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Introduction

We could try to classify isomorphism classes of abelian varieties. The theory of moduli spaces
of polarized abelian varieties answers this question completely. This is a geometric theory.
However in this general, abstract theory it is often not easy to exhibit explicit examples, to
construct abelian varieties with required properties.

A coarser classification is that of studying isogeny classes of abelian varieties. A wonderful
and powerful theorem, the Honda-Tate theory, gives

a complete classification of isogeny classes of abelian varieties over a finite field,

see Theorem (1.2).
The basic idea starts with a theorem by A. Weil, a proof for the Weil conjecture for an

abelian variety A over a finite field K = Fq:

the geometric Frobenius πA of A/K is an algebraic integer
which for every embedding ψ : Q(πA)→ C has absolute value | ψ(πA) |= √q.

For an abelian variety A over K = Fq the assignment A 7→ πA associates to A its geometric
Frobenius πA; the isogeny class of A gives the conjugacy class of the algebraic integer πA, and

conversely an algebraic integer which is a Weil q-number
determines an isogeny class, as J. Tate and T. Honda showed.

Geometric objects are constructed and classified up to isogeny by a simple algebraic invariant.
This arithmetic theory gives access to a lot of wonderful theorems. In these notes we describe
this theory, we give some examples, applications and some open questions.

In appendices we have gathered some information we need for statements and proofs of the
main result. When reading these notes, anytime something seems unclear, please find the
relevant notions in one of the appendices.

Instead of reading these notes it is much better to read the wonderful and clear [76]. Some
proofs have been worked out in more detail in [77].
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All material discussed below will be contained eventually in [GM]. That book by G. van der
Geer and B. Moonen can be used as a reference for all material we need, and for all results
we discuss. However, as a final version of this book is not yet available, we also give other
references. In referring to [GM] we will usually not be precise as the final numbering can be
different from the one available now.

Further recommended reading:
Abelian varieties: [44], [33], [12] Chapter V.
Honda-Tate theory: [76], [26], [77].
Abelian varieties over finite fields: [75], [78], [80], [67].
Group schemes: [65], [51].
Endomorphism rings and endomorphism algebras: [71], [22], [75], [78], [57].
CM-liftings: [59], [10].

Contents:
§§ 1 – 13: material for this course,
§ 14, 15: examples and exercises,
§§ 16 – 21: appendices giving definitions and background,
§ 22: questions and open problems.

Some notation. We use to write K for an arbitrary field, most of the times a finite field,
and k for an algebraically closed field. We write g for the dimension of an abelian variety,
unless otherwise stated. We write p for a prime number, fixed in these notes. We write ℓ for a
prime number, which usually is different from the characteristic of the base field, respectively
invertible in the sheaf of local rings of the base scheme. We write F = Fp. We use the notation
M for a field, sometimes a field of definition for an abelian variety in characteristic zero.

We will use L as notation for a field, usually the center of an endomorphism algebra; we
will see that in our cases this will be a totally real field or a CM-field. We write P for a
CM-field, usually of degree 2g over Q.

A discrete valuation on a base field usually will be denoted by v, whereas a discrete
valuation on a CM-field usually will be denoted by w. If w divides p, the normalization chosen
will be given by w(p) = 1

We write lim←i for the notion of “projective limit” or “inverse limit”. We write colimi→

for the notion of “inductive limit” or “direct limit”.
For a field M we denote by ΣM the set of discrete valuations (finite places) of M . If

moreover M is of characteristic zero, we denote by Σ
(p)
M the set of discrete valuations with

residue characteristic equal to p.

1 Main topic/survey

(1.1) Definition. Let p be a prime number, n ∈ Z>0; write q = pn. A Weil q-number is an
algebraic integer π such that for every embedding ψ : Q(π)→ C we have

| ψ(π) | =
√
q.

We say that π and π′ are conjugated if there exists an isomorphism Q(π) ∼= Q(π′) mapping π
to π′.
Notation: π ∼ π′.
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Equivalently: the minimum polynomials of π and π′ over Q are equal. We write W (q) for the
set conjugacy classes of Weil q-numbers.

In this definition | · | denotes the complex absolute value given by | a+ b
√
−1 |=

√
a2 + b2 for

a, b ∈ R. We will show that for any Weil q-number π there exists an element π = ρ(π) ∈ Q(π)
such that for any ψ : Q(π)→ C the number ψ(π) is the complex conjugate of ψ(π); moreover
we show that π·π = q.

As Weil proved, we will see that the geometric Frobenius πA of a simple abelian variety over
the finite field Fq, with q = pn, is a Weil q-number, see Theorem (3.2). We will see that

A ∼ B ⇒ πA ∼ πB,

i.e. abelian varieties defined over the same finite field isogenous over that field define conju-
gated Weil numbers. We will write

{ simple abelian variety over K}/ ∼K =: M(K, s)

for the set of isogeny classes of simple abelian varieties over K.

(1.2) Theorem (Honda, Serre and Tate). Fix a finite field K = Fq. The assignment
A 7→ πA induces a bijection

{simple abelian variety over K}/ ∼K=M(K, s)
∼−→ W (q), A 7→ πA

from the set of K-isogeny classes of K-simple abelian varieties defined over K and the set
W (q) of conjugacy classes of Weil q-numbers.
See [76]. The fact

• that the map is defined follows by Weil,

• the map is injective by Tate, and

• surjective by Honda and Tate.

This map will be denoted by

W :M(K, s) −→ W (q).

This theorem will be the main topic of these talks. On the road to these notions we will
encounter various notions and results, which will be exposed below (sometimes in greater
generality than strictly necessary to understand this beautiful theorem).

(1.3) Definition. We say that a Weil q-number π is effective if there exists an abelian
variety A over Fq such that π = πA. I.e. π is effective if it is in the image of the map
W : A 7→ πA.

We indicate some steps in a proof of (1.2), which will be elaborated below. Write K = Fq,
with q = pn.

ONE (Weil) For a simple abelian variety A over a finite field K = Fq the Weil conjecture
implies that πA is a Weil q-number, see Section 3. Hence the map
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{simple abelian variety over K} −→ W (K), A 7→ πA

is well-defined.

TWO (Tate) For simple abelian varieties A, B defined over a finite field we have:

A ∼ B ⇐⇒ πA ∼ πB.

See (5.3). Note that A ∼ B only makes sense if A and B are defined over the same field. Note
that πA ∼ πB implies that A and B are defined over the same finite field. This shows that
the map W :M(Fq, s)→ W (q) is well-defined and injective.

THREE (Honda) Suppose given π ∈ W (q). There exists a finite extension K = Fq ⊂
K ′ := FqN and an abelian variety B′ over K ′ with πN = πB′.
See [26], Theorem 1; see Section 10 and see Theorem (12.3). This step says that for every
Weil q-number there exists N ∈ Z>0 such that πN is effective.

FOUR (Tate) If π ∈ W (q) and there exists N ∈ Z>0 such that πN is effective, then π is
effective. See Section 10.

This result by Honda plus the last step shows that (A mod ∼) 7→ (πA mod ∼) is surjective.

These four steps together show that the map

W : {simple abelian variety over K}/ ∼K = M(K, s)
∼−→ W (q)

is bijective, thus proving the main theorem of Honda-Tate theory.

In 1966/1967 Serre wrote a letter to Tate in which he explained a proof of the Manin conjecture.
That method proved the surjectivity result proved by Honda. Therefore, sometimes the theory
discussed here is called the Honda-Serre-Tate theory. As Serre’s proof was never published we
can also use the terminology Honda-Tate theory.

(1.4) Some examples Consider the following examples.
(1) Choose q = pn, and choose i ∈ Z>0. Let π := ζi·

√
q, where ζi is a primitive i−th root of

unity.
(2) Choose coprime positive integers d > c > 0, and choose p. Let π be a zero of

T 2 + pcT + pd+c.

(3) Let β :=
√

2 +
√

3, and q = pn. Let π be a zero of

T 2 − βT + q.

In all these cases we see that π is a Weil q-number. How can we see that these numbers belong
to an isogeny class of an abelian variety simple over Fq? Using Theorem (1.2) this follows;
however these examples might illustrate that this theorem is non-trivial. If such an isogeny
class exists what is the dimension of these abelian varieties? how can we compute this? What
are the p-adic properties of such an abelian variety?
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(1.5) Remark/Definition. We say that an abelian variety A over a field K is isotypic if
there exists an abelian variety B simple over K and an isogeny A ∼ Bµ for some µ ∈ Z>0;
in this case we will define πA := πB ; note that fA = (fB)µ. Note that If C is isotypic over
K and K ⊂ K ′ then C ⊗ K ′ is isotypic; if moreover K is finite, and [K ′ : K] = N then
(πC)N = πC⊗K ′. We know that the property “ A is simple ” can get lost under a field
extension; however the property “ A is isotypic ” is preserved, and the formation A 7→ πA

commutes under base extension with exponentiation as explained.

2 Weil numbers and CM-fields

(2.1) Definition. A field L is said to be a CM-field if L is a finite extension of Q (i.e. L is a
number field), there is a subfield L0 ⊂ L such that L0/Q is totally real, i.e. every ψ0 : L0 → C
gives ψ0(L0) ⊂ R, and L/L0 is quadratic totally imaginary, i.e. [L : L0] = 2 and for every
ψ : L→ C we have ψ(L) 6⊂ R.

Remark. The quadratic extension L/L0 gives an involution ρ ∈ Aut(L/L0). For every
embedding ψ : L → C this involution on a CM-field corresponds with the restriction of
complex conjugation on C to ψ(L).

(2.2) Proposition. 3 Let π be a Weil q-number.

(R) Either for at least one ψ : Q(π)→ C we have ψ(π) ∈ R; in this case we have:
(Re) n is even,

√
q ∈ Q, and π = +pn/2, or π = −pn/2, or

(Ro) n is odd,
√
q ∈ Q(

√
p), and ψ(π) = ±pn/2.

In particular in case (R) we have ψ(π) ∈ R for every ψ.

(C) Or for every ψ : Q(π) → C we have ψ(π) 6∈ R (equivalently: for at least one ψ we have
ψ(π) 6∈ R). In case (C) the field Q(π) is a CM-field.

See (15.7), where we explain these cases in the Honda-Tate theory.

Proof. The claims in (R) follow from the fact that ±pn/2 are precisely those real numbers
with absolute value taken in C are equal to

√
q.

If at least one embedding ψ gives ψ(π) 6∈ R, then we are not in case (R), hence all
embeddings have this property. Then

ψ(π)·ψ(π) = q.

Write β := π + q
π . Then

ψ(β) = ψ(π) + q/ψ(π) =
q

ψ(π)
+ ψ(π) = β,

hence L0 := Q(β) is totally real. For any Weil q-number π with ψ(π) 6∈ R we have

β := π +
q

π
, (T − ψ(π))(T − ψ(π) ) = T 2 − βT + q ∈ Q(β)[T ].

We are in the case that ψ(π) 6∈ R for every ψ, and L0 := Q(β) is totally real and L/L0 is
totally complex. Hence L is a CM-field. 2
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(2.3) Remark. We see a characterization of Weil q-numbers:

β := π +
q

π
is a totally real integer,

and either π =
√
q ∈ R or π is a zero of

T 2 − β·T + q, with | ψ(β) |< 2
√
q for any ψ : Q(β)→ R.

Using this it is easy to construct Weil q-numbers, see Section 15.

3 The Weil conjecture for abelian varieties over a finite field

(3.1) The geometric Frobenius. For a scheme A → S over a base S → Spec(Fp) in
characteristic p there is the relative Frobenius

FA/S : A −→ A(p),

see (21.2). If moreover A/S is a group scheme this is a homomorphism. If S = Spec(Fpn)
there is a canonical identification A(pn) ∼=S A, and we define:

(

A
FA/S−→ A(p)

F
A(p)/S−→ A(p2) −→ · · · −→ A(pn) = A

)

=: πA,

and endomorphism of A, called the geometric Frobenius of A/Fpn . Sometimes we will write
(in abused notation) “ πA = Fn ”.

(3.2) Theorem (Weil). Let A be a simple abelian variety over K = Fq; consider the
endomorphism πA ∈ End(A), the geometric Frobenius of A/Fq. The algebraic number πA is
a Weil q-number, i.e. it is an algebraic integer and for every embedding ψ : Q(πA) → C we
have

| ψ(π) | =
√
q.

See [81], page 70; [82], page 138; [44], Theorem 4 on page 206.

(3.3) Proposition. For any polarized abelian variety A over a field the Rosati-involution
† : D → D := End0(A) is positive definite bilinear form on D, i.e. for any non-zero x ∈ D
we have Tr(x·x†) > 0. 2

See [44], Th. 1 on page 192, see [12], Th. 17.3 on page 138. For the notation D and for the
notion of the Rosati involution defined by a polarization, see Section 16

(3.4) Proposition. For a simple abelian variety A over K = Fq we have

πA·(πA)† = q.

