrantly generated and
presentable.

Theorem 1.5.9 (Smith). Suppose M a left proper combinatorial cmc, S
a set of morphisms of M. Then the left Bousfield localization LSM exists ;
the underlying category of LSM is that of M, and w(LSM) = lh(S) and
cof(LSM) = cof(M).
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About the Proof. This was proved under different hypotheses (left properness
and cellularity) in Hirschhorn’s book. The critical Bousfield–Smith cardinality
argument carries over with only slight modification. ,

1.5.10. Combinatoriality is a flexible condition that is often satisfied for
categories constructed from the category of simplicial sets or from that of CW
complexes. For categories constructed from categories of more general topologi-
cal spaces, Hirschhorn’s condition of cellularity is better–behaved. Unfortuna-
tely, there are examples of left proper combinatorial cmcs that are not cellular,
and there are examples of left proper cellular cmcs that are not combinatorial,
so neither setting contains the other.

Theorem 1.5.11 (Lurie). Suppose A is a presentable S–category, and
suppose S a set of morphisms of A. Then the full sub–S–category LSA of
S–local objects—i.e., objects X such that for any Y //Z in S, the morphism
MorA(Z,X) // MorA(Y,X) is a weak equivalence—is a reflexive subcategory
of A.

About the Proof. This is the first major result of the overture to Lurie’s thesis,
rewritten for S–categories. ,

Lemma 1.5.12. Suppose M a cmc, S a set of morphisms thereof. Then
L(LSM) is equivalent to LS(LM), and this equivalence is compatible with the
“localization” morphisms.

Proof. The proof is left as a nearly trivial exercise. ,

1.6 (The question of descent). I now formulate the central questions of
descent for simplicial sets and left Quillen presheaves, and I comment upon the
answers.

1.6.1. It will be convenient to recall the following key fact. Suppose M a
cofibrantly generated closed model category, and suppose C a small category.
Then the functor category MC is a cofibrantly generated closed model category
in which the fibrations and weak equivalences are defined objectwise. This clo-
sed model structure on MC will be called the projective closed model structure.
Combinatoriality, left properness, and right properness are all inherited by MC

from M.

1.6.2. The natural precursor for the theory of descent I introduce here is
ordinary sheaf theory. Let (T, τ) be a site, which, for the sake of exposition, I will
assume has enough points. Let PSh(T ) be the category SetT op

of presheaves
(of sets) on T , and let Sh(T, τ) be the full subcategory thereof spanned by the
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sheaves. The category Set has its trivial closed model structure, and therefore
PSh(T ) has a projective closed model structure.

Theorem 1.6.3. The category PSh(T ) has a left proper, combinatorial clo-
sed model structure in which the following conditions hold.

— Every morphism is a cofibration.
— The fibrant objects are precisely the sheaves.
— The weak equivalences are precisely those morphisms F //G such that
for any point x of the site (T, τ), the induced morphism Fx

//Gx of sets
is a bĳection.
— Between any two sheaves F and G, two morphisms F //G are homo-
topic iff they are equal.

Proof. Let Cov(T, t) be the class of morphisms
∐

α Uα
//X (viewed as mor-

phisms of presheaves) for all τ–covering families { Uα
//X } of T . Using the

smallness of T , one can find easily a subset Hτ thereof such that the left Bous-
field localization LHτ

PSh(T ) of the projective closed model structure with
respect to Hτ is the left Bousfield localization LCov(T,τ)PSh(T ) with respect
to Cov(T, τ). It is immediate from the characterization of left Bousfield loca-
lizations that the listed conditions hold. ,

Corollary 1.6.4. The composite functor
Sh(T, τ) //PSh(T ) // HoLCov(T,τ)PSh(T )

is an equivalence of categories.

1.6.5. The task is then to generalize this description of sheaves to stacks
in ∞–groupoids. Since the equivalences between ∞–groupoids are not isomor-
phisms, the descent data should give not isomorphisms on overlaps, but equiva-
lences. Additionally, the category of∞–groupoids, i.e. of fibrant simplicial sets,
does not itself have a closed model structure ; instead, it is the class of fibrant
objects within the closed model category of ∞–pregroupoids. For presheaves
of sets, this distinction was invisible to us because every set is fibrant.

Observe that the category of presheaves of ∞–pregroupoids on T ,
sSPr(T ) = sSetT op

has its projective closed model structure, which is
left proper and combinatorial. The fibrant objects of this closed model struc-
ture are those presheaves of ∞–pregroupoids X such that for any object U
of T , X(U) is an ∞–groupoid. The aim now is to left–Bousfield–localize the
projective model structure in a manner that is similar to the localization
performed for ordinary presheaves. The weak equivalences of the resulting
closed model structure should be the τ–local weak equivalences, and the fi-
brant objects should be exactly those objects satisfying a descent condition. In
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order to guarantee that the weak equivalences are as described, it is necessary
to force the fibrant objects to satsify a descent condition with respect to
hypercoverings, not merely coverings. The distinction is a subtle one, as many
familiar topologies have the Brown–Gersten property, which ensures that the
localization with respect to coverings and with respect to hypercoverings are
in fact the same.

Definition 1.6.6. A hypercovering of an object X of T is a simplicial pre-
sheaf U along with a morphism U //X such that Up is a coproduct of repre-
sentables for any p > 0, and the morphism U //X is a local trivial fibration,
i.e., for any object Y of T , any n > 0, and any commutative square

∂∆n × Y

��

// U

��
∆n × Y // X

there exists a covering sieve R of Y such that for every V //Y in R, there is a
lift :

∂∆n × V

��

// ∂∆n × Y

��

// U

��
∆n × V

66nnnnnnnnnnnnnnnnnnnnnnnnnnnn
// ∆n × Y // X

Theorem 1.6.7. There is a left proper, combinatorial closed model struc-
ture on sSPr(T ) such that the following conditions are satisfied.

— The cofibrations are precisely the projective cofibrations.
— The fibrant objects are exactly those presheaves of∞–groupoids F such
that for any hypercovering U //X of any object X of T , the induced mor-
phism

FX // holim
[∏

α0
FUα0

0
.. 00
∏

α1
FUα1

1

++// 33 . . . ]

is an equivalence of simplicial sets, where the Uαn
n are the representing

objects of the functors of which Un is the coproduct.
— The weak equivalences are exactly those morphisms F //G such that
for any point x of T , the induced morphism Fx

//Gx is a weak equivalence
of ∞–pregroupoids.

This closed model structure is called the local projective closed model structure.
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Proof. Let Hypercov(T, τ) be the class of hypercoverings of objects of T .
Using the smallness of the site, one verifies that there exists a subset H of
Hypercov(T, τ) such that the left Bousfield localization LHτ (sSPr(T ) of the
projective closed model structure with respect to H is the left Bousfield loca-
lization LHypercov(T,τ)(sSPr(T ) with respect to Hypercov(T, τ). The listed
properties follow immediately from the characterization of left Bousfield loca-
lizations. ,

Definition 1.6.8. An ∞–stack or stack in ∞–groupoids is a fibrant object
of the local projective closed model category of presheaves of ∞–pregroupoids.

1.6.9. Now it is possible to ask the question : is the algebraic K–theory
functor K—a presheaf of ∞–groupoids—an ∞–stack for the étale topology ?
for any other interesting topologies ?

The answer turns out to be a very qualified yes. First of all, Thomason sho-
wed that algebraic K–theory does satisfy Zariski descent. For smooth schemes,
he also demonstrated that K–theory satisfies Nisnevich descent. Over a field
with resolution of singularities, Haesemeyer showed that homotopy K–theory
satisfies cdh descent. Finally, K–theory does not itself satisfy étale descent, but
its failure to do so is in a sense bounded : Thomason showed that Bott–inverted
K–theory satisfies descent.

This is still not quite enough to prove the Beilinson–Lichtenbaum conjecture.
The Beilinson–Lichtenbaum spectral sequence does not converge below the line
p + q = d, where d is the cohomological dimension of the absolute Galois
group of the ground field. It therefore cannot be a descent spectral sequence
for K–theory as a presheaf of ∞–groupoids alone. The central idea, due to
Gunnar Carlsson, is to view K instead as a presheaf of ring objects in a certain
category of Mackey functors. This approach, while promising, seems not to have
generated much attention, despite the fact that it may very well lead toward a
conceptual proof of the Beilinson–Lichtenbaum conjecture. The details of the
set–up are perhaps better left for another day.

