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Introduction

We could try to classify isomorphism classes of abelian varieties. The theory
of moduli spaces of polarized abelian varieties answers this question completely.
This is a geometric theory. However in this general, abstract theory it is often
not easy to exhibit explicit examples, to construct abelian varieties with required
properties.

A coarser classification is that of studying isogeny classes of abelian varieties. A
wonderful and powerful theorem, the Honda-Tate theory, gives

a complete classification of isogeny classes of abelian varieties over a finite field,

see Theorem 1.2.
The basic idea starts with a theorem by A. Weil, a proof for the Weil conjec-

ture for an abelian variety A over a finite field K = Fq, see 3.2:

the geometric Frobenius πA of A/K is an algebraic integer
which for every embedding ψ : Q(πA)→ C has absolute value | ψ(πA) |= √q.

For an abelian variety A over K = Fq the assignment A 7→ πA associates to A its
geometric Frobenius πA; the isogeny class of A gives the conjugacy class of the
algebraic integer πA, and

conversely an algebraic integer which is a Weil q-number
determines an isogeny class, as T. Honda and J. Tate showed.



Geometric objects are constructed and classified up to isogeny by a simple alge-
braic invariant. This arithmetic theory gives access to a lot of wonderful theorems.
In these notes we describe this theory, we give some examples, applications and
some open questions.

Instead of reading these notes it is much better to read the wonderful and clear
[73]. Some proofs have been worked out in more detail in [74].

In §§ 1 ∼ 15 material discussed in the course is described. In the appendices §§
16 ∼ 22 we have gathered some information we need for statements and proofs
of the main result. I hope all relevant notions and information needed for under-
standing the main arguments of these notes can be found in the appendices.

Material discussed below will be contained eventually in [GM]. That book by G.
van der Geer and B. Moonen can be used as a reference for all material we need,
and for all results we discuss. However, as a final version of this book is not yet
available, we also give other references. In referring to [GM] we will usually not
be precise as the final numbering can be different from the one available now.

Further recommended reading:
Abelian varieties: [47], [35], [15] Chapter V.
Honda-Tate theory: [73], [29], [74].
Abelian varieties over finite fields: [72], [75], [77], [64].
Group schemes: [62], [49].
Endomorphism rings and endomorphism algebras: [68], [24], [72], [75], [54].
CM-liftings: [56], [11].

Contents:
§§ 1 – 13: material for this course,
§§ 14, 15: examples and exercises,
§§ 16 – 21: appendices giving definitions and background,
§ 22: questions and open problems.

Some notation. In definitions and proofs below we need various fields, in various
disguises. We use K, L, M, P, k, Fq, Fp = F, P, m.

We write K for an arbitrary field, usually the base field, in some cases of
arbitrary characteristic, however most of the times a finite field. We write k for an
algebraically closed field. We write g for the dimension of an abelian variety, unless
otherwise stated. We write p for a prime number. We write ` for a prime number,
which usually is different from the characteristic of the base field, respectively
invertible in the sheaf of local rings of the base scheme. We write F = Fp. We use
the notation M for a field, sometimes a field of definition for an abelian variety
in characteristic zero.

We will use L as notation for a field, usually the center of an endomorphism
algebra; we will see that in our cases this will be a totally real field or a CM-field.



We write P for a CM-field, usually of degree 2g over Q. We write P for a prime
field: either P = Q or P = Fp.

A discrete valuation on a base field usually will be denoted by v, whereas a
discrete valuation on a CM-field usually will be denoted by w. If w divides p, the
normalization chosen will be given by w(p) = 1.

For a field M we denote by ΣM the set of discrete valuations (finite places) of
M . If moreover M is of characteristic zero, we denote by Σ(p)

M the set of discrete
valuations with residue characteristic equal to p.

We write lim←i for the notion of “projective limit” or “inverse limit”.
We write colimi→ for the notion of “inductive limit” or “direct limit”.

1. Main topic/survey

1.1. Definition. Let p be a prime number, n ∈ Z>0; write q = pn. A Weil q-number
π is an algebraic integer such that for every embedding ψ : Q(π)→ C we have

| ψ(π) | =
√
q.

We say that π and π′ are conjugated if there exists an isomorphism Q(π) ∼= Q(π′)
mapping π to π′.
Notation: π ∼ π′.
Equivalently: the minimum polynomials of π and π′ over Q are equal. We write
W (q) for the set conjugacy classes of Weil q-numbers.

In this definition | · | denotes the complex absolute value given by | a+ b
√
−1 |=√

a2 + b2 for a, b ∈ R. We will show that for any Weil q-number π there exists an
element π = ρ(π) ∈ Q(π) such that for any ψ : Q(π)→ C the number ψ(π) is the
complex conjugate of ψ(π); moreover we show that π·π = q.

As Weil proved, we will see that the geometric Frobenius πA, see 3.1, of a simple
abelian variety over the finite field Fq is a Weil q-number, see Theorem 3.2. We
will see that

A ∼ B ⇒ πA ∼ πB ,

i.e. abelian varieties defined over the same finite field K isogenous over K define
conjugated Weil numbers. We will write

{ simple abelian variety over K}/ ∼K =: M(K, s)

for the set of isogeny classes of simple abelian varieties over K.

1.2. Theorem (Honda, Serre and Tate). Fix a finite field K = Fq. The assignment
A 7→ πA induces a bijection

{simple abelian variety over K}/ ∼K=M(K, s) ∼−→ W (q), A 7→ πA



from the set of K-isogeny classes of K-simple abelian varieties defined over K
and the set W (q) of conjugacy classes of Weil q-numbers.
See [73].

The fact

• that the map is defined follows by Weil,
• the map is injective by Tate, and
• surjective by Honda and Tate.

This map will be denoted by

W :M(K, s) −→ W (q).

This theorem will be the main topic of these talks. We encounter various notions
and results, which will be exposed below (sometimes in greater generality than
strictly necessary to understand this beautiful theorem).

1.3. Definition. We say that a Weil q-number π is effective if there exists an
abelian variety A simple over Fq such that π ∼ πA. I.e. π is effective if it is in the
image of the map W : A 7→ πA/ ∼.

We indicate the steps in a proof of 1.2, which will be elaborated below. Write
K = Fq, with q = pn.

ONE (Weil) For a simple abelian variety A over a finite field K = Fq the Weil
conjecture implies that πA is a Weil q-number, see Section 3, especially Theorem
3.2. Hence the map

{simple abelian variety over K} −→ W (K), A 7→ πA

is well-defined.

TWO (Tate) For simple abelian varieties A, B defined over a finite field we
have:

A ∼ B ⇐⇒ πA ∼ πB .

See 5.3. Note that A ∼ B only makes sense if A and B are defined over the
same field. Note that πA ∼ πB implies that A and B are defined over the same
finite field. This shows that the map W : M(Fq, s) → W (q) is well-defined and
injective. See Sections 4, 5, especially Theorem 5.3.

THREE (Honda) Suppose given π ∈ W (q). There exists a finite extension
K = Fq ⊂ K ′ := FqN and an abelian variety B′ over K ′ with πN = πB′ .
See [29], Theorem 1. This step says that for every Weil q-number there exists
N ∈ Z>0 such that πN is effective. See Section 10 , especially Theorem 10.4.



FOUR (Tate) If π ∈ W (q) and there exists N ∈ Z>0 such that πN is effective,
then π is effective. See Section 10, especially 10.5 - 10.9.

This result by Honda plus the last step shows that (A mod ∼) 7→ (πA mod ∼)
is surjective.

These four steps together show that the map

W : {simple abelian variety over K}/ ∼K = M(K, s) ∼−→ W (q)

is bijective, thus proving the main theorem of Honda-Tate theory.

In 1966/1967 Serre wrote a letter to Tate in which he explained a proof of the
Manin conjecture; see Section 11. That method proved the surjectivity result
proved by Honda. Therefore, sometimes the theory discussed here can be called
the Honda-Serre-Tate theory. As Serre’s proof was never published we can also
use the terminology Honda-Tate theory.

We will see several examples. Here are three special cases, which we mention now
in order to convey the flavor of the aspects we will encounter.

1.4. Motivation/Some examples. See 15.5. Consider the following examples.
(1) Choose q = pn, and choose i ∈ Z>0. Let π := ζi·

√
q, where ζi is a primitive

i−th root of unity.
(2) Choose coprime positive integers d > c > 0, and choose p. Let π be a zero of

T 2 + pcT + pd+c.

(3) Let β :=
√

2 +
√

3, and q = pn. Let π be a zero of

T 2 − βT + q.

In all these cases we see that π is a Weil q-number. How can we see that these
numbers are the Weil number belonging to an isogeny class of an abelian variety
simple over Fq? Using Theorem 1.2 this follows; however these examples might
illustrate that this theorem is non-trivial. If such an isogeny class exists what is
the dimension of these abelian varieties? How can we compute this dimension?
What are the p-adic properties of such an abelian variety? See 5.4, 5.5.

2. Weil numbers and CM-fields

2.1. Definition. A field L is said to be a CM-field if

• L is a finite extension of Q (i.e. L is a number field),
• there is a subfield L0 ⊂ L such that L0/Q is totally real, i.e. every ψ0 :
L0 → C gives ψ0(L0) ⊂ R, and



• L/L0 is quadratic totally imaginary, i.e. [L : L0] = 2 and for every ψ : L→
C we have ψ(L) 6⊂ R.

Remark. The quadratic extension L/L0 gives an involution ρ ∈ Aut(L/L0). For
every embedding ψ : L→ C this involution on a CM-field L corresponds with the
restriction of complex conjugation on C to ψ(L).

2.2. Proposition. Let π be a Weil q-number.

(R) Either for at least one ψ : Q(π)→ C we have ψ(π) ∈ R; in this case we have:
(Re) n is even,

√
q ∈ Q, and π = +pn/2, or π = −pn/2, or

(Ro) n is odd,
√
q ∈ Q(

√
p), and ψ(π) = ±pn/2.

In particular in case (R) we have ψ(π) ∈ R for every ψ.

(C) Or for every ψ : Q(π) → C we have ψ(π) 6∈ R (equivalently: for at least one
ψ we have ψ(π) 6∈ R). In case (C) the field Q(π) is a CM-field.

See 15.9, where we explain these cases in the Honda-Tate theory.

Proof. The claims in (R) follow from the fact that ±pn/2 are precisely those real
numbers with absolute value, taken in C, are equal to

√
q.

If at least one embedding ψ gives ψ(π) 6∈ R, then we are not in case (R),
hence all embeddings have this property. Then

ψ(π)·ψ(π) = q.

Write β := π + q
π . Then for every ψ we have

ψ(β) = ψ(π) + (q/ψ(π)) =
q

ψ(π)
+ ψ(π) = ψ(β).

Hence L0 := Q(β) is totally real. For any Weil q-number π with ψ(π) 6∈ R we
have

β := π +
q

π
, (T − ψ(π))(T − ψ(π) ) = T 2 − βT + q ∈ Q(β)[T ].

In this case ψ(π) 6∈ R for every ψ, and L0 := Q(β) is totally real and L/L0 is
totally complex. Hence L is a CM-field. �

2.3. Remark. We see a characterization of Weil q-numbers:

β := π +
q

π
is a totally real integer,

and either π =
√
q ∈ R or π is a zero of

T 2 − β·T + q, with | ψ(β) |< 2
√
q for any ψ : Q(β)→ R.

Using this it is easy to construct Weil q-numbers, see Section 15 for some examples.



3. The Weil conjecture for abelian varieties over a finite field

3.1. The geometric Frobenius. For a scheme A→ S over a base S → Spec(Fp) in
characteristic p there is the relative Frobenius

FA/S : A −→ A(p);

see 21.2. If moreover A/S is a group scheme this is a homomorphism. If S =
Spec(Fpn) there is a canonical identification A(pn) ∼=S A, and we define:

πA :=
(
A

FA/S−→ A(p)
F

A(p)/S−→ A(p2) −→ · · · −→ A(pn) = A

)
.

This endomorphism is called the geometric Frobenius of A/Fpn . Sometimes we
will write (in abused notation) “ πA = Fn ”.

3.2. Theorem (Weil). Let A be a simple abelian variety over K = Fq; consider
the endomorphism πA ∈ End(A), the geometric Frobenius of A/Fq. The alge-
braic number πA is a Weil q-number, i.e. it is an algebraic integer and for every
embedding ψ : Q(πA)→ C we have

| ψ(π) | =
√
q.

See [78], page 70; [79], page 138; [47], Theorem 4 on page 206. Using the following
two propositions we give a proof of this theorem.

3.3. Proposition. For any polarized abelian variety A over a field the Rosati-
involution † : D → D := End0(A) is positive definite bilinear form on D, i.e. for
any non-zero x ∈ D we have Tr(x·x†) > 0. �
See [47], Th. 1 on page 192, see [15], Th. 17.3 on page 138. For the notation D
and for the notion of the Rosati involution defined by a polarization, see Section
16, in particular 16.3 and 16.5.

3.4. Proposition. For a simple abelian variety A over K = Fq we have

πA·(πA)† = q.

Here † : D → D := End0(A) is the Rosati-involution.

One proof can be found in [47], formula (i) on page 206; also see [15], Coroll. 19.2
on page 144.

Another proof of 3.4 can be found in 5.21, 7.34 and Section 15 of [GM]. To this
end we study Verschiebung, see 21.3, defined for commutative flat group schemes
over a base in characteristic p. The (relative) Frobenius and the Verschiebung
homomorphism for abelian varieties are related by two properties:

for any abelian variety B we have
(
B

F−→ B(p) V−→ B
)

= p,



also V ·F = p·1B(p) , and(
FB/S : B → B(p)

)t
=

(
VBt/S : (B(p))t → Bt

)
;

see 21.10. For the definition of the dual abelian scheme, and for the notation At

see 16.2. From this we see that

πAt · (πA)t =
(
F(At)(pn−1) · · ·FAt

) (
FA(pn−1) · · ·FA

)t =

= F(At)(pn−1)

(
· · ·

(
F(At)(p) (FAt · VAt)V(At)(p)

)
· · ·

)
V(At)(pn−1) = pn = q.

In abused notation we could write: πAt · (πA)t = Fn·(Fn)t = Fn·V n = pn. �3.4

3.5. We give a proof of 3.2 using 3.4 and 3.3. We use that L = Q(πa) is the center
of D, see 5.4 (1). Hence † on D induces an involution on L. Hence † induces an
involution †R on L ⊗Q R. This algebra is a finite product of copies of R and of
C. Using 3.3 we conclude that the involution †R is a positive definite R-linear
involution on this product. We see that this implies that †R is the identity on
every real factor, stabilizes every complex factor, and is the complex conjugation
on those factors. Conclusion:

∀x ∈ L, ∀ ψ : L→ C ⇒ ψ(x†) = ψ(x).

Hence

q = ψ(q) = ψ
(
πA·(πA)†

)
= ψ(πA)·ψ(πA).

Hence

| ψ(πA) | =
√
q.

�3.2

3.6. Definition/Notation. Let A be a simple abelian variety over K = Fq. We
have seen that πA ∈ End(A) =: D. As A is simple, D is a division algebra, and
Q(πA) ⊂ D is a number field (a finite extension of Q). We have seen that πA is a
Weil q-number. We will say that πA is the Weil q-number attached to the simple
abelian variety A.

3.7. Simple and absolutely simple. We give an example of an abelian variety A
over a field which is K-simple, such that for some extension K ′ ⊃ K the abelian
variety A⊗K ′ is not simple, i.e. A is not absolutely simple.

Choose q = pn. Let i ∈ Z>0, and let ζ = ζi be a primitive i-th root of unity.
Define π = ζ·√q. Clearly π is a Weil q-number. Using Th. 1.2, we know there
exists an abelian variety A over K, which is simple such that πA ∼ π. Assume
i > 2; note that for any N which is a multiple of 2i we have Q = Q(πN ) $ Q(π).
We will see: in this case g := dim(A) > 1, and A⊗ FqN ∼ (E ⊗ FqN )g where E is
a supersingular curve defined over Fp. Hence in this case A is not K-simple.



3.8. Remark/Definition. We say that an abelian variety A over a fieldK is isotypic
if there exists an abelian variety B simple over K and an isogeny A ∼ Bµ for
some µ ∈ Z>0; in this case we will define πA := πB ; note that fA = (fB)µ (for
the definition of fA see 16.8).

We have just seen that the property “ A is simple ” can get lost under a field
extension. However

if A is isotypic over K and Fq = K ⊂ K ′ is an extension then A⊗K ′ is isotypic;

see 10.8.

Moreover, if K is a finite field and [K ′ : K] = N then (πA)N = πA⊗K′ ,

i.e. the formation A 7→ πA commutes under base extension with exponentiation
as explained.

4. Abelian varieties with CM

4.1. smCM We say that an abelian variety X over a field K admits suffi-
ciently many complex multiplications over K, abbreviated by “smCM over K”, if
End0(X) contains a commutative semi-simple subalgebra of rank 2·dim(X) over
Q.

Equivalently: for every simple abelian variety Y over K which admits a non-
zero homomorphism to X the algebra End0(Y ) contains a field of degree 2·dim(Y )
over Q.

If no confusion is possible we say “A admits smCM” omitting “over K”.
However we should be careful; it is possible that A, defined over K, does not
admit smCM, but that there exists a field extension K ⊂ K ′ such that A⊗K K ′

admits smCM (over K ′).

Equivalently. Suppose A ∼ ΠBi, where each of the Bi is simple. We say that A
admits smCM, if every End0(Bi) contains a CM-subfield of degree 2·dim(Bi) over
Q.

For other characterizations, see [18], page 63 and [44], page 347.

4.2. Note that if a simple abelian variety A of dimension g over a field of char-
acteristic zero admits smCM then its endomorphism algebra L = End0(X) is a
field, in fact a CM-field of degree 2g over Q; see 5.9. We will use he notion “CM-
type” in the case of an abelian variety A over C which admits smCM, and where
the type is given, i.e. the action of the endomorphism algebra on the tangent
space tA,0 ∼= Cg is part of the data, see 13.1. See 13.12: we do use CM-types in
characteristic zero, but we do not define (and we do not use) such a notion over
fields of positive characteristic.

Note that there exist (many) abelian varieties A admitting smCM defined
over a field of positive characteristic, such that End0(A) is not a field.



We could use the terminology “A has complex multiplication” to denote the cases
with End(A) % Z. However this could be misleading, and in these notes we will
not use this terminology.

It can be proved that if a simple abelian variety A admits smCM in the sense
defined above, then D = End0(A) contains a CM-field of degree 2·dim(A) over
Q. Note that a field E with E ⊂ End0(A) and [E : Q] = 2·dim(A) however need
not be a CM-field; see 15.7.

Terminology. Let ϕ ∈ End0(A). Then dϕ is a K-linear endomorphism of the
tangent space of A at 0 ∈ A. See 16.9. If the base field is K = C, this is just
multiplication by a complex matrix x. Suppose A(C) ∼= Cg/Λ where Λ is a lattice
in Cg. For ϕ ∈ End0(A) the linear map dϕ leaves Λ ⊂ Cg invariant. Conversely
any complex linear map complex linear map x : Cg → Cg leaving invariant Λ
defines an endomorphism ϕ of A with x = dϕ.