Here † : D → D := End0(A) is the Rosati-involution.

One proof can be found in [44], formula (i) on page 206; also see [12], Coroll. 19.2 on page
144.
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Another proof of (3.4) can be given by duality (see (21.9)):

(

FA/S : A→ A(p)
)t

= VAt/S : (A(p))t → At.

From this we see that

πAt · (πA)t = (FAt)n · (VAt)n = ((F ·V )At)n = pn = q,

where we make the shorthand notation Fn for the n times iterated Frobenius morphism, and
the same for V n. See [GM], 5.21, 7.34 and Section 15. 2(3.4)

Note that our abused notation does not give serious trouble: for an abelian variety B we have

F
B(p−1)VB = VB(p)FB ∈ End(B)

as follows from fonctoriality of the construction of F and V ; this implies “ FnV n = (FV )n ”
in the proof above.

(3.5) We give a proof of (3.2) using (3.4) and (3.3). Note that L = Q(πa) is the center of
D, see (5.4) (1). Hence † on D induces an involution on L. Hence † induces an involution †R
on L ⊗Q R. This algebra is a finite product of copies of R and of C. The involution †R is a
positive definite R-linear involution on this product. We see that this implies that †R is the
identity on every real factor, stabilizes every complex factor, and is the complex conjugation
on those factors. Conclusion:

∀x ∈ L, ∀ ψ : L→ C ⇒ ψ(x†) = ψ(x).

Hence
q = πA·(πA)† = ψ

(

πA·(πA)†
)

= ψ(πA)·ψ(πA).

Hence
| ψ(πA) | =

√
q.

2(3.2)

4 Abelian varieties with CM

(4.1) smCM We say that an abelian variety X over a field K admits sufficiently many
complex multiplications over K, abbreviated by “smCM over K”, if End0(X) contains a com-
mutative semi-simple subalgebra of rank 2·dim(X) over Q. Equivalently: for every simple
abelian variety Y over K which admits a non-zero homomorphism to X the algebra End0(Y )
contains a field of degree 2·dim(Y ) over Q.

Equivalently. Suppose A ∼ ΠBi, where each of the Bi is simple. We say that A admits smCM,
if every End0(Bi) contains a CM-subfield of degree 2·dim(Bi) over Q.

For other characterizations, see [15], page 63 and [41], page 347.
Note that if a simple abelian variety X of dimension g over a field of characteristic zero

admits smCM then its endomorphism algebra L = End0(X) is a CM-field of degree 2g over
Q. We will use he notion “CM-type” in the case of an abelian variety X over C which admits
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smCM, and where the type is given, i.e. the action of the endomorphism algebra on the
tangent space TX,0

∼= Cg is part of the data, see below.
Note however that there exist (many) abelian varieties A admitting smCM (defined over

a field of positive characteristic), such that End0(A) is not a field.
We could use the terminology “ A has complex multiplication” to denote the cases with

End(A) % Z.

By Tate we know that an abelian variety over a finite field admits smCM, see (5.4). By
Grothendieck we know that an abelian variety which admits smCM up to isogeny is defined
over a finite field, see (4.4).

It can be proved that if a simple abelian variety A admits smCM in the sense defined above,
then D = End0(A) contains a CM-field of degree 2·dim(A) over Q. Note that a field E with
E ⊂ End0(A) and [E : Q] = 2·dim(A) however need not be a CM-field; see (15.5).

Terminology. Let ϕ ∈ End0(A). Then dϕ is a K-linear endomorphism of the tangent space.
If the base field is K = C, this is just multiplication by a complex matrix x, and every
multplication by a complex matrix x leaving invariant the lattice Λ, where A(C) ∼= Cg/Λ,
gives rise to an endomorphism of A. If g = 1, i.e. A is an elliptic curve, and ϕ 6∈ Z then
x ∈ C and x 6∈ R. Therefore an endomorphism of an elliptic curve over C which is not in Z
is sometimes called “a complex multiplication”. Later this terminology was extended to all
abelian varieties.

Warning. Sometimes the terminology “an abelian variety with CM” is used, when one wants
to say “admitting smCM”; we will not adopt that confusing terminology. An elliptic curve E
has End(E) % Z if and only if it admits smCM. However it is easy to give an abelian variety A
which “admits CM”, meaning that End(A) % Z, such that A does not admit smCM. However
we will use the terminology “a CM-abelian variety” for an abelian variety which admits smCM.

It can happen that an abelian variety A over a field K does not admit smCM, and that
A⊗K ′ does admit smCM.

(4.2) Exercise. Show that for any elliptic curve E defined over Q we have End(E) = Z.
Show there exists an abelian surface A over Q with Z 6= End(A) = End(A⊗Q).
Show there exists an abelian variety A over a field k such that Z $ End(A) and such that

A does not admit smCM.

(4.3) Remark. An abelian variety over a field of characteristic zero which admits smCM
is defined over a number field. See [72], Proposition 26 on page 109. Also see [53].

We will see that a theorem of Tate, see Theorem (5.4) implies that an abelian variety defined
over a finite field does admit smCM.

(4.4) Remark. The converse of Tate’s result (5.4) (2) is almost true. Grothendieck showed:
Let A be an abelian variety over a field which admits smCM; then A is isogenous with an
abelian variety defined over a finite extension of the prime field; see [53].

It is easy to give an example of an abelian variety, over a field of characteristic p, with
smCM which is not defined over a finite field.
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Also see [83], Th. 1.4. In [83] we also find: if A in positive characteristic admits smCM by a
field L, and the ring of integers OL is contained in End(A) then A can be defined over a finite
field, see [83], Th. 1.3.

(4.5) Lemma. Let K be a field, and let A be an abelian variety simple over K which admits
smCM. Choose a CM-field P with [P : Q] = 2·dim(A) inside End0(A). (This is possible by
Lemma (10.1).) Then there exists a K-isogeny A ∼K B such that OP →֒ End(B), where OP

is the ring of integers of P . 2

(4.6) Definition CM-type. Let P be a CM-field of degree 2g. Let C be an algebraically
closed field of characteristic zero. The set Hom(P,C) has 2g elements. For any ϕ : P → C
the homomorphism ϕ·ρ is different from ϕ. A subset Φ ⊂ Hom(P,C) is called a CM-type for
P if Hom(P,C) = Φ

∐

ρ(Φ). Equivalently: For every ϕ : P → C either ϕ ∈ Φ or ϕ·ρ ∈ Φ.

(4.7) Let A be an abelian variety simple over C which admits smCM. Let P = End0(A).
This is a CM-field of degree 2·dim(a). The action of P on the tangent space tA,0 splits as a
direct sum of one-dimensional representations (as P is commutatiive and C is algebraically
closed of charactersitic zero). Hence this representation is given by Φ = {ϕ1, · · · , ϕg}. One
shows this is a CM-type (i.e. these homomorphisms ϕi : P → C are mutually different and
either ϕ ∈ Phi or ϕ·ρ ∈ Φ. For the converse construction see (19.6).

(4.8) The reflex field. See [72], [32]. Let P be a CM-field, and let ρ ∈ Aut(P ) be the
involution on P which is complex conjugation under every complex embedding.

Let (P,Φ) be a CM-type. The reflex field L′ defined by (L,Φ) is the finite extension of Q
generated by all traces:

L′ := Q(
∑

ϕ∈Φ

ϕ(x) | x ∈ L).

If L/Q is Galois we have L′ ⊂ L. It is known that L′ is a CM-field.

Suppose B is an abelian variety, simple over C, with smCM by P = End0(B). The represen-
tation of P on the tangent space of B defines a CM-type. It follows that any field of definition
for B contains L′; see [72], 8.5, Prop. 30; see [32], 3.2 Th. 1.1. Conversely for every such
CM-type and every field M containing L′ there exists an abelian variety B over M having
smCM by L with CM-type Φ.

5 Tate: The structure of End0(A): abelian varieties over finite
fields.

Main references: [75], [76]. Also see the second printing of [44], especially Appendix 1 by C.
P. Ramanujam.

(5.1) For a simple abelian variety over a field K the algebra End0(A) is a division algebra.
By the classification of Albert, see (18.3), we know the structure theorem of such algebras
(18.5). Moreover, for any algebra in the list by Albert there is an abelian variety having
this as endomorphism algebra. However over a finite field not all types do appear, there are
restrictions; see (15.7).
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(5.2) Tate described properties of the endomorphism algebra of a simple abelian variety
over K = Fq, with q = pn. We write πA for the geometric Frobenius of A, and fA = fA,πA

for
the characteristic polynomial of πA. We write Write IrrπA

∈ Z[T ] for the minimum polynomial
of πA over Q. For the definition of a characteristic polynomial of an endomorphism, see (16.8).

The following theorems are due to Tate (and much more); these results can be found:
[75], Theorem 1 on page 139, [75], Theorem 2 on page 140 and [76], Th. 1 on page 96, [44],
Appendix 1.

(5.3) Theorem (Tate). Let A be an abelian variety over the finite field K = Fq. The
characteristic polynomial fA,πA

= fA ∈ Z[T ] of πA ∈ End(A) is of degree 2· dim(A), the
constant term equals qdim(A) and fA(πA) = 0.

If an abelian variety A is K-simple then fA is a power of the minimum polynomial Irr(πA) ∈
Z[T ].

Let A and B be abelian variety over K = Fq. Then:

A is K-isogenous to an abelian subvariety of B iff fA divides fB.

In particular
A ∼K B ⇐⇒ fA = fB.

Remark. Note that for an abelian variety A over a finite field the characteristic polynomial
fA of πA ∈ End(A) is a power of an irreducible polynomial then A is isotypic (not necessarily
simple); it seems that a statement in [77] in Th. 1.1 of “The theorem of Honda and Tate”
needs a small correction on this point.

For an abelian variety A over a field the endomorphism algebra End0(A) is a semi-simple ring.
If moreover A is K-simple, then D = End0(A) is a division ring (hence a simple ring).

(5.4) Theorem (Tate). Suppose A is as simple abelian variety over a finite field K.
(1) The center of D := End0(A) equals L := Q(πA).
(2) Moreover

2g = [L : Q]·
√

[D : L],

where g is the dimension of A. Hence: every abelian variety over a finite field admits smCM.
See (4.1). We have:

fA = (IrrπA
)
√

[D:L] .

(3) Suppose A is simple,

Q ⊂ L := Q(πA) ⊂ D = End0(A).

The central simple algebra D/L

• does not split at every real place of L,

• does split at every finite place not above p,

• and for a discrete valuation w of L with w | p the invariant of D/L is given by

invw(D/L) =
v(πA)

w(q)
·[Lw : Qp] mod 1,

where Lw is the local field obtained from L by completing at w.
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(5.5) Corollary/Notation. Using Brauer theory, see Section 17, and using this theorem
by Tate we see that the structure of D follows once π = πA is given. In particular the
dimension g of A follows from π. We will say that D is the algebra determined by the Weil
number π.
For a given Weil q-number the division algebra with invariants as described by the theorem
will be denoted by D = D(π). We write e(π) = [Q(π) : Q], and r(π)2 = [D(π) : Q(π)] and
g(π) = e(π)·r(π)/2.
Note that g(π) ∈ Z. Indeed, in case (Re) we have e = 1, r = 2. In all other cases we have
that e is even. See (15.7).

(5.6) Remark/Exercise. Let A be an abelian variety of dimension g simple over a field
K. Write D = End0(A).
(1) If char(K) = 0 and A admits smCM then D is a field.
(2) If K is finite and the p-rank f = f(A) satisfies f ≥ g − 1, “A is ordinary or A is almost
ordinary”, then D is commutative, see [57], Proposition 3.14.
(3) There are many examples where K is finite, f(A) < g − 1, and D is not commutative.
(4) There are many examples of a simple abelian variety over a field k, with either char(k) = 0
or char(k) = p and A ordinary such that D is not commutative; see (18.5)

6 Injectivity

(6.1) Exercise/Construction. Let K be a field, and let A and B be abelian varieties over
K. Assume there exists an isogeny ϕ : A → B. Choose an integer N > 0 which annihilates
(the finite group scheme which is) Ker(ϕ). Show there exists an isogeny ψ : B → A such that
ψ·ϕ = N ·1A. Construct

Φ : End0(A) −→ End0(B), Φ(x) :=
1

N
·ϕ·x·ψ.

(1) Show that Φ is a homomorphism. Construct Ψ by Ψ(y) = ψ·y·ϕ/N . Show Ψ·Φ = Id and
Φ·Ψ = Id. Conclude that

Φ : End0(A)
∼−→ End0(B)

is an isomorphism.
(2) Show that Φ is independent of the choice of ψ and N .
(3) Show that ϕ·ψ = N ·1B.
Remark. Take A = B, and ϕ ∈ End(A). We have constructed the inverse ϕ−1 in End0(A).