1.6.10. To study our second question, namely, whether the left Quillen pre-
sheaf Cplx satisfies descent, one may be tempted to try to use our work on
stacks in ∞–groupoids to design a notion of (∞, 1)–stacks. In particular, one
might study presheaves of S–categories on T . The category (S−Cat)T op of all
such presheaves on T has its projective closed model structure, and one can try
to take the left Bousfield localization of this projective closed model structure
with respect to all hypercoverings. The fibrant objects of the resulting closed
model category would be the presheaves of S–categories that satsify descent,
and the weak equivalences would be the local S–equivalences.
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Unfortunately, this seems to require an ability to view an ∞–groupoid G as
an S–category XG in such a way that the objects of XG are precisely those of G
and the n–morphisms ofXG are precisely those ofG. This is impossible, because
the 1–morphisms of ∞–groupoids are only composable up to a 2–morphism,
whereas the 1–morphisms of S–categories are strictly composable. It is there-
fore unclear how to view hypercoverings as S–functors. In order to continue,
therefore, it is necessary to design a theory of (∞, 1)–categories wherein the
1–morphisms are only composable up to a 2–morphism.

2. Delooping machines and (∞, n)–categories
Maybe at times I like to give the impression, to myself and hence to others,

that I am the easy learner of things in life, wholly relaxed, “cool” and all
that—just keen for learning, for eating the meal and welcome smilingly

whatever comes with it’s message, frustration and sorrow and destructiveness
and the softer dishes alike. This of course is just humbug, an image d’Epinal

which at whiles I’ll kid myself into believing I am like. Truth is that I am a
hard learner, maybe as hard and as reluctant as anyone.—A. Grothendieck.

2.1 (Infinite loop spaces and delooping machines)
I will give what I hope is convincing evidence that the study of infinite loop

spaces in algebraic topology has the support of a powerful and deep theory,
and that this theory has pleasant formal properties.

I will begin this subsection by discussing loop spaces, giving their nice pro-
perties, and giving a few examples. Then I will introduce the Stasheff associa-
hedra, A∞–spaces, infinite loop spaces, and finally Segal’s theory of delooping
machines. It will be seen that an infinite hierarchy of higher homotopies must
be dealt with, and it will also be seen that there are two ways of managing
this hierarchy : the Stasheff, or operadic, method, which deals more or less ex-
plicitly with the combinatorics of the homotopies, and the Segal, or simplicial,
method, which hides the combinatorics behind the theory of simplicial sets.
One can today look at these simple constructions through more sophisticated
eyes, and this is exactly what I will do here.

2.1.1. To fix ideas, I will work in the category T of pointed, compactly
generated spaces (with basepoint–preserving continuous maps). Spaces in T
are those spaces X that have the following pleasant properties :

— X is weakly Hausdorff ; that is, the image of any continuous map from
a compact Hausdorff space to X is closed in X.
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— X is Kelley ; that is, any subset U of X that is compactly open—in
the sense that U has open inverse image under any continuous map from
a compact Hausdorff space to X—is in fact open.

The category T itself has extremely nice properties :
— Any space Y can be made into a Kelley space kY (with the same
underlying point set) by declaring that a subset U is open in kY iff U is
compactly open in Y . It can then be made into a compactly generated
space wY by taking the maximal weak Hausdorff quotient. This defines a
functor w from the category of all pointed spaces to T .
— T has all small limits and colimits, which are given by taking the limits
and colimits in the category of all topological spaces and then applying w.
As a rule, I will remove w from the notation, as quite often it is not even
necessary to apply it.
— Though the product in T is the product −×−, where the basepoint
is given by the point whose coordinates are the basepoints of the factors,
there is also a kind of “tensor product” given by the smash product −∧−.
T is closed monoidal category with this product, in the sense that applying
w to a set of continuous, basepoint–preserving maps with the compact–
open topology gives an internal Mor functor (where the basepoint is the
constant map) so that Mor(X ∧ Y, Z) = Mor(X,Mor(Y, Z).
— The geometric realization of any pointed simplicial set is an object of
T ; this defines a functor | − | from the category S of pointed simplicial
sets to T .
— The geometric realization functor is left adjoint to the functor that
sends a compactly generated space to its total singular complex. This pair
forms a Quillen equivalence between S and T with their usual model
structures (where in particular the weak equivalences are given by maps
that induce isomorphisms on all homotopy groups), and so these functors
descend to quasi–inverses between the homotopy categories Ho S and
Ho T .

When I write the word ‘space,’ I mean an object of T , and when I write ‘map,’
I mean a continuous, basepoint–preserving map, unless otherwise noted.

T is really the largest category of pointed spaces that is so well–behaved
formally.

2.1.2. With the conventions above, the loop space ΩX of a space X ∈ T is
the space Mor(S1, X), where of course S1 is a pointed circle. The loop space can
be thought of as a flabby version of the Poincaré fundamental group of X ; it
comes with higher homotopies. Indeed, the connected components of ΩX form
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a group, and that group is naturally isomorphic to π1X. More generally, one
can check easily that πi(ΩX) is naturally isomorphic to πi+1X for any i > 0.

Everyone who has seen the fundamental group defined knows that ΩX
is not quite a topological group, even though its connected components are.
One can compose any two loops by running through one and then the other,
each at double speed. More precisely, the pinching map S1 //S1 ∨ S1 given
by the identification of a non–basepoint with the basepoint induces a natural
transformation from Mor(S1 ∨ S1,−) to Mor(S1,−), so that there is a map
ΩX × ΩX //ΩX , which we can call µ. But the constant loop, which is the ba-
sepoint ? of ΩX, is not a strict unit for this mutliplication law : neither µ(γ, ?)
nor µ(?, γ) is equal to γ, since, for example, µ(γ, ?) is the loop that dawdles
at the basepoint for half the time around the circle, and then rushes through
γ at double speed. Nor is this multiplication law is strictly associative : given
three loops α, β, and γ, the loop µ(α, µ(β, γ)) runs through γ and β both at
quadruple speed and then runs through α at half speed, whereas µ(µ(α, β), γ)
runs through γ at half speed and then runs through β and α at quadruple
speed. (One can actually tidy up this part of the situation by looking at what
are called “Moore loops” to make ΩX equivalent to a topological monoid, but
I needn’t go into this here.) Finally, note that the inverse loop is not a strict
inverse.

The structure of ΩX is described by saying that µ gives ΩX the structure
of a group in the homotopy category of spaces. That is, one has the following :

— The basepoint is a homotopy unit. If ‘?’ denotes the inclusion of the
basepoint into ΩX, then µ ◦ (?×1) and µ ◦ (1× ?) are both homotopic to
the identity on ΩX.
— The multiplication is homotopy–associative. µ◦ (µ×1) and µ◦ (1×µ)
are homotopic maps from ΩX × ΩX × ΩX to ΩX.
— There are homotopy inverses. If ‘ν’ denotes the self–map on ΩX that
sends a loop to its inverse, and ∆ is the diagonal map ΩX //ΩX × ΩX ,
then µ ◦ (1 × ν) ◦∆ and µ ◦ (ν × 1) ◦∆ are each homotopic to the map
that factors through ?.

Serre called a space satisfying the first and second of these of these a homotopy–
associative H–space, in honor of Hopf. We will, by an abuse of terminology,
use the somewhat handier expression H–space to refer to such objects, which,
morally, are spaces Z with maps Z × Z //Z that give monoids in the homotopy
category. The third condition might seem like a key fact about loop spaces, but
in fact it is something of a red herring : it can be done away with altogether by
looking more closely at the first two conditions, which is precisely what I will
do.
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Serre used the loop space quite well : he remarked that if one took the usual
unit interval I with basepoint at (say) 0, one could design a continuous map
from the space ΠX = Mor(I,X) of paths in X to X just by evaluation at
1. This map is a very good map ; to be precise, it is a fibration in the sense
of Serre. The fibre over the basepoint of X is the loop space ΩX. Moreover
ΠX is contractible : one can write the contraction explicitly as shrinking along
the paths. These facts indicate the possibility of an analogy with the universal
principal G–bundle over the classifying space BG of a topological group G :
morally, X can be thought of as the classifying space of the H–space ΩX, and
ΠX can be thought of as the universal torsor for ΩX. From this point of view,
ΩX is the more primitive object, and X is built from it.