Consider g = 1, i.e. A is an elliptic curve and ϕ ∈ End(A). If ϕ 6∈ Z then
x ∈ C and x 6∈ R. Therefore an endomorphism of an elliptic curve over C which
is not in Z can be called “a complex multiplication”. Later this terminology was
extended to all abelian varieties.

Warning. Sometimes the terminology “an abelian variety with CM” is used, when
one wants to say “admitting smCM”; we will not adopt that confusing termi-
nology. An elliptic curve E has End(E) % Z if and only if it admits smCM.
However it is easy to give an abelian variety A which “admits CM”, meaning
that End(A) % Z, such that A does not admit smCM. However we will use the
terminology “a CM-abelian variety” for an abelian variety which admits smCM.

It can happen that an abelian variety A over a field K does not admit smCM,
and that A⊗K ′ does admit smCM.

4.3. Exercise. Show that for any elliptic curve E defined over Q we have End(E) =
Z.

Show there exists an abelian surface A over Q with Z 6= End(A) = End(A⊗
Q).

Show there exists an abelian variety A over a field k such that Z $ End(A)
and such that A does not admit smCM.
See 15.6, 18.10.

4.4. Remark. An abelian variety over a field of characteristic zero which admits
smCM is defined over a number field. See [69], Proposition 26 on page 109. Also
see [51].

We will see that a theorem of Tate, see Theorem 5.4 implies that an abelian
variety defined over a finite field does admit smCM. By Grothendieck we know
that an abelian variety which admits smCM up to isogeny is defined over a finite
field, see 4.5.

4.5. Remark. The converse of Tate’s result 5.4 (2) is almost true; see 5.7.



It is easy to give an example of an abelian variety, over a field of characteristic
p, with smCM which is not defined over a finite field. E. g. see 5.8.

4.6. Lemma. Let K be a field, and let A be an abelian variety simple over K which
admits smCM. Choose a CM-field P with [P : Q] = 2·dim(A) inside End0(A).
(This is possible by Lemma 10.1.) Then there exists a K-isogeny A ∼K B such
that OP ↪→ End(B), where OP is the ring of integers of P . �See [80], page 308.

In [80] we also find: if A in positive characteristic admits smCM by a CM-field L,
and the ring of integers OL is contained in End(A) then A can be defined over a
finite field, see [80], Th. 1.3. This gives a new proof of Theorem 4.5, see [80], Th.
1.4.

4.7. Definition CM-type. Let P be a CM-field of degree 2g. Let C be an al-
gebraically closed field of characteristic zero. The set Hom(P,C) has 2g ele-
ments. For any ϕ : P → C the homomorphism ϕ·ρ is different from ϕ. A subset
Φ ⊂ Hom(P,C) is called a CM-type for P if Hom(P,C) = Φ

∐
ρ(Φ). Equivalently:

For every ϕ : P → C either ϕ ∈ Φ or ϕ·ρ ∈ Φ.

4.8. Let A be an abelian variety simple over C which admits smCM. Let
P = End0(A). This is a CM-field of degree 2·dim(A). The action of P on the
tangent space tA,0 splits as a direct sum of one-dimensional representations (as
P is commutative and C is algebraically closed of characteristic zero). Hence this
representation is given by Φ = {ϕ1, · · · , ϕg}. One shows this is a CM-type (i.e.
these homomorphisms ϕi : P → C are mutually different and either ϕ ∈ Φ or
ϕ·ρ ∈ Φ). For the converse construction see 19.6.

5. Tate: The structure of End0(A): abelian varieties over finite fields.

Main references: [72], [73]. Also see the second printing of [47], especially Appendix
1 by C. P. Ramanujam.

5.1. For a simple abelian variety over a field K the algebra End0(A) is a division
algebra. By the classification of Albert, see 18.2, we know the structure theorem
of such algebras 18.4. Moreover, as Albert, Shimura and Gerritzen showed, for
any algebra D in the list by Albert, and for any characteristic, there is an abelian
variety having D as endomorphism algebra. However over a finite field not all
types do appear, there are restrictions; see 2.2, 15.9.

For an element β ∈ Q we write IrrQ(β) = Irr(β) ∈ Q[T ] for the irreducible, monic
polynomial having β as zero, the minimum polynomal of β.

5.2. Tate described properties of the endomorphism algebra of a simple abelian
variety over K = Fq, with q = pn. We write πA for the geometric Frobenius
of A, and fA = fA,πA

for the characteristic polynomial of πA. We write Write
IrrQ(πA) = Irr(πA) ∈ Z[T ] for the minimum polynomial of πA over Q. For the
definition of a characteristic polynomial of an endomorphism, see 16.8.



The following theorems are due to Tate; these results (and much more) can
be found: [72], Theorem 1 on page 139, [72], Theorem 2 on page 140 and [73], Th.
1 on page 96, [47], Appendix 1.

5.3. Theorem (Tate). Let A be an abelian variety over the finite field K = Fq.
The characteristic polynomial fA,πA

= fA ∈ Z[T ] of πA ∈ End(A) is of degree
2·dim(A), the constant term equals qdim(A) and fA(πA) = 0.

If an abelian variety A is K-simple then fA is a power of the minimum
polynomial Irr(πA) ∈ Z[T ].

Let A and B be abelian variety over K = Fq. Then:

A is K-isogenous to an abelian subvariety of B iff fA divides fB.

In particular

A ∼K B ⇐⇒ fA = fB .

Remark. Note that for an abelian variety A over a finite field the characteristic
polynomial fA of πA ∈ End(A) is a power of an irreducible polynomial then A is
isotypic (not necessarily simple); it seems that a statement in [74] in Th. 1.1 of
“The theorem of Honda and Tate” needs a small correction on this point.

For an abelian variety A over a field the endomorphism algebra End0(A) is a
semi-simple ring. If moreover A is K-simple, then D = End0(A) is a division ring
(hence a simple ring).

5.4. Theorem (Tate). Suppose A is a simple abelian variety over the finite field
K = Fq.
(1) The center of D := End0(A) equals L := Q(πA).
(2) Moreover

2g = [L : Q]·
√

[D : L],

where g is the dimension of A. Hence: every abelian variety over a finite field
admits smCM. See 4.1. We have:

fA = (Irr(πA))
√

[D:L]
.

(3)

Q ⊂ L := Q(πA) ⊂ D = End0(A).

The central simple algebra D/L

• does not split at every real place of L,
• does split at every finite place not above p.



• For a discrete valuation w of L with w | p the invariant of D/L is given by

invw(D/L) =
w(πA)
w(q)

·[Lw : Qp] mod Z,

where Lw is the local field obtained from L by completing at w. Moreover

invw(D/L) + invw(D/L) = 0 mod Z,

where w = ρ(w) is the complex conjugate of w.

5.5. Corollary/Notation. Using Brauer theory, see Section 17, and using this the-
orem by Tate we see that the structure of D follows once π = πA is given. In
particular the dimension g of A follows from π. We will say that D is the algebra
determined by the Weil number π.
For a given Weil q-number the division algebra with invariants as described by
the theorem will be denoted by D = D(π). We write e(π) = [Q(π) : Q], and
r(π)2 = [D(π) : Q(π)] and g(π) = e(π)·r(π)/2.
Note that g(π) ∈ Z. Indeed, in case (Re) we have e = 1, r = 2. In all other cases
we have that e is even. See 15.9.

5.6. Corollary. Let A be an abelian variety over a finite field. Then A admits
smCM.
It suffices to show this in case A is simple. A splitting field of the central simple
algebra Q(πA) = L ⊂ D = End0(A) is a field of degree 2g, where g = dim(A). �

Note that this splitting field in general need not be, but can can be chosen to be
a CM-field, see 10.1.
The converse of this corollary is almost true.

5.7. Theorem (Grothendieck). Let K be a field with prime field P. Let A be an
abelian variety over K which admits smCM (over K). Write k = K. There exists
an isogeny B ∼ A⊗K k such that B is defined over a finite extension of P.
See [51], [80], Th. 1.4. Note that if char(K) = 0 any abelian variety with smCM
is defined over a finite extension of P = Q, i.e. over a number field, see [69], Prop.
26 on page 109. However in positive characteristic there are examples where this
is not the case.

5.8. An easy example. There exists a non-finite field K, and an abelian variety
A over K which admits smCM, such that A cannot be defined over a finite field.
In this case there does not exist a CM-lift of A to characterisitc zero.
Indeed, choose any abelian variety B over a finite field K ′ such that (αp × αp) =
N ⊂ B. One can take for B the product of two supersingular elliptic curves. More
generally one can take any abelian variety C over F = Fp with f(C) ≤ g − 2;
there exists a finite field K ′ and an abelian variety B/K ′ having the property
required above such that BF is in the F-isogeny class of C. Choose K = K ′(t).
Let (1, t) : αp → NK . Define A = BK/(1, t)(αp). Show that A cannot be defined
over a finite field. Observe that B admits smCM by [72], see [73], Th. 1 (2);



hence A admits smCM. A CM-lifting of A is defined over a number field, by [69],
Prop. 26 on page 109; this would show that A can be defined over a finite field,
a contradiction.

We will see that the idea of the example above is the basis for a proof of Th. 12.4.

5.9. Remark/Exercise. Let A be an abelian variety of dimension g simple over a
field K. Write D = End0(A).
(1) If char(K) = 0 and A admits smCM then D is a field.
(2) If K is finite and the p-rank f = f(A) satisfies f ≥ g − 1, “A is ordinary or
A is almost ordinary”, then D is commutative; e.g. see [54], Proposition 3.14.
(3) There are many examples where K is finite, f(A) < g − 1, and D is not
commutative.
(4) There are many examples of a simple abelian variety over a field k, with either
char(k) = 0 or char(k) = p and A ordinary such that D is not commutative; see
18.4

5.10. Lemma. Let M be a field, and π ∈M sep be a separable algebraic element over
M . Let N ∈ Z>0. Let M ′/M be the Galois closure over M(π)/M . Let {γ1, · · · , γe}
be the set of conjugates of π in M ′. Then:

M(πN ) $ M(π) ⇐⇒ ∃z, i, j : 1 6= z ∈M ′, 1 ≤ i < j ≤ e, zN = 1, γj/γi = z.

I thank Yuri Zarhin for drawing my attention to this fact.
Proof. Note that #({γ1, · · · , γe}) = [M(π) : M ]. As [M(πN ) : M ] equals the
number of mutually different elements in {γN1 , · · · , γNe } the result follows. �

5.11. Proposition. Let A be an abelian variety simple over a finite field K. Let
N ∈ Z>0 and [K ′ : K] = N . Then

End(A) $ End(A⊗K ′) ⇐⇒ M(πN ) $ M(π).

Note that the last condition is described in the previous lemma.
Proof. Note that End(A⊗K ′)/End(A) is torsion free. Hence End(A) $ End(A⊗
K ′) iff End0(A) $ End0(A⊗K ′). Hence this proposition is a corollary of 5.4. �

5.12. Remark. there are two “reasons” (or a combination of both) explaining
End(A) $ End(A⊗K ′).

It can happen that (although A is k-simple) A⊗K ′ is not K ′-simple.
It can happen that A ⊗ K ′ is K ′-simple but that under K ⊂ K ′ the endo-

morphism ring gets bigger.
Both cases do appear. For some examples see 15.15, 15.16, 15.19.



6. Injectivity

6.1. Exercise/Construction. Let K be a field, and let A and B be abelian varieties
over K. Assume there exists an isogeny ϕ : A → B. Choose an integer N > 0
which annihilates (the finite group scheme which is) Ker(ϕ). Show there exists an
isogeny ψ : B → A such that ψ·ϕ = N ·1A. Construct

Φ : End0(A) −→ End0(B), Φ(x) :=
1
N
·ϕ·x·ψ.

(1) Show that Φ is a homomorphism. Construct Ψ by Ψ(y) = ψ·y·ϕ/N . Show
Ψ·Φ = Id and Φ·Ψ = Id. Conclude that

Φ : End0(A) ∼−→ End0(B)

is an isomorphism.
(2) Show that Φ is independent of the choice of ψ and N .
(3) Show that ϕ·ψ = N ·1B.
Remark. Take A = B, and an isogeny ϕ ∈ End(A). We have constructed the
inverse ϕ−1 in End0(A).

6.2. Exercise. Let A ∼ B be a K-isogeny of simple abelian varieties over a fi-
nite field K = Fq; using the construction 6.1 this isogeny gives an isomorphism
Q(πA) ∼= Q(πB). Show that this maps πA tot πB.

6.3. By Theorem 3.2 by Weil we see that for a simple abelian variety A over
K = Fq indeed πA is a Weil q-number. If A and B are K- isogenous, πA and πB
are conjugated. Hence

W : {simple abelian variety over K}/ ∼K −→ W (q), A 7→ πA,

is well-defined.
We have seen in 5.3 (2) that Tate showed that A and B are K-isogenous if

and only if fA = fB . Hence this map W is injective.

7. Abelian varieties with good reduction

References: [48], [12], [67], [63], [6], [53], [13].
This section mostly contains references to known (non-trivial) results.

7.1. Definition. Let A be an abelian variety over a field K. Let v be a discrete
valuation of K. We say that A has good reduction at v if there exists an abelian
scheme A → Spec(Ov) with generic fiber A⊗K ∼= A.

We say that A has potentially good reduction at v if there exist a finite ex-
tension K ⊂ K ′, a discrete valuation v′ over v such that A′ := A⊗K ′ has good
reduction at v′.



7.2. The Néron minimal model. Let Let A be an abelian variety over a field K.
Let v be a discrete valuation of K. Consider the category of smooth morphisms
Y → Spec(Ov) = S and the contravariant functor on this category given by

Y/S 7→ HomK(Y ×S Spec(K), A).

We say that A → S is the Néron minimal model, abbreviation: Nmm, of A at v
if it represents this functor.

7.3. Theorem (Néron). For every A/K and every v the Néron minimal model of
A at v exists. �
See [48]; see [15], Section VIII.

7.4. Theorem (Chevalley). Let G be a group variety over a perfect field m. (That
is: this is an algebraic group scheme G → Spec(m) which is connected, and
geometrically reduced.) There exists a filtration by subgroup varieties G1 ⊂ G2 ⊂
G over m such that G1 is a torus (i.e. G1 ⊗m is isomorphic with a product of
copies of Gm), G2/G1 is affine, unipotent and G/G2 is an abelian variety.
See [12]; see [13], Th. 1.1 on page 3. �

7.5. Definition. Let A be an abelian variety over a field K. Let v be a discrete
valuation of K. Let A0

kv
be the connected component containing 0 of the special

fiber of the Néron minimal model A. We say that A has stable reduction at v if in
the Chevalley decomposition of A0

kv
the unipotent part is equal to zero. We say A

has potentially stable reduction at v ∈ ΣK if there exist a finite extension K ⊂ K ′,
a discrete valuation v′ over v such that A′ := A⊗K ′ has stable reduction at v′.

7.6. We refer to the literature, especially to [63], for the notions of `-adic rep-
resentations, algebraic monodromy, and the fact that for an abelian variety the
`-adic monodromy at a discrete valuation of the base field is quasi-unipotent.

As a corollaries of these ideas on can prove:

7.7. Theorem (The Néron-Ogg-Shafarevich criterion). Suppose A has stable, re-
spectively good reduction at v and B ∼K A. Then B has stable, respectively good
reduction at v. �

7.8. Theorem (Grothendieck). Every A/K has potentially stable reduction at ev-
ery v ∈ ΣK . �

7.9. Corollary. Let A be an abelian variety over a field K which admits smCM.
At every v ∈ ΣK the abelian variety A has potentially good reduction.
Sketch of a proof. After extending of the base field and choosing v again we
can assume that A has stable reduction at v, where the residue class field of
v is perfect. Up to isogeny we can write A ∼

∏
Bi, with every Bi simple. By

the Néron-Ogg-Shafarevich criterion we conclude every Bi has stable reduction.
Hence it suffice to show: if A is K-simple + has stable reduction at v + admits
smCM then A has good reduction at v.

LetA be its Nmm, and letG = A0
kv

be the connected component of the special
fiber of A → Spec(Ov). By properties of the Nmm we conclude that End0(A) ⊂



End(G). Consider the Chevalley decomposition in this case G1 = G2 ⊂ G. Let µ
be the dimension of G1. We obtain homomorphisms

End0(A)→ End(G1), End0(A)→ End(G/G1).

If µ = dim(G1) > 0 it follows that End0(A) → End(G1) ⊂ Mat(µ,Z); it follows
that this homomorphism is injective; given the fact that A admits smCM we derive
a contradiction. Hence µ = 0. Alternative argument: if µ > 0, the dimension of
B = G/G1 is strictly smaller than dim(A) and the fact that A has smCM shows
there does not exist a homomorphism End0(A) → End0(B). This contradiction
shows µ = 0, and hence A admits good reduction at v. �

7.10. Remark. Also see 15.10. Let R be a normal integral domain, A → S =
Spec(R) an abelian scheme, and R → K a homomorphism to a field K. Write
AK = A⊗R K. We obtain a homomorphism

End(A) −→ End(AK).

This homomorphism is injective.
In general this homomorphism is not surjective.
If R is normal and K is the field of fractions of R the homomorphism is

surjective (hence bijective).
If ` is a prime not equal to the characteristic of K, the additive factor group

End(AK)/End(A) has no `-torsion.
There are many examples where R → R/I = K gives a factor group

End(AK)/End(A) which does have p-torsion, where p = char(K).

8. p-divisible groups

Also see Section 20.

8.1. For an abelian variety A over a base S and a prime number ` which is
invertible in the structure sheaf on S one defines the `-Tate module T`(A) :=
lim←i A[`i]. This is a pro-group scheme. It can also be viewed as a local system
with fiber Z` under the fundamental group of S.

For an arbitrary prime number (not necessarily invertible on the base) we choose
another strategy:

8.2. Definition. Let S be a scheme. Let h ∈ Z≥0. A p-divisible group, of height
h, over S is an inductive system of finite flat group schemes Gi → S, i ∈ Z≥0 ,
such that:

• the rank of Gi → S equals ph·i;
• pi annihilates Gi;
• there are inclusions Gi ↪→ Gi+1 such that
• Gi+1[pi] = Gi.
• Consequently Gi+j/Gi = Gj .



We will write G = colimi→Gi; this limit considered in the category of inductive
systems of finite group schemes. A p-divisible group is also called a Barsotti-Tate
group.

Examples. (1) For any abelian scheme A → S (over any base), and any integer
n ∈ Z>0 the group scheme A[n]→ S is a finite flat group scheme of rank n2g over
S, where g = dim(A); see [47], proposition on page 64, see [15], V, Theorem 8.2
on page 115. Hence

{A[pi] | i ∈ Z≥0}

is a p-divisible group of height 2g. This will be denoted by A[p∞]. This nota-
tion should be understood symbolically: there is no morphism “×∞” and hence,
strictly speaking, no “kernel” A[p∞].
(2) Consider Gm,S → S, the multiplicative group over any base scheme S. Then

Gm,S [pi] =: Gi = µpi,S , and this defines Gm,S [p∞]→ S,

a p-divisible group over S of height one.
(3) Consider Qp/Zp, which is a profinite group, which can be given by
colimi→(Z/pi). By considering the constant group schemes (Z/pi)

S
we obtain a

p-divisible group (Qp/Zp)
S
.