(6.2) Exercise. Let A ∼ B be a K-isogeny of simple abelian varieties over a finite field
K = Fq; using the construction (6.1) this isogeny gives an isomorphism Q(πA) ∼= Q(πB).
Show that this maps πA tot πB.

(6.3) By Theorem (3.2) by Weil we see that for a simple abelian variety A over K = Fq

indeed πA is a Weil q-number. If A and B are K- isogenous, πA and πB are conjugated. Hence

W : {simple abelian variety over K}/ ∼K −→ W (q), A 7→ πA,

is well-defined.
We have seen in (5.3) (2) that Tate showed that A and B are K-isogenous if and only if

fA = fB. Hence this map W is injective.
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7 Abelian varieties with good reduction

References: [46], [11], [70], [66], [6], [56].
This section mostly contains references to known (non-trivial) results.

(7.1) Definition. Let A be an abelian variety over a field K. Let v be a discrete valuation
of K. We say that A has good reduction at v if there exists an abelian scheme A → Spec(Ov)
with generic fiber A⊗K ∼= A.

We say that A has potentially good reduction at v if there exist a finite extension K ⊂ K ′,
a discrete valuation v′ over v such that A′ := A⊗K ′ has good reduction at v′.

(7.2) The Néron minimal model. Let Let A be an abelian variety over a field K. Let v
be a discrete valuation of K. Consider the category of smooth morphisms Y → Spec(Ov) = S
and the contravariant functor on this category given by

Y/S 7→ HomK(Y ×S Spec(K), A).

We say that A → S is the Néron minimal model, abbreviation: Nmm, of A at v if it represents
this functor.

(7.3) Theorem (Néron). For every A/K and every v the Néron minimal model of A at v
exists. 2

See [46]; see [12], Section VIII.

(7.4) Theorem (Chevalley). Let G be a group variety over a field m. (That is: this is an
algebraic group scheme G→ Spec(m) which is connected, and geometrically reduced.) There
exists a filtration by subgroup varieties G1 ⊂ G2 ⊂ G over m such that G1 is a torus (i.e.
G1 ⊗m is isomorphic with a product of copies of Gm), G2/G1 is unipotent and G/G2 is an
abelian variety.

(7.5) Definition. Let A be an abelian variety over a field K. Let v be a discrete valuation
of K. We say that A has stable reduction at v if the special connected fiber A0

kv
of the Néron

minimal model A has in its Chevalley decomposition the unipotent part equal to zero. We
say A has potentially stable reduction at v ∈ ΣK if there exist a finite extension K ⊂ K ′, a
discrete valuation v′ over v such that A′ := A⊗K ′ has stable reduction at v′.

(7.6) We refer to the literature, especially to [66], for the notions of ℓ-adic representations,
algebraic monodromy, and the fact that for an abelian variety at a discrete valuation of the
base field the monodromy on the inertia group of v is quasi-unipotent.

As a corollaries of these ideas on shows:

Theorem (The Néron-Ogg-Shafarevich criterion). Suppose A has stable, respectively good
reduction at v and B ∼K A. Then B has stable, repectively good reduction at v.

Theorem (Grothendieck). Every A/K has potentially stable reduction at every v ∈ ΣK .

12



(7.7) Corollary. Let A be an abelian variety over a field K which admits smCM. At every
v ∈ ΣK the abelian variety A has potentially good reduction.
Sketch of a proof. After extension of the base field we can assume that A has stable
reduction at v. Up to isogeny we can write A ∼ ∏

Bi, with every Bi simple. By the Néron-
Ogg-Shafarevich criterion we conclude every Bi has stable reduction. Hence it suffice to show:
if A is K-simple + has good reduction at v + admits smCM then it A has good reduction at
v.

Let A be its Nmm, and let G = A0
kv

be the connected component of the special fiber of

A → Spec(Ov). By properties of the Nmm we conclude that End0(A) ⊂ End(G). Consider
the Chevalley decomposition in this case G1 = G2 ⊂ G. Let µ be the dimension of G1. We
obtain homomorphisms

End0(A)→ End(G1), End0(A)→ End(G/G1).

If µ = dim(G1) > 0 it follows that End0(A) → End(G1) ⊂ Mat(µ,Z); it follows that this
homomorphism is injective; given the fact that A admits smCM we derive a contradiction.
Hence µ = 0. Alternative argument: if µ > 0, the dimension of B = G/G1 is strictly smaller
than dim(A) and the fact that A has smCM shows there does not exist a homomorphism
End0(A)→ End0(B) This contradiction shows µ = 0, and hence A admits good reduction at
v. 2

(7.8) Remark. Let R be an integral domain, A → S = Spec(R) an abelian scheme, and
R→ K a homomorphism to a field K. Write AK = A⊗R K. We obtain a homomorphism

End(A) −→ End(AK).

This homomorphism is injective.
In general this homomorphism is not surjective.
If R is normal and K is the field of fractions of R the homomorphism is surjective.
If ℓ is a prime not equal to the characteristic of K, the additive factor group

End(AK)/End(A) has no ℓ-torsion.
There are many examples where R → R/I = K gives a factor group End(AK)/End(A)

does have p-torsion, where p = char(K).

8 p-divisible groups

Also see Section 20.

(8.1) For an abelian variety A over a base S and a prime number ℓ which is invertible in the
structure sheaf on S one defines the ℓ-Tate module Tℓ(A) := lim←i A[ℓi]. This is a pro-group
scheme. It can also be viewed as a local system with fiber Zℓ under the fundamental group of
S.

For a prime number not necessarily invertible on the base we choose another strategy:

(8.2) Definition. Let S be a scheme. Let h ∈ Z≥0. A p-divisible group, of height h, over
S is an inductive system of finte flat group schemes Gi → S, i ∈ Z≥0 , such that:

13



• the rank of Gi → S equals ph·i;

• pi annihilates Gi;

• there are inclusions Gi →֒ Gi+1 such that

• Gi+1[p
i] = Gi.

• Consequently Gi+j/Gi = Gj .

We will write G = colimi→Gi; this limit considerd in the category of inductive systems of
finite group schemes. A p-divisible group is also called a Barsotti-Tate group.

Examples. (1) For any abelian scheme A→ S (over any base),

{A[pi]; i ∈ Z≥0}

is a p-divisible group. This will be denoted by A[p∞]. This notation should be understood
symbolically: there is no morphism “×∞” and hence, strictly speaking, no “kernel” A[p∞].
(2) Consider Gm,S → S, the multiplicative group over any base. Then

Gm,S[pi] =: Gi = µpi,S, and this defines Gm,S[p∞]→ S,

a p-divisible group over S. (3) Consider Qp/Zp, which is a profinite group, which can be given
by colimi→(Z/pi). By considering the constant group schemes Z/pi)

S
we obtain a p-divisible

group Qp/Zp)
S
.

(8.3) The Serre dual of a p-divisible group. Let G = {Gi}/S be a p-divisible group
over some base scheme S. The surjections Gi+1 ։ Gi+1/G1 = Gi define by Cartier duality
inclusions (Gi)

D →֒ (Gi+1)
D. This defines a p-divisible group

Gt := {(Gi)
D | i} → S,

which is called the Serre dual of G→ S.
Note that G 7→ Gt is a duality, which is is defined by purely algebraic methods. We see

duality A 7→ At, see (16.2), which is a (non-trivial) geometric theory. Notation is chosen
in this way, because the duality theorem connects these two operation in a natural way:
At[p∞] = A[p∞]t, see (16.6); note tat this fact is more involved than this simple notation
suggests.

(8.4) Exercise. Show that (Gm,S[p∞])t = Qp/Zp
S
.

9 Newton polygons

For a p-divisible group X or an abelian variety A over a field of characteristic p a Newton
polygon ζ = N (X), respectively ξ = N (A) := N (A[p∞]) is defined, see Section 21. Here we
will give an easier definition in case we work with an abelian vareity over a finite field, and we
show that this is indeed the correct notion.
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(9.1) Notation. Let K = Fq be a finite field, q = pn and let A be an abelian variety over
K of dimension g. Note that the geometric Frobenius π = πA ∈ End(A) has a characteristic
polynomial fA ∈ Z[T ]; this is a monic polynomial of degree 2g.

Suppose that A is simple over K. The algebraic integer π is a zero of its minimal polynomial
Irr(π) ∈ Z[T ]; this is a monic polynomial, and its degree equals e = Q(π) : Q]. In this case
fA = (Irr(π))r, where r2 is the degree of D = End0(A) over its centre L = Q(π).

Suppose fA =
∑

j bjT
2g−j. We define ξ = ξ(A) as a lower convex hull, written as lch(),

which is the Newton polygon of fA compressed by the factor n:

ξ(A) = lch ({(j, vp(bj)/n) | o ≤ j ≤ 2g}) .

Note that if Irr(π) =
∑

i ciT
e−i then ξ(A) = lch({(r·i, r·vp(ci)/n) | 0 ≤ i ≤ e}).

(9.2) Theorem. Let A be an abelian variety isotypic over a finite field K = Fq, with q = pn.
As above we write π = πA, the geometric Frobenius of A, and L = Q(π) with [L : Q] = e
and D = End0(A) with [D : L] = r2 and dim(A) = g = er/2. Let X = A[p∞]. Consider the

set Σ
(p)
L of discrete valuations of L dividing the rational prime number p. Let L ⊂ P ⊂ D,

where P is a CM-field of degree 2g (existence assured by (10.1). If necessary we replace A be
a K-isogenous abelian variety (again called A) such that OP ⊂ End(A), see (4.5). Then also
OL ⊂ End(A).
(1) The decomposition

D ⊗Qp =
∏

w∈Σ
(p)
L

Dw, OL =
∏

OLw,

gives a decomposition X =
∏

w Xw.
(2) The height of Xw equals [Lw : Qp]·r.
(3) The p-divisible group Xw is isoclinic of slope γw equal to w(πA)/w(q); note that q = pn.
(4) Let w be the discrete valuation obtained from w by complex conjugation; γw + γw = 1.
See [80]. We will give a proof of one of the details.

Proof. (3) Fix w ∈ Σ
(p)
L , and write Y = Xw. Write w(πA)/n = d/h with gcd(d, h) = 1. The

kernel of
Y

F−→ Y (p) F−→ · · · F−→ Y (pnh)

will be denoted by Y [Fnh]
Claim. Y [Fnh] = Y [pnd].
The action of π on Y is given by Fn. We see that w(Fnh/pnd) = 0. This proves that this
quotient (in OL) acts by a unit on Y , which proves the claim.

By the Dieudonné-Manin theory we know that Y ⊗ F ∼ ∏

Gdi,ci
⊗ F. We know that

Gdi,ci
[F ci+di ] = Gdi,ci

[pdi ]. By the claim this proves that in this decomposition only factors
(di, ci) = (d, h−d) do appear, see (21.15). This proves proves that Y is isoclinic of slope equal
to d/h.

(9.3) Notation. Let K = Fq be a finite field, q = pn and let A be an abelian variety over
K of dimension g. Note that the geometric Frobenius π = πA ∈ End(A) has a characteristic
polynomial fA ∈ Z[T ]; this is a monic polynomial of degree 2g.
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(9.4) Corollary. The polygon ξ(A) constructed above for an abelian variety A over a finite
field equals the Newton polygon N (A), as defined in Section 21.

(9.5) Remark. Let A be an abelian variety over a finite field. By the Dieudonné-Manin
theory we know that A[p∞] = X has the property that there exists a p-divisible group Y over
Fp such that X ⊗ F ∼ Y ⊗ F. Hence ξ(A) = N (A) = N (Y ) as we have seen above. We could
try to prove the corollary above by comparing the minimum polynomial of πA and the same
of Y over some common finite field. However in general one cannot compute fA from the
characteristic polynomial of Y/Fp, as is shown by examples below.

(9.6) (1) Let E be a supersingular elliptic curve over a finite field K = Fq. We will see,
(14.6), that there exists a root of unity ζi such that πE ∼ ζi√q. Hence π′ := πE⊗K ′ = qi, with
K ′ = Fq′ , where q′ = q2i = p2ni. We can choose Y/Fq with FY = ±√p and Y ⊗F ∼= E[p∞]⊗F.
Note the curious fact that in this case (FY )2ni = π′.
(2) Let E be an ordinary elliptic curve over a finite field K = Fq, with fE ∈ Z[T ] the
characteristic polynomial of πE. For Y = G(1,0) +G(0,1) we have E[p∞]⊗ F ∼= Y ⊗ F, but for
every finite field K ′ ⊃ K the p-divisible groups E[p∞] ⊗K ′ and Y ⊗K ′ are not isomorphic.
In this case the minimal polynomial of the geometric Frobenius of E ⊗ K ′ is different from
the same of Y ⊗K ′.