Of course the endofunctor Ω = Mor(S1,−) has, by closedness, a left adjoint
Σ = − ∧ S1, called suspension. This means that for any X there are maps
X //ΩΣX (the unit) and ΣΩX //X (the counit) such that the induced maps
ΣX //ΣΩΣX and ΩΣΩX //ΩX are left– and right–invertible, respectively,
with the obvious inverses.

Example 2.1.3. Obviously, it does not take a lot of effort to find examples
of loop spaces. Here are some spaces that have the homotopy type of loop
spaces :

— Z, viewed as a discrete topological group with basepoint 0, is homotopy
equivalent to the loop space of S1 : each of the connected components of
ΩS1 is contractible !
— S1 has the homotopy type of the loop space of P∞C .
— Generalizing the above two examples, any Eilenberg–Mac Lane com-
plex K(π, n) has the homotopy type of ΩK(π, n + 1). To check this, just
note that the Eilenberg–Mac Lane complexes are CW complexes, and that
there is a weak equivalence K(π, n) //ΩK(π, n+ 1) , which therefore must
be a homotopy equivalence.
— Any topological group that has the homotopy type of a CW complex
has the homotopy type of a loop space. Suppose G is such a group, and
construct its classifying space BG as a CW complex. The universal G–
torsor is then a contractible space EG along with a principle G–bundle
EG //BG that is universal in the sense that for any space X, the pullback
map from Mor(X,BG) to the space of principle G–bundles over X is a
bĳection. In particular, the long exact sequence of a fibration tells us that
G has the homotopy type of ΩBG. So in the case where X is a space
that already has the homotopy type of a classifying space, X really is the
classifying space of ΩX, and ΠX really is the universal torsor for ΩX.
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Exercise 2.1.4. If one adopts the attitude that loop spaces are more im-
portant than regular spaces, one can go into the business of sniffing out loop
spaces. The discussion above indicates that a good place to begin is with H–
spaces. But this is not the end of the story : give an example of an H–space (in
the sense described above) that is not a loop space. (Hint : By 2.1.3, you know
already that such an H–space will not be a topological group. After you have
found a H–space that you think is not a loop space, you can show that your
space fails to satisfy the adjunction property of 2.1.2.) You can even construct
such an H–space by imposing a new multiplication law on a CW complex with
the homotopy type of a topological group ! So here is a place where you cannot
rely on the ordinary homotopy category to do the work for you.

2.1.5. If one wishes to find an intrinsic characterization of loop spaces, one
can start by looking at H–spaces. The exercise above indicates that loop spaces
are not run–of–the–mill H–spaces. Looking more deeply at the problem, we can
see that there is a little ambiguity in the axioms for an H–space. An H–space
must have a multiplication law that gives a monoid in the homotopy category,
but without any restrictions on the homotopies themselves. In particular, let
us have a look at the homotopy associativity axiom : fix an H–space X and a
homotopy H from µ ◦ (µ× 1) to µ ◦ (1× µ). We can easily think of five maps
(ΩX)×4 = ΩX × ΩX × ΩX × ΩX //ΩX , which we can arrange as vertices of
a pentagon :

µ ◦ (µ ◦ (1× µ)× 1)

µ ◦ (1× µ ◦ (1× µ))

µ ◦ (µ× µ)

µ ◦ (1× µ ◦ (µ× 1))

µ ◦ (µ ◦ (µ× 1)× 1)
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This picture corresponds to the five ways of bracketing four loops α, β, γ, δ ∈
ΩX in order :

α(β(γδ))

α((βγ)δ)

(αβ)(γδ)

(α(βγ))δ

((αβ)γ)δ

The edges of this pentagon in fact refer to homotopies :

µ ◦ (µ ◦ (1× µ)× 1)
H◦(1×1×µ)

µ ◦ (1× µ ◦ (1× µ))

µ◦(1×H)

µ ◦ (µ× µ)

H◦(µ×1×1)

µ ◦ (1× µ ◦ (µ× 1))

H◦(1×µ×1)

µ ◦ (µ ◦ (µ× 1)× 1) µ◦(H×1)

The shape of the diagram is no accident. By pasting these homotopies to-
gether, we build a map S1 × (ΩX)×4 //ΩX . But now a moment’s reflection is
all that is required to see that these homotopies commute, in the sense that
the corresponding map S1 // Mor((ΩX)×4,ΩX) (which need not respect base-
points, and so is not really a map in our category) is actually null–homotopic ;
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here is the picture :
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β •
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δ
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γ
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β
•

α
•

with the top and bottom edges identified, of course. Graphically, one just
straightens the vertical paths out in a continuous way. In other words, the map
S1 × (ΩX)×4 //ΩX can be extended to a map e2 × (ΩX)×4 //ΩX , where e2
is a 2–cell (or disk).

This need not have happened ; nothing in the axioms of an H–spaces forces
this null–homotopy to exist. But for loop spaces, we have this condition, which
one can think of as a secondary homotopy condition. One can carry on like this,
obtaining a tertiary homotopy condition, etc.

2.1.6. Stasheff, inspired by Sugawara’s earlier recognition principle for loop
spaces, defined spaces Km for each m > 1, called the associahedra or the
Stasheff polytopes, as (m − 2)–cells em−2 with a prescribed subdivision of the
boundary Sm−3 into a polyhedron with bm vertices, where bm is the number of
ways to form pairwise brackets about m letters in a fixed order. So K2 is a point
and K3 is a unit interval ; not much work can be done at the boundary. Then
he defined Am–spaces for every m > 1 inductively as follows : an A2–space is
simply an H–space Z ; from the map

K2 × Z×2 = Z×2
M2 // Z

one constructs a map

(∂K3)× Z×3 = S0 × Z×3 ∂M3 // Z

by sending (0, λ, µ, ν) toM2(M2(λ, µ), ν) and sending (1, λ, µ, ν) toM2(λ,M2(µ, ν)).
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Now an Am–space is an Am−1–space Z such that the map

(∂Km)× Z×m ∂Mm // Z

constructed (in a completely combinatorial way, the general description of

which is unenlightening) from the maps Z×n Mn //Z for n < m, extends to
a map

Km × Z×m
Mm // Z

Of course an A∞–space is a space Z with maps

Km × Z×m
Mm // Z

for all m > 1 which give X the structure of an An–space for any n > 1.

Exercise 2.1.7. Find an explicit formula for bm in terms of m. Can you
say how many faces (i.e., (m− 3)–cells ∂Km must have ?

2.1.8. K2 is, as we have already said, a point, and K3 is an interval. K4

is the solid Stasheff pentagon drawn above, and K5 is a solid polyhedron with
14 vertices, 21 edges, and 9 faces (3 quadrilaterals and 6 pentagons). A nice
rotatable graphic of K5 is available from

http ://www.labmath.uqam.ca/ chapoton/stasheff.html.

Theorem 2.1.9 (Stasheff). An H–space Z is a loop space iff Z is an A∞–
space and π0Z is a group. Moreover Ω induces an equivalence of categories
between the category of connected spaces and the category of A∞–spaces whose
connected components form a group.

About the Proof. The essence of the idea is to construct and use a classifying
space and universal torsor for an A∞–space, following the intuition suggested
above. ,

2.1.10. Stasheff’s associahedra combine to form what is called an operad,
a notion due essentially to Boardman, Vogt, and May. I’ll briefly describe this
notion in a heuristic way. Operads can live in any symmetric monoidal category,
but there is no reason to use that level of generality ; I’ll stick to my category T .
An operad X here consists of objects Xj for j > 0, an action of the symmetric
group Σj on each Xj , and maps from Xj1 × · · · ×Xjn

to Xj1+···+jn
which are

associative, unital, and equivariant in a precise sense, which I’ll not go into
here.

It’s much better to see an example of an operad in action. For some n > 0,
one has the little n–cubes operad P(n), which acts on n–fold loop spaces, i.e.,
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spaces of the form ΩnX for some space X. To begin, build a subspace Pj(n) ⊆
Mor(Sn,

∨m=j
m=1 S

n) by only considering those maps from Sn = In/∂In to the
bouquet of m copies of Sn that lift to maps that are constant outside m cubes
Ci in In, each of which is mapped linearly onto the i-th copy of In. Σj acts
on Pj(n) in a natural way, and one can check that the Pj(n) form an operad
P(n).