8.3. The Serre dual of a p-divisible group. Let G = {Gi | i ∈ Z≥0}/S be a p-
divisible group over some base scheme S. The surjections Gi+1 � Gi+1/G1 = Gi
define by Cartier duality inclusions (Gi)D ↪→ (Gi+1)D; see 16.5. This defines a
p-divisible group

Gt := {(Gi)D | i} → S,

which is called the Serre dual of G→ S.
Note that G 7→ Gt is a duality for p-divisible groups, which is is defined

by purely algebraic methods. We see a duality A 7→ At for abelian schemes,
see 16.2, which is a (non-trivial) geometric theory. Notation is chosen in this
way, because the duality theorem connects these two operation in a natural way:
At[p∞] = A[p∞]t, see 16.6; note that this fact is more involved than this simple
notation suggests.

8.4. Exercise. Show that (Gm,S [p∞])t = Qp/Zp
S
.

9. Newton polygons

For a p-divisible group X or an abelian variety A over a field of characteristic p
the Newton polygon ζ = N (X), respectively ξ = N (A) := N (A[p∞]) is defined,
see Section 21. In this section we give an easier definition in case we work with an
abelian variety over a finite field, and we show that this coincides with the more
general definition as recorded in Section 21.



9.1. Notation. Let K = Fq be a finite field, q = pn and let A be an abelian
variety over K of dimension g. We have defined the geometric Frobenius π =
πA ∈ End(A); this endomorphism has a characteristic polynomial fA ∈ Z[T ], see
16.8; this is a monic polynomial of degree 2g.

Suppose that A is simple. The algebraic integer πA is a zero of its minimum
polynomial Irr(π) ∈ Z[T ]; this is a monic polynomial, and its degree equals e =
[Q(π) : Q]. In this case fA = (Irr(π))r, where r2 is the degree of D = End0(A)
over its centre L = Q(π).

Suppose fA =
∑
j bjT

2g−j . We define ξ = ξ(A) as a lower convex hull, written
as lch():

ξ(A) = lch ({(j, vp(bj)/n) | o ≤ j ≤ 2g}) .

This is the Newton polygon of fA compressed by the factor n. Note that if A is
simple with Irr(πA) =

∑
i ciT

e−i then ξ(A) = lch({(r·i, r·vp(ci)/n) | 0 ≤ i ≤ e}).

9.2. Theorem. Let A be an abelian variety isotypic over a finite field K = Fq, with
q = pn. As above we write π = πA, the geometric Frobenius of A, and L = Q(π)
with [L : Q] = e and D = End0(A) with [D : L] = r2 and dim(A) = g = er/2. Let
X = A[p∞]. Consider the set Σ(p)

L of discrete valuations of L dividing the rational
prime number p. Let L ⊂ P ⊂ D, where P is a CM-field of degree 2g (existence
assured by 10.1. If necessary we replace A be a K-isogenous abelian variety (again
called A) such that OP ⊂ End(A), see 4.6. Then also OL ⊂ End(A).
(1) The decomposition

D ⊗Qp =
∏

w∈Σ
(p)
L

Dw, OL =
∏
OLw ,

gives a decomposition X =
∏
w Xw.

(2) The height of Xw equals [Lw : Qp]·r.
(3) The p-divisible group Xw is isoclinic of slope γw equal to w(πA)/w(q); note
that q = pn.
(4) Let w be the discrete valuation of L obtained from w by complex conjugation
on the CM-field L; then γw + γw = 1.
See [77]. We will give a proof of one of the details.
Proof. (3) Fix w ∈ Σ(p)

L , and write Y = Xw. Write w(πA)/n = d/h with
gcd(d, h) = 1. The kernel of

Y
F−→ Y (p) F−→ · · · F−→ Y (pnh)

will be denoted by Y [Fnh]
Claim. Y [Fnh] = Y [pnd].
The action of π on Y is given by Fn. We see that w(Fnh/pnd) = 0. This proves
that this quotient (in OL) acts by a unit on Y , which proves the claim. �

By the Dieudonné-Manin theory we know that Y ⊗ F ∼
∏
Gdi,ci ⊗ F. We

know that Gdi,ci [F
ci+di ] = Gdi,ci [p

di ]. By the claim this proves that in this de-



composition only factors (di, ci) = (d, h − d) do appear, see 21.22. This proves
proves that Y is isoclinic of slope equal to d/h. �(3)

9.3. Corollary. The polygon ξ(A) constructed in 9.1 for an abelian variety A over
a finite field equals the Newton polygon N (A), as defined in Section 21.

9.4. Remark. Let A be an abelian variety over a finite field K. By the Dieudonné-
Manin theory we know that A[p∞] = X has the property that there exists a
p-divisible group Y over Fp such that X ⊗K F ∼ Y ⊗Fp F. Hence ξ(A) = N (A) =
N (Y ) as we have seen above. We could try to prove the corollary above by
comparing the minimum polynomial of πA and the same of Y over some common
finite field. However in general one cannot compute fA from the characteristic
polynomial of Y/Fp, as is shown by examples below.

9.5. (1) Let E be a supersingular elliptic curve over a finite field K = Fq; see
21.8. We will see, 14.6, that there exists a root of unity ζi such that πE ∼ ζi

√
q.

Hence π′ := πE⊗K′ = qi, with K ′ = Fq′ , where q′ = q2i = p2ni. We can choose
Y/Fq with FY = ±√p and Y ⊗ F ∼= E[p∞]⊗ F. Note the curious fact that in this
case for a finite exension we have equality: (FY )2ni = π′.
(2) Let E be an ordinary elliptic curve over a finite field K = Fq, with fE ∈ Z[T ]
the characteristic polynomial of πE . For Y = G(1,0)+G(0,1) we have E[p∞]⊗KF ∼=
Y ⊗Fp F. However, for every finite field K ′ ⊃ K the p-divisible groups E[p∞]⊗KK ′
and Y ⊗Fp K

′ are not isomorphic. In this case the minimum polynomial of the
geometric Frobenius of E ⊗ K ′ is different from the same of Y ⊗ K ′, although
N (E) = N (Y ).

9.6. The Shimura-Taniyama formula. Suppose given an abelian variety A of CM-
type (P,Φ) over a number field M having good reduction at a discrete valuation
v ∈ ΣM . Can we compute from these data the slopes of the geometric Frobenius
π0 of the reduction A0/Kv over the residue class field of v ? The formula of
Shimura and Taniyama precisely gives us this information.

Let A be the Nmm of A at v. We have

P = End0(A) = End0(A) ↪→ End0(A0).

Let ` be a prime different form the characteristic of Kv. We see that P ⊗ Q` ⊂
End0(A) ⊗ Q`. As P : Q] = 2·dim(A) it follows that P ⊂ End0(A) is its own
centralizer; hence L := Q(πA0) ⊂ P . Moreover π := πA0 is integral over Z; hence
π ∈ OP .

Let C be an algebraically closed field containing Qp. We have

H := Hom(P,C), Hw = Hom(Pw, C), H =
∐

w∈Σ
(p)
P

Hw.

We define Φw := Φ ∩Hw. Write Kv = Fq. With these notations we have:

9.7. Theorem (the Shimura-Taniyama formula).



∀w ∈ ΣP , w | p, w(π)
w(q)

=
#(Φw)
#(Hw)

.

See [69], §13; see [40], Corollary 2.3.
Tate gave a proof based on “CM-theory for p-divisible groups”. See [73],Lemma
5; see [74], Shimura-Taniyama formula by B. Conrad, Theorem 2.1. �
See 13.12 for a further discussion.

10. Surjectivity

In this section we prove surjectivity of the map W : M(K, s) → W (q), hence
finishing a proof for Theorem 1.2. We indicate the structure of the proof by
subdividing it into the various steps.

Step (1) Proving W is surjective means showing every Weil number is effective,
see 1.3. We start with a choice q = pn, and with the choice of a Weil q-number π.
In case π ∈ R we know effectivity. From now on we suppose that π is non-real.

Step (2) A Weil q-number π determines a number field Q(π) = L and a division
algebraD = D(π); see 5.5. In the case considered π is non-real and L is a CM-field.

Step (3) We choose a CM-field P ⊂ D of degree 2g over Q, which is possible by
the following lemma.

10.1. Lemma. Suppose given a CM-field L and a central division algebra L ⊂ D.
There exists L ⊂ P ⊂ D where P is a CM-field splitting D/L. See [73], Lemme
2 on page 100. �
See Exercise 15.7

Step (4) Given π and L ⊂ P ⊂ D = D(π) as above we will choose a CM-type Φ
for P such that

∀w ∈ Σ(p)
L , w | p, w(π)

w(q)
=

#(Φw)
#(Hw)

.

Here Σ(p)
L is the set of finite places of L dividing p. We have a decomposition

L⊗Qp =
∏
Lw; hence a decomposition

H := Hom(L,Qp) =
∐

Hom(Lw,Qp); write Hw = Hom(Lw,Qp); Φ =
∐

Φw.

The set Φ ⊂ H defines the sets Φw ⊂ Hw; conversely {Φw | w ∈ Σ(p)
L } determines

Φ.

Claim. The involution ϕ 7→ ϕ·ρ has no fixed points on H := Hom(L,Qp).
Proof. Embeddings Q ↪→ C and Q ↪→ Qp give an identification H = Hom(L,C),



compatible with −·ρ. We know that ρ on L is complex conjugation on every
embedding L ↪→ C. Hence, if we would have ϕ = ϕ·ρ we conclude that ϕ(L) ⊂ R.
However a CM-field is totally complex. This contradiction shows that −·ρ has no
fixed point on Hom(L,C) = H = Hom(L,Qp). �

Construction. Notation will be chosen in relation with 9.2. For every w ∈ Σ(p)
L we

define:

• βw = w(π)/w(q);
• hw = [Lw : Qp]·r, where r = rπ =

√
[D(π) : Q(π)];

• dw := hw·βw.

Note that complex conjugation induces (for every embedding) an involution
ρ : P → P , which restricts to an involution ρ : L → L which is also complex
conjugation on L. We see that ρ(w) = w or ρ(w) 6= w.

If ρ(w) = w we conclude that βw = 1/2. In this case we choose for Φw ⊂ Hw

any subset such that #(Φw) = #(Hw)/2 and Φw ∩ Φw·ρ = ∅; this is possible as
−·ρ has no fixed point on H.

If ρ(w) 6= w we make a choice Φw ⊂ Hw such that #(Φw) = dw, and we
define Φρ(w) = Hρ(w)−Φw·ρ; this ends a choice for the pair {w, ρ(w)}. This ends
the construction.

Step (5) Given the CM-type (P,Φ) as above, in particular Φw ∩ Φw·ρ = ∅ and
#(Φw) = dw for every w, we construct B over M as follows.

10.2. We choose a number field M , an abelian variety B defined over M , and
v ∈ Σ(p)

M with residue class field Kv := Ov/mv ⊃ Fq such that End0(B) = P , with
Φ as CM-type, and such that B has good reduction at v.
Notation. Write [Kv : Fq] = m; write Bv for the abelian variety defined over Kv

obtained by reduction of B at v.
Proof. By 19.6 we construct an abelian variety B′ over C of CM-type (P,Φ). By
[69], Proposition 26 on page 109 we know that B′′ can be defined over a number
field. We can choose a finite extension so that all complex multiplications are
defined over that field. By 7.9 we know that an abelian variety with smCM has
potentially good reduction; hence we can choose a finite extension of the base field
and achieve good reduction everywhere. We choose a discrete valuation dividing
p. Conclusion: after a finite extension we can achieve that B is an abelian variety
defined over a number field M , with B ⊗M C ∼= B′, and v ∈ Σ(p)

M such that all
properties mentioned above are satisfied.

10.3. Lemma. Let E be a number field, i.e. [E : Q] < ∞. A root of unity ζ ∈ E
has the properties:
(i) for every ψ : E → C we have | ζ |= 1,
(ii) for every finite prime w we have w(ζ) = 0.
Conversely an element ζ ∈ E satisfying (i) and (ii) is a root of unity. �
See [28], page 402 (page 520 in the second printing).



Step (6) Suppose given π, and (P,Φ) and B/M as constructed above. There
exist s ∈ Z>0 and an s-root of unity ζs such that

πm = ζs·πBv
.

This implies that

πms = πsBv
= πBv⊗Fqms .

Hence πN is effective with N := ms.
Proof. We have π ∈ OL ⊂ P . Also we have πBv ∈ OP . Let ζ := πm/πBv , where
[Kv : Fq] = m. As πm and πBv are Weil #(Kv)-numbers condition (i) of the
previous lemma is satisfied. For every prime not above p these numbers are units,
hence condition (ii) is satisfied for primes of P not dividing p. For every w ∈ Σ(p)

P

we can apply the Shimura-Taniyama formula, see 9.7, to πBv
; for the restriction

of w to L we can apply 9.2 (3) to π; these shows that w(ζ) = 1 for every w ∈ Σ(p)
P .

Hence the conditions mentioned in the previous lemma are satisfied. By the lemma
ζ ∈ OP is a root of unity, say ζ = ζs. Hence πN is effective for N := ms. This
means that πN = πms = πBv⊗Fqms is effective. �

The arguments in this section up to here in fact prove the following fundamental
theorem.

10.4. Theorem (Honda). Let K = Fq. Let A0 be an abelian variety, defined and
simple over K. Let L ⊂ End0(A0) be a CM-field of degree 2g over Q. There
exists a finite extension K ⊂ K ′, an abelian variety B0 over K ′ and a K ′-isogeny
A0 ⊗K K ′ ∼ B0 such that B0/K

′ satisfies (CML) by L. �
See [29], Th. 1 on page 86, see [73], Th. 2 on page 102. For the notion (CML) see
12.2.

10.5. The Weil restriction functor. Suppose given a finite extension K ⊂ K ′ of
fields (we could consider much more general situations, but we will not do that);
write S = Spec(K) and S′ = Spec(K ′). We have the base change functor

Sch/S → SchS′ , T 7→ TS′ := T ×S S′.

The right adjoint functor to the base change functor is denoted by

Π = ΠS′/S = ΠK′/K : SchS′ → Sch/S , MorS(T,ΠS′/S(Z)) ∼= MorS′(TS′ , Z).

In this situation, with K ′/K separable, Weil showed that ΠS′/S(Z) exists. In fact,

consider ×[K′:K]
S′ = Z ×S′ · · · ×S′ Z, the self-product of [K ′ : K] copies. It can

be shown that ×[K′:K]
S′ can be descended to K in such a way that it solves this

problem. Note that ΠS′/S(Z) ×S S′ = ×[K′:K]
S′ Z. For a more general situation,

see [25], Exp. 195, page 195-13. Also see [74], Nick Ramsey - CM seminar talk,
Section 2.



10.6. Lemma. Let B′ be an abelian variety over a finite field K ′. Let K ⊂ K ′,
with [K ′ : K] = N . Write

B := ΠK′/K B′; then fB(T ) = fB′(TN ).

�
See [73], page 100.

We make a little detour. From [14], 3.19 we cite:

10.7. Theorem (Chow). Let K ′/K be an extension such that K is separably closed
in K ′. (For example K ′ is finite and purely inseparable over K.) Let A and B be
abelian varieties over K. Then

Hom(A,B) ∼−→ Hom(A⊗K ′, B ⊗K ′)

is an isomorphism. In particular, if A is K-simple, then A⊗K ′ is K ′-simple. �

10.8. Claim.

For an isotypic abelian variety A over a field K, and an extension K ⊂ K ′,
we have that A⊗K ′ is isotypic.

Proof. It suffices to this this in case A is K-simple. It suffices to show this in case
K ′/K is finite. Moreover, by the previous result it suffices to show this in case
K ′/K is separable.

Let K ⊂ K ′ be a separable extension, [K ′ : K] = N . Write Π =
ΠSpec(K′)/Spec(K). For any abelian variety A over K we have Π(A⊗KK ′) ∼= AN ,
and for any C over K ′ we have Π(C)⊗KK ′ ∼= CN , as can be seen by the construc-
tion; e.g. see the original proof by Weil, or see [74], Nick Ramsey - CM seminar
talk, Section 2; see 10.5. If there is an isogeny A⊗K K ′ ∼ C1×C2, with non-zero
C1 and C2 we have Π(C1 × C2) ∼ AN . Hence we can choose positive integers e
and f with Π(C1) ∼ Ae and Π(C2) ∼ Af . Hence

Π(C1)⊗K ′ ∼= (C1)N ∼ (A⊗K K ′)eN , (C2)N ∼ (A⊗K K ′)fN ;

hence Hom(C1, C2) 6= 0. We conclude: if A is simple, any two isogeny factors of
A⊗K K ′ are isogenous. �

By Step 6 and by Lemma 10.6 we conclude:

10.9. Corollary (Tate). Let π be a Weil q-number and N ∈ Z>0 such that πN is
effective. Then π is effective.
See [73], Lemme 1 on page 100. �

Remark. The abelian variety Bv as constructed above is isotypic and hence πBv

is well-defined. It might be that the Bv thus obtained is not simple. Moreover
A := ΠK′/K(Bv) is isotypic with πA ∼ π.



Step (7) End of the proof. By the theorem by Honda we know that there exists
N ∈ Z>0 such that πN is effective. We conclude that π is effective. Hence we have
proved that W :M(K, s)→W (q) is surjective. �Theorem 1.2

Warning (again). For a K-simple abelian variety A over K = Fq in general it can
happen that for a (finite) extension K ⊂ K ′ the abelian variety A ⊗ K ′ is not
K ′-simple.

10.10. Exercise. Notation and assumptions as above; in particular K = Fq is a
finite field, [K ′ : K] = N . Write A′ = A⊗K ′. Write π′ = πNA .

Show that End(A) = End(A′) iff Q(πA) = Q(π′).
Show that Q(πA) = Q(π′) for every N ∈ Z>0 implies that A is absolutely

simple (i.e. A⊗ F is simple).
Construct K,A,K ′ such that Q(πA) 6= Q(πA′) and A′ is K ′-simple.

11. A conjecture by Manin

We recall an important corollary from the Honda-Tate theory. This result was
observed and proved independently by Honda and by Serre.

11.1. Definition. Let ξ be a Newton polygon. Suppose it consists of slopes 1 ≥
β1 ≥ · · · ≥ βh ≥ 0. We say that ξ is symmetric if h = 2g is even, and for every
1 ≤ i ≤ h we have βi = 1− βh+1−i.

11.2. Proposition. Let A be an abelian variety in positive characteristic, and let
ξ = N (A) be its Newton polygon. Then ξ is symmetric.
Over a finite field this was proved by Manin, see [39], page 74; in that proof the
functional equation of the zeta-function for an abelian variety over a finite field
is used. The general case (an abelian variety over an arbitrary field of positive
characteristic) follows from [49], Theorem 19.1; see 21.23.