(9.7) The Shimura-Taniyama formula. Suppose given an abelian variety A of CM-type
(P,Φ) over a number field M having good reduction at a discrete valuation v ∈ ΣM . Can
we compute from these data the slopes of the geometric Frobenius π0 of the reduction A0/Kv

over the residue class field of v ? The formula of Shimura and Taniyama precisely gives us
this information.

Let A be the Nmm of A at v. We have

P = End0(A) = End0(A) →֒ End0(A0).

Let ℓ be a prime different form the characteristic ofKv. We see that P⊗Qℓ ⊂ End0(A)⊗Qℓ. As
P : Q] = 2·dim(A) it follows that P ⊂ End0(A) is its own centralizer; hence L := Q(πA0) ⊂ P .
Moreover π := πA0 is integral over Z; hence π ∈ OP .

Let C be an algebraically closed field containing Qp. We have

H := Hom(P,C), Hw = Hom(Pw, C), H =
∐

w∈Σ
(p)
P

Hw.

We define Φw := Φ ∩Hw. Write Kv = Fq. With these notations we have:

(9.8) Theorem (the Shimura-Taniyama formula).

∀w ∈ ΣP , w | p, w(π)

w(q)
=

#(Φw)

#(Hw)
.

See [72], §13; see [37], Corollary 2.3.
Tate gave a proof based on “CM-theory for p-divisible groups. See [76],Lemma 5; see [77],
Shimura-Taniyama formula by B. Conrad, Theorem 2.1.
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10 Surjectivity

In this section we prove surjectivity of the map W :M(K, s)→W (q), hence finishing a proof
for Theorem (1.2). We indicate the structure of the proof by subdividing it into the various
steps.

Step (1) We start with a choice q = pn, and with the choice of a Weil q-number π. Proving
W is surjective means proving every Weil number is effective, see (1.3). In case π ∈ R we
know effectivity. From now on we suppose that π is non-real.

Step (2) The Weil q-number π determines a number field Q(π) = L and a division algebra
D = D(π); see (5.5). In the case considered L s a CM-field.

Step (3) We choose a CM-field P ⊂ D of degree 2g over Q.

(10.1) Lemma. Suppose given a CM-field L and a central division algebra L ⊂ D. There
exists L ⊂ P ⊂ D where P is a CM-field splitting D/L. 2

See [76], Lemme 2 on page 100.
See Exercise (15.5)

Step (4) Given π and L ⊂ P ⊂ D = D(π) as above we choose a CM-type Φ for P such that

∀w ∈ Σ
(p)
L , w | p, w(π)

w(q)
=

#(Φw)

#(Hw)
.

Here Σ
(p)
L is the set of finite places of L dividing p. We have a decomposition L⊗Qp =

∏

Lw;
hence a decomposition

H := Hom(L,Qp) =
∐

Hom(Lw,Qp); write Hw = Hom(Lw,Qp; Φ =
∐

Φw.

The set Φ ⊂ H defines the sets Φw ⊂ Hw; conversely {Φw | w ∈ Σ
(p)
L } determines Φ.

Construction. Notation will be chosen in relation with (9.2). For every w ∈ Σ
(p)
L we define:

• βw = w(π)/w(q);

• hw = [Lw : Qp]·r, where r = rπ =
√

[D(π) : Q(π)];

• dw := hw·βw.

Note that complex conjugation induces (for every embedding) an involution ρ : P → P , which
restricts to an involution ρ : L → L which is also complex conjugation on L. We see that
ρ(w) = w or ρ(w) 6= w. In the first case βw = 1/2; in this case we choose for Φw ⊂ Hw any
subset such that #(Φw) = #(Hw)/2. If ρ(w) 6= w we make a choice Φw ⊂ Hw such that
#(Φw) = dw, and we define Φρ(w) = Hρ(w) − Φw·ρ; this ends a choice for the pair {w, ρ(w)}.
This ends the construction.

Step (5) Given the CM-type (P,Φ) we construct B over M as follows.
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(10.2) We choose a number field M , an abelian variety B defined over M , and v ∈ Σ
(p)
M

with residue class field Kv := Ov/mv ⊃ Fq such that End0(B) = P , with Φ as CM-type, and
such that B has good reduction at v.
Notation. Write [Kv : Fq] = m; write Bv for the abelian variety defined over Kv obtained
by reduction of B at v.
Proof. By (19.6) we construct an abelian variety B′ over C of CM-type (P,Φ). By [72],
Proposition 26 on page 109 we know that B′′ can be defined over a number field. We can
choose a finite extension so that all complex multiplications are defined over that field. By
(7.7) we know that an abelian variety with smCM has potentially good reduction; hence we
can extend the base field to achieve good reduction everywhere. We choose a discrete valuation
dividing p. After a finite extension we can achieve that B is an abelian variety defined over a

number field M , with B ⊗M C ∼= B′, and v ∈ Σ
(p)
M such that all properties mentioned above

are satisfied.

(10.3) Lemma. Let E be a number field, i.e. [E : Q] <∞. A root of unity ζ ∈ E has the
properties:
(i) for every ψ : E → C we have | ζ |= 1,
(ii) for every finite prime w we have w(ζ) = 0.
Conversely an element ζ ∈ E satisfying (i) and (ii) is a root of unity. 2

See [25], page 402 (page 520 in the second printing).

Step (6) Suppose given π, and (P,Φ) and B/M as constructed above. There exist s ∈ Z>0

and an s-root of unity ζs such that
πm = ζs·πBv .

This implies that
πms = πs

Bv
= πBv⊗Fqms .

Hence πN is effective with N := ms.
Also see Theorem (12.3).
Proof. We have π ∈ OL ⊂ P . Also we have πBv ∈ OP . Let ζ := πm/πBv , where [Kv : Fq] =
m. As πm and πBv are Weil #(Kv)-numbers condition (i) of the previous lemma is satisfied.
For every prime not above p these numbers are units, hence condition (ii) is satisfied for

primes of P not dividing p. For every w ∈ Σ
(p)
P we can apply the Shimura-Taniyama formula,

see (9.8), to πBv ; for the restriction of w to L we can apply (9.2) (3) to π; these shows that

w(zeta) = 1 for every w ∈ Σ
(p)
P . Hence the conditions mentioned in the previous lemma are

satisfied. By the lemma ζ ∈ OP is a root of unity, say ζ = ζs. Hence πN is effective for
N := ms. This means that πNπBv⊗Fqms is effective. 2

(10.4) The Weil restriction functor. Suppose given a finite extension K ⊂ K ′ of fields
(we could consider much more general situations, but we will not do that); write S = Spec(K)
and S′ = Spec(K ′). We have the base change functor

Sch/S → SchS′ , T 7→ TS′ := T ×S S
′.

The right adjoint functor to the base change functor is denoted by

Π = ΠS′/S = ΠK ′/K : SchS′ → Sch/S , MorS(T,ΠS′/S(Z)) ∼= MorS′(TS′ , Z).
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In this situation Weil showed that ΠS′/S(Z) exists. In fact, consider ×[K ′:K]
S′ = Z×S′ · · ·×S′ Z,

the self-product of [K ′ : K] copies. It can be shown that ×[K ′:K]
S′ can be descended to K in

such a way that it solves this problem. Note that ΠS′/S(Z) ×S S
′ = ×[K ′:K]

S′ Z. For a more
general situation, see [23], Exp. 195, page 195-13.

(10.5) Lemma. Let B′ be an abelian variety over a finite field K ′. Let K ⊂ K ′, with
[K ′ : K] = N . Write

B := ΠK ′/K B′; then fB(T ) = fB′(TN ).

2

See [76], page 100.

By Step 6 and by the previous lemma we conclude:

(10.6) Corollary. Let π be a Weil q-number and N ∈ Z>0 such that πN is effective. Then
π is effective. 2

See [76], Lemme 1 on page 100.
Remark. The abelian variety Bv as constructed above is isotypic and hence πBv is well-
defined. It might be that the Bv thus obtained is not simple. Moreover A := ΠK ′/K(Bv) is
isotypic with πA ∼ π.

Step (7) End of the proof. We conclude that π is effective. Hence W :M(K, s)→W (q)
is surjective. 2Theorem (1.2)

Warning. For a K-simple abelian variety A over K = Fq in general it can happen that for a
(finite) extension K ⊂ K ′ the abelian variety A⊗K ′ is not K ′-simple.

(10.7) Exercise. Notation and assumptions as above; in particular K = Fq is a finite field,
[K ′ : K] = N . Write A′ = A⊗K ′. Write π′ = πN

A .
Show that End(A) = End(A′) iff Q(πA) = Q(π′).
Show that Q(πA) = Q(π′) for every N ∈ Z>0 implies that A is absolutely simple (i.e. A⊗F

is simple).
Construct K,A,K ′ such that Q(πA) 6= Q(πA′) and A′ is K ′-simple.

11 A conjecture by Manin

We recall an important corollary from the Honda-Tate theory, observed independently by
Honda and by Serre.

(11.1) Definition. Let ξ be a Newton polygon. Suppose it consists of slopes β1 ≥ · · · ≥ βh.
We say that ξ is it symmetric if h = 2g is even, and for every 1 ≤ i ≤ h we have βi = 1−βh+1−i.

(11.2) Proposition. Let A be an abelian variety in positive characteristic, and let ξ =
N (A) be its Newton polygon. Then ξ is symmetric.
Over a finite field this was proved by Manin, see [36], page 74; in that proof the functional
equation of the zeta-function for an abelian variety over a finite field is used. The general case
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(an abelian variety over an arbitrary field) follows from [51], Theorem 19.1; see (21.16).
A proof of this proposition in case we work over a finite field also can be given using (9.2).

Does the converse hold? I.e.:

(11.3) Conjecture (Manin, see [36], Conjecture 2 on page 76).
Suppose given a prime number p and a symmetric Newton polygon ξ. Then there exists an
abelian variety A over a field of characteristic p with N (A) = ξ.

Actually if such an abelian variety does exist, then there exists an abelian variety with this
Newton polygon over a finite field. This follows by a result of Grothendieck and Katz about
Newton polygon strata being Zariski closed in Ag ⊗ Fp; see [30], Th. 2.3.1 on page 143.

(11.4) Proof of the Manin Conjecture (Serre, Honda), see [76], page 98. We recall that
Newton polygons can be described by a sum of ordered pairs (d, c). A symmetric Newton
polygon can be written as

ξ = f · ((1, 0) + (0, 1)) + s·(1, 1) +
∑

i

((di, ci) + (ci, di)) ,

with f ≥ 0, s ≥ 0 and moreover di > ci > 0 being coprime integers. Note thatN (A)∪N (B) =
N (A×B); here we write N (A)∪N (B) for the Newton polygon obtained by taking all slopes
in N (A) and in N (B), and arranging them in non-decreasing order. We know that for an
ordinary elliptic curve E we have N (E) = (1, 0)+ (0, 1), and for a supersingular elliptic curve
we have N (E) = (1, 1), and both types exist. Hence the Manin Conjecture has been settled
if we can handle the case

(d, c) + (c, d) with gcd(d, c) = 1 and d > c > 0.

For such integers we consider a zero π of the poynomial

P = T 2 + pc·T + pn, n = d+ c, q = pn.

Clearly (pc)2 − 4·pn < 0, and we see that π is an imaginary quadratic Weil q-number. Note
that

(T 2 + pc·T + pn)/p2c = (
T

pc
)2 + (

T

pc
) + pd−c.

As d > c, we see that L = Q(π)/Q is an imaginary quadratic extension in which p splits.
Moreover, using (5.4) (3), the Newton polygon of P tells us the p-adic values of zeros of P ;
this shows that the invariants of D/L are c/n and d/n. This proves that [D : L] = n2. Using
Theorem (1.2) we have proved the existence of an abelian variety A over Fq with π = πA,
hence End0(A) = D. In particular the dimension of A equals n = d + c. Using (9.2) (3) we
conclude that N (A) = (d, c) + (c, d). Hence the Manin conjecture is proved. 2

(11.5) Exercise. Let g > 2 be a prime number and let A be an abelian variety simple over a
finite field K of dimension g. Show that either End0(A) is a field, or End0(A) is of Type(1,g),
i.e. a division algebra of rank g2 central over an imaginary quadratic field. Show that for any
odd prime number in every characteristic both types of endomorphism algebras do appear. See
[57], 3.13.
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(11.6) Exercise. Fix a prime number p, fix coprime positive integers d > c > 0. Consider
all division algebras D such that there exists an abelian variety A of dimension g := d+ c over
some finite field of characteristic p such that [End0(A) : Q] = 2g2 and N (A) = (d, c) + (c, d).
Show that this gives a infinite set of isomorphism classes of such algebras.

(11.7) We have seen a proof of the Manin conjecture using the Honda-Tate theory. For a
reference to a different proof, see (21.17).