Now we can see that P(n) acts on ΩX : each point

Sn // ∨m=j
m=1 S

n

of Pj(n) induces a map

(ΩnX)×j = Mor(
∨m=j

m=1 S
n, X) // Mor(Sn, X) = ΩnX

and we have our action.
An En–space is a space along with an action of P(n). So n–fold loop spaces

are En–spaces. J. P. May proved the analogue to 2.1.9, which essentially says
that :

— Ωn, viewed as a functor to En–spaces whose connected components
form a group, has a left adjoint Bn,
— that the components X //ΩnBnX of the unit are equivalences of En–
spaces whenever π0X is a group, and
— that the components BnΩnZ //Z of the counit are homotopy equiva-
lences whenever Z is (n− 1)–connected.

Example 2.1.11. Further still, one can try to give a recognition principle
for infinite loop spaces, i.e., spaces of the form Ω∞X = colim ΩmX. This is in-
deed possible, but before we discuss this, we should remark on some interesting
infinite loop spaces :

— Eilenberg–Mac Lane spaces are always infinite loop spaces, since
K(π, n) always has the homotopy type of ΩK(π, n+ 1).
— Bott Periodicity states that Z × BU has the homotopy type of its
double loop space Ω2(Z× BU), and that Z× BO has the homotopy type
of its 8–fold loop space Ω8(Z×BO). Hence both Z×BU and Z×BO are
infinite loop spaces.
— The classifying space of a category C is a space assigned to C : the
classifying space of C is then the geometric realization BC = |ν•C |. The
classifying space of a symmetric monoidal category is always an infinite
loop space.

2.1.12. Note that the little (n− 1)–cubes operad embeds into the little n–
cubes operad. Then the little cubes operad P(∞) is the colimit of the P(n)
for all n. An E∞–space is a space equipped with an action of P(∞). It clearly
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acts on an infinite loop space Ω∞X, and now one can prove an analogue of
2.1.9 for infinite loop spaces, which essentially says that a space is an infinite
loop space iff it is an E∞–space.

2.1.13. I can try an alternative strategy for understanding loop spaces and
infinite loop spaces that is a little more accessible : I can try to talk simplicial
sets into keeping track of classes of formulas like µ ◦ (µ× 1) and µ ◦ (1×µ) for
me. This is Segal’s approach to loop spaces and infinite loop spaces, introdu-
ced through a privately–distributed manuscript called “Homotopy–Everything
H–Spaces,” sketched by Anderson, and continued in Segal’s famous paper, “Ca-
tegories and Cohomology Theories.” If Z is an H–space, then one can take a
variant of the above construction by viewing Z as a monoid in the homotopy
category, which is in particular a category Z , and we can then take the nerve
ν•Z . This can be viewed as a simplicial object in Ho T with the property that
[n] is sent to Z×n, the first degeneracy map is the multiplication map µ, and
the rest of the face and degeneracy maps are given by obvious products of µ,
1, and inclusions. If one finds a lift of this to a simplicial object in T , one can
form a classifying space, and proceed using the yoga of Stasheff and Sugawara.

Suppose Λ• a simplicial object of T . Then one has n face maps Λn
//Λ1 ,

which can be combined to form a single map Λn
//(Λ1)×n . Segal calls Λ•

a special simplicial space if these maps are homotopy equivalences for every
n > 1.

This is clearly a very elegant way to organize arbitrarily high homotopies,
and it is a point of view that informs a large part of the applications to algebraic
geometry that we will encounter here.

Theorem 2.1.14 (Segal). A space Z is an A∞–space iff there exists a
special simplicial object Λ• in T such that Λ1 = Z.

2.1.15. In this situation, Λn is homotopy equivalent to Z×n, and Λn is
playing the role of the product Pj × Z×n. Segal’s approach is in some sense
doubly nice : not only is it refreshingly easy to describe the parameter spaces
(especially since the Λn are pulling double duty !), but the ugly combinatorics
are hidden behind the pleasant opaque veneer of simplicial sets.

This same trick will work for infinite loop spaces, but one needs a bigger
category. Define Γ to be the category whose objects are finite sets, and whose
morphisms are maps between the power sets of these finite sets that preserve
disjoint unions. A Γ–space is then a contravariant functor from Γ to T . Now ∆
embeds into Γ in an obvious way : any nondecreasing map f from {0, 1, . . . ,m}
to {0, 1, . . . , n} gives a morphism from the power set of {0, 1, . . . ,m} to that of
{0, 1, . . . , n} by sending any one–point set {i} to the set {0 6 j 6 n | f(i−1) <
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j 6 f(i)}. Hence a Γ–space gives rise to a simplicial space. Now a special
Γ–space is a Γ–space that gives rise to a special simplicial space in this way.

Theorem 2.1.16 (Segal’s Delooping Machine). A space Z is an E∞–
space iff there exists a special Γ–space P such that P (?) = Z.

Exercise 2.1.17. The Segal approach is so elegant that I can without he-
sitation give the following exercise : read Stasheff’s proof of 2.1.9, and use this
strategy to devise a proof of the theorems of Segal.

2.1.18. I’ve given two ways of dealing with the hierarchies of higher homo-
topies in the associativity of the product of loops in loop spaces and infinite
loop spaces. Segal’s delooping machine is certainly much easier to define and
prove theorems with, but it has the unfortunate disadvantage of not being very
explicit. Γ–spaces are very flabby objects, and explicit computations could be
very difficult. Nevertheless, for our applications, Segal’s theory has the nicest
formal properties, and his delooping machine will be used heavily (sometimes
in disguise) in the sequel.

2.2 (Weak (∞, n)–categories). Beginning with the theory of ∞–
pregroupoids and ∞–groupoids, I now use Segal’s delooping machine to
produce a theory of (∞, n)–categories. The idea is that an (∞, 1)–category
is a multi-object version of a Segal space, i.e., (∞, 1)–categories are to Segal
spaces what categories are to monoids.

Presumably, any delooping machine can be used, in an altogether analogous
way, to produce a theory of (∞, n)–categories that, by the May–Thomason
Uniqueness Theorem, is equivalent (in an appropriate sense) to the one I in-
troduce here. This idea has not yet been made precise, but Toën’s work on an
axiomatization of the theory of (∞, 1)–categories inspires hope.

Definition 2.2.1. I define Segal n–precategories recursively : suppose that
one has defined the following :

— a category Se− (n− 1)−PC of Segal (n− 1)–precategories, and
— a fully faithful functor cn−1 from Set to Se−(n−1)−PC, the objects
of the essential image of which are called constant.

Then I define the following :
— the category Se−n−PC of Segal n–precategories, the full subcategory
of the category Mor(∆op,Se− (n− 1)−PC) of simplicial objects in the
category of Segal (n−1)–precategories spanned by those simplicial objects
[p] � //Ap such that A0 is a constant Segal (n− 1)–precategory, and
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— the fully faithful functor cn from Set to Se − (n − 1) − PC, defi-
ned by sending a set S to the constant simplicial object taking its value
at cn−1(S), so that a constant Segal n–category is a constant simplicial
object of Se− (n− 1)−PC, taking its value on a constant Segal (n− 1)–
precategory.

2.2.2. One can “dévisser” this definition : a Segal n–precategory is nothing
more than a multisimplicial set

(∆op)×(n+1) // Set

(m1, . . . ,mn+1)
� // A(m1,...,mn+1)

that satisfies Tamsamani’s constancy condition, i.e., for any (m1, . . . ,mi) ∈
(∆op)×i, if mi = 0, then the functor (mi+1, . . . ,mn+1)

� //A(m1,...,mn+1) is a
constant functor (∆op)×(n−i+1) //Set .

Hence, forming the quotient Θn+1 of (∆op)×(n+1) by identifying
(m1, . . . ,mn+1) = (m1, . . . ,mi−1, 0, . . . , 0),

whenever mi = 0, then one can define a Segal n–precategory as a functor from
Θn+1 to Set.