11.3. Exercise. Give a proof of this proposition in case we work over a finite field.
Suggestion: use 9.2.

Does the converse hold? I.e.:

11.4. Conjecture (Manin, see [39], Conjecture 2 on page 76).
Suppose given a prime number p and a symmetric Newton polygon ξ. Then there
exists an abelian variety A over a field of characteristic p with N (A) = ξ.

Actually if such an abelian variety does exist, then there exists an abelian va-
riety with this Newton polygon over a finite field. This follows by a result of
Grothendieck and Katz about Newton polygon strata being Zariski closed in
Ag ⊗ Fp; see [32], Th. 2.3.1 on page 143.

11.5. Proof of the Manin Conjecture (Serre, Honda), see [73], page 98. We re-
call that Newton polygons can be described by a sum of ordered pairs (d, c). A
symmetric Newton polygon can be written as



ξ = f · ((1, 0) + (0, 1)) + s·(1, 1) +
∑
i

((di, ci) + (ci, di)) ,

with f ≥ 0, s ≥ 0 and moreover di > ci > 0 being coprime integers.
Note that N (A) ∪ N (B) = N (A × B); here we write N (A) ∪ N (B) for

the Newton polygon obtained by taking all slopes in N (A) and in N (B), and
arranging them in non-decreasing order.

We know that for an ordinary elliptic curve E we have N (E) = (1, 0)+(0, 1),
and for a supersingular elliptic curve we have N (E) = (1, 1), and both types
exist. Hence the Manin Conjecture has been settled if we can handle the case

(d, c) + (c, d) with gcd(d, c) = 1 and d > c > 0.

For such integers we consider a zero π of the polynomial

U := T 2 + pc·T + pn, n = d+ c, q = pn.

Clearly (pc)2 − 4·pn < 0, and we see that π is an imaginary quadratic Weil q-
number. Note that

(T 2 + pc·T + pn)/p2c = (
T

pc
)2 + (

T

pc
) + pd−c.

As d > c, we see that L = Q(π)/Q is an imaginary quadratic extension in which
p splits. Moreover, using 5.4 (3), the Newton polygon of U tells us the p-adic
values of zeros of U ; this shows that the invariants of D/L are c/n and d/n. This
proves that [D : L] = n2. Using Theorem 1.2 we have proved the existence of an
abelian variety A over Fq with π = πA, hence End0(A) = D. In particular the
dimension of A equals n = d+ c. Using 9.2 (3) we compute the Frobenius slopes:
we conclude that N (A) = (d, c) + (c, d). Hence, using the theorem by Honda and
Tate, see 1.2, the Manin conjecture is proved. �

11.6. Exercise. Let g > 2 be a prime number and let A be an abelian variety sim-
ple over a finite field K of dimension g. Show that either End0(A) is a field, or
End0(A) is of Type(1,g), i.e. a division algebra of rank g2 central over an imagi-
nary quadratic field. Show that for any odd prime number in every characteristic
both types of endomorphism algebras do appear. See [54], 3.13.

11.7. Exercise. Fix a prime number p, fix coprime positive integers d > c > 0.
Consider all division algebras D such that there exists an abelian variety A
of dimension g := d + c over some finite field of characteristic p such that
[End0(A) : Q] = 2g2 and N (A) = (d, c)+ (c, d). Show that this gives a infinite set
of isomorphism classes of such algebras.

11.8. We have seen a proof of the Manin conjecture using the Honda-Tate theory.
For a reference to a different proof see 21.25.



12. CM-liftings of abelian varieties

References: [56], [11].

12.1. Definition. Let A0 be an abelian variety over a field K ⊃ Fp. We say A/R
is a lifting of A0 to characteristic zero if R is an integral domain of characteristic
zero, with a ring homomorphism R→ K, and A→ Spec(R) is an abelian scheme
such that A⊗R K = A0.

12.2. Definition. Suppose A0 be an abelian variety over a field K ⊃ Fp such that
A0 admits smCM. We say A is a CM-lifting of A0 to characteristic zero if A/R
is a lifting of A0, and if moreover A/R admits smCM. If this is the case we say
that A0/K satisfies (CML). Moreover, if L ⊂ End0(A0) is a CM- field of degree
2g over Q and End0(A) = L we say that A0/K satisfies (CML) by L.

We say that A0/K satisfies (CMLN), if A0 admits a CM-lifting to a normal
characteristic zero domain.
Note that in these cases End0(AM ) = End0(A) ↪→ End0(A0) need not be bijective.

12.3. As Honda proved, [29], Th. 1 on page 86, see [73], Th. 2, see 10.4, for an
abelian variety A over a finite field, after a finite field extension, and after an
isogeny we obtain an abelian vareity B0 ∼ A⊗K ′ which admits a CM-lifting to
characteristic zero.

Question 1. Is an isogeny necessary ?

Question 2. Is a field extension necessary ?

12.4. Theorem I. For any g ≥ 3 and for any 0 ≤ f ≤ g−2 there exists an abelian
variety A0 over F = Fp, with dim(A) = g and of p-rank f(A) = f , such that A0

does not admit a CM-lifting to characteristic zero.
See [56], Th. B on page 131. Compare 5.8.

We indicate the essence of the proof; for details, see [56].
(1) Suppose given a prime number p, and a symmetric Newton polygon ξ which
is non-supersingular with f(ξ) ≤ g − 2. Using [36] choose an abelian variety C
over F = Fp with N (C) = ξ such that End0(C) is a field.
(2) Choose an abelian variety B over a finite field K such that B ⊗ F ∼ C, such
that a(B) = 2 and such that for every αp ⊂ B we have a(B/αp) ≤ 2. For a defini-
tion of the a-number, see 21.7. Fix an isomorphism (αp×αp)K

∼−→ B[F, V ] ⊂ B.
Important observation. Suppose t ∈ F; suppose BF/((1, t)(αp) =: At can be de-
fined over K ′, with K ⊂ K ′ ⊂ F. Then t ∈ K ′.
(3) We study all quotients of the form BF/((1, t)(αp) = At and see which one can
be CM-lifted to characteristic zero. Because End0(B) is a field, we can classify all
such CM-liftings over C, and arrive at:
(4) There exist K ⊂ K ′ ⊂ Γ ⊂ F such that [K ′ : K] < ∞, moreover Γ/K ′ is a
pro-p-extension, and if t 6∈ Γ then At does not a CM-lift to characteristic zero.
Note that Γ $ F, and hence the theorem is proved. �



Conclusion. An isogeny is necessary. In general, an abelian variety defined over a
finite field does not admit a CM-lifting to characteristic zero.

12.5. Definition. Let K = Fq. Let A0 be an abelian variety, defined over K.
We say that A0/K satisfies (CMLI), can be CM-lifted after an isogeny, if there
exist A0 ∼ B0 such that B0 satisfies (CML). We say A0/K satisfies (CMLNI), if
moreover if B0 can be chosen satisfying (CMLN).

12.6. At present it is an open problem whether any abelian variety defined over
a finite field satisfies (CMLI), see 22.2

12.7. Theorem IIs / Example. (Failure of CMLNI.) (B. Conrad) Let π = pζ5.
This is a Weil p2-number. Suppose p ≡ 2, 3 (mod 5). Note that this implies that
p is inert in Q(ζ5)/Q. Let A be any abelian variety over Fp2 in the isogeny class
corresponding to this Weil number by the Honda-Tate theory, see 1.2. Note that
dim(A) = 2 and End0(A) ∼= L = Q(ζ5) and A is supersingular. The abelian
variety A/Fp2 does not satisfy CMLN up to isogeny.
A proof, taken from [11], will be given in Section 13.

12.8. Remark. The previous example can be generalized. Let ` be a prime number
such that L = Q(ζ`) contains no proper CM field (e.g. ` is a Fermat prime). Let
p be a rational prime, such that the residue class field of L above p has degree
more than 2. Let π = pζ` and proceed as above. Note that also in this example
we obtain a supersingular abelian variety.

12.9. Theorem IIns / Example. (Failure of CMLNI.) (Chai) Let p be a rational
prime number such that p ≡ 2, 3 (mod 5), i.e. p is inert in Q(ζ5)/Q. Suppose
K/Q is imaginary quadratic, such that p is split in K/Q with an element β ∈ OK
such that OK ·β is one of the primes above p in OK (to ensure existence of β,
assume for example K to be chosen in such a way that the class number of K is
equal to 1). Let L/K be an extension of degree 5 generated by π := 5

√
p2β. We

see that π is a Weil p-number. Let A be any abelian variety over Fp in the isogeny
class corresponding to this Weil number by the Honda-Tate theory, see 1.2. Note
that dim(A) = 5, the Newton polygon of A has slopes equal to 2/5 respectively
3/5, and End0(A) is a field of degree 10 over Q. The abelian variety A/Fp does
not satisfy (CMLN) up to isogeny.
A proof, taken from [11], will be suggested in Section 13.

Conclusion. A field extension is necessary. In general, an abelian variety defined
over a finite field does not satisfy (CMLNI).

13. The residual reflex condition ensures (CMLNI)

13.1. The reflex field. See [69] Section 8 (the dual of a CM-type), [34], I.5. Let
P be a CM-field, and let ρ ∈ Aut(P ) be the involution on P which is complex
conjugation under every complex embedding P ↪→ C.

Let (P,Φ) be a CM-type. The reflex field L′ defined by (L,Φ) is the finite
extension of Q generated by all traces:



L′ := Q(
∑
ϕ∈Φ

ϕ(x) | x ∈ L).

If L/Q is Galois we have L′ ⊂ L. It is known that L′ is a CM-field.

Suppose B is an abelian variety, simple over C, with smCM by P = End0(B).
The representation of P on the tangent space of B defines a CM-type. It follows
that any field of definition for B contains L′; see [69], 8.5, Prop. 30; see [34], 3.2
Th. 1.1. Conversely for every such CM-type and every field M containing L′ there
exists an abelian variety B over M having smCM by L with CM-type Φ.

13.2. Remark. Suppose P is a CM-field, and let Φ be a CM-type for P . Let w′

be a discrete valuation of the reflex field P ′; write Kw′ for its residue class field.
Suppose B is an abelian variety defined over a number field M such that B/M
admits smCM of type (P,Φ). In particular [P : Q] = 2dim(B). Then M ⊃ L′; see
13.1 for references. Let v be a discrete valuation of M extending w′. Suppose B
has good reduction at v. Let Bv/Kv be the reduction of B at v.

The residual reflex condition. Then Kv contains Kw′ .

(A remark on notation. We use to write w for a discrete valuation of a CM-filed,
and v for a discrete valuation of a base field.)

13.3. Proof of 12.7. We see that End0(A) = Q(ζ5) = L. Note that L/Q is Galois;
hence L′ ⊂ L; moreover L′/Q is a CM-field; hence L′ = L; this equality can also be
checked directly using the possible CM-types for L = Q(ζ5). Suppose there would
exist up to isogeny over K = Fp2 a CM-lifting B/M to a field of characteristic
zero. We see that the residue class field K ′ = Kv of M contains the residue class
field Kw′ of L′. As p is inert in L = L′ it follows that K ⊃ Kw′ = Fp4 . This
contradicts the fact that A is defined over Fp2 . �12.7

A proof of 12.9 can be given along the same lines, by showing that Kw′ ⊃ Fp2 .

13.4. Given a CM-type (P,Φ) and a discrete valuation w′ of the reflex field P ′ we
obtainKw′ ⊃ Fp. We see that in order that A0/K withK = Fq does allow a lifting
with CM-type (P,Φ) it is necessary that it satisfies the residual reflex condition:
Kw′ ⊂ K. Moreover note that the triple (P,Φ, w′) determines the Newton polygon
of Bv (notation as above): see [73], page 107, Th. 3, see 9.7. The triple (P,Φ, w′)
will be called a p-adic CM-type, where p is the residue characteristic of w′. The
following theorem says that the residual reflex condition is sufficient for ensuring
(NLCM) up to isogeny.

13.5. Theorem III. Let A0/K be an abelian variety of dimension g simple over
a finite field K ⊃ Fp. Let L ⊂ End0(A0) be a CM -field of degree 2·g over Q.
Suppose there exists a p-adic CM-type (L,Φ, w′) such that it gives the Newton
polygon of A0 and such that Kw′ ⊂ K. Then A0 satisfies (CMNL) up to isogeny.
We expect more details will appear in [11].



13.6. In order to be able to lift an abelian variety from characteristic p to charac-
teristic zero, and to have a good candidate in characteristic zero whose reduction
modulo p gives the required Weil number we have to realize that in general an
endomorphism algebra in positive characteristic does not appear for that dimen-
sion as an endomorphism algebra in characteristic zero. However “less structure”
will do:

13.7. Exercise ∗. Let E be an elliptic curve over a field K ⊃ Fp. Let X = E[p∞]
be its p-divisible group. Show:

(1) For every β ∈ End(X) the pair (X,β) can be lifted to characteristic zero.

For every b ∈ End(E) the pair (E, b) can be llifted to characteristic zero.
This was proved in [20]. See [55], Section 14, in particular 14.7.

13.8. Remark/Exercise ∗ (Lubin and Tate). There exists an elliptic curve E over
a local field M such that E has good reduction, such that End(E) = Z and
End(E[p∞]) % Zp. (We could say: E does not have CM, but E[p∞] does have
CM.) See [38], 3.5.

13.9. Remark. We have seen that the Tate conjecture holds for abelian varieties
over a base field of finite type over the prime field; see 20.5. By the previous
exercise we see that an analogue of the Tate conjecture for abelian varieties does
not hold over a local field.

Grothendieck formulated his “anabelian conjecture” for hyperbolic curves;
see [27], Section 3. Maybe his motivation was partly the Tate conjecture, partly
the description of algebraic curves defined over Q by Bielyi. Grothendieck stressed
the fact that the base field should be a number field. This “anabelian” conjecture
by Grothendieck generalizes the Neukirch-Uchida theorem for number fields to
curves over number fields. Various forms of this conjecture for curves have been
proved (Nakamura, Tamagawa, Moichizuki).

It came as a big surprise that this anabelian conjecture for curves actually is
true over local fields, as Mochizuchi showed, see [41]. The `-adic representation
for abelian varieties is in an abelian group: H1-`-adic or π1(A). It turned out that
for curves the representation in the non-abelian group π1(C) gives much more
information. This is an essential tool in Mochizuki’s result.

13.10. We keep notation as in 12.7: π = pζ5 with p ≡ 2, 3 (mod 5). Write L =
Q(ζ5) where ζ = ζ5 and write O = OL for the ring of integers of L. We choose A
over Fp such that πA ∼ π and OL = End(A), see 4.6. We consider

ρ0,F : O −→ End(A[F ]) = End(D(A[F ])) = Mat(2,Fp2),

and

ρ0,p : O −→ End(A[p]) = End(D(A[p])) = Mat(4,Fp2).

Let u ∈ Fp4 be a primitive 5-th root of unity.



Claim. (1) The set of eigenvalues of ρ0,F (ζ) is either {u, u4} or {u2, u3}.
(2) The set of eigenvalues of ρ0,p(ζ) is {u, u2, u3, u4}.
(3) The abelian variety A over Fp2 defined above does not admit (CML).
Proof. Clearly the eigenvalues considered are a power of u. As the trace of ρ0,p(ζ)
is in Fp2 this shows (1).

Consider O ⊗Z W∞(Fp2). This ring is isomorphic with a product Λ1 × Λ2

according to the two irreducible factors [(T−ζ)(T−ζ4)] respectively [(T−ζ2)(T−
ζ3)] of IrrQ(π) = (T 5 − 1)/(T − 1) ∈ W∞(Fp2)[T ]. The action of Λ1 × Λ2 on the
additive group D(A[p] gives a splitting into D(A[F ]) and Ker(D(A[p]→ D(A[F ]).
This proves (2).

Suppose there would exist a CM-lifting of A. Then there would be a normal
CM-lifting of B0 := A⊗F. I.e. the would exist: a normal integral local domain R
with residue class field F and field of fractions M , an abelian scheme B → Spec(R)
such that B ⊗ F ∼= B0, and such that Γ := End(B) is an order in O; hence
the field of fractions of Γ is L. Write B = B ⊗ M for the generic fiber. Let
z ∈ W∞(F) be a primitive root 5-th of unity such that z mod p = u. Consider
T = tB,0 the tangent bundle of B → S := Spec(R) along the zero section.
We obtain an action Γ → End(T/S). Note that B → S admits smCM, hence
B ⊗ C has a CM-type. Hence on the generic fiber T ⊗RM the action of ζ ∈ L is
either with eigenvalues {z, z2}, or {z, z3} or {z4, z2} or {z4, z3}. This action also
can be computed as follows. Consider the p-divisible group B[p∞], with action
ρ : Γ → End(B[p∞]). The action on the generic fiber ρη : Γ → End(B[p∞])
extends to ρη : L→ End(B[p∞]). Hence we see that the action of ζ on Tη := T⊗M
has eigenvalues as given by the CM-type.

As Γ acts via ρ : Γ→ B we obtain an action

ρp∞ : Γ→ End(B[p∞]).

The closed fiber

ρ0,p∞ : Γ→ End(B0[p∞])

of this action extends to the original O → End(B0[p∞]).
We conclude that on the one hand ζ acts on B0[F ] by eigenvalues either

{u, u4} or {u2, u3}, on the other hand by one of the four possibilities given by a
CM-type. This is a contradiction. This proves (3). �

13.11. This complements 12.4. We expect that for every prime number p there
exists an example with f = 0 and g = 2 of an abelian variety over a finite field
which does not admit a CM-lifting.

13.12. (0) For an abelian variety A over a field M of characteristic zero with
smCM an embedding M ⊂ C we obtain a CM-type. Of course, an isogeny does
not change the CM-type. Is there an analogue in positive characteristic?

(p) In the example just discussed we see that in the isogeny class of A ⊗ F
the action of ζ on the tangent space of different members of the isogeny class
can have different “types”. An isogeny may change the “CM-type” in positive



characteristic. In a more general situation than the one just considered it also not
so clear what to expect for a reasonable definition of a “CM-type”.

However in 9.2 we see a description of a notion which is intrinsic in the isogeny
class of an abelian variety with smCM: not the action on the tangent space, but
the action on the p-divisible group does split the p-divisible group into isogeny
factors; this splitting is stable under isogenies.

We see the general strategy: in characteristic zero it often suffices to study the
tangent space of an abelian variety, whereas in positive characteristic the whole
p-divisible group is the right concept to study “infinitesimal properties”.

The Shimura-Taniyama formula and the contents of this section are the study of
these two aspects, and the way they fit together under reduction modulo p and
under lifting to characteristic zero.



14. Elliptic curves

14.1. Reminder. Let E be an eliptic curve over a field K ⊃ Fp. We say that E
is supersingular if E[p](k) = 0, for an algebraically closed field k ⊃ K. In 21.20
and 21.21 we discuss the definition of an abelian variety being supersingular. We
mention that any supersingular abelian variety has p-rank equal to zero; however
the converse is not true: for any g ≥ 3 there exist abelian varieties of p-rank equal
to zero of that dimension which are not supersingular.