12 CM-liftings of abelian varieties

References: [59], [10].

(12.1) Definition. Let A0 be an abelian variety over a field K ⊃ Fp. We say A/R is a
lifting of A0 to characteristic zero if R is an integral domain of characteristic zero, with a ring
homomorphism R→ K, and A→ Spec(R) is an abelian scheme such that A⊗R K = A0.

(12.2) Definition. Suppose A0 be an abelian variety over a field K ⊃ Fp such that A0

admits smCM. We say A is a CM-lifting of A0 to characteristic zero if A/R is a lifting of A0,
and if moreover A/R admits smCM. If this is the case we say that A0/K satisfies (CML).
Moreover, if L ⊂ End0(A0) is a CM- field of degree 2g over Q and End0(A) = L we say that
A0/K satisfies (CML) by L.

We say that A0/K satisfies (CMLN), if A0 admits a CM-lifting to a normal characteristic
zero domain.
Note that in these cases End0(AM ) = End0(A) →֒ End0(A0) need not be bijective.

The proof in the Section 10 in fact shows (see Step 6):

(12.3) Theorem (Honda). Let K = Fq. Let A0 be an abelian variety, defined and simple
over K. Let P ⊂ End0(A0) is a CM-field of degree 2g over Q. There exists a finite extension
K ⊂ K ′, an abelian variety B0 over K ′ and a K ′-isogeny A0 ⊗K K ′ ∼ B0 such that B0/K

′

satisfies (CMLN) by P . 2

See [76],

Question 1. Is an isogeny necessary ?
Question 2. Is a field extension necessary ?

(12.4) Theorem I. For any g ≥ 3 and for any 0 ≤ f ≤ g−2 there exists an abelian variety
A0 over F = Fp, with dim(A) = g and of p-rank f(A) = f , such that A0 does not admit a
CM-lifting to characteristic zero.
See [59], Th. B on page 131.

We indicate the essence of the proof; for details, see [59].
(1) Suppose given a prime number p, and a symmetric Newton polygon ξ which is non-
supersingular with f(ξ) ≤ g − 2. Using [34] choose an abelian variety C over F = Fp with
N (C) = ξ such that End0(C) is a field.
(2) Choose an abelian variety B over a finite field K such that B ⊗ F ∼ C, such that
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a(B) = 2 and such that for every αp ⊂ B we have a(B/αp) ≤ 2. Fix an isomorphism
(αp × αp)K

∼−→ B[F, V ] ⊂ B.
Important observation. Suppose t ∈ F; suppose BF/((1, t)(αp) =: At can be defined over K ′,
with K ⊂ K ′ ⊂ F. Then t ∈ K ′.
(3) We study all quotients of the form BF/((1, t)(αp) = At and see which one could be CM-
lifted to characteristic zero. Because End0(B) is a field, we can classify all such CM-liftings
over C, and arrive at:
(4) There exist K ⊂ K ′ ⊂ Γ ⊂ F such that [K ′ : K] <∞, moreover Γ/K ′ is a pro-p-extension,
and if t 6∈ Γ then At does not a CM-lift to characteristic zero. Note that Γ $ F, and hence
the theorem is proved. 2

Conclusion. An isogeny is necessary. In general, an abelian variety defined over a finite
field does not admit a CM-lifting to characteristic zero.

(12.5) Definition. Let K = Fq. Let A0 be an abelian variety, defined over K. We say that
A0/K satisfies (CMLI), can be CM- lifted after an isogeny, if there exist A0 ∼ B0 such that
B0 satisfies (CML). We say A0/K satisfies (CMLNI), if moreover B0 satisfies (CMLN).

(12.6) At present it is an open problem whether any abelian variety defined over a finite
field satisfies (CMLI), see (22.2)

(12.7) Theorem IIs / Example. (Failure of CMLN.) (B. Conrad) Let π = pζ5. This
is a Weil p2-number. Suppose p ≡ 2, 3 (mod 5). Note that this implies that p is inert in
Q(ζ5)/Q. Let A be any abelian variety over Fp2 in the isogeny class corresponding to this Weil
number by the Honda-Tate theory, see (1.2). Note that dim(A) = 2 and End0(A) ∼= L = Q(ζ5)
and A is supersingular. The abelian variety A/Fp2 does not satisfy CMLN up to isogeny.

(12.8) Remark. The previous example can be generalized. Let ℓ be a prime number such
that L = Q(ζℓ) contains no proper CM field (e.g. ℓ is a Fermat prime). Let p be a rational
prime, such that the residue class field of L above p has degree more than 2. Let π = pζℓ and
proceed as above. Note that also in this example we obtain a supersingular abelian variety.

(12.9) Theorem IIns / Example. (Failure of CMLN.) (Chai) Let p be a rational prime
number such that p ≡ 2, 3 (mod 5), i.e. p is inert in Q(ζ5)/Q. Suppose K/Q is imaginary
quadratic, such that p is split in K/Q with an element β ∈ OK such that OK ·β is one of the
primes above p in OK (to ensure existence of β, take for example the class number of K to
be equal to 1). Let L/K be an extension of degree 5 generated by π := 5

√

p2β. We see that π
is a Weil p-number. Let A be any abelian variety over Fp in the isogeny class corresponding
to this Weil number by the Honda-Tate theory, see (1.2). Note that dim(A) = 5, the Newton
polygon of A has slopes equal to 2/5 respectively 3/5, and End(A) is a field of degree 10 over
Q. The abelian variety A/Fp does not satisfy (CMLN) up to isogeny.

Conclusion. A field extension is necessary. In general, an abelian variety defined over
a finite field does not satisfy (CMLNI).
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13 The residual reflex condition ensures (CMLN)

(13.1) Remark. Suppose P is a CM-field, and let Φ be a CM-type for P . Let w′ be a
discrete valuation of the reflex field P ′; write Kw′ for its residue class field. Suppose B is an
abelian variety defined over a number field M such that B/M admits smCM of type (P,Φ).
Then M ⊃ L′; see (4.8) for references. Let v be a discrete valuation of M extending w′.
Suppose B has good reduction at v. Let Bv/Kv be the reduction of B at v.

The residual reflex condition. Then Kv contains Kw′ .

(13.2) Proof of (12.7). We see that End0(A) = Q(ζ5) = L. Note that L/Q is Galois; hence
L′ ⊂ L; moreover L′/Q is a CM-field; hence L′ = L; this equality can also be checked directly
using the possible CM-types for L = Q(ζ5). Suppose there would exist up to isogeny over
K = Fp2 a CM-lifting B/M to a field of characteristic zero. We see that the residue class field
K ′ = Kv of M contains the residue class field Kw′ of L′. As p is inert in L = L′ it follows
that K ⊃ Kw′ = Fp4. This contradicts the fact that A is defined over Fp2. 2(12.7)

A proof of (12.9) can be given along the same lines, by showing that Kw′ ⊃ Fp2.

(13.3) Given a CM-type (P,Φ) and a discrete valuation w′ of the reflex field P ′ we obtain
Kw′ ⊃ Fp. We see that in order that A0/K with K = Fq does allow a lifting with CM-type
(P,Φ) it is necessary that it satisfies the residual reflex condition: Kw′ ⊂ K. Moreover note
that the triple (P,Φ, w′) determines the Newton polygon of Bv (notation as above): see [76],
page 107, Th. 3, see (9.8). The triple (P,Φ, w′) will be called a p-adic CM-type, where p is
the residue characteristic of w′. The following theorem says that the residual reflex condition
is sufficient for ensuring (NLCM) up to isogeny.

(13.4) Theorem III. Let A0/K be an abelian variety of dimension g simple over a finite
field K ⊃ Fp. Let L ⊂ End0(A0) be a CM -field of degree 2·g over Q. Suppose there exists a
p-adic CM-type (L,Φ, w′) such that it gives the Newton polygon of A0 and such that Kw′ ⊂ K.
Then A0 satisfies (NLCM) up to isogeny.
See [10], Section 5 for more details.

(13.5) Suppose M ⊃ R ։ K, where R is a normal domain and M = Q(R) the field of
fractions, and K a residue field. Suppose A → Spec(R) is an abelian scheme. Then

End(AM )
∼−→ End(A) →֒ End(AK).

Exercise. In case ℓ is a prime number not equal to the characteristic of K, show that
End(AK)/End(A) has no ℓ-torsion.

Exercise. Give an example where End(AK)/End(A) does have torsion.

We conclude that we obtain End0(A) →֒ End0(AK). In general this is not an equlity.

Exercise. Give examples of A over R such that End0(A) $ End0(AK).
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(13.6) In order to be able to lift an abelian variety from characteristic p to characteristic
zero, and to have a good candidate in characteristic zero whose reduction modulo p gives the
required Weil number we have to realize that in general an endomorphism algebra in positive
characteristic does not appear for that dimension as an endomorphism algebra in characteristic
zero. However “less structure” will do:

(13.7) Exercise ∗. Let E be an elliptic curve over a field K ⊃ Fp. Let X = E[p∞] be its
p-divisible group. Show:

(1) For every β ∈ End(X) the pair (X,β) can be lifted to characteristic zero.

For every b ∈ End(E) the pair (E, b) can be llifted to characteristic zero. See [58], Section 14,
in particular 14.7.

Remark/Exercise. There exists an elliptic curve E over a local field M such that E has
good reduction, such that End(E) = Z and End(E[p∞]) % Zp.

Remark. We see that in order that the Tate conjecture holds for abelian varieties we bet-
ter assume that the base field is of finite type over the prime field; therefore Grothendieck
formulated his “anabelian conjecture” for hyperbolic curves over such fields; it came as a big
surprise that this conjecture for curves actually is true over local fields, as Mochizuchi showed,
see [38].

14 Elliptic curves

(14.1) Exercise. Let A be an elliptic curve over a local field in mixed characteristic zero/p,
such that End(A) % Z. Let E = End0(A). Note that E/Q is an imaginary quadratic extension.
Suppose A has good reduction modulo p. Show:

If p is ramified or if p is inert in Q ⊂ E then A0 is supersingular.

If p is is split in Q ⊂ E then A0 is ordinary.

(Note that in the case studied End(A) →֒ End(A0); you may use this.)

(14.2) Exercise. We say that E an elliptic curve (an abelian variety of dimension one)
defined over a field M of characteristic p is supersingular if E[p](M ) = 0.
(1) Let E be a supersingular elliptic curve over some field M ⊃ Fp. Show that

Ker(E
FE−→ E(p)

F
E(p)−→ E(p2)) = E[p].

(2) Show that j(E) ∈ Fp2.
(3) Show that E can be defined over Fp2.

(14.3) Remark. As Deuring showed, for any elliptic curve E we have (j(E) ∈ K) ⇒ (E
can be defined over K). An obvious generalization for abelian varieties of dimension g > 1
does not hold; in general it is difficult to determine a field of definition for A, even if a field of
definition for its moduli point is given.
In fact, as in formulas given by Tate, see [74] page 52, we see that for j ∈ K an elliptic curve
over K with that j invariant exists:
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• char(K) 6= 3, j = 0: Y 2 + Y = X3;

• char(K) 6= 2, j = 1728: Y 2 = X3 +X;

• j 6= 0, j 6= 1728 :

Y 2 +XY = X3 − 36

j − 1728
X − 1

j − 1728
.

Deuring showed that the endomorphism algebra of a supersingular elliptic curve over F =
Fp is the quaternion algebra Qp,∞; this is the division algebra, of degree 4, central over Q
unramified outside {p,∞}. This was an inspiration for Tate to prove his structure theorems
for endomorphism algebras of abelian varieties defined over a finite field, and as Tate already
remarked, it reproved Deuring’s result.

(14.4) Endomorphism algebras of eliptic curves. Let E be an elliptic curve over a
finite field K = Fq. We write Qp,∞ for the quaternion algebra central over Q, ramified exactly
at the places ∞ and p. One of the following three (mutually exclusive) cases holds:

(1) (2.1.s) E is ordinary; then End0(E) = L = Q(πE)

is an imaginary quadratic field in which p splits. Conversely if End0(E) = L is a quadratic
field in which p splits, E is ordinary. In this case, for every field extension K ⊂ M we have
End0(E) = End0(E ⊗M).

(2) (2.1.ns) E is supersingular, and End0(E) ∼= Qp,∞.

This is the case if and only if πE ∈ Q. For every field extension K ⊂M we have End0(E) =
End0(E ⊗M).

(3) (1.2) E is supersingular, and End0(E) = L % Q.

In this case L/Q is an imaginary quadratic field in which p does not split. There exists an
integer N such that πN

e ∈ Q. In that case End0(E ⊗M) ∼= Qp,∞ for any field M containing
FqN .

If E is supersingular over a finite field either (2.1.ns) or (1.2) holds.