2.2.3. Now to define Segal n–categories. Suppose, for the sake of discussion,
that A is a Segal 1–precategory. One should expect A to be a Segal 1–category
provided that A is a good model for an∞–category, all of whose n–morphisms
are invertible if n > 1. If x and y are elements of the set A0, then one should
probably expect that one can define the simplicial set of morphisms from x
to y. The two face maps from [0] to [1] in ∆ induce a morphism from A1 to
A0 ×A0 by taking the product. One should think of this morphism as sending
a morphism to the pair consisting of its source and target. So a composition
law should resemble a morphism from A1 ×A0 A1 to A1, where the morphisms
from A1 to A0 consist of the morphism from A1 to A0 × A0, composed with
the first and second projection, respectively. This not quite what I have. I have
the obvious variant of the Segal map from 2.1.13 : Ap

//A1 ×A0 · · · ×A0 A1

(where the maps alternate : source, target, source, target, . . .), and I have
the obvious map Ap

//A1 (induced by sending [1] to [p] via the inclusion of
{0, p} into [p]). Instead of defining a strict map from A1 ×A0 · · · ×A0 A1 to
A1 making the diagram commute, one requires instead that the Segal map is
a weak equivalence of simplicial sets. Hence composition is only defined up to
homotopy.
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Definition 2.2.4. I define Segal n–categories recursively : let the category
Se−0−Cat of Segal 0–categories be the category Se−0−PC of simplicial sets.
For any Segal 0–category A, let τ60A be the discrete category whose objects
are π0(A) (i.e., the connected components of A). Now suppose that one has
defined the following :

— a full subcategory Se − (n − 1) − Cat of Se − (n − 1) − PC, whose
objects are called Segal (n− 1)–categories,
– for any object A ∈ Se − (n − 1) − Cat, a category τ60A, called the
homotopy category of A,
— a subcategory of Se− (n− 1)−Cat, whose objects are the same and
whose morphisms are called equivalences.

Then I define the following :
— the category Se− n−Cat of Segal n–categories, the full subcategory
of Se − n − PC spanned by those Segal n–precategories A such that
for any [p] ∈ ∆op, Ap is an (n − 1)–category, and the Segal morphism
Ap

//A1 ×A0 · · · ×A0 A1 is an equivalence of (n− 1)–categories,
— for any object A ∈ Se− n−Cat, the homotopy category τ60A is the
category whose set of objects is A0 and whose set of morphisms is the set
of isomorphism classes of objects of τ60A1 (with the obvious sources and
targets)
— a morphism A //B of Segal n–categories is a Dwyer–Kan equivalence
iff it induces a Dwyer–Kan equivalence of categories HoA // HoB and,
for any [p] ∈ ∆op, an equivalence of Segal (n− 1)–categories Ap

//Bp .

Exercise 2.2.5. Show that HoA is actually a category ; that is, show that
compositions exist, and composition is associative.

2.2.6. One has now a kind of strictification endofunctor SeCat of Se−n−
PC, along with a natural transformation σ from the identity functor to SeCat
such that :

— for any Segal n–precategory A, SeCat(A) is a Segal n–category ;
— for any Segal n–precategory A, σA induces a bĳection between A0 and
SeCat(A)0 ;
— for any Segal n–category A, σA is a Dwyer–Kan equivalence of n–
categories ; and
— for any Segal n–precategory A, SeCat(σA) is a Dwyer–Kan equiva-
lence of n–categories.

2.2.7. Though it would take me somewhat far afield to define them, the
theory of Segal n–categories is sufficiently rich to deal with the usual universal
constructions in category theory, such as the notions of fullness, faithfulness,
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limit, colimit, adjunction, Kan extensions (though I have not yet seen this in
the literature), Yoneda embeddings, etc.

Example 2.2.8. There are tons of examples. I’ll just list a few.
— Any set is a Segal n–category in the obvious way. This is not an in-
teresting example.
— Carlos Simpson demonstrated that the category Se − (n − 1) − Cat
can be viewed naturally as a Segal n–category.
— Any S–category can in particular be viewed as a Segal 1–category.

2.2.9. Observe that Segal 0–categories are the same as ∞–pregroupoids.
Preference for the latter terminology is justified and generalized by means of
the existence of the free closed model structures introduced below.

2.3 (Closed model structures for (∞, n)–precategories)
I briefly describe two closed model structures on the category of Segal n–

precategories.

Scholium 2.3.1. For every n > 0, there is a cofibrantly generated, internal
closed model structure on Se − n − PC. These model structures possess the
following properties.

— The model structure on Se − 0 − PC is the model structure on ∞–
pregroupoids.
— For any n, the cofibrations of this model structure are precisely the
monomorphisms.
— Any fibrant object is a Segal n–category, but not conversely.
— A morphism A //B of Segal n–categories is a weak equivalence iff it
is a Dwyer–Kan equivalence.

This closed model structure will be called the Hirschowitz–Simpson closed model
structure.

About the Proof. This is proved using a complicated induction and the small
object argument. A similar theorem for the Tamsamani–Simpson theory of
n–categories appeared earlier. ,

2.3.2. In fact, not all objectwise fibrant Segal n–categories—Segal n–
categories A such that Ap is a fibrant Segal (n − 1)–category for every
p ∈ ∆op—are fibrant. There are in some sense very few fibrant objects in the
Hirschowitz–Simpson closed model structure, and they are very difficult to
characterize. This motivates the following result of mine.
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Scholium 2.3.3. For every n > 0, there is a proper, combinatorial closed
model structure on Se− n−PC. These model structures possess the following
properties.

— The model structure on Se−0−PC is the Quillen closed model struc-
ture on ∞–pregroupoids.
— For any n > 0, the identity functor is a left Quillen equivalence from
this model structure to the Hirschowitz–Simpson closed model structure.
— The cofibrations are certain “free” cofibrations.
— For any n > 0, the fibrant objects in this model structure are precisely
those Segal n–categories A such that for every p ∈ ∆op, Ap is fibrant in
the free closed model structure on Se− (n− 1)−PC.
— For any n > 0, a morphism A //B of Simpson Se−n−PC–categories
is a weak equivalence in this model structure iff it is a Dwyer–Kan equi-
valence.

About the Proof. A version of this theorem was proved for n = 1 by J. Bergner
in her thesis. The general case appears in my thesis. The proof proceeds by
induction on n. For n = 0, there is nothing to say. To construct the desired
closed model structure on Se−n−PC, one defines a kind of projective closed
model structure, takes a certain left Bousfield localization to ensure that the
fibrant objects are exactly the objectwise fibrant Segal n–categories, and then
takes a right Bousfield localiztion to ensure that the weak equivalences between
fibrant objects are exactly the Dwyer–Kan equivalences. ,

Definition 2.3.4. A Segal n–precategory is called a Simpson (∞, n)–
category if it is a fibrant object of the free closed model structure. In
particular, Simpson (∞, 0)–categories are exactly ∞–groupoids.

2.3.5. It is my view that Simpson (∞, n)–categories are a better model for
(∞, n)–categories. By induction, they are Segal n–categories A such that the
simplicial set A(m1, . . . ,mn) is fibrant for any (m1, . . . ,mn) ∈ Θn.

It should be noted that the ease with which one can characterize fibrant
objects in the free closed model structure has come at a price : it is not an
internal closed model structure ; there is no homotopically correct internal Mor
functor in the free closed model structure.

2.3.6. The diagonal functor Se− n−PC //sSet can be viewed as the
assignment that formally inverts all i–morphisms for i 6 n.

Lemma 2.3.7. The diagonal functor Se− n−PC //sSet is a left Quillen
functor for both the Hirschowitz–Simpson and the free closed model structures.
Its right adjoint is denoted <.
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2.4 (Descent for (∞, n)–stacks). In this section, I explain descent for
presheaves of (∞, n)–categories, using the free closed model structure. This
follows closely the discussion of stacks in ∞–groupoids. Again let (T, τ) be a
site with enough points. Let (∞, n) − PS(T ) be the category of presheaves
of Segal n–precategories. Recall that since the free closed model structure is
combinatorial, (∞, n)−PS(T ) has a projective closed model structure.

Theorem 2.4.1. There is a left proper, combinatorial closed model struc-
ture on (∞, n)−PS(T ) such that the following conditions are satisfied.