We say that an abelian variety A of dimension g over a field K ⊃ Fp is
ordinary if its p-rank equals g, i.e. A[p](k) ∼= (Z/p)g. Note that

an elliptic curve E is ordinary iff E[p](k) 6= 0, i.e. iff E is not supersingular.

14.2. Exercise. Let E be an elliptic curve over K ⊃ Fp.
(1) Show that

Ker(E FE−→ E(p)
F

E(p)−→ E(p2)) = E[p].

(2) Show that j(E) ∈ Fp2 .
(3) Show that E can be defined over Fp2 .
For the notion of “can be defined over K”, see 15.1.
(4) (Warning)
Give an example of an elliptic curve E over a field K ⊃ Fp with FE(p) ·FE(p) = p
and give an example with FE(p) ·FE(p) 6= p.

14.3. Remark. As Deuring showed, for any elliptic curve E we have (j(E) ∈ K)⇒
(E can be defined over K). An obvious generalization for abelian varieties of
dimension g > 1 does not hold; in general it is difficult to determine a field of
definition for A, even if a field of definition for its moduli point is given.
In fact, as in formulas given by Tate, see [71] page 52, we see that for j ∈ K an
elliptic curve over K with that j invariant exists:

• char(K) 6= 3, j = 0: Y 2 + Y = X3;
• char(K) 6= 2, j = 1728: Y 2 = X3 +X;
• j 6= 0, j 6= 1728 :

Y 2 +XY = X3 − 36
j − 1728

X − 1
j − 1728

.

Deuring showed that the endomorphism algebra of a supersingular elliptic curve
over F = Fp is the quaternion algebra Qp,∞; this is the division algebra, of degree
4, central over Q unramified outside {p,∞} and ramified at p and at∞. This was
an inspiration for Tate to prove his structure theorems for endomorphism algebras
of abelian varieties defined over a finite field, and, as Tate already remarked, it
reproved Deuring’s result.



14.4. Endomorphism algebras of elliptic curves. Let E be an elliptic curve over
a finite field K = Fq. We write Qp,∞ for the quaternion algebra central over
Q, ramified exactly at the places ∞ and p. One of the following three (mutually
exclusive) cases holds:

(1) (2.1.s) E is ordinary; e = 2, d = 1 and End0(E) = L = Q(πE)

is an imaginary quadratic field in which p splits. Conversely if End0(E) = L
is a quadratic field in which p splits, E is ordinary. In this case, for every field
extension K ⊂ K ′ we have End(E) = End(E ⊗K ′).

(2) (1.2) E is supersingular, e = 1, d = 2 and End0(E) ∼= Qp,∞.
This is the case if and only if πE ∈ Q. For every field extension K ⊂ K ′ we have
End0(E) = End0(E ⊗K ′).

(3) (2.1.ns) E is supersingular, e = 2, d = 1 and End0(E) = L % Q.
In this case L/Q is an imaginary quadratic field in which p does not split. There
exists an integer N such that πNE ∈ Q. In that case End0(E ⊗ K ′) ∼= Qp,∞ for
any field K ′ containing FqN .

If E is supersingular over a finite field either (2.1.ns) or (1.2) holds.

A proof can be given using 14.6. Here we indicate a proof independent of that
classification of all elliptic curves over a finite field, but using 5.4 and 1.2.

Proof. By 5.4 we know that for an elliptic curve E over a finite field we have
L := Q(πE) and D = End0(E) and

[L : Q]·
√

[D : L] = ed = 2g = 2.

Hence e = 2, d = 1 or e = 1, d = 2. We obtain three cases:
(2.1.s) [L : Q] = e = 2 and D = L, hence d = 1, and p is split in L/Q.
(2.1.ns) [L : Q] = e = 2 and D = L, hence d = 1, and p is not split in L/Q.
(1.2) L = Q, [D : Q] = 4; in this case e = 1, d = 2 and D ∼= Qp,∞.

Moreover we have seen that either πE ∈ R, and we are in case (1.2), note that
dim(E) = 1, or πE 6∈ R and D = L := Q(πE) = Q and L/Q is an imaginary
quadratic field.

For a p-divisible group X write End0(X) = End(X)⊗Zp Qp. We have the natural
maps

End(E) ↪→ End(E)⊗Zp ↪→ End(E[p∞]) ↪→ End0(E[p∞]) ↪→ End0((E ⊗ F)[p∞]).

Indeed the `-adic map End(A)⊗Z` ↪→ End(T`(E)) is injective, as was proved by
Weil, see 18.1. The same arguments of that proof are valid for the injectivity of
End(A) ⊗ Zp ↪→ End(A[p∞]) for any abelian variety over any field, see 20.7, see
[77], Theorem 5 on page 56. Hence



End0(E) ↪→ End0(E)⊗Qp ↪→ End0(E[p∞]).

Claim (One) (2.1.ns) or (1.2) =⇒ E is supersingular.

Proof. Suppose (2.1.ns) or (1.2), suppose that E is ordinary, and arrive at a
contradiction.
If E is ordinary we have

E[p∞]⊗K ∼= µp∞ ×Qp/Zp.

Moreover

End0(µp∞) = Zp, End0(Qp/Zp) = Zp

(over any base field). In case (2.1.ns) we see thatDp = End0(E)⊗Qp is a quadratic
extension of Qp. In case (1.2) we see that Dp = End0(E) ⊗ Qp is a quaternion
algebra over Qp. In both cases we obtain

End(E)→ End0(E)⊗Qp → End0(E[p∞]⊗K) = End0(µp∞×Qp/Zp) = Qp×Qp.

As (Dp → Qp) = 0 we conclude that (End(E)→ End(E[p∞])) = 0; this is a
contradiction with the fact that the map Z ↪→ End(E)→ End(E[p∞]) is non-zero.
Hence Claim (One) has been proved. �

Claim (Two) (2.1.s) =⇒ E is ordinary.

Proof. Suppose (2.1.s), suppose that E that E is supersingular, and arrive at a
contradiction.
Note that E′[p∞] is a simple p-divisble group for any supersingular curve E′ over
any field. Hence End0(E[p∞]) is a division algebra. Suppose that we are in case
(2.1.s). Then Q(πE)⊗Qp

∼= Qp×Qp. This shows that if this were true we obtain
an injective map

Q(πE)⊗Qp
∼= Qp ×Qp ↪→ End0(E)⊗Qp ↪→ End0(E[p∞])

from Qp
∼= Qp into a division algebra; this is a contradiction. This proves Claim

(Two). �

By Claim (One) and Claim (Two) it follows that

E is ordinary ⇐⇒ (2.1.s), E is supersingular ⇐⇒ ( (2.1.ns) or (1.2) ).

Claim (Three) If E is supersingular then for some N ∈ Z>0 we have πNE ∈ Q.

Proof. If we are in case (1.2) we know πE ∈ Q.
Suppose we are in case (2.1.ns), and write L = Q(πE). Write π = πE and

consider ζ = π2/q ∈ L.



• Note that ζ has absolute value equal to one for every complex embedding
(by the Weil conjecture), see 3.2.

• Note that for any discrete valuation v′ of L not dividing p the element ζ is
a unit at v′. Indeed π factors pn, so π is a unit at w.

• As we are in case (2.1.ns) there is precisely one prime v above p.

The product formula Πw | ζ |w= 1, the product running over all places of L,
in the number field L (see [28], second printing, §20, absolute values suitably
normalized) shows that ζ is also a unit at v. By 10.3 we conclude that ζ is a root
of unity. This proves Claim (Three). �

We finish the proof. If E is ordinary, End0(E ⊗M) is not of degree four over Q,
hence End0(E) = End0(E ⊗K ′) for any ordinary eliptic curve over a finite field
K , and any extension K ⊂ K ′.

If we are in case (1.2) clearly we have End0(E) = End0(E ⊗ K ′) for any
extension K ⊂ K ′.

If we are in case (2.1.ns) we have seen in Claim (Three) that for someN ∈ Z>0

we have πNE ∈ Q. Hence for every K ⊂ FqN ⊂ K ′ we have

End0(E) = L = Q(πE) $ End0(E ⊗K ′) ∼= Qp,∞.

�14.4

14.5. Exercise. Let A be an elliptic curve over a local field in mixed characteristic
zero/p, such that End(A) % Z. Let L = End0(A). Note that E/Q is an imaginary
quadratic extension. Suppose A has good reduction A0 modulo the prime above
p. Show:

If p is ramified or if p is inert in Q ⊂ E then A0 is supersingular.

If p is is split in Q ⊂ E then A0 is ordinary.

(Note that in the case studied End(A) ↪→ End(A0); you may use this.)

14.6. Classification of isogeny classes of all elliptic curves over finite fields.
See [75], Th. 4.1 on page 536.

Let E be an elliptic curve over a finite field K = Fq, with q = pn, and π = πE .
Then | π |= √q (for every embedding into C). Hence π + π =: β ∈ Z has the
property | β |≤ 2

√
q. For every E over a finite field π = πE is a zero of

U := T 2 − β·T + q, β2 ≤ 4q.

The Newton polygon of E equals the Newton polygon of U with the vertical axis
compressed by n, see 9.3. Hence:

(p does not divide β) ⇐⇒ (E is ordinary),

and

(vp(β) > 0) ⇔ (E is supersingular) ⇔ (vp(β) ≥ n/2) ⇔ (q divides β2);



(E is supersingular) ⇐⇒ β2 ∈ {0, q, 2q, 3q, 4q}.

We write

D = End0(E), L = Q(π), e = [L : Q],
√

[D : Q] = d.

Note that ed = 2. Hence L = Q iff D ∼= Qp,∞. If L/Q is quadratic, then L is
imaginary. Note that if L is quadratic over Q then E is supersingular iff p is
non-split in L/Q.

We have the following possibilities. Moreover,
using 1.2 we see that these cases do all occur for an elliptic curve over some finite
field.

(1) p does not divide β ,
E is ordinary, L = Q(πE) is imaginary quadratic over Q, and p is split in
L/Q; no restrictions on p, no restrictions on n.

In all cases below p divides β (and E is supersingular). We write either q = p2j

or q = p2j+1.
For supersingular E we have that q divides β2. As moreover 0 ≤ β2 ≤ 4q we
conclude

β2 ∈ {0, q, 2q, 3q, 4q}.

(2) β2 = 4q β = ∓2
√
q = ∓2pj , n = 2j is even .

Here π = ±pj = ±√q ∈ Q, and L = Q, D ∼= Qp,∞.

In all cases below (E is supersingular and) πE 6∈ Q; hence

Q $ L = D 6∼= Qp,∞ and L $ End(E ⊗ F) ∼= Qp,∞.

(3) β2 = 3q p = 3, β = ±3j+1 , q = 32j+1.
Here p = 3, n = 2j + 1 is odd, and
π ∼ ζ3

√
−q or π ∼ ζ6

√
−q: π ∼ ζ12

√
q, L = Q(

√
−3).

(4) β2 = 2q p = 2, β = ±2j+1 , q = 22j+1.
Here p = 2, n = 2j + 1 is odd, and π ∼ ζ8

√
q; L = Q(

√
−1).



(5) β2 = q β = ±√q = ±pj , p 6≡ 1 (mod 3) , n = 2j is even, and L =

Q(
√
−3).

Here π ∼ ζ6
√
q, respectively π ∼ ζ3

√
q.

If we are not in one of the cases above we have β = 0.

(6) β = 0, n is odd , π ∼ ±
√
−q, no restrictions on p; L = Q(

√
−p).

(7) β = 0, n is even, p 6≡ 1 (mod 4) , π ∼ ±pj
√
−1, q = p2j ; L =

Q(
√
−1).

In particular we see:

if E is supersingular over a finite field, then πE ∼ ζr
√
q with

r ∈ {1, 2, 3, 4, 6, 8, 12}.

Proof. Let E be an elliptic curve over Fq. We have seen restrictions on β. If p
does not divide β ∈ Z, we see that β2 − 4q < 0, and (1) is clear.
If we are not in case (1) then p divides β and E is supersingular and β2 ∈
{0, q, 2q, 3q, 4q}.

If β2 = 4q, we are in Case (2); this is clear; also see 15.9.
If β2 = 3q, we obtain p = 3 and we are in case (3)
If β2 = 2q, we obtain p = 2 and we are in case (4).
If β2 = q we obtain L = Q(ζ3); because p is non-split in L/Q we obtain p 6≡ 1

(mod 3) in this case; this proves (5).
If β = 0 and n odd, we have L = Q(π) = Q(

√
−p). We are in case (6), no

restrictions on p.
If β = 0 and n is even, we have L = Q(π) = Q(

√
−1). As p is non-split in

L/Q we see that p 6≡ 1 (mod 4). We are in case (7).

This ends the proof of the classification of all isogeny classes of elliptic curves
over a finite field as given in [75], pp. 536/7. �14.6

15. Some examples and exercises

15.1. Definition / Remark. Let A be an abelian variety over a field K and let
K0 ⊂ K. We say that A can be defined over K0 if there exists a field extension
K ⊂ K ′ and and abelian variety B0 over K0 such that B0 ⊗K0 K

′ ∼= A ⊗K K ′.
– The following exercise shows that this does not imply in general that we can
choose B0 over K0 such that B0 ⊗K0 K

∼= A.



15.2. Exercise. Let p be a prime number, p ≡ 3 (mod 4). Let π := p·
√
−1.

(1) Show that π is a p2-Weil number. Let A be an abelian variety simple over
K := Fp2 such that πA ∼ π. Determine dim(A). Describe End0(A).
(2) Show there does not exist an abelian variety B0 over K0 := Fp such that
B0 ⊗K0 K

∼= A.
(3) Show there exists a field extension K ⊂ K ′ and and abelian variety B0 over
K0 such that B0 ⊗K0 K

′ ∼= A⊗K K ′. I.e. A can be defined over K0.

15.3. Exercise. Give an example of a simple abelian variety A over a field such
that A⊗K is not simple.

15.4. Exercise. For each of the numbers below show it is a Weil number, determine
q, determine the invariants e0, e, d, g, describe the structure of D, and describe
the structure of End0(A⊗K K ′) for any field extension K ⊂ K ′.
(1) π =

√
−p,

(2) ζ = ζ3 = − 1
2 + 1

2

√
−3, π = ζ·

√
−p,

(3) π is a zero of T 2 −
√

2·T + 8,

15.5. Exercise. Consider the following examples.
(1) Let β :=

√
2 +
√

3, and q = pn. Let π be a zero of

T 2 − βT + q.

(2) Choose coprime positive integers d > c > 0, and choose p. Let π be a zero of

T 2 + pcT + pd+c, q = pd+c.

See Section 11, in particular 11.5.
(3) Choose q = pn and i ∈ Z>0. Let π := ζi·

√
q, where ζi is a primitive i−th root

of unity.

(a) Show that every of these numbers π indeed is a Weil q-number.
For each of these let Aπ be an abelian variety simple over Fq having this number
as geometric Frobenius endomorphism.
(b) Determine dim(Aπ) and its Newton poygon N (Aπ).
(c) For every possible choice of π determine the smallest N ∈ Z>0 such that for
every t > 0 we have

End0(Aπ ⊗ FqN ) = End0(Aπ ⊗ FqNt).

You might want to use 5.10.

15.6. Exercise. (1) Let E be an elliptic curve over Fp. Show that End0(E) is a
field.
(2) Give an example of an abelian variety simple over Fp such that End(A) is
non-commutative.
(3) Let E be an elliptic curve over Q. Show that End(E) = Z.
(4) Show there exists an abelian variety A simple over Q such that Z 6= End(A).
Compare 18.10.



15.7. Remark/Exercise. Suppose A is an abelian variety over a field K which
admits smCM. Let D = End0(A) and let L′ ⊂ D be a subfield of degree [L′ :
Q] = 2g = 2·dim(A). In this case L′ not be a CM field.
Construct A,K,L′, where A is an abelian variety over K, a finite field, such
that D = End0(A) is of Type IV(1,g), i.e. A admits smCM, and D is a division
algebra central over degree g2 over an imaginary quadratic field L = Q(πA), and
L ⊂ L′ ⊂ D is a field which splits D/L such that L′ is not a CM-field.

15.8. Exercise. Consider the number π constructed in 12.7, respectively 12.9.
Prove it is a Weil number and determine D(π), and g(π) and the Newton polygon
of the isogeny class thus constructed. For notation see 5.5.

15.9. Let π be a Weil q-number. Let Q ⊂ L ⊂ D be the central simple algebra
determined by π. We remind the reader that

[L : Q] =: e, [D : L] =: d2, 2g := e·d. See Section 18, see 5.5.

For the different types of Albert algebras see 18.2. As we have seen in Proposition
2.2 there are three possibilities in case we work over a finite field:

(Re) Either
√
q ∈ Q, and q = pn with n an even positive integer.

Type III(1), g = 1

In this case π = +pn/2, or π = −pn/2. Hence L = L0 = Q. We see that D/Q
has rank 4, with ramification exactly at ∞ and at p. We obtain g = 1, we have
that A = E is a supersingular elliptic curve, End0(A) is of Type III(1), a definite
quaternion algebra over Q. This algebra was denoted by Deuring as Qp,∞. Note
that “all endomorphisms of E are defined over K”, i.e. for any

∀ K ⊂ K ′ we have End(A) = End(A⊗K ′).

(Ro) Or q = pn with n an odd positive integer and hence
√
q 6∈ Q.

Type III(2), g = 2

In this case L0 = L = Q(
√
p), a real quadratic field. We see thatD ramifies exactly

at the two infinite places with invariants equal to (n/2)·2/(2n) = 1/2. Hence
D/L0 is a definite quaternion algebra over L0, it is of Type III(2). We conclude
g = 2. If K ⊂ K ′ is an extension of odd degree we have End(A) = End(A⊗K ′).
If K ⊂ K ′ is an extension of even degree A⊗K ′ is non-simple, it is K ′-isogenous
with a product of two supersingular elliptic curves, and End0(A⊗K ′) is a 2× 2
matrix algebra over Qp,∞, and

∀ 2 | [K ′ : K] we have End(A) 6= End(A⊗K ′).

(C) For at least one embedding ψ : Q(π)→ C we have ψ(π) 6∈ R.



IV(e0, d), g := e0·d

In this case all conjugates of ψ(π) are non-real. We can determine [D : L] knowing
all v(π) by 5.4 (3); here d is the greatest common divisor of all denominators of
[Lv : Qp]·v(π)/v(q), for all v | p. This determines 2g := e·d. The endomorphism
algebra is of Type IV(e0, d). For K = Fq ⊂ K ′ = Fqm we have

End(A) = End(A⊗K ′) ⇐⇒ Q(π) = Q(πm).

15.10. Suppose M ⊃ R � K, where R is a normal domain and M = Q(R)
the field of fractions, and K a residue field. Suppose A → Spec(R) is an abelian
scheme. Then

End(AM ) ∼−→ End(A) ↪→ End(AK).

Exercise. In case ` is a prime number not equal to the characteristic of K, show
that End(AK)/End(A) has no `-torsion.

Exercise. Give an example where End(AK)/End(A) does have torsion.

We conclude that we obtain End0(A) ↪→ End0(AK). In general this is not an
equality.

Exercise. Give examples of A over R such that End0(A) $ End0(AK).