A proof can be given using (14.6). Here we indicate a proof independent of that classification
of all elliptic curves over a finite field.

Proof. By (5.4) we know that for an elliptic curve e over a finite field we have L := Q(πE)
and D = End0(E) and

[L : Q]·
√

[D : L] = ed = 2g = 2.

Hence e = 2, d = 1 or e = 1, d = 2. We obtain three cases:
(2.1.s) [L : Q] = e = 2 and D = L, hence d = 1, and p is split in L/Q.
(2.1.ns) [L : Q] = e = 2 and D = L, hence d = 1, and p is not split in L/Q.
(1.2) L = Q, [D : Q] = 4; in this case e = 1, d = 2 and D ∼= Qp,∞.

Moreover we have seen that either πE ∈ R, and we are in case (1.2) or πE 6∈ R and D = L :=
Q(πE) = Q and L/Q is an imaginary quadratic field.
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Write E for E ⊗F. For a p-divisible group X write End0(X) = End(X)⊗Zp Qp. We have the
natural maps

End(E) →֒ End(E)⊗ Zp →֒ End(E[p∞]) →֒ End0(E[p∞]) →֒ End0(E[p∞]).

Indeed the ℓ-adic map End(A) ⊗ Zℓ →֒ End(Tℓ(E)) is injective, as was proved by Weil. The
same arguments of that proof are valid for the injectivity of End(A)⊗ Zp →֒ End(A[p∞]) for
any abelian variety over any field, see (20.7), see [80], Theorem 5 on page 56. Hence

End0(E) →֒ End0(E) ⊗Qp →֒ End0(E[p∞]).

Claim (One) (2.1.ns) or (1.2) =⇒ E is supersingular.

Proof. Suppose (2.1.ns) or (1.2), suppose that E is ordinary, and arrive at a contradiction.
If E is ordinary we have

E[p∞]⊗K = E[p∞]⊗K ∼= µp∞ ×Qp/Zp.

Moreover
End0(µp∞) = Zp, End0(Qp/Zp) = Zp

(over any base field). In case (2.1.ns) we see that Dp = End0(E)⊗Qp is a quadratic extension
of Qp. In case (1.2) we see that Dp = End0(E)⊗Qp is a quaternion algebra over Qp. In both
cases we obtain

End(E)→ End0(E) ⊗Qp → End0(E[p∞]⊗K) = End0(µp∞ ×Qp/Zp) = Qp ×Qp.

As (Dp → Qp) = 0 we conclude that (End(E)→ End(E[p∞])) = 0; this is a contradiction
with the fact that the map Z →֒ End(E)→ End(E[p∞]) is non-zero. Hence Claim (One) has
been proved. 2

Claim (Two) (2.1.s) =⇒ E is ordinary.

Proof. Suppose (2.1.s), suppose that E that E is supersingular, and arrive at a contradiction.
Note that E′[p∞] is a simple p-divisble group for any supersingular curve E′ over any field.
Hence End0(E[p∞]) is a division algebra. Suppose that we are in case (2.1.s). Then Q(πE)⊗
Qp
∼= Qp ×Qp. This shows that if this were true we obtain an injective map

Q(πE)⊗Qp
∼= Qp ×Qp →֒ End0(E)⊗Qp →֒ End0(E[p∞])

from Qp
∼= Qp into a division algebra; this is a contradiction. This proves Claim (Two). 2

By Claim (One) and Claim (Two) it follows that

E is ordinary ⇐⇒ (2.1.s), E is supersingular ⇐⇒ ( (2.1.ns) or (1.2) ).

Claim (Three) If E is supersingular then for some N ∈ Z>0 we have πN
E ∈ Q.

Proof. If we are in case (1.2) we know πE ∈ Q.
Suppose we are in case (2.1.ns), and write L = Q(πE). Write π = πE and consider

ζ = π2/q ∈ L.
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• Note that ζ has absolute value equal to one for every complex embedding (by the Weil
conjecture), see (3.2).

• Note that for any discrete valuation v′ of L not dividing p the element ζ is a unit at v′.
Indeed π factors pn, so π is a unit at w.

• As we are in case (2.1.ns) there is precisely one prime v above p.

The product formula Πw | ζ |w= 1, the product running over all places of L, in the number
field L (see [25], second printing, §20, absolute values suitably normalized) then shows that ζ
is also a unit at v. By (10.3) we conclude that ζ is a root of unity. This proves Claim (Three).
2

We finish the proof. If E is ordinary, End0(E ⊗ M) is not of degree four over Q, hence
End0(E) = End0(E ⊗ M) for any ordinary eliptic curve over a finite field K , and any
extension K ⊂M .

If we are in case (1.2) clearly we have End0(E) = End0(E⊗M) for any extension K ⊂M .
If we are in case (2.1.ns) we have seen in Claim (Three) that for some N ∈ Z>0 we have

πN
E ∈ Q. Hence for every K ⊂ FqN ⊂M we have

End0(E) = L = Q(πE) $ End0(E ⊗M) ∼= Qp,∞.

2

(14.5) Definition/Remark/Exercise. (1) An abelian variety A of dimension g over a
field K ⊃ Fp is called supersingular if there exists an isogeny A ⊗ k ∼ Eg ∼ k, where E is a
supersingular elliptic curve, and k is algebraically closed.
(2) Tate and Oort showed:

A is supersingular ⇐⇒ N (A) = σ,

where σ = g(1, 1) is the Newton polygon having only slopes equal to zero.
(3) We see that g > 1 and N (A) = σ implies that A is not absolutely simple. This is an
exceptional case. Indeed, for any symmetric Newton polygon ξ 6= σ and any p there exists an
absolutely simple abelian variety A in characteristic p with N (A) = ξ; see [34].
(4) Let A be a simple abelian variety over the finite field Fq. Show:

A is supersingular ⇐⇒ πA ∼ ζ·
√
q,

where ζ is a root of unity.

(14.6) Classification of isogeny classes of all elliptic curves over finite fields.
See [78], Th. 4.1 on page 536.

Let E be an elliptic curve over a finite field K = Fq, with q = pn, and π = πE. Then | π |= √q
(for every embedding into C), hence π + π =: β ∈ Z has the property | β |≤ 2

√
q. For every

E over a finite field π = πE is a zero of

P = T 2 − β·T + q, β2 ≤ 4q.

The Newton polygon of E equals the Newton polygon of P with the vertical axis compressed
by n. Hence:
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(p does not divide β) ⇐⇒ (E is ordinary),

and

(vp(β) > 0) ⇐⇒ (E is supersingular) ⇐⇒ vp(β) ≥ vp(q)/2 = n/2.

We write D = End0(E), L = Q(π), e = [L : Q],
√

[D : Q] = d. Note that ed = 2.
Hence L = Q iff D ∼= Qp,∞. If L/Q is quadratic, then L is imaginary. Note that if L is
quadratic over Q then E is supersingular iff p is non-split in L/Q.

We have the following possibilities. Moreover,
using (1.2) we see that these cases do all occur for an elliptic curve over some finite field.

(1) p does not divide β ,

E is ordinary, L = Q(πE) is imaginary quadratic over Q, and p is split in L/Q; no
restrictions on p, no restrictions on n.

In all cases below p divides β and E is supersingular. We write either q = p2j or q = p2j+1.

(2) β2 = 4q β = ∓2
√
q = ∓2pj, n = 2j is even .

Here π = ±pj = ±√q, and L = Q, D ∼= Qp,∞.

In all cases below E is supersingular, πE 6∈ Q, hence Q $ L = D ∼= Qp,∞.

(3) β2 = 3q p = 3, β = ±3j+1 , q = 32j+1.

Here p = 3, n = 2j + 1 is odd, and π ∼ ζ3
√
q or π ∼ ζ6

√
q; L = Q(

√
−3).

(4) β2 = 2q p = 2, β = ±2j+1 , q = 22j+1.

Here p = 2, n = 2j + 1 is odd, and π ∼ ζ8
√
q; L = Q(

√
−1).

(5) β2 = q β = ±√q = ±pj, p 6≡ 1 (mod 3) , n = 2j is even, and L = Q(
√
−3).

Here π ∼ ζ6√q, respectively π ∼ ζ3√q.

If we are not in one of the cases above we have β = 0.

(6) β = 0, n is odd , π ∼ ±√−q, no restrictions on p; L = Q(
√−p).

(7) β = 0, n is even, p 6≡ 1 (mod 4) , π ∼ ±pj
√
−1, q = p2j ; L = Q(

√
−1).

In particular we see:
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if E is supersingular over a finite field, πE ∼ ζr
√
q with r ∈ {1, 2, 3, 4, 6, 8, 12}.

Proof. Let E be an elliptic curve over Fq. We have seen restrictions on β. If p does not
divide β ∈ Z, we see that β2 − 4q < 0, and (1) is clear.

If we are not in case (1) we see that p divides β and E is supersingular. If β2 = 4q, we are
in Case (2); this is clear, see (15.7).

If β2 = 3q, we obtain p = 3 and we are in case (3)
If β2 = 2q, we obtain p = 2 and we are in case (4).
If β2 = q we obtain L = Q(ζ3); because p is non-split in L/Q we obtain p 6≡ 1 (mod 3)

in this case; this proves (5).

Claim. Suppose we are not in one of the cases (1) – (5); then β = 0.
Suppose p divides β, i.e. not case (1), and β2 < 4q, i.e. not case (2). If q = p2j and β 6= 0,
write β = b·pj; we see that β2 = (b·pj)2 < 4p2j ; hence b2 = 1, and we are in case (5). If
q = p2j+1 and β 6= 0, write β = b·pj+1, we see that β2 = (b·pj+1)2 < 4p2j+1; hence b2·p < 4,
and we are either in case (3) or in case (4). This proves the claim.

If β = 0 and n odd, we have L = Q(π) = Q(
√−p). We are in case (6), no restrictions on p.

If β = 0 and n is even, we have L = Q(π) = Q(
√
−1). As p is non-split in L/Q we see

that p 6≡ 1 (mod 4). We are in case (7).

This ends the proof of the classification of all elliptic curves over a finite field as given in [78],
pp. 536/7. 2

15 Some examples and exercises

(15.1) Definition / Remark. Let A be an abelian variety over a field K and let K0 ⊂ K.
We say that A can be defined over K0 if there exists a field extension K ⊂ K ′ and and abelian
variety B0 over K0 such that B0⊗K0 K

′ ∼= A⊗K K ′. – The following exercise shows that this
does not imply in general that we can choose B0 such that B0 ⊗K0 K

∼= A.

(15.2) Exercise. Let p be a prime number, p ≡ 3 (mod 4). Let π := p2·
√
−1.

(1) Show that π is a p4-Weil number. Let A be an abelian variety over K := Fp4 such that
πA ∼ π. Determine dim(A). Describe End0(A).
(2) Show there does not exist an abelian variety B0 over K0 := Fp2 such that B0 ⊗K0 K

∼= A.
(3) Show there exists a field extension K ⊂ K ′ and and abelian variety B0 over K0 such that
B0 ⊗K0 K

′ ∼= A⊗K K ′. I.e. A can be defined over K0.

(15.3) Exercise. Give an example of a simple abelian variety A over a field such that A⊗K
is not simple.

(15.4) Exercise. Consider the following examples.

(1) Let β :=
√

2 +
√

3, and q = pn. Let π be a zero of

T 2 − βT + q.
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(2) Choose coprime positive integers d > c > 0, and choose p. Let π be a zero of

T 2 + pcT + pd+c.

(3) Choose q = pn and i ∈ Z>0. Let π := ζi·
√
q, where ζi is a primitive i−th root of unity.

(a) Show that every of these numbers π indeed is a Weil q-number.
For each of these let Aπ be an abelian variety simple over Fq having this number as geometric
Frobenius endomorphism.
(b) Determine dim(Aπ) and its Newton poygon N (Aπ).
(c) For every possible choice of π determine the smallest N ∈ Z>0 such that for every t > 0
we have

End0(Aπ ⊗ FqN ) = End0(Aπ ⊗ FqNt).

(15.5) Exercise/Remark. Suppose A is an abelian variety over a field K which admits
smCM. Let E ⊂ D = End0(A) be a subfield of degree [E : Q] = 2g = 2·dim(A). In this case
E not be a CM field.
Construct A,K,E, where A is an abelian variety over K, a finite field, such that D = End0(A)
is of Type IV(1,g), i.e. A admits smCM, and D is a division algebra central over degree g2

over an imaginary quadratic field L = Q(πA), and L ⊂ E ⊂ D is a field which splits D/L such
that E is not a CM-field.

(15.6) Exercise. Consider the number π constructed in (12.7), respectively (12.9). Prove
it is a Weil number and determine D(π), and gpi and the Newton polygon of the isogeny class
thus constructed.