— The cofibrations are precisely the projective cofibrations.
— The fibrant objects are exactly those presheaves of Simpson (∞, n)–
categories F such that for any hypercovering U //X of any object X of
T , the induced morphism

FX // holim
[∏

α0
FUα0

0
.. 00
∏

α1
FUα1

1

++// 33 . . . ]

is an equivalence of simplicial sets, where the Uαn
n are the representing

objects of the functors of which Un is the coproduct.
— The weak equivalences are exactly those morphisms F //G such that
for any point x of T , the induced morphism Fx

//Gx is a Dwyer–Kan
equivalence of Simpson (∞, n)–categories.

This closed model structure is called the local projective closed model structure.

Proof. By using the functor R, any hypercovering can be seen as a morphism
of Segal n–precategories. Now, as before, one verifies that the left Bousfield
localization of the projective closed model structure with respect to all hyper-
coverings exists and satisfies the listed properties. ,

Definition 2.4.2. An (∞, n)–stack is a fibrant object of the local projective
closed model structure on (∞, n)−PS(T ).

2.4.3. Finally, one can put forward the following question : is the assi-
gnment SpecR � //LCplx(R) an (∞, 1)–stack for any familiar topologies on
the category of affine schemes ? The answer is yes, but it turns out not to
be so easy to verify this. Indeed, in the first version of Descente pour les n–
Champs in 1998, Hirschowitz and Simpson gave a faulty proof of this. This
result had to be partially retracted, and the authors were able to verify descent
(for any subcanonical topology) only for the presheaf of positive complexes
SpecR � //LCplx+(R) .

In my forthcoming note Redintegration of a Theorem of Hirschowitz and
Simpson, I demonstrate that, as a consequence of a generalized tilting theorem
of Schwede and Shipley, for any ring R, the closed model category HR−Mod
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of modules over the Eilenberg–Mac Lane E∞ ring spectrum HR is Quillen
equivalent to the closed model category Cplx(R) of unbounded complexes,
and, moreover, this Quillen equivalence gives rise to a functorial equivalence
of Dwyer–Kan simplicial localizations L(HR−Mod) // LCplx(R) . In lieu of
SpecR � //LCplx(R) , one can therefore study the presheaf of Simpson (∞, 1)–
categories A � //L(A−Mod) on the opposite model category AHZ of the model
category of HZ–algebras, and pull back this presheaf along the Eilenberg–
Mac Lane functor H. Using Toën and Vezzosi’s theory of homotopical algebraic
geometry, I observe that for any subcanonical topology τ on the category of
affine schemes, there is a topology on Ho AHZ such that the Eilenberg–Mac
Lane functor H is a continuous morphism of model sites, and the 1–prestack
A � //L(A−Mod) is a 1–stack. A corollary is that the Hirschowitz–Simpson
descent result for positive complexes can be extended to unbounded complexes,
as it was originally envisioned.

Theorem 2.4.4. The 1–prestack SpecR � //LCplx(R) is a 1–stack for the
category of affine schemes equipped with any subcanonical topology.
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Abstract . In this note, we present a survey on the problem of the existence of a
self-dual normal basis in a finite Galois extension and say how this problem is related
to the study of trace forms of Galois algebras.

1. Self-dual normal bases
Let K be a commutative field and L be a finite Galois extension of K. We
denote by Γ the Galois group of L/K. A normal basis of L/K is a K-basis of
L of the form (γ(x0))γ∈Γ , for some x0 in L×. It is well known that every finite
Galois extension has a normal basis (cf. [Bou59] and [Bou52]). The trace
form of L/K is the non-degenerate symmetric bilinear form bL : L × L 7→ K
defined by

bL(x, y) = trL/K(xy)
for all x, y ∈ L.
A normal basis (γ(x0))γ∈Γ of L/K is said to be self-dual if

bL(γ(x0), γ′(x0)) = δγ,γ′

for all γ, γ′ ∈ Γ .
As we will see (cf. Theorem 1.2), not every Galois extension has a self-dual

normal basis. So, one can ask the following

January 20, 2005.
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Question 1.1. Which finite Galois extensions have a self-dual normal ba-
sis ?

No complete answer to this question is known. Let us recall the main results
on this topic. E. Bayer-Fluckiger and H. W. Lenstra, Jr. gave a complete
criterion for the existence of a self-dual normal basis in an abelian extension
(cf. [BFL90]) :

Theorem 1.2. Let L/K be a finite abelian extension with Galois group Γ .
a) Assume that char(K) 6= 2. Then L/K has a self-dual normal basis if and

only if [L : K] is odd.
b) Assume that char(K) = 2. Then L/K has a self-dual normal basis if and

only if the exponent of Γ is not divisible by 4.

They proved also that every Galois extension of odd degree has a self-dual
normal basis (cf. [BF89] and [BFL90]) :

Theorem 1.3. Let L/K be a finite Galois extension. If L/K is of odd
degree, then L/K has a self-dual normal basis.

E. Bayer-Fluckiger and J.-P. Serre provided still partial results for the self-dual
normal basis problem for Galois extensions of characteristic not 2 and of even
degree (cf. [BFS94]).

2. A reformulation of the problem
We will see that the self-dual normal basis problem for a Galois extension with
Galois group Γ can be reformulated in terms of Γ -symmetric spaces.

Let G be a finite group and K a commutative field. A G-symmetric space
over K is a pair (V, q), where V is a finite dimensional K-vector space with an
operation of G by automorphisms of V and b : V ×V → K is a non-degenerate
symmetric bilinear form such that

b(g · u, g · v) = b(u, v)
for all u, v ∈ V and g ∈ G.

Examples 2.1.
a) Let L/K be a finite Galois extension with Galois group Γ . Then the pair

(L, bL) is a Γ -symmetric space over K for the natural operation of Γ on L.
b) Let K[G] be the group algebra of G over K with the natural operation of

G. We denote by b0 : K[G] ×K[G] → K the symmetric bilinear form defined
by

b0(g, h) = δg,h
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for all g, h ∈ G.
Then the pair (K[G], b0) is a G-symmetric space over K called the unit G-
symmetric space.

Let (V, b) and (V ′, b′) two G-symmetric spaces over K. One says that (V, b)
and (V ′, b′) are isomorphic if there exists an isomorphism of K-vector spaces
f : V → V ′ such that

f(g · v) = g · f(v)
for all v ∈ V and g ∈ G ;

b′(f(u), f(v)) = b(u, v)
for all u, v ∈ V .
If so, one writes (V, b) 'G (V ′, b′).

The following fact (cf. [BFL90]) leads to a reformulation of the self-dual
normal basis problem :

Proposition 2.2. Let L/K be a finite Galois extension with Galois group
Γ . The following conditions are equivalent :

a) L/K has a self-dual normal basis.
b) (L, bL) and (K[Γ ], b0) are isomorphic as Γ -symmetric spaces.

3. Some notations
From now, G is a finite group and K is a commutative field of char(K) 6= 2.
Then symmetric bilinear forms overK correspond bĳectively to quadratic forms
over K. We will consider quadratic forms instead of symmetric bilinear forms
and G-quadratic spaces instead of G-symmetric spaces.

If L is a finite Galois extension of K, we denote by qL : L→ K the quadratic
form associated with the symmetric bilinear form bL : L× L→ K. We denote
by q0 : K[G] → K the quadratic form associated with the symmetric bilinear
form b0 : K[G]×K[G]→ K.

Let Quadr(G,K) be the category of G-quadratic spaces over K. We will
need the following functors, which are defined as usual (cf. [Leq03]):

the scalar extension functor
Quadr(G,K)→ Quadr(G,E), (V, q) 7→ (V, q)E ,

for any field extension E/K ;
the restriction functor

Quadr(G,K)→ Quadr(S,K), (V, q) 7→ ResG
S (V, q),

for any subgroup S of G ;
the induction functor
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Quadr(S,K)→ Quadr(G,K), (V, q) 7→ IndG
S (V, q),

for any subgroup S of G.

4. Odd degree extensions
One has the following result (cf. [CP84]) :

Lemma 4.1. Let L be a finite Galois extension of K with Galois group Γ .
Then the Γ -quadratic spaces (L, qL)L and (K[Γ ], q0)L over L are isomorphic.