15.11. Remark/Exercise. It is interesting to study the behavior of isomorphism
classes and of isogeny classes of abelian varieties over finite fields under field
extensions. See [75], page 538:

15.11.1 Example. Let q = pn with n even. Consider β+ = +2
√
q, and β− = −2

√
q.

The polynomial P = T 2 − β·T + q in both cases gives a Weil q-number. The
resulting (isogeny classes) E+, respectively E− consist of elliptic curves, with
End0(E) quaternionic over Q, the case of “all endomorphisms are defined over
the base field”. These isogeny classes do not coincide over Fq:

β± = ±2
√
q, E+ 6∼Fq E−; however E+ ⊗K ′ ∼K′ E− ⊗K ′

for the quadratic extension K = Fq ⊂ K ′ := Fq2 .
Note that in these cases the characteristic polynomial fE± of the geometric

Frobenius equals P 2.
Waterhouse writes: “But the extension which identifies these two classes created
also a new isogeny class ... It is this sort of non-stable behavior which is overlooked
in a treatment like Deuring’s which considers only endomorphism rings over k...”
See [75], page 538.

15.11.2 Exercise/Example. Classify all isogeny classes of elliptic curves, and their
endomorphism algebras for every p, for every q = pn. See 14.6.



15.11.3 Exercise. Write EIsom(q) for the set of isomorphism classes of elliptic
curves over Fq. Let K = Fq ⊂ K ′ = FqN be an extension of finite fields. There is
a natural map

EIsom(q) −→ EIsom(qN ) [E] 7→ [E ⊗K K ′].

Show that this map is not injective, and is not surjective.

15.11.4 Exercise. Write Isog(q) for the set of isogeny classes of abelian varieties
over Fq. Show that for N ∈ Z>1 the natural map Isog(q) → Isog(qN ) is not
injective, and is not surjective.

15.12. Exercise. Show that h := Y 3 − 6Y 2 + 9T − 1 ∈ Q[Y ] is irreducible. Let β
be a zero of h. Show that for any ψ0 : Q(β) → C we have ψ0(β) ∈ R, i.e. β is
totally real, and that 0 < ψ0(β) < 5, hence β is totally positive. Let π be a zero of
T 2 − β·T + 3. Determine the dimension of A simple over F3 such that πA = π.

15.13. Exercise. Let L0 = Q(
√

2). Choose a rational prime number p inert in
L0/Q. Let β := (2−

√
2)·p. Let π be a zero of the polynomial

g := T 2 − βT + p4 ∈ L0[T ].

(a) Show that the discriminant of g is totally negative.
(b) Show that π is a q-Weil number with q = p4.
(c) Let A be an abelian variety over Fq with πA = π. Let

Q ⊂ L0 = Q(β) ⊂ L = Q(π) ⊂ D := End0(A).

Determine: g = dim(A), the structure of D and the Newton polygon N (A).

This can be generalized to:

15.14. Exercise. Let g ∈ Z>0. Let e0, d ∈ Z>0 with e0·d = g. Show there exists an
abelian variety A over F = Fp with D = End0(A) of Type(e0, d).

15.15. Exercise. Let b ∈ Z and p and q = pn satisfy b2 < 4q3 such that 3 divides
b but 32 does not divide b. Let β be a zero of f := X3 − 3qX − b. Let ρ be a zero
of Y 2 − bY + q3. Let π be a zero of T 2 − βT + q. Let N be the Galois closure of
Q(π)/Q. Show:
(a) f ∈ Z[X] is irreducible; β is totally real; write L0 = Q(β);
(b) π is a Weil q-number; ρ is a Weil q3-number;
(c) π3 ∼ ρ; there exists an inclusion Q(ρ) ⊂ Q(π) =: L;
(e) there exists an element 1 6= z ∈ N with z3 = 1; such an element is not
contained in Q(π);
(f ) for w′ ∈ Σ(p)

L0
compute w′(β).

(g) Let A be a K-simple abelian variety with πA = π. Show how to compute
dim(A) once b and q are given. Is A absolutely simple?



15.16. Exercise. Formulate and solve an exercise analogous to the previous one
with f = X5 − 5qT 3 + 5q2T − b.

15.17. Exercise. Let N ∈ Z≥2 be a prime number. Let π be a Weil q-number, and
L = Q(π). Suppose L′ := Q(πN ) $ L = Q(π). Show:
(a) If ζN is not conjugated to an element in L then [L : L′] = N .
(b) If ζN is conjugated to an element in L then [L : L′] divides N − 1.

15.18. Exercise. Let E be an elliptic curve over a field of characteristic p > 0, and
let L ⊂ End0(E) be a field quadratic over Q. Show that L is imaginary. Show
there exists a CM-lifting of (E,L) to characteristic zero. See 22.1(4).

15.19. Exercise. Let p be a prime number, and let P := T 30 + pT 15 + p15. Write
Kn = Fpn .
(a) Show that P ∈ Q[T ] is irreducible. Let π be a zero of g. Show that π is a Weil
p-number. Let A be an abelian variety over Fp such that πA ∼ π.
(b) Describe the structure of End(A) and compute dim(A).
(c) Show that

End(A) $ End(A⊗K3) $ End(A⊗K15),

and describe the structures of these endomorphism algebras. Show that A is ab-
solutely simple.

15.20. Exercise. (See Section 9.) Let m and n be coprime integers, m > n ≥ 0.
Write h := m+ n. For every b ∈ Z>1 write

gb := T 2 + p2bn(1− 2pbe) + p2bh, e := h− 2n = mn.

(a) Show that the discriminant of gb is negative; conclude that gb ∈ Q[T ] is irre-
ducible. Let πb be a zero of gb. Show that πb is a p2bh-Weil number. Let Ab be an
abelian variety with πAb

∼ πb.
(b) Describe the structure of End(Ab) and determine the Newton polygon N (Ab).
(c) Show that

#
(
{` | ` is a prime number and ∃b ∈ Z>0 such that ` divides (4pbe − 1)}

)
=∞.

[Hint: you might want to use the reminder below.]
(d) Show that the set {Q(πb) | b ∈ Z>0}/ ∼=Q is an infinite set of isomorphism
classes of quadratic fields.
(e) Conclude that

{Ab ⊗ Fp | b ∈ Z>1}

defines an infinite number of Fp-isogeny classes with Newton polygon equal to
(m,n)+ (n,m). (f ) Show that for any symmetric Newton polygon ξ 6= σ which is
not supersingular, there exists infinitely many isogeny classes of hypersymmetric
abelian varieties over Fp having Newton polygon equal to ξ.



15.21. Reminder. Let S be a set of primes, and ZS the ring of rational numbers
with denominators using only products of elements of S; write (ZS)∗ for the
multiplicative group of units in this ring. A conjecture by Julia Robinson, later
proved as a corollary of a theorem by Siegel and Mahler says:

# ({λ | λ ∈ (ZS)∗, λ− 1 ∈ (ZS)∗}) <∞;

this is a very special case of: [33], Th. 3.1 in 8.3 on page 194.

16. Appendix 1: Abelian varieties

Basic references: [47], [15], [GM].
For the notion of abelian variety over a field, abelian scheme over a base

scheme, isogenies, and much more we refer to the literature. But let us at least
give one definition.

16.1. Definition. Let S be a scheme. We say that G→ S is a group scheme over
S if MorS(−, G) represents a group functor on the category of schemes over S.
A group scheme A → S is an abelian scheme if A/S is smooth and proper with
geometrically irreducible fibers. If S = Spec(K), an abelian scheme over S is
called an abelian variety defined over K.

From these properties it follows that A/S is a commutative group scheme. How-
ever the name does not come from this, but from the fact that certain integrals
of differential forms on a Riemann surface where studied by Niels Henrik Abel,
and that the values of such integral are in an algebraizable complex torus; hence
these objects were called abelian varieties.

Warning. In most recent papers there is a distinction between an abelian variety
defined over a field K on the one hand, and A⊗K K ′ over K ′ % K on the other
hand. The notation End(A) stands for “the ring of endomorphisms of A over K”.
This is the way Grothendieck taught us to choose our notation.

In pre-Grothendieck literature and in some modern papers there is a confusion
between on the one hand A/K and “the same” abelian variety over any extension
field. In such papers there is a confusion. Often it is not clear what is meant by
“a point on A”, the notation EndK(A) can stand for the “endomorphisms defined
over K”, but then sometimes End(A) can stand for the “endomorphisms defined
over K”.

Please adopt the Grotendieck convention that a scheme T → S is what it is,
and any scheme obtained by base extension S′ → S is denoted by T ×S S′ = TS′ ,
etc.

An abelian variety A over a field K, as defined above, is a “complete group variety
defined over K” (in pre-Grothendieck terminology). In particular A ⊗ K is an
integral algebraic scheme.



Exercise. Show that G → S is a group scheme over S iff there exist morphisms
S → G, and m : G×G→ A and i : G→ G satisfying certain properties encoded
in commutative diagrams as given by the group axioms.

16.2. For an abelian variety over a field K the dual abelian variety At = Pic0
A

exists. This is an abelian variety of the same dimension as A.
For the definition of a polarization see [47]; [45], 6.2; see [GM]. A divisor D on

an abelian variety A defines a homomorphism φD : A → At; in case this divisor
is ample φD is an isogeny. For an abelian variety A over a field K an isogeny
ϕ : A→ At is called a polarization if over some over-field ofK this homomorphism
can be defined by an ample divisor. We say we have a principal polarization if
ϕ : A→ At is an isomorphism.

As every abelian variety admits a polarization we see that A and At are
isogenous.

16.3. The Rosati involution. Let A be an abelian variety over a field K We write
D = End0(A) = End(A)⊗ZQ, called the endomorphism algebra of A. Let ϕ : A→
At be a polarization. We define † : D → D by †(x) := ϕ−1·xt·ϕ; for the existence
of ϕ−1 in D, see 6.1.This map is an anti-involution on the algebra D, called the
Rosati-involution. If ϕ is a principal polarization, we have † : End(A)→ End(A).
See [47], pp.189 - 193. See [15], Chap. V, §17; note however that the subset of
End0(A) fixed by the Rosati involution need not be a subalgebra.

16.4. Exercise. Show there exists a polarized abelian variety (A,µ) over a field k
such that the Rosati involution † : End0(A)→ End0(A) does not map End(A) ⊂
End0(A) into itself.

16.5. Duality for finite group schemes. For a finite, locally free, commutative
group scheme N → S there is a dual group scheme, denoted by ND, called the
Cartier dual of N ; for N = Spec(B)→ Spec(A) = S we take BD := HomA(B,A),
and show that ND := Spec(BD) exists and this is a finite group scheme over S.
See [49], I.2.

Equivalent definition. Let N → S be as above. Consider the functor T 7→
HomT (NT ,Gm,T ). By the Cartier-Shatz formula this functor is representable by
Hom(−, ND), see [49], Theorem 16.1. Conversely this can be used as defintion of
Cartier duality N 7→ ND.

16.6. Duality theorem. Let S be a locally noetherian base scheme. Let ϕ : A→ B
be an isogeny of abelian schemes over S, with kernel N = Ker(ϕ). The exact
sequence

0 → N −→ A
ϕ−→ B → 0

gives rise to an exact sequence

0 → ND −→ Bt
ϕt

−→ At → 0.

�



See [49]. Theorem 19.1. For the definition of ND, see 16.5.

16.7. Corollary. Let S be a locally noetherian base scheme and let A → S be an
abelian scheme. There is a natural isomorphism At[p∞] = A[p∞]t. �

16.8. The characteristic polynomial of an endomorphism. Let A be an abelian
variety over a field K of dim(A) = g, and and let ϕ ∈ End(A); then there exists
a polynomial fA,ϕ ∈ Z[T ] of degree 2g called the characteristic polynomial of ϕ;
it has the defining property that for any t ∈ Z we have fA,ϕ(ϕ− t) = deg(ϕ− t);
see [15] page 125.

See 20.1 for the definition of T`(A); for every ` 6= char(K) the polynomial fA,ϕ
equals the characteristic polynomial of T`(ϕ) ∈ End(T`(A)(K)) ∼= M2g(Z`). This
can be used to give a definition of fA,ϕ.

If ϕ ∈ End(A) and ψ ∈ End(B) then fA×B,(ϕ,ψ) = fA,ϕ × fB,ψ.
If A = Bµ and B is simple over a finite field, then fA,πA

= (fB,πB
)µ.

16.9. Exercise. Let K be a field, and A an abelian variety over K of dimension
g. Show there is a natural homomorphism

End(A) −→ EndK(tA) ∼= Mg(K)

by ϕ 7→ dϕ.
If char(K) = 0, show this map is injective.
If char(K) = p > 0, show this map is not injective.
Let E be an elliptic curve over Q. Show that End(E) = Z. Construct an

elliptic curve E over Q with End(E) $ End(E ⊗ C).

Remark. There does exist an abelian variety A over Q with Z $ End(A). See
15.6.

16.10. Exercise. Show that over a field of characteristic p, the kernel of End(A)→
End(tA) ∼= Mg(K) can be bigger than End(A)·p.

We say an abelian variety A 6= 0 over a field K is simple, or K-simple if confusion
might occur, if for any abelian subvariety B ⊂ A we have either 0 = B or B = A.

16.11. Theorem (Poincaré-Weil). For any abelian variety A 6= 0 over a field K
there exist simple abelian varieties Bi over K and an isogeny A ∼K Πi Bi.
See [47], Th. 1 on page 173 for abelian varieties over an algebraically closed field.
See [GM] for the general case. �



17. Appendix 2: Central simple algebras

Basic references: [7], [61], [8] Chapter 7, [65] Chapter 10. We will not give a full
treatment of this theory here.

17.1. A module over a ring is simple if it is non-zero, and it has no non-trivial
submodules.

A module over a ring is semisimple if it is a direct sum of simple submodules.
A ring is called semisimple if it is non-zero, and if it is semisimpe as a left

module over itself.
A ring is called simple if it is semisimple and if there is only one class of

simple left ideals.
A finite product of simple rings is semisimple.
The matrix algebra Mat(r,D) over a division algebra D for r ∈ Z>0 is simple.
Wedderburn’s theorem says that for a central simple algebra (see below) R

over a field L there is a central division algebra D over L and an isomorphism
R ∼= Mat(r,D) for some r ∈ Z≥0.

Examples of rings which are not semisimple: Z, K[T ], Z/p2.
Examples of rings which are simple: a field, a division algebra (old terminology:
“a skew field”), a matrix algebra over a division algebra.

17.2. Exercise. Let A 6= 0 be an abelian variety over a field K. (Suggestion, see
16.11, and see 15.9.)
(1) Show that End0(A) is a semisimple ring.
(2) Prove: if A is simple, then End0(A) is a division algebra.
(3) Prove: if A ∼ Bs, where B is simple and s ∈ Z>0, then End0(A) is a simple
ring.

17.3. Definition. Let L be a field. A central simple algebra over L is an L-algebra
Γ such that
(1) Γ is finite dimensional over L,
(2) L is the center of Γ,
(3) Γ is a simple ring.
We say that Γ = D is a central division algebra over L if moreover D is a division
algebra.

Suppose a field L is given. Let D and D′ be central simple algebras over L. We
say that D and D′ are similar, notation D ∼ D′ if there exist m,m′ ∈ Z≥0

and an isomorphism D⊗L Mat(m,L) ∼= D′ ⊗L Mat(m′, L). The set of ‘similarity
classes” of central simple algebras over L will be denoted by Br(L). On this set
we define a “multiplication” by [D1]·[D2] := [D1 ⊗LD2]; this is well defined, and
there is an “inverse” [D] 7→ [Dopp], where Dopp is the opposite algebra. As every
central simple algebra is a matrix algebra over a central division algebra over L
(Wedderburn’s Theorem) one can show that under the operations given Br(L) is
a group, called the Brauer group of L. See the literature cited for definitions, and
properties.



17.4. Facts (Brauer theory).
(1) For any local field L there is a canonical homomorphism

invL : Br(L)→ Q/Z.

(2) If L is non-archimedean, then invL : Br(L) ∼−→ Q/Z is an isomorphism.
If L ∼= R then Br(L) ∼= 1

2Z/Z.
If L ∼= C then Br(L) = 0.

(3) If L is a global field, there is an exact sequence

0 → Br(L) −→
⊕
w

Br(Lw) −→ Q/Z → 0.

Note the use of this last statement: any central simple algebra over a global field
L is uniquely determined by a finite set of non-zero invariants at places of L. We
will see that this gives us the possibility to describe endomorphism algebras of
(simple) abelian varieties.
(4) Let L ⊂ D be simple central division algebra; by (3) we know it is given by a
set of invariants {invw(D) | w ∈ ΣL}, with invw(D) ∈ Q/Z. Let r be the least
common multiple of the denominators of these rational numbers written as a a
quotient with coprime nominator and denominator. Then [D : L] = r2.

For explicit descriptions of some division algebras see [5]. Note that such
explicit methods can be nice to have a feeling for what is going on, but for the
general theory you really need Brauer theory.

17.1.

Example. For a (rational) prime number p we consider the invariant 1/2 at the
prime p in Z, i.e. p ∈ ΣQ and the invariant 1/2 at the infinite prime of Q. As these
invariants add up to zero in Q/Z there is a division algebra central over Q given
by these invariants. This is a quaternion algebra, split at all finite places unequal
to p. In [20] this algebra is denoted by Qp,∞. By 5.4 we see that a supersingular
elliptic curve E over F has endomorphism algebra End0(E) ∼= Qp,∞

18. Appendix 3: Endomorphism algebras.

Basic references: [68], [47], [35] Chapt. 5, [54].
We will see: endomorphism algebras of abelian varieties can be classified. In many
cases we know which algebras do appear. However we will also see that it is
difficult in general to describe all orders in these algebras which can appear as
the endomorphism ring of an abelian variety.

18.1. Proposition (Weil). Let A, B be abelian varieties over a field K. The group
Hom(A,B) is free abelian of finite rank. In fact,
(1) rank (Hom(A,B)) ≤ 4·gA·gB;
(2) if the characteristic of K equals zero, rank (Hom(A,B)) ≤ 2·gA·gB.



Let ` be a prime different from the characteristic of K. Let T`(A), respectively
T`(B) be the Tate-`-groups as defined in 20.1.
(3) The natural homomorphisms

Hom(A,B) ↪→ Hom(A,B)⊗Z Z` ↪→ Hom(T`(A), T`(B))

are injective.
See [47], Th. 3 on page 176. �

We write End(A) for the endomorphism ring of A and End0(A) = End(A)⊗ZQ for
the endomorphism algebra of A. By Wedderburn’s theorem every central simple
algebra is a matrix algebra over a division algebra. If A is K-simple the algebra
End0(A) is a division algebra; in that case we write:

Q ⊂ L0 ⊂ L := Centre(D) ⊂ D = End0(A);

here L0 is a totally real field, and either L = L0 or [L : L0] = 2 and in that case L
is a CM-field. In case A is simple End0(A) is one of the four types in the Albert
classification. We write:

[L0 : Q] = e0, [L : Q] = e, [D : L] = d2.