(15.7) Let π be a Weil q-number. Let Q ⊂ L ⊂ D be the central algebra determined by π.
We remind the reader that

[L : Q] =: e, [D : L] =: d2, 2g := e·d. See Section 18.

As we have seen in Proposition (2.2) there are three possibilities:

(Re) Either
√
q ∈ Q, and q = pn with n an even positive integer. Type III(1), g = 1

In this case π = +pn/2, or π = −pn/2. Hence L = L0 = Q. We see that D/Q has rank 4, with
ramification exactly at ∞ and at p. We obtain g = 1, we have that A = E is a supersingular
elliptic curve, End0(A) is of Type III(1), a definite quaternion algebra over Q. This algebra
was denoted by Deuring as Qp,∞. Note that “all endomorphisms of E are defined over K”,
i.e. for any

∀ K ⊂ K ′ we have End(A) = End(A⊗K ′).

(Ro) Or q = pn with n an odd positive integer and
√
q 6∈ Q. Type III(2), g = 2

In this case L0 = L = Q(
√
p), a real quadratic field. We see that D ramifies exactly at the

two infinite places with invariants equal to (n/2)·2/(2n) = 1/2. Hence D/L0 is a definite
quaternion algebra over L0, it is of Type III(2). We conclude g = 2. If K ⊂ K ′ is an extension
of odd degree we have End(A) = End(A ⊗ K ′). If K ⊂ K ′ is an extension of even degree

30



A ⊗K ′ is non-simple, it is K ′-isogenous with a product of two supersingular elliptic curves,
and End0(A⊗K ′) is a 2× 2 matrix algebra over Qp,∞, and

∀ 2 | [K ′ : K] we have End(A) 6= End(A⊗K ′).

(C) For at least one embedding ψ : Q(π)→ C we have ψ(π) 6∈ R. IV(e0, d), g := e0·d
In this case all conjugates of ψ(π) are non-real. We can determine [D : L] knowing all v(π)
by (5.4) (3); here d is the greatest common divisor of all denominators of [Lv : Qp]·v(π)/v(q),
for all v | p. This determines 2g := e·d. The endomorphism algebra is of Type IV(e0, d). For
K = Fq ⊂ K ′ = Fqm we have

End(A) = End(A⊗K ′) ⇐⇒ Q(π) = Q(πm).

(15.8) Exercise. For each of the numbers below show it is a Weil number, determine q,
determine the invariants e0, e, d, g, describe the structure of D, and describe the structure of
End0(A⊗K K ′) for any field extension K ⊂ K ′.
(1) π =

√−p,
(2) ζ = ζ3 = −1

2 + 1
2

√
−3, π = ζ·√−p,

(3) π is a zero of T 2 −
√

2·T + 8,

(15.9) Remark/Exercise. It is interesting to study the behavior of isomorphism classes
and of isogeny classes of abelian varieties over finite fields under field extensions. See [78],
page 538:

(15.9).1 Example. Let q = pn with n even. Consider β+ = +2
√
q, and β− = −2

√
q. The

polynomial P = T 2 − β·T + q in both cases gives a Weil q-number. The resulting (isogeny
classes) E+, respectively E− consist of elliptic curves, with End0(E) quaternionic over Q, the
case of “all endomorphisms are defined over the base field”. These isogeny classes do not
coincide over Fq:

β± = ±2
√
q, E+ 6∼Fq E−; however E+ ⊗K ′ ∼K ′ E− ⊗K ′

for the quadratic extension K = Fq ⊂ K ′ := Fq2.
Note that in these cases the characteristic polynomial fE±

of the geometric Frobenius
equals P 2.
Waterhouse writes: “But the extension which identifies these two classes created also a new
isogeny class ... It is this sort of non-stable behavior which is overlooked in a treatment like
Deuring’s which considers only endomorphism rings over k...”

(15.9).2 Exercise/Example. Classify all isogeny classes of elliptic curves, and their endo-
morphism algebras for every p, for every q = pn. See (14.6).

(15.9).3 Exercise. Write EIsom(q) for the set of isomorphism classes of elliptic curves over
Fq. Let K = Fq ⊂ K ′ = FqN be an extension of finite fields. There is a natural map

EIsom(q) −→ EIsom(qN ) [E] 7→ [E ⊗K K ′].

Show that this map is not injective, and is not surjective.

31



(15.9).4 Exercise. Write Isog(q) for the set of isogeny classes of abelian varieties over Fq.
Show that for N ∈ Z>1 the natural map Isog(q) → Isog(qN ) is not injective, and is not
surjective.

(15.10) Exercise. Show that h := Y 3− 6Y 2 +9T − 1 ∈ Q[Y ] is irreducible. Let β be a zero
of h. Show that for any ψ0 : Q(β) → C we have ψ0(β) ∈ R, i.e. β is totally real, and that
0 < ψ0(β) < 5, hence β is totally positive. Let π be a zero of T 2 − β·T + 3. Determine the
dimension of A such that πA = π.

(15.11) Exercise. Let L0 = Q(
√

2). Choose a rational prime number p inert in L0/Q. Let
β := (2−

√
2)·p. Let π be a zero of the polynomial

g := T 2 − βT + p4.

(a) Show that the discriminant of g is negative.
(b) Show that π is a q-Weil number with q = p4.
(c) Let A be an abelian variety over Fq with πA = π. Let

Q ⊂ L0 = Q(β) ⊂ L = Q(π) ⊂ D := End0(A).

Determine: g = dim(A), the structure of D and the Newton polygon N (A).

This can be generalized to:

(15.12) Exercise. Let g ∈ Z>0. Let e0, d ∈ Z>0 with e0·d = g. Show there exists an
abelian variety A over F = Fp with D = End0(A) of Type(e0, d).

(15.13) Exercise. Let m,n ∈ Z>0 be coprime integers. Let g = m+n. Let e0, d ∈ Z>0 with
e0·d = g. Show there exists an abelian variety A over Fp with D = End0(A)) of Type(e0, d)
and N (A) = (m,n) + (n,m).

(15.14) Exercise. Let E be an elliptic curve over a field of characteristic p > 0, and let
L ⊂ End0(E) be a field quadratic over Q. Show that L is imaginary. Show there exists a
CM-lifting of (E,L) to characteristic zero.

(15.15) Exercise. Let p be a prime number, and let P := T 30+pT 15+p15. Write Kn = Fpn .
(a) Show that P ∈ Q[T ] is irreducible. Let π be a zero of g. Show that π is a p-Weil number.
Let A be an abelian variety over Fp such that πA ∼ π.
(b) Describe the structure of End(A) and compute dim(A).
(c) Show that

End(A) $ End(A⊗K3) $ End(A⊗K15),

and describe the structures of these endomorphism algebras. Show that A is absolutely simple.
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(15.16) Exercise. (See Section 9.) Let m and n be coprime integers, m > n ≥ 0. Write
h := m+ n. For every b ∈ Z>1 write

gb := T 2 + p2bn(1− 2pbe) + p2bh, e := h− 2n = mn.

(a) Show that the discriminant of gb is negative; conclude that gb ∈ Q[T ] is irreducible. Let
πb be a zero of gb. Show that πb is a p2bh-Weil number. Let Ab be an abelian variety with
πAb
∼ πb.

(b) Describe the structure of End(Ab) and determine the Newton polygon N (Ab).
(c) Show that

#
(

{ℓ | ℓ is a prime number and ∃b ∈ Z>0 such that ℓ divides (4pbe − 1)}
)

=∞.

[Hint: you might want to use the reminder below.]
(d) Show that the set {Q(πb) | b ∈ Z>0}/ ∼=Q is an infinite set of isomorphism classes of
quadratic fields.
(e) Conclude that

{Ab ⊗ Fp | b ∈ Z>1}
defines an infinite number of Fp-isogeny classes with Newton polygon equal to (m,n)+ (n,m).
(f) Show that for any symmetric Newton polygon ξ 6= σ which is not supersingular, there
exists infinitely many isogeny classes of hypersymmetric abelian varieties over Fp having that
Newton polygon.

Reminder. Let S be a set of primes, and ZS the ring of rational numbers with denominators
using only products of elements of S; write (ZS)∗ for the multiplicative group of units in this
ring. A conjecture by Julia Robinson, later proved as a corollary of a theorem by Siegel and
Mahler says:

# ({λ | λ ∈ (ZS)∗, λ− 1 ∈ (ZS)∗}) <∞;

this is a very special case of: [31], Th. 3.1 in 8.3 on page 194.

16 Appendix 1: Abelian varieties

For the notion of abelian variety over a field, abelian scheme over a base scheme, isogenies,
and much more we refer to the literature. But let us at least give one definition.

(16.1) Definition. Let S be a scheme. We say that G → S is a group scheme over S if
MorS(−, G) represents a group functor on the category of schemes over S.
A group scheme A→ S is an abelian scheme if A/S is smooth and proper with geometrically
irreducible fibers. If S = Spec(K), an abelian scheme over S is called an abelian variety
defined over K.

From these properties it follows that A/S is a commutative group scheme. However the name
does not come from this, but from the fact that certain integrals of differential forms on a
Riemann surface where studied by Niels Henrik Abel, and that the values of such integral are
in an agebraizable complex torus; hence these objects were called abelian varieties.

Warning. In most recent papers there is a distinction between an abelian variety defined
over a field K on the one hand, and A⊗K K ′ over K ′ % K on the other hand. The notation
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End(A) stands for the ring of endomorphisms of A over K. This is the way Grothendieck
taught us to choose our notation.

In pre-Grothendieck literature and in some modern papers there is a confusion between on
the one hand A/K and “the same” abelian variety over any extension field. In such papers
there is a confusion. Often it is not clear what is meant by “a point on A”, the notation
EndK(A) can stand for the “endomorphisms defined over K”, but then sometimes End(A)
can stand for the “endomorphisms defined over K”.

Please adopt the Grotendieck convention that a scheme T → S is what it is, and any
scheme obtained by base extension S′ → S is denoted by T ×S S

′ = TS′ , etc.

An abelian variety A over a field K, as defined above, is a “complete group variety defined over
K” (in pre-Grothendieck terminology). In particular A⊗K is an integral algebraic scheme.

Exercise. Show that G→ S is a group scheme over S iff there exist morphisms S → A, and
m : A×A→ A and i : A→ A satisfying certain properties encoded in commutative diagrams
as given by the group axioms.

(16.2) For an abelian variety over a field K the dual abelian variety At = Pic0
A exists. This

is an abelian variety of the same dimension as A.
For the definition of a polarization see [44]; [42], 6.2; see [GM]. A divisor D on an abelian

variety A defines a homomorphism φD : A→ At; in case this divisor is ample φD is an isogeny.
For an abelian variety A over a field K an isogeny ϕ : A→ At is called a polarization if over
some over-field of K this homomorphism can be defined by an ample divisor. We say we have
a principal polarization if ϕ : A→ At is an isomorphism.

As every abelian variety admits a polarization we see that A and At are isogenous.

(16.3) Let A be an abelian variety over a field K We write D = End0(A) = End(A) ⊗Z Q,
called the endomorphism algebra of A. Let ϕ : A→ At be a polarization. We define † : D → D
by †(x) := ϕ−1·xt·ϕ; for the existence of ϕ−1 in D, see (6.1).This map is an anti-involution
on the algebra D, called the Rosati-involution. If ϕ is a principal polarization, we have
† : End(A)→ End(A).

(16.4) Exercise. Show there exists a polarized abelian variety (A,µ) over a field k such
that the Rosati involution † : End0(A) → End0(A) does not map End(A) ⊂ End0(A) into
itself.

(16.5) Duality for finite group schemes. For a finite, locally free, commutative group
scheme N → S there is a dual group scheme, denoted by ND, called the Cartier dual of N ; for
N = Spec(B) → Spec(A) = S we take BD := HomA(B,A), and show that ND := Spec(BD)
exists and is a finite group scheme over S. See [51], I.2.

(16.6) Duality theorem. Let S be a locally noetherian base scheme. Let ϕ : A→ B be an
isogeny of abelian schemes over S, with kernel N = Ker(ϕ). The exact sequence

0 → N −→ A
ϕ−→ B → 0
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gives rise to an exact sequence

0 → ND −→ Bt ϕt

−→ At → 0.

2

See [51]. Theorem 19.1. For the definition of ND, see (16.5).

(16.7) Corollary. Let S be a locally noetherian base scheme and let A → S be an abelian
scheme. There is a natural isomorphism At[p∞] = A[p∞]t. 2

(16.8) The characteristic polynomial of an endomorphism. Let A be an abelian
variety over a field K of dim(A) = g, and and let ϕ ∈ End(A); then there exists a polynomial
fA,ϕ ∈ Z[T ] of degree 2g called the characteristic polynomial of ϕ; it has the property that for
any t ∈ Z we have fA,ϕ(ϕ − t) = deg(ϕ − t); see [12] page 125. See (20.1) for the definition
of Tℓ(A); for every ℓ 6= char(K) the polynomial fA,ϕ equals the characteristic polynomial of
Tℓ(ϕ) ∈ End(Tℓ(A)(K)) ∼= M2g(Zℓ).