Moreover, in [BFL90], E. Bayer-Fluckiger and H. W. Lenstra, Jr. prove the

Theorem 4.2. Let (V, q) and (V ′, q′) be two G-quadratic spaces over K.
Let E be an extension of K of odd degree. Then (V, q) 'G (V ′, q′) if and only
if (V, q)E 'G (V ′, q′)E.

It follows from Lemma 4.1, Theorem 4.2 and Proposition 2.2 that every
Galois extension L of K of odd degree has a self-dual normal basis (cf. th.
1.3).

5. Galois algebras
In the previous section, we have seen that it can be useful to pass to finite
extensions of the base field. In order to do this, one has to consider not only
Galois extensions but Galois algebras.

A Galois algebra over K is an étale K-algebra L with an operation of G
by automorphisms of L such that G acts simply and transitively on the set
HomK−alg(L,Ks), where Ks is a separable closure of K.

Two G-Galois algebras L and L′ over K are said to be isomorphic if there
exists an isomorphism of K-algebras f : L→ L′ such that

f(g · x) = g · f(x)
for all x ∈ L and g ∈ G.

Let L be a G-Galois algebra over K. We still denote by qL : L → K the
(quadratic) trace form of L. Then (L, qL) is a G-quadratic space over K.

Example 5.1. The split G-Galois algebra over K is L0 = K×...×K, where
G acts by permuting the factors simply and transitively. One has (L0, qL0) ∼=G

(K[G], q0).
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Let Gal(G,K) be the category of G-Galois algebras over K. One defines as
usual the two following functors (cf. [Leq03]):

the scalar extension functor
Gal(G,K)→ Gal(G,E), L 7→ LE ,

for any field extension E/K ;
the induction functor

Gal(S,K)→ Gal(G,K), M 7→ IndG
SM ,

for any subgroup S of G.

6. The induction problem
Of course, the self-dual normal basis problem can be raised in the context of
Galois algebras. The reformulation of this problem leads to study the classifi-
cation of the G-quadratic spaces (L, qL), for L a G-Galois algebra (cf. Propo-
sition 2.2 and Example 5.1). In order to do this, E. Bayer-Fluckiger and J.-P.
Serre developed in [BFS94] the following method.

Proposition 6.1. Let L be a G-Galois algebra over K. Let S be a 2-Sylow
subgroup of G. Then there exist E an extension of K of odd degree and M a
S-Galois algebra over E such that LE and IndG

SM are isomorphic as G-Galois
algebras over E.

Let L and L′ be two G-Galois algebras over K. Let S be a 2-Sylow subgroup
of G. It follows from Proposition 6.1 that there exist E an extension of K of
odd degree and M and M ′ two S-Galois algebras over E such that the G-
Galois algebras LE and IndG

SM are isomorphic and the G-Galois algebras L′E
and IndG

SM
′ are isomorphic. Then, from th. 4.2, one has:

(L, qL) 'G (L′, qL′) ⇔ (L, qL)E 'G (L′, qL′)E

⇔ IndG
S (M, qM ) 'G IndG

S (M ′, qM ′).

This leads to raise the induction problem:

Problem 6.2. Let S be a 2-Sylow subgroup of G. Let (V1, q1) and (V2, q2)
be two S-quadratic spaces over K. Could one give necessary and sufficient
conditions for the G-quadratic spaces IndG

S (V1, q1) and IndG
S (V2, q2) to be iso-

morphic?

E. Bayer-Fluckiger and J.-P. Serre gave such conditions in the case where
S is elementary abelian (cf. [BFS94]). Their result can be generalized to the
case where S is abelian (cf. [Leq03]) and be formulated as follows:
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Theorem 6.3. Let S be a 2-Sylow subgroup of G. Suppose that S is abelian.
Let N be the normalizer of S in G. Let (V1, q1) and (V2, q2) be two S-quadratic
spaces over K. Then the following conditions are equivalent:

a) The G-quadratic spaces IndG
S (V1, q1) and IndG

S (V2, q2) are isomorphic.
b) The S-quadratic spaces ResG

S IndG
S (V1, q1) and ResG

S IndG
S (V2, q2) are iso-

morphic.
c) The N -quadratic spaces IndN

S (V1, q1) and IndN
S (V2, q2) are isomorphic.

Under certain additional hypotheses, these results let to state cohomological
criteria for the isomorphy of the G-quadratic spaces (L, qL) and (L′, qL′), for L
and L′ two G-Galois algebras, and, consequently, for the existence of a self-dual
normal basis in a G-Galois algebra (cf. [BFS94] and [Leq03]).
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Abstract . We show that, within the hypercube |x|, |y|, |z|, |w| 6 2.5 · 106, the Dio-
phantine equation x4 +2y4 = z4 +4w4 admits essentially one and only one non-trivial
solution, namely

(±1 484 801,±1 203 120,±1 169 407,±1 157 520).

The investigation is based on a systematic search by computer.

1. Introduction
1.1. An algebraic curve C of genus g > 1 has at most a finite number of

Q-rational points. On the other hand, for genus one curves, #C(Q) may be
zero, finite nonzero, or infinite. For genus zero curves, one automatically has
#C(Q) =∞ as soon as C(Q) 6= ∅.

January 2005.

The first author was partially supported by a Doctoral Fellowship of the Deutsche Forschungs-
gemeinschaft (DFG). The computer part of this work was executed on the Linux PCs of the
Gauss Laboratory for Scientific Computing at the Göttingen Mathematical Institute. Both
authors are grateful to Prof. Y. Tschinkel for the permission to use these machines as well as
to the system administrators for their support.



204 Mathematisches Institut, Seminars, 2004-05

1.2. In higher dimensions, there is a conjecture, due to S. Lang, stating
that if X is a variety of general type over a number field then all but finitely
many of its rational points are contained in the union of closed subvarieties
which are not of general type. On the other hand, abelian varieties (as well as,
e.g., elliptic and bielliptic surfaces) behave like genus one curves, i.e., #X(Q)
may be zero, finite nonzero, or infinite. Finally, rational and ruled varieties
behave in many respects like genus zero curves.

This list does not yet exhaust the classification of algebraic surfaces, to say
nothing of dimension three or higher. In particular, the following problem is
still open.

Problem. 1.1. Does there exist a K3 surface over Q which has a finite
nonzero number of Q-rational points, i.e., such that 0 < #X(Q) <∞?

Remark. 1.2. This question was posed by Sir P. Swinnerton-Dyer as Prob-
lem/Question 6.a) in the problem session of the workshop [PT04]. We are not
able to give an answer to it.

Problem. 1.3. Find a third point on the projective surface S ⊂ P3 defined
by

x4 + 2y4 = z4 + 4w4.

Remarks. 1.4. i) The equation x4 + 2y4 = z4 + 4w4 defines a K3 sur-
face S in P3. As trivial solutions of the equation, we consider those corre-
sponding to the Q-rational points (1 :0 :1 :0) and (1 :0 :(−1) :0).

ii) Problem 1.3 is also due to Sir P. Swinnerton-Dyer [PT04, Question 6.c)].
It was raised in particular during his talk [SD, very end of the article] at the
Göttingen Mathematisches Institut on June 2nd, 2004.

Our main result is the following theorem containing an answer to Problem 1.3.

Theorem. 1.5. The diagonal quartic surface in P3 defined by

(∗) x4 + 2y4 = z4 + 4w4

admits precisely ten Q-rational points which allow integral coordinates within
the hypercube |x|, |y|, |z|, |w| < 2.5 · 106.

These are (±1:0 :±1:0) and

(±1 484 801:±1 203 120:±1 169 407:±1 157 520).
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2. Congruences
2.1. It seems natural to first try to understand the congruences

(+) x4 + 2y4 ≡ z4 + 4w4 (mod p)

modulo a prime number p. For p = 2 and 5, one finds that all primitive
solutions in Z satisfy

a) x and z are odd,
b) y and w are even,
c) y is divisible by 5.

For other primes, the Weil conjectures, proven by P. Deligne [Del74], imply
that the number of solutions to the congruence (+) is 1+(p−1)(p2+p+1+E),
where E is an error-term which may be estimated by |E| 6 21p.