The Rosati involution † : D → D is positive definite. A simple division algebra
of finite degree over Q with a positive definite anti-isomorphism which is positive
definite is called an Albert algebra. Applications to abelian varieties and the
classification has been described by Albert, [1], [2], [3].

18.2. Albert’s classification.
Type I(e0) Here L0 = L = D is a totally real field.

Type II(e0) Here d = 2, e = e0, invw(D) = 0 for all infinite w, and D is an
indefinite quaternion algebra over the totally real field L0 = L.

Type III(e0) Here d = 2, e = e0, invw(D) 6= 0 for all infinite w, and D is an
definite quaternion algebra over the totally real field L0 = L.

Type IV(e0, d) Here L is a CM-field, [F : Q] = e = 2e0, and [D : L] = d2.

18.3. Theorem. Let A be an abelian variety over a field K. Then End0(A) is an
Albert algebra. �
See[47], Theorem 2 on page 201.

18.4. As Albert, Shimura and Gerritzen proved: for any prime field P, and every
Albert algebra D there exists an algebraically closed field k ⊃ P and an abelian
variety A over k such that End0(A) ∼= D; see [54], Section 3 for a discussion and
references. In case P = Fp in all these cases one can choose for A an ordinary
abelian variety.



In particular Gerritzen proves the following more precise result. For an Albert
algebra D define t0(D) ∈ {1, 2} by:

t0(D) = 1 if D is of type I, or II, or IV(e0, d > 1) (D is generated by the
†-invariants),

t0(D) = 2 if D is of type III, or IV(e0, d = 1) (D is not generated by the
†-invariants).

18.5. Theorem (Gerritzen). For a given prime field P, and a given Albert algebra
D, choose any integer t ≥ t0(D) = 1, and define g := t·[D : Q]; there exists an
algebraically closed field k containing P and an abelian variety A over k such that
End0(A) ∼= D.
See [24], Th. 12. See [54], Th. 3.3.

18.6. A more refined question is to study the endomorphism ring of an abelian
variety.
Remark. Suppose A is an abelian variety over a finite field. Let πA be its geometric
Frobenius, and νA = q/πA its geometric Verschiebung. We see that πA, νA ∈
End(A). Hence the index of End(A) in a maximal order in End0(A) is quite small,
in case A is an abelian variety over a finite field. This is in sharp contrast with:

18.7. Exercise. Let L be a field quadratic over Q with ring of integers OL. Show
that for any order R ⊂ L there is a number f ∈ Z>0 such that OL = Z + f ·OL
(and, usually, this number f is called the conductor). Show that for any imaginary
quadratic L and any f ∈ Z>0 there exists an elliptic curve E over C such that
End(E) ∼= Z + f ·OL.
Conclusion. The index of End(A) in a maximal order in End0(A) is in general
not bounded when working over C.

18.8. Exercise. Show that there for every integer m and for every algebraically
closed field k ⊃ Fp not isomorphic to F there exists a simple abelian surface over
k such that E := End0(A) and [OE : End(A)] > m.

18.9. Remark. For a simple ordinary abelian variety A over a finite field the orders
in End0(A) containing πA and νA are precisely all possible orders appearing as
endomorphism ring in the isogeny class of A, see [75], Th. 7.4.

However this may fail for a non-ordinary abelian variety, see [75], page
555/556, where an example is given of an order containing πA and νA, but which
does not appear as the endomorphism ring of any abelian variety.

We see difficulties in determining which orders in End0(A) can appear as the
endomorphism ring of some B ∼ A.

Much more information on endomorphism rings of abelian varieties over finite
fields can be found in [75].

18.10. Exercise. Let A be a simple abelian variety over an algebraically closed
field k which admits smCM.

(1) If the characteristic of k equals zero, End0(A) is commutative.

(2) If A is simple and ordinary over F then End0(A) is commutative.



(3) However if A is simple and non-ordinary over F there are many examples
showing that End0(A) may be non-commutative. Give examples.

(4) Show there exists an ordinary, simple abelian variety B over an algebraically
closed field of positive characteristic such that End(B) is not commutative. (Hence
k 6∼= F, and B does not admit smCM.)

18.11. Exercise. Let K ⊂ K ′ be a an extension of finite field. Let A be an ordinary
abelian variety over K such that A⊗K ′ is simple. Show that End0(A)→ End0(A⊗
K ′) is an isomorphism.

In [75], Theorem 7.2 we read that for simple and ordinary abelian varieties
“End(A) is commutative and unchanged by base change”. Some care has to be
take in understanding this. The conclusion of the preceding exercise is not correct
without te condition “A⊗K ′ is simple”.

18.12. Exercise. Choose a prime number p, and let π be a zero of the polynomial
T 4 − T 2 + p2. Show that π is a Weil p-number; let A be an abelian variety over
Fp (determined up to isogeny) which has π as geometric Frobenius. Show that A
is a simple, ordinary abelian surface. Show that End0(A)→ End0(A⊗Fp2) is not
an isomorphism.

18.13. Remark/Exercise. Choose p > 0, choose a symmetric Newton polygon ξ
which is not supersingular. Then there exists a simple abelian variety A over F
with N (A) = ξ such that End0(A) is commutative (hence a field); see [36]. For
constructions of other endomorphism algebras of an abelian variety over F see [9],
Th. 5.4.

18.14. Let A be a simple abelian variety over Fp. Suppose that ψ(πA) 6∈ R. Show
that End(A) is commutative (hence End0(A) is a field) (an easy exercise, or see
[75], Th.6.1). In this case every order containing πA and νA in D = L = End0(A)
is the endomorphism algebra of an abelian variety over Fp.
Exercise. Show there does exist a simple abelian variety over Fp such that End0(A)
is not commutative.

18.15. For abelian varieties over a finite field separable isogenies give an equiva-
lence relation, see [75], Th. 5.2.
Exercise. Show that there exists an abelian variety A over a field K ⊃ Fp such
that separable isogenies do not give an equivalence relation in the isogeny class of
A.

18.16. Remark. If K ⊂ K ′ is an extension of fields, and A is a simple abelian
variety over K, then A′ := A ⊗K K ′ may be K ′-simple or non-K ′-simple; both
cases do appear, and examples are easy to give. The natural map End(A) →
End(A′) is an embedding which may be an equality, but also inequality does
appear; examples are easy to give, see 16.9, 15.19.

18.17. Exercise. Let g be an odd prime number, and let A be a simple abelian
variety over a finite field of dimension g. Show:



• either End(A) is commutative,
• or End0(A) is of Type(1, g), and N (A) has exactly two slopes and the p-

rank of A is equal to zero.

See [54], (3.13).

18.18. Existence of endomorphism fields. Let A be an abelian variety which ad-
mits smCM over a field K. If char(K) = 0 and A is simple then D := End0(A) is
a field. However if char(K) = p > 0, the ring End(A) need not be commutative.
For examples see Section 15.

Suppose k is an algebraically closed field of char(k) = p, and let A be a supersin-
gular abelian variety, i.e. N (A) = σ, all slopes are equal to 1/2; then A⊗k ∼ Eg,
where E is a supersingular elliptic curve. We haveD := End0(A) = Mat(Kp,∞, g);
in particular D is not commutative and for g > 1 the abelian variety A is not
simple. However this turns out to be the only exceptional case in characteristic p
where such a general statement holds.

18.19. Theorem (H. W. Lenstra and FO). Let ξ be a symmetric Newton polygon,
and let p be a prime number. Suppose that ξ 6= σ, i.e. not all slopes in ξ are
equal to 1/2. Then there exists an abelian variety A over m = Fp such that
D = L = End0(A) is a field. Necessarily A is simple and L is a CM-field of degree
2·dim(A) over Q.
See [36].

18.20. Corollary. For any p and for any ξ 6= σ there exists a simple abelian variety
A over Fp with N (A) = ξ.

For more general constructions of endomorphism algebra with given invariants of
an abelian variety over a finite field, see [9], Section 5.

19. Appendix 4: Complex tori with smCM

See [69], [47], [35], [60].

19.1. Let A be an abelian variety over C. Write T := A(C). This is a complex torus,
i.e. a complex Lie group obtained as quotient Cg/Λ, where Z2g ∼= Λ ⊂ Cg ∼= R2g

is a discrete subgroup. Indeed, we have an exact sequence

0 → Z2g ∼= Λ −→ V ∼= Cg e−→ T = A(C) → 0.

There there are at least two different interpretations of the homomorphism e.
One can take the tangent space V := tA,0. This is also the tangent space

of the complex Lie groep T . The exponential map of commutatieve complex Lie
groups gives e : V → T .

One can also consider the topological space T , and construct its universal
covering space V := T̃ . This is a complex Lie group (in a unique way) such that
the covering map e is a homomorphism. The kernel is the fundamental group
π1(T, 0) = Λ ∼= Z2g.



19.2. The complex torus T := A(C) is algebraizable, i.e. comes from an algebraic
variety. If this is the case, the structure of algebraic variety, and the structure of
algebraic group giving the complex torus is unique up to isomorphism (note that
a complex torus is compact); see [66], corollaire on page 30.

In general a complex torus of dimension at least two need not be algebraizable
as is show by the following two examples.

19.3. Example. Choose any abelian variety A over C of dimension g > 1. There
exists an analytic family T →M, whereM is a unit cube of dimension g2, such
that over that infinitesimal thickening of the origin the restriction of T → M is
the formal deformation space Def(A). Every polarization µ on A gives a regular
formal subscheme Sµ ⊂ Def(A) of dimension g(g + 1)/2. Let C → M be a one
dimensional regular analytic curve insideM whose tangent space is not contained
in the tangent spaces to Sµ for any µ; such a curve exists because the set of
polarizations on A is countable and because g(g+1)/2 < g2 for g > 1. One shows
that there exists a point s ∈ C such that Ts is not algebraizable.

19.4. Example (Zarhin - FO). Choose a division algebra of finite degree over Q
which is not an Albert algebra. For example take a field which is not totally real,
and which is not a CM-field; e.g.D = Q( 3

√
2). By [60], Corollary 2.3 we know there

exists a complex torus T with End0(T ) ∼= D. If this torus would be algebraizable,
A(C) ∼= T , then this would imply End0(A) ∼= D by GAGA, see [66], Proposition
15 on page 29. By Albert’s classification this is not possible, see 18.3.

19.5. Let A be an abelian variety over C. Suppose it is simple. Suppose it admits
smCM. In that case End0(A) = P is a field of degree 2g over Q. Moreover P is
a CM-field. We obtain a representation ρ0 : P → End(tA,0) ∼= GL(g,C). As P
is commutative and C is algebraically closed this representation splits a a direct
sum of 1-dimensional representations. Each of these is canonically equivalent to
giving a homomorphism P → C. One shows that these g homomorphisms are
mutually different, and that no two are complex conjugated. Conclusion: ρ0 is a
CM-type, call it Φ; conversely a CM-type gives such a representation P operating
via a diagonal matrix given by the elements of Φ. This process (A/C, P ) 7→ (P,Φ)
can be reversed, and the construction gives complex tori which are algebraizable.

19.6. Theorem. Let (P,Φ) be a CM-type. There exists an abelian variety A over
C with P ∼= End0(A) such that the representation ρ0 of P on the tangent space
tA,0 is given by the CM-type Φ. �
See [69], §6. There are many more references possible.

20. Appendix 5: Tate-` and Tate-p conjectures for abelian varieties

Most important reference: [72]. Also see [22], [83].

20.1. Notation. Let A be an abelian vareity over a scheme S, let ` be a prime
number invertible in the sheaf of local rings on S. Write

T`(A) = lim
←i

A[`i].



This is called the Tate-`-group of A/S.

20.2. Let G be a finite flat group scheme over a base scheme S such that the rank
of G is prime to every residue characteristic of S, i.e. the rank of G is invertible
in the sheaf of local rings on S. Then G→ S is étale; [50].

20.3. Etale finite group schemes as Galois modules. (Any characteristic.) Let K
be a field, and let G = Gal(Ksep/K). The main theorem of Galois theory says that
there is an equivalence between the category of algebras étale and finite over K,
and the category of finite sets with a continuous G-action. Taking group-objects
on both sides we arrive at:
Theorem. There is an equivalence between the category of étale finite group
schemes over K and the category of finite continuous G-modules.
See [76], 6.4. Note that this equivalence also holds in the case of not necessarily
commutative group schemes.

Naturally this can be generalized to: let S be a connected scheme, and let s ∈ S(Ω)
be a base point, where Ω is an algebraically closed field; let π = π1(S, s). There is
an equivalence between the category of étale finite group schemes (not necessarily
commutative) over S and the category of finite continuous π-systems.

Exercise. Write out the main theorem of Galois theory as a theory describing
separable field extensions via sets with continuous action by the Galois group.
Then formulate and prove the equivalent theorem for étale finite group scheme
over an arbitrary base as above.

Conclusion. The Tate-`-group of an abelian scheme A/S such that ` is invertible
on S either can be seen as a pro-finite group scheme, or equivalently it can be
seen as a projective system of finite modules with a continuous action of the
fundamental group of S.

20.4. For an abelian variety A over a field K and a prime number ` 6= char(K)
the natural map

End(A)⊗Z Z` ↪→ End(T`(A)(K))

is injective, as Weil showed; see 18.1.

20.5. Theorem (Tate, Faltings, and many others). Suppose K is of finite type over
its prime field. (Any characteristic different from `.) The canonical map

End(A)⊗Z Z`
∼−→ End(T`(A)) ∼= EndGK

((Z`)2g)

is an isomorphism. �
This was conjectured by Tate. In 1966 Tate proved this in case K is a finite field,
see [72]. The case of function field in characteristic p was proved by Zarhin and
by Mori, see [81], [82], [43]; also see [42], pp. 9/10 and VI.5 (pp. 154-161).



The case K is a number field this was open for a long time; it was finally
proved by Faltings in 1983, see [21]. For the case of a function field in characteristic
zero, see [22], Th. 1 on page 204.

20.6. We like to have a p-adic analogue of 20.5. For this purpose it is convenient
to have p-divisible groups instead of Tate-`-groups:
Definition. Let A/S be an abelian scheme, and let p be a prime number (no
restriction on p). We write

A[p∞] = colimi→ A[pi],

called the p-divisible group (or the Barsotti-Tate group) of A/S.

Remark. Historically a Tate-`-group is defined as a projective system, and the
p-divisible group as an inductive system; it turns out that these are the best ways
of handling these concepts (but the way in which direction to choose the limit
is not very important). We see that the p-divisible group of an abelian variety
should be considered as the natural substitute for the Tate-`-group. Note that
A[p∞] is defined over any base, while T`(A) is only defined when ` is invertible
on the base scheme.

The notation A[p∞] is just symbolic; there is no morphism “p∞”, and there
is no kernel of this.

20.7. Exercise. Let A and B be abelian varieties over a field K. In 18.1 we have
seen that Hom(A,B) is of finite rank as Z-module. Let p be a prime number.
Using 18.1, show that the natural map

Hom(A,B)⊗Z Zp ↪→ Hom((A)[p∞], B[p∞])

is injective. Also see [77], theorem 5 on page 56. Also see [83].

20.8. Remark. On could feel the objects T`(A) and A[p∞] as arithmetic objects
in the following sense. If A and B are abelian varieties over a field K which are
isomorphic over K, then they are isomorphic over a finite extension of K; these
are geometric objects. Suppose X and Y are p-divisible groups over a field K
which are isomorphic over K then they need not be isomorphic over any finite
extension of K, these are arithmetic objects. The same statement for pro-`-group
schemes.

20.9. Theorem (Tate and De Jong). Let K be a field finitely generated over Fp.
Let A and B be abelian varieties over K. The natural map

Hom(A,B)⊗ Zp
∼−→ Hom(A[p∞], B[p∞])

is an isomorphism. �
This was proved by Tate in case K is a finite field; a proof was written up in [77].
The case of a function field over a finite field was proved by Johan de Jong, see
[30], Th. 2.6. This case follows from the result by Tate and from the following
result on extending homomorphisms 20.10.



20.10. Theorem (Tate, De Jong). Let R be an integrally closed, Noetherian inte-
gral domain with field of fractions K. (Any characteristic.) Let X,Y be p-divisible
group over Spec(R). Let βK : XK → YK be a homomorphism. There exists
(uniquely) β : X → Y over Spec(R) extending βK .
This was proved by Tate, under the extra assumption that the characteristic of
K is zero. For the case char(K) = p, see [30], 1.2 and [31], Th. 2 on page 261. �

21. Appendix 6: Some properties in characteristic p

See [39]. For information on group schemes see [49], [62], [76], [10].

In characteristic zero we have strong tools at our disposal: besides algebraic-
geometric theories we can use analytic and topological methods. It seems that we
are at a loss in positive characteristic. However the opposite is true. Phenomena,
only occurring in positive characteristic provide us with strong tools to study
moduli spaces. And, as it turns out again and again, several results in charac-
teristic zero can be derived using reduction modulo p. These tools in positive
characteristic will be of great help in this talk.

21.1. A finite group scheme in characteristic zero, of more generally a finite group
scheme of rank prime to all residue characteristics, is étale over the base; e.g. see
[50]. However if the rank of a finite group scheme is not invertible on the base, it
need not be étale.

21.2. The Frobenius morphism. For a scheme T over Fp (i.e. p·1 = 0 in all fibers
of OT ), we define the absolute Frobenius morphism fr : T → T ; if T = Spec(R)
this is given by x 7→ xp in R.

For a scheme A → S over Spec(Fp) we define A(p) as the fiber product of

A → S
fr←− S. The morphism fr : A → A factors through A(p). This defines

FA/S = FA : A → A(p), a morphism over S; this is called the relative Frobenius
morphism. If A is a group scheme over S, the morphism FA : A → A(p) is a
homomorphism of group schemes. For more details see [62], Exp. VIIA.4. The
notation A(p/S) is (maybe) more correct.

Example. Suppose A ⊂ AnR is given as the zero set of a polynomial
∑
I aIX

I

(multi-index notation). Then A(p) is given by
∑
I a

p
IX

I , and A→ Ap is given, on
coordinates, by raising these to the power p. Note that if a point (x1, · · · , xn) ∈ A
then indeed (xp1, · · · , xpn) ∈ A(p), and xi 7→ xpi describes FA : A→ A(p) on points.

Let S = Spec(Fp); for any T → S we have a canonical isomorphism T ∼= T (p). In
this case FT/S = fr : T → T .

21.3. Verschiebung. Let A be a commutative group scheme flat over a character-
istic p base scheme. In [62], Exp. VIIA.4 we find the definition of the “relative
Verschiebung”



VA : A(p) → A; we have: FA·VA = [p]A(p) , VA·FA = [p]A.

In case A is an abelian variety we see that FA is surjective, and Ker(FA) ⊂ A[p].
In this case we do not need the somewhat tricky construction of [62], Exp. VIIA.4,
but we can define VA by VA·FA = [p]A and check that FA·VA = [p]A(p) .

21.4. Examples of finite group scheme of rank p. Let k ⊃ Fp be an algebraically
closed field, and let G be a commutative group scheme of rank p over k. Then we
are in one of the following three cases:

G = Z/p
k
. This is the scheme Spec(kp), with the group structure given by Z/p.

Here VG = 0 and FG is an isomorphism.