(16.9) Exercise. Let K be a field, and A an abelian variety over K of dimension g. Show
there is a natural homomorphism

End(A) −→ End(tA) ∼= Mg(K)

by ϕ 7→ dϕ.
If char(K) = 0, show this map is injective.
If char(K) = p > 0, show this map is not injective.
Let E be an elliptic curve over Q. Show that End(E) = Z. Construct an elliptic curve E

over Q with End(E) $ End(E)⊗ C.

Remark. There does exist an abelian variety A over Q with Z $ End(A).

(16.10) Exercise. Show that over a field of characteristic p, the kernel of End(A) →
End(tA) ∼= Mg(K) can be bigger than End(A)·p.

(16.11) We say an abelian variety A 6= 0 over a field K is simple or we say A is K-simple,
if for any abelian subvariety B ⊂ A we have either 0 = B or B = A.
Theorem (Poincaré-Weil). For any abelian variety A 6= 0 over a field K there exist simple
abelian varieties Bi and integers si ∈ Z>0 and an isogeny A ∼K ΠBsi

i .

(16.12) Exercise. Give an example of a simple abelian variety A over a field such that
A⊗K is not simple.
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17 Appendix 2: Central simple algebras

Basic references: [7], [64], [8] Chapter 7, [68] Chapter 10. We will not give a full treatment of
this theory here.

(17.1) A module over a ring is simple if it is non-zero, and it has no non-trivial submodules.
A module over a ring is semisimple if it is a direct sum of simple submodules.
A ring is called semisimple if it is non-zero, and if it is semisimpe as a left module over

itself.
A ring is called simple if it is semisimple and if there is only one class of simple left ideals.
A finite product of simple rings is semisimple.
The matrix algebra Mr(D) over a division algebra D for r ∈ Z>0 is simple.
Wedderburn’s theorem says that for a central simple algebra (see below) R over a field L

there is a central division algebra D over L and an isomorphism R ∼= Mr(D) for some r ∈ Z≥0.

Examples of rings which are not semisimple: Z, K[T ], Z/p2.
Examples of rings which are simple: a field, a division algebra (old terminology: “a skew
field”), a matrix algebra over a division algebra.

(17.2) Exercise. Let A 6= 0 be an abelian variety over a field K. (Suggestion, see (16.11),
and see (15.7).)
(1) Show that End0(A) is a semisimple ring.
(2) Prove: if A ∼ Bs, where B is simple and s ∈ Z>0, then End0(A) is a simple ring.
(3) Prove: if A is simple, then End0(A) is a division algebra.

(17.3) Definition. Let L be a field. A central simple algebra over L is an L-algebra Γ such
that
(1) Γ is finite dimensional over L,
(2) L is the center of Γ,
(3) Γ is a simple ring.
We say that Γ = D is a central division algebra over L if moreover D is a division algebra.

Suppose a field L is given. Let D and D′ be central simple algebras over L. We say that
D and D′ are similar, notation D ∼ D′ if there exist m,m′ ∈ Z≥0 and an isomorphism
D⊗L Mat(m,L) ∼= D′⊗L Mat(m′, L). the set of ‘similarity classes” of central simple algebras
over L will be denoted by Br(L). On this set we define a “multiplication” by [D1]·[D2] :=
[D1 ⊗L D2], this is well defined, and an “inverse” [D] 7→ [Dopp], where Dopp is the opposite
algebra. As every central simple algebra is a matrix algebra over a central division algebra
over L (Wedderburn’s Theorem) one can show that under the operations given Br(L) is a
group, called the Brauer group of L. See the literature cited for definitions, and properties.

(17.4) Facts (Brauer theory).
(1) For any local field L there is a canonical homomorphism

invL : Br(L)→ Q/Z.

(2) If L is non-archimedean, then invL : Br(L)
∼−→ Q/Z is an isomorphism.

If L ∼= R then Br(L) ∼= 1
2Z/Z.
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If L ∼= C then Br(L) = 0.
(3) If L is a global field, there is an exact sequence

0 → Br(L) −→
⊕

v

Br(Lv) −→ Q/Z → 0.

Note the use of this last statement: any central simple algebra over a global field L is uniquely
determined by a finite set of non-zero invariants at places of L. We will see that this gives us
the possibility to describe endomorphism algebras of (simple) abelian varieties.

For explicit descriptions of some division algebras see [5]. Note that such explicit methods
can be nice to have a feeling for what is going on, but for the general theory you really need
Brauer theory.

(17.5) Example. For a (rational) prime number p we consider the invariant 1/2 at the
prime p in Z, i.e. p ∈ ΣQ and the invariant 1/2 at the infinite prime of Q. As these invariants
add up to zero in Q/Z there is a division algebra central over Q given by these invariants. This
is a quaternion algebra, split at all finite places unequal to p. In [17] this algebra is denoted by
Qp,∞. By (5.4) we see that a supersingular elliptic curve E over F has endomorphism algebra
End0(E) ∼= Qp,∞

18 Appendix 3: Endomorphism algebras.

Basic references: [71], [44], [33] Chapt. 5, [57].
We will see: endomorphism algebras of abelian varieites can be classified. In many cases we
know which algebras do appear. However we will also see that it is difficult in general to
describe all orders in these algebras which can appear as the endomorphism ring of an abelian
variety.

(18.1) Proposition (Weil). Let A, B be abelian varieties over a field K. Let ℓ be a prime
different from the cahracteristic of K. Let Tℓ(A), respectively Tℓ(A) be the Tate-ℓ-groups as
defined in (20.1). The natural homomorphisms

Hom(A,B) →֒ Hom(A,B)⊗Z Zℓ →֒ Hom(Tℓ(A)Tℓ(B))

are injective. 2

See [44], Th. 3 on page 176.

(18.2) Proposition. Let A, B be abelian varieties over a field K. The group Hom(A,B)
is free abelian of finite rank. In fact,
(1) rank (Hom(A,B)) ≤ 4·gA·gB;
(2) if the characteristic of K equals zero, rank (Hom(A,B)) ≤ 2·gA·gB. 2

We write End(A) for the endomorphism ring of A and End0(A) = End(A) ⊗Z Q for the
endomorphism algebra of A. By Wedderburn’s theorem every central simple algebra is a
matrix algebra over a division algebra. If A is K-simple the algebra End0(A) is a division
algebra; in that case we write:

Q ⊂ L0 ⊂ L := Centre(D) ⊂ D = End0(A);
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here L0 is a totally real field, and either L = L0 or [L : L0] = 2 and in that case L is a
CM-field. In case A is simple End0(A) is one of the four types in the Albert classification. We
write:

[L0 : Q] = e0, [L : Q] = e, [D : L] = d2.

The Rosati involution † : D → D is positive definite. A simple division algebra of finite degree
over Q with a positive definite anti-isomorphism which is positive definite is called an Albert
algebra. Applications to abelian varieties and the classification has been described by Albert,
[1], [2], [3].

(18.3) Albert’s classification.
Type I(e0) Here L0 = L = D is a totally real field.

Type II(e0) Here d = 2, e = e0, invv(D) = 0 for all infinite v, and D is an indefinite
quaternion algebra over the totally real field L0 = L.

Type III(e0) Here d = 2, e = e0, invv(D) 6= 0 for all infinite v, and D is an definite quaternion
algebra over the totally real field L0 = L.

Type IV(e0, d) Here L is a CM-field, [F : Q] = e = 2e0, and [D : L] = d2.

(18.4) Theorem. Let A be an abelian variety over a field K. Then End0(A) is an Albert
algebra. 2

See[44], Theorem 2 on page 201.

(18.5) As Albert, Shimura and Gerritzen proved: for any prime field P, and every Albert
algebra D there exists an algebraically closed field k ⊃ P and an abelian variety A over k such
that End0(A) ∼= D; see [57], Section 3 for a discussion and references. In case P = Fp in all
these cases one can choose for A an ordinary abelian variety.

(18.6) A more refined question is to study the endomorphism ring of an abelian variety.
Remark. SupposeA is an abelian variety over a finite field. Let πA be its geometric Frobenius,
and νA = q/πA its geometric Verschiebung. We see that πA, νA ∈ End(A). Hence the index
of End(A) in a maximal order in End0(A) is quite small, in case A is an abelian variety over
a finite field. This is in sharp contrast with:

(18.7) Exercise. Let L be a field quadratic over Q with ring of integers OL. Show that
for any order R ⊂ L there is a number f ∈ Z>0 such that OL = Z + f ·OL (and, usually, this
number f is called the conductor). Show that for any imaginary quadratic L and any f ∈ Z>0

there exists an elliptic curve E over C such that End(E) ∼= Z + f ·OL.
Conclusion. The index of End(A) in a maximal order in End0(A) is in general not bounded
when working over C.

(18.8) Exercise. Show there for every integer m and for every algebraically closed field
k ⊃ Fp not isomorphic to F there exists a simple abelian surface over k such that E := End0(A)
and [OE : End(A)] > m.
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(18.9) Remark. For a simple ordinary abelian variety A over a finite field the orders
contained in End0(A) and containing πA and νA are precisely all possible orders in the isogeny
class of A, see [78], Th. 7.4.

However this may fail for a non-ordinary abelian variety, see [78], page 555/556, where
an example is given of an order containing πA and νA, but which does not appear as the
endomorphism ring of any abelian variety.

We see difficulties in determining which orders in End0(A) can appear as the endomorphism
ring of some B ∼ A.

Much more information on endomorphism rings of abelian varieties over finite fields can
be found in [78].

(18.10) Exercise. Let A be a simple abelian variety over an algebraically closed field k
which admits smCM.

(1) If the characteristic of k equals zero, End0(A) is commutative.

(2) If A is simple and ordinary over F then End0(A) is commutative.

(3) However if A is simple and non-ordinary over F there are many examples showing that
End0(A) may be non-commutative. Give examples.

(4) Show there exists an ordinary abelian variety B over an algebraically closed field of
positive characteristic such that End(B) is not commutative. (Hence k 6∼= F, and B does not
admit smCM.)

(18.11) Exercise. Let K ⊂ K ′ be a an extension of finite field. Let A be an ordinary
abelian variety over K such that A⊗K ′ is simple. Show that End0(A)→ End0(A⊗K ′) is an
isomorphism.

In [78], Theorem 7.2 we read that for simple and ordinary abelian varieties “End(A) is com-
mutative and unchanged by base change”. Some care has to be take in understanding this.

(18.12) Exercise. Choose a prime number p, and let π be a zero of the polynomial T 4 −
T 2 + p2. Show that π is a Weil p-number; let A be an abelian variety over Fp (determined up
to isogeny) which has π as geometric Frobenius. Show that A is a simple, ordinary abelian
surface. Show that End0(A)→ End0(A⊗ Fp2) is not an isomorphism.

(18.13) Remark/Exercise. Choose p > 0, choose a symmetric Newton polygon ξ which
is not supersingular. Then there exists a simple abelian variety A over F with N (A) = ξ such
that End0(A) is commutative; see [34]. For constructions of other endomorphism algebras see
[9], Th. 5.4 of an abelian variety over F

(18.14) Let A be a simple abelian variety over Fp. Suppose that ψ(πA) 6∈ R. Show that
End(A) is commutative (hence End0(A) is a field) (an easy exercise, or see [78], Th.6.1). In
this case every order containing πA and νA in D = L = End0(A) is the endomorphism algebra
of an abelian variety over Fp.
Exercise. Show there does exist a simple abelian variety over Fp such that End0(A) is not
commutative.
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(18.15) For abelian varieties over a finite field separable isogenies give an equivalence rela-
tion, see [78], Th. 5.2.
Exercise. Show that there exists an abelian variety A over a field K ⊃ Fp such that separable
isogenies do not give an equivalence relation in the isogeny class of A.

(18.16) Remark. If K ⊂ K ′ is an extension of fields, and A is a simple abelian variety
over K, then A′ := A⊗K K ′ may be K ′-simple or non-K ′-simple; both cases do appear, and
examples are easy to give. The natural map End(A)→ End(A′) is en embedding which may
be an equality, but also inequality does appear; examples are easy to give, see (16.9), (15.15).

(18.17) Exercise. Let g be an odd prime number, and let A be a simple abelian variety
over a finite field of dimension g. Show:

• either End(A) is commutative,

• or End0(A) is of Type(1, g), and N (A) has exactly two slopes and the p-rank of A is
equal to zero.

See [57], (3.13).

(18.18) Existence of endomorphism fields Let A be an abelian variety which admits
smCM over a field K. If char(K) = 0 and A is simple then D := End0(A) is a field. However
if char(K) = p > 0, the ring End