Indeed, let X be the projective variety over Q defined by (∗). It has good
reduction at every prime p 6= 2. Therefore, [Del74, Théorème (8.1)] may
be applied to the reduction Xp. This yields #Xp(Fp) = p2 + p + 1 + E
and |E| 6 21p. We note that dimH2(X ,R) = 22 for every complex surface X
of type K3 [Ber01, p. 98].

2.2. Another question of interest is to count the numbers of solutions to the
congruences x4+2y4 ≡ c (mod p) and z4+4w4 ≡ c (mod p) for a certain c ∈ Z.

This means to count the Fp-rational points on the affine plane curves Cl
c

and Cr
c defined over Fp by x4 + 2y4 = c and z4 + 4w4 = c, respectively. If p - c

and p - 2 then these are smooth curves of genus three.
By the work of André Weil [Wei48, Corollaire 3 du Théorème 13], the

numbers of Fp-rational points on their projectivizations are given by

#Cl
c(Fp) = p+ 1 + El and #Cr

c(Fp) = p+ 1 + Er,

where the error-terms can be bounded by |El|, |Er| 6 6
√
p. There may be up

to four Fp-rational points on the infinite line.
For our purposes, it suffices to notice that both congruences have approxi-

mately p solutions.

The case p|c, p 6= 2 is slightly different since it corresponds to the case of a
reducible curve. The congruence x4 + ky4 ≡ 0 (mod p) admits only the trivial
solution if (−k) is not a biquadratic residue modulo p. Otherwise, it has exactly
1 + (p− 1) gcd(p− 1, 4) solutions.

Finally, if p = 2 then, #Cl
0(Fp) = #Cr

0(Fp) = p and #Cl
1(Fp) = #Cr

1(Fp) = 2p.
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Remark. 2.1. The number of solutions to the congruence (+) is∑
c∈Fp

#Cl
c(Fp) ·#Cr

c (Fp).

Hence, the formulas just mentioned yield an elementary estimate for that count.
This shows again that the dominating term is p3. The estimate for the error is,
however, less sharp than the one obtained via the more sophisticated methods
in 2.1.

3. Naive methods
3.1. The most naive method to search for solutions to (∗) is probably the

following: Start with the set
{(x, y, z, w) ∈ Z | 0 6 x, y, z, w < N}

and test the equation for every quadruple.
Obviously this method requires about N4 steps. It can be accelerated using

the congruence conditions for primitive solutions noticed above.

3.2. A somewhat better method is to start with the set
{x4 + 2y4 − 4w4 | x, y, w ∈ Z, 0 6 x, y, w < N}

and search for fourth powers. This set has about N3 Elements, and the algo-
rithm takes about N3 steps. Again, it can be sped up by the above congru-
ence conditions for primitive solutions. We used this approach for a trial-run
with N = 104.

An interesting aspect of this algorithm is the optimization by further con-
gruences. Suppose x and y are fixed, then about one half or tree quarter of the
values for w are no solutions for the congruence modulo a new prime. Follow-
ing this way, one can find more congruences for w and the size of the set may
be reduced by a constant factor.

4. Our final algorithm
4.1. The basic idea. We need to compute the intersection of two sets
{x4 + 2y4 | x, y ∈ Z, 0 6 x, y < N} ∩ {z4 + 4w4 | z, w ∈ Z, 0 6 z, w < N} .

Both have about N2 elements.
It is a standard problem in Computer Science to find the intersection if both

sets fit into memory. Using the congruence conditions above, one can reduce
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the size of the first set by a factor of 20 and the size of the second set by a
factor of 4.

4.2. Some details. The two sets described above are too big, at least for
our computers and interesting values of N . Therefore, we introduced a prime
number that we call the page prime pp.

We define the sets
Lc := {x4 + 2y4 | x, y ∈ Z, 0 6 x, y < N, x4 + 2y4 ≡ c (mod pp)}

and
Rc := {z4 + 4w4 | z, w ∈ Z, 0 6 z, w < N, z4 + 4w4 ≡ c (mod pp)}.

Then, the intersection problem is divided into pp pieces and the sets Lc and Rc

fit into the computer’s memory if pp is big enough. We worked withN = 2.5·106

and chose pp = 30 011.
For every value of c, the program computes Lc and stores this set in a

hash table. Then, it determines the elements of Rc and looks them up in the
hash table. The running-time of this algorithm is O(N2).

Remark. 4.2.1. An important further aspect of this approach is that the
problem may be attacked in parallel on several machines. The calculations
for one particular value of c are independent of the analogous calculations for
another one. Thus, it is possible, say, to let c run from 0 to (pp − 1)/2 on one
machine and, at the same time, from (pp + 1)/2 to (pp − 1) on another.

4.3. Some more details.
4.3.1. The page prime. For each value of c, it is necessary to find the solutions
of the congruences x4 + 2y4 ≡ c (mod pp) and z4 + 4w4 ≡ c (mod pp) in an
effective manner. We do this in a rather naive way by letting y (w) run from
0 to p− 1. For each value of y (w), we compute x4 (z4). Then, we extract the
fourth root modulo pp.

Note that the page prime fulfills pp ≡ 3 (mod 4). Hence, the fourth roots of
unity modulo p are just ±1 and, therefore, a fourth root modulo pp, if it exists,
is unique up to sign. This makes the algorithm easier to implement.
4.3.2. Actually, we do not do any modular powering operation or even com-
putation of fourth roots in the lion’s share of the running time. For more
efficiency, all fourth powers and all fourth roots modulo pp are computed and
stored in an array in an initialization step. Thus, the main speed limitation
to find all solutions to a congruence modulo pp is, in fact, the time it takes to
look up values stored in the machine’s main memory.
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4.3.3. Hashing. We do not compute Lc and Rc directly, because this would
require the use of multi-precision integers, all the time. Instead, we chose two
other primes, the hash prime ph and the control prime pc, which fit into the
32-bit registers of the computer. All computations are done modulo ph and pc.

Precisely, for each pair (x, y) considered, the expression
(
(x4 +2y4) mod ph

)
defines its position in the hash table. In other words, we hash pairs (x, y) and
(x, y) 7→

(
(x4 + 2y4) mod ph

)
plays the role of the hash function.

For such a pair (x, y), we write two entries into the hash table, namely(
(x4 + 2y4) mod pc

)
and y.

In the main computation, we worked with the values ph = 25 000 009 and
pc = 400 000 009.
4.3.4. Note that, when working with a particular value of c, there are around
pp pairs ((x mod pp), (y mod pp)) which fulfill the required congruence

x4 + 2y4 ≡ c (mod pp).

Therefore, the hash table will be filled with approximately

pp ·
(N/2

pp
· N/10

pp

)
= N2

20pp

values. For our choices, N2

20pp
≈ 10 412 849 which means that the hash table will

get approximately 41.7% filled.
Like for many other rules, there is an exception to this one. If c = 0 then ap-

proximately 1+(pp−1) gcd(pp−1, 4) pairs ((x mod pp), (y mod pp)) may satisfy
the congruence

x4 + 2y4 ≡ 0 (mod pp).
As pp ≡ 3 (mod 4) this is not more than 2pp − 1 and the hash table will be
filled not more than about 83.3%.
4.3.5. To resolve collisions in the hash table, we use an open address-
ing method. We are not particularly afraid of clustering and choose lin-
ear probing.
4.3.6. Miscellanea. The program makes frequent use of fourth powers mod-
ulo ph and pc. Again, we compute these data in the initialization part of our
program and store them in arrays, once and for all.

4.3.7. Test versions of the program were written in Delphi. The final version
was written in C. It took about 130 hours of CPU time.
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4.4. Post-processing.
4.4.1. Instead of looking for solutions x4 + 2y4 = z4 + 4w4, our algorithm
looks for solutions to corresponding simultaneous congruences modulo pp and pc

which, in addition, are such that
(
(x4 +2y4) mod ph

)
and

(
(z4 +4w4) mod ph

)
are “almost equal”.

We found about 3800 solutions to this modified problem. These congru-
ence solutions were checked by an exact computation using O. Forster’s Pascal-
style multi-precision interpreter language ARIBAS.
4.4.2. Except for trivial solutions, equality occurs only once. This solution is
as follows.
==> 1484801**4 + 2 * 1203120**4.
-: 90509_10498_47564_80468_99201

==> 1169407**4 + 4 * 1157520**4.
-: 90509_10498_47564_80468_99201
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