G = αp. We write αp = Ga,Fp
[F ] the kernel of the Frobenius morphism on

the linear group Ga,Fp . This group scheme is defined over Fp, and we have the
habit to write for any scheme S → Spec(Fp) just αp, although we should write
αp ×Spec(Fp) S. For any field K ⊃ Fp we have αp,K = Spec(K[τ ]/(τp)) and the
group structure is given by the comultiplication τ 7→ τ ⊗ 1 + 1 + τ on the algebra
K[τ ]/(τp). Here VG = 0 = FG.

G = µp,k. We write µt,K = Gm,K [t] for any field K and any t ∈ Z≥1. Here FG = 0
and VG is an isomorphism. Note that the algebras defining αp,Fp and µp,Fp are
isomorphic, but the comultiplications are different.

Any finite commutative group scheme over k of rank a power of p is a successive
extension of group schemes of these three types. For an arbitrary field K ⊃ Fp
the first and the last example can be “twisted” by a Galois action. However if
G⊗K k ∼= αp,k then G ∼= αp,K .

For duality, and for the notion of “local” and “etale” group scheme see [49].

Commutative group scheme of p-power rank over a perfect base field can be
classified with the help of Dieudonné modules, not dicussed here, but see [39], see
[19].

21.5. The p-rank. For an variety A over a field K ⊃ Fp we define its p-rank
f(A) = f as the integer such that A[p](K) ∼= (Z/p)f .

We say A is ordinary iff f(A) = dim(A) =: g.

21.6. For a classification of isomorphism classes of ordinary abelian varieties over
finite fields (using Serre-Tate canonical lifts, and classical theory) see the won-
derful paper [17]. This is a much finer classification than the Honda-Tate theory
which studies isogeny classes.

21.7. The a-number. Let G be a group scheme over a field K of characteristic p.
We write

a(G) = dimk(Hom(αp, G⊗ k)),



where k is an algebraically closed field containing K. For a further discussion, see
[10], 5.4 - 5.8

21.8. Examples. If E is an elliptic curve in characteristic p then:

E is ordinary ⇔ E[p](K) 6= 0 ⇔ Ker(F : E → E(p))⊗ k ∼= µp.

In this case E[p]⊗ k ∼= µp × Z/p.

E is supersingular ⇔ E[p](K) = 0 ⇔ E[F ] := Ker(F : E → E(p)) ∼= αp.

In this case E[p] is a non-trivial extension of αp by αp.

Warning. For a higher dimensional abelian varieties A[F ] and A[p] can be quite
complicated.

21.9. Exercise. Show that the following properties are equivalent:
(1) A is ordinary,
(2) Hom(αp, A) = 0,
(3) the kernel of V : A(p) → A is étale,
(4) the rank of the group Hom(µp, A⊗K) equals pg.
(5) Hom(µp, A⊗K) ∼= (Z/p)g .

21.10. Duality; see [GM], Chapter V. For a finite locally free group scheme G→ S
over a base S → Spec(Fp) we study FG/S : G → G(p). We can apply Cartier-
duality, see 16.5.

Fact. (
FG/S : G→ G(p)

)D
=

(
VGD : (G(p))D = (GD)(p) → GD

)
.

In the same way Cartier duality gives (VG)D = FGD .

Using duality of abelian varieties, in particular see [49], Theorem 19.1, we arrive
at:

For an abelian scheme A→ S over a base S → Spec(Fp) we have(
FA/S : A→ A(p)

)t
=

(
VAt : (A(p))t = (At)(p) → At

)
, and (VA)t = FAt .

21.11. Newton polygons. In order to being able to handle the isogeny class of
A[p∞] we need the notion of Newton polygons.

Suppose given integers h, d ∈ Z≥0; here h = “height”, d = “dimension”, and in
case of abelian varieties we will choose h = 2g, and d = g. A Newton polygon γ
(related to h and d) is a polygon γ ⊂ Q×Q (or, if you wish in R×R), such that:



• γ starts at (0, 0) and ends at (h, d);

• γ is lower convex;

• any slope β of γ has the property 0 ≤ β ≤ 1;

• the breakpoints of γ are in Z× Z; hence β ∈ Q.
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Note that a Newton polygon determines (and is determined by)

β1, · · · , βh ∈ Q with 0 ≤ βh ≤ · · · ≤ β1 ≤ 1 ↔ ζ.

Sometimes we will give a Newton polygon by data
∑
i (di, ci); here di, ci ∈ Z≥0,

with gcd(di, ci) = 1, and di/(di+ci) ≤ dj/(dj+cj) for i ≤ j, and h =
∑
i (di+ci),

d =
∑
i di. From these data we construct the related Newton polygon by choosing

the slopes di/(di + ci) with multiplicities hi = di + ci. Conversely clearly any
Newton polygon can be encoded in a unique way in such a form.

Remark. The Newton polygon of a polynomial. Let g ∈ Qp[T ] be a monic poly-
nomial of degree h. We are interested in the p-adic values of its zeroes (in an
algebraic closure of Qp). These can be computed by the Newton polygon of this
polynomial. Write g =

∑
j γjT

h−j . Plot the pairs (j, vp(γj)) for 0 ≤ j ≤ h. Con-
sider the lower convex hull of {(j, vp(γj)) | j}. This is a Newton polygon according
to the definition above. The slopes of the sides of this polygon are precisely the
p-adic values of the zeroes of g, ordered in non-decreasing order.
Exercise. Prove this.
Hint. Write g = Π (T − zi), with zi ∈ Qp. Write βi := vp(zi) ∈ Q≥0. Suppose the
order of the {zi} chosen in such a way that

0 ≤ βh ≤ β2 ≤ · · · ≤ βi+1 ≤ βi ≤ · · · ≤ β1.

Let σj be the elementary symmetric functions in zi. Show that:

σj = γj , vp(σj) ≥ βh + · · ·+ βh−j+1, β1 = vp(γh).

21.12. A p-divisible group X over a field of characteristic p determines uniquely a
Newton polygon. The general definition can be found in [39]. The isogeny class of
a p-divisible group over and algebraically closed field k uniquely determines (and



is uniquely determined by) its Newton polygon. We use “the Newton polygon of
Frobenius”, a notion to be explained below.

21.13. Theorem (Dieudonné and Manin), see [39], “Classification theorem ” on
page 35 .

{X}/ ∼k
∼−→ {Newton polygon}

21.14. We sketch the construction of a Newton polygon of a p-divisible group X,
or of an abelian variety.

(Incorrect.) Here we indicate what the Newton polygon of a p-divisible group is
(in a slightly incorrect way ...). Consider “the Frobenius endomorphism“ of X.
This has a “characteristic polynomial”. This polynomial determines a Newton
polygon, which we write as N (X), the Newton polygon of X. For an abelian
variety A we write N (A) instead of N (A[p∞]).

21.15. Exercise. Show that for an abelian variety A over the prime field Fp this
construction is valid, and does give the Newton polygon of A as defined in Section
9.

Although, this “definition” is correct over Fp as ground field, over any other field
F : X → X(p) is not an endomorphism, and the above “construction” fails.

21.16. Dieudonné-Manin theory. (We only give some definitions and facts.) For
coprime integers d, c ∈ Z≥0 one can define a p-divisible group Gd,c. This is a
p-divisible group of dimension d and of height d+ c. In fact, G1,0 = Gm[p∞], and
G0,1 = (Qp/Zp). For d > 0 and c > 0 we have a formal p-divisible group Gd,c
of dimension d and of height h = d + c. We do not give the construction here;
see the first two chapters of Manin’s thesis [39]; the definition of Gd,c is on page
35 of [39]. The p-divisible group Gd,c is defined over Fp; we will use the same
symbol for this group over any base field or base scheme over Fp, i.e. we write
Gd,c instead of Gd,c ⊗Fp K. Moreover the p-divisible groups Gd,c and Gc,d over
Fp satisfy (Gd,c)t ∼= (Gc,d); here Xt denotes te Serre dual of X, see 8.3.
Remark. With this defintion we have Gd,c[F d+c] = Gd,c[pd] and Gd,c[V d+c] =
Gd,c[pc]

21.17. Exercise. Assume the existence of X = Gd,c over Fp as explained above.
Let ζ be the Newton polygon of the Frobenius endomorphism of X. Show that ζ
consists of d+ c slopes equal to d/(d+ c): this polygon is isoclinic (it is a straight
line) and it ends at (d+ c, d).

Let K = Fpn , and X = Gd,c⊗Fp
K. Let πX ∈ End(X) be the geometric Frobenius.

Then

vp(πX) = d·n
h , h := d+ c, q = pn.



21.18. In [39], Chapter II we find:
Theorem. Let k be an algebraically closed field of characteristic p. Let X be a
p-divisible group over k. Then there exists an isogeny

X ∼
∏
i

Gdi,ci .

�
See [39], Classification Theorem on page 35.

21.19. Definition of the Newton polygon of a p-divisible group. The isogeny class
of

∏
iGdi,ci will be encoded in the form of a Newton polygon. The simple p-

divisible group Gd,c will be represented by d + c slopes equal to d/(d + c). The
slopes of

∑
iGdi,ci will be ordered in non-decreasing order. For a p-divisible group

of dimension d, height h with h = d + c together these slopes form a polygon in
Q×Q.

For an abelian variety over a field of characteristic p we define N (A) :=
N (A[p∞]).

Note that for a p-divisible group X over K its Newton polygon only depends
on N (X ⊗ k), this only depends on the isogeny factors of X ⊗ k, and we can
choose these isogeny factors in such a way that they are defined over Fp.

Example. Suppose A[p∞] = X ∼ Gd,c×Gc,d. Then the Newton polygon N (A) of
A equals (d, c) + (c, d); this has d + c slopes equal to d/(d + c) and d + c slopes
equal to c/(d+ c).

21.20. Definition. An abelian variety A over a field K ⊃ Fp is called supersingular
if N (A) is isoclinic with all slopes equal to 1/2.
Equivalently. An abelian variety A over a field K ⊃ Fp is supersingular if there
exists an isogeny (A⊗ k)[p∞] ∼ (G1,1)g.
Exercise. Show that for an elliptic curve this definition and the one given in 21.8
coincide.

Theorem (Tate, Shioda, Deligne, FO). An abelian variety A is supersingular iff
there exists a supersingular elliptic curve E and an isogeny A⊗ k ∼ Eg ⊗ k.
See [72], Th. 2 on page 140, see [70], [52], Section 4.

21.21. Definition/Remark/Exercise. (1) Note that the definition of A being su-
persingular can be given knowing only the p-divisible group A[p∞];

A is supersingular ⇐⇒ N (A) = σ,

where σ = g(1, 1) is the Newton polygon having only slopes equal to 1/2.
Equivalently this definition can be given by the property in the theorem just
mentioned.
(2) We see that g > 1 and N (A) = σ imply that A is not absolutely simple.
This is an exceptional case. Indeed, for any symmetric Newton polygon ξ 6= σ
and any p there exists an absolutely simple abelian variety A in characteristic p



with N (A) = ξ; see [36], see 18.13.
(3) Let A be a simple abelian variety over the finite field Fq. Show:

A is supersingular ⇐⇒ πA ∼ ζ·
√
q,

where ζ is a root of unity.

21.22. Exercise. Let Y be a p-divisible group over a field K. Suppose Y ∼∏
iGdi,ci

. Suppose there exist integers d, h ∈ Z>0 such that Y [Fh] = Y [pd]. Show:
only factors Gdi,ci

do appear with di/(di + ci) = d/h.

21.23. Proposition. For every pair (d, c) of coprime non-negative integers we have
Gd,c ∼= (Gc,d)t. Let A be an abelian variety over a field K ⊃ Fp, and X = A[p∞].
The Newton polygon N (A) := N (X) is symmetric, in the sense of 11.1.
Proof. The first equality follows from the definitions.

By 16.6 we have A[m]D = At[m] for every m ∈ Z>0. Hence A[p∞]t = At[p∞];
use the definition of the Serre dual Xt; this formula is less trivial than notation
suggests. Hence Gd,cand Gc,d appear with the same multiplicity in the isogeny
type of X = A[p∞]. This proves symmetry of N (X). �

21.24. Remark. The theory as developed by Dieudonné and Manin gives the
Newton polygon of a p-divisible group, and of an abelian variety over an arbitrary
field in characteristic p. Note that for an abelian variety an easier construction is
possible, which gives the same result, see Section 9, especially 9.3.

21.25. A proof for the Manin Conjecture. We have seen that the Manin Conjec-
ture can be proved using the Honda-Tate theory, see Section 11. In [58], Section
5 we find a proof of that conjecture, using only methods of characteristic p. We
sketch that proof (and please see the reference cited for notations and details).

We know that the conjecture holds for G1,1: in every characteristic p there
exists a supersingular elliptic curve, and E[p∞] ∼= G1,1. Hence every supersingular
p-divisible group is algebraizable. We show that for a given g ≥ 1 there exists an
abelian variety A0 with a principal polarization λ0 such that A0 is supersingular,
and a(A0) = 1. Methods of [58] show that for a given symmetric Newton polygon
ξ, which automatically lies below σ = N (A0), there exists a formal deformation
of (X0, λ0) = (A0, λ0)[p∞] to (X,λ) with N (X) = ξ. By the Serre-Tate Theo-
rem we know that a formal deformation of an algebraizable p-divisible group is
algebraizable; hence there exists (A, λ) with (X,λ) = (A, λ)[p∞]; this proves the
Manin Conjecture.

22. Some questions

In this section we gather some remarks, questions and open problems.

22.1. Definition; see 12.2. Let B0 be an abelian variety over a field K of char-
acteristic p > 0. We say B is a CM-lift of B0 if there exists an integral domain
R of characteristic zero with a surjective homomorphism R � K with field of
fractions Q(R) and an abelian scheme B → Spec(R) such that B ⊗K ∼= B0 and
such that B ⊗Q(R) admits smCM.



Remarks. See Section 12. (1) If A0 admits a CM-lift, then A0⊗K admits smCM.
(2) By Tate we know that any abelian variety over a finite field admits smCM,
[72].
(3) If A0 is an ordinary abelian variety over a finite field K, then by using the
canonical Serre-Tate lift we see that A0 admits a CM-lift.
(4) Deuring has proved that any elliptic curve over a finite field admits a CM-lift;
see [20], pp. 259 – 263; for a proof also see [55], Section 14, in particular 14.7.
(5) The previous method can be used to show that any abelian variety of dimen-
sion g defined over a finite field of p-rank equal to g − 1 admits a CM-lift; use
[55], 14.6.
(6) We have seen that for an abelian variety A0 over a finite field K there exists
a finite extension K ⊂ K ′, and a K ′-isogeny A0 ⊗K ′ ∼ B0 such that B0 admits
a CM-lift.

Do we really need the finite extension and the isogeny to assure a CM-lift ?
(7) (We need the isogeny.) In [56], Theorem B we find: suppose g ≥ 3, and let f be
an integer, 0 ≤ f ≤ g − 2. Then there exists an abelian variety A0 over F := Fp
of dimension g with p-rank equal to f such that A0 does not admit a CM-lift.

22.2. Question. (Do we need a finite extension?) Does there exist a finite field K
and an abelian variety A0 over K such that any B0 over K isogenous over K
with A0 does not admit a CM-lift?

22.3. In the proof of the Honda-Tate theorem analytic tools are used. Indeed we
construct CM abelian varieties over C in order to prove surjectivity of the map
A 7→ πA. As a corollary of the Honda-Tate theory we have seen a proof of the
Manin Conjecture. However it turns out that for the Manin Conjecture we now
have a purely geometric proof, indeed a proof which only uses characteristic p
methods, see [58], Section 5.

22.4. Open Problem. Does there exist a proof of the Honda-Tate theorem 1.2 only
using methods in characteristic p ?

22.5. Over an algebraically closed field k of characteristic zero for a given g it
is exactly known which algebras can appear as the endomorphism algebra of a
simple abelian variety over k; see [68], pp. 175/176; also see [47], pp. 202/203; see
[35], 5.5.

For any Albert algebra (an algebra of finite dimension over Q, with a posi-
tive definite anti-involution, equivalently: a finite product of matrix algebras of
algebras in the classification list of Albert), and any characteristic, there exists
a simple abelian variety over an algebraically closed field of that characteristic
having that endomorphism algebra; see [68], pp. 175/176 and [47] pp. 202/203 for
characteristic zero; for arbitrary characteristic see [24]; for a discussion see [54],
Theorem 3.3 and Theorem 3.4.

22.6. Open Problem. Suppose a prime number p > 0 given. Determine for every
g ∈ Z>0 the possible endomorphism algebras appearing for that g in characteristic
p.



22.7. Open Problem. For every characteristic and every g ∈ Z>0 determine all
possible endomorphism rings of an abelian variety over an algebraically closed
field in that characteristic.

22.8. Exercise. For an abelian variety of dimension g over a field K of charac-
teristic zero we have

m(X) :=
2g

[End0(A) : Q]
∈ Z.

Give examples of an abelian variety A in positive characteristic where

2g
[End0(A) : Q]

6∈ Z.

22.9. Expectation. For every γ ∈ Q>0 and every prime number p > 0 there exists
a field k in characteristic p, and an abelian variety A over k such that

2g
[End0(A) : Q]

= γ.

See [57], Section 2.
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[17] P. Deligne – Variétés abéliennes sur un corps fini. Invent. Math. 8 (1969), 238 – 243.
[18] P. Deligne – Hodge cycles on abelian varieties. Hodge cycles, motives and Shimura varieties

(Eds P. Deligne et al). Lect. Notes Math. 900, Springer – Verlag 1982; pp. 9 - 100.
[19] M. Demazure – Lectures on p-divisible groups. Lecture Notes Math. 302, Springer – Verlag

1972.
[20] M. Deuring – Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh.

Math. Sem. Hamburg 14 (1941), 197 – 272.
[21] G. Faltings – Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math.
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45, Presses de l’Univ. de Montreal, 1970.
[27] A. Grothendieck – Esquisse d’un programme. Manuscript 56 pp., January 1984. Re-

produced in: Geometric Galois actions (Ed. L. Schneps & P. Lochak). Vol. 1: Around
Grothendieck’s Esquisse d’un programme. London Math. Soc. Lect. Note Series 242, Cam-
bridge Univ. Press 1997; pp. 5 – 48 (English translation pp. 243 – 283).
http://www.institut.math.jussieu.fr/ leila/grothendieckcircle/EsquisseEng.pdf

[28] H. Hasse - Zahlentheorie. Akad. Verlag, Berlin 1949 (first printing, second printing 1963).
[29] T. Honda – Isogeny classes of abelian varieties over finite fields. Journ. Math. Soc. Japan

20 (1968), 83 – 95.
[30] A. J. de Jong – Homomorphisms of Barsotti-Tate groups and crystals in positive charac-

teristics. Invent. Math. 134 (1998) 301-333, Erratum 138 (1999) 225.
[31] A. J. de Jong – Barsotti-Tate groups and crystals. Documenta Mathematica, Extra Volume

ICM 1998, II, 259 – 265.
[32] N. M. Katz – Slope filtration of F–crystals. Journ. Géom. Alg. Rennes, Vol. I, Astérisque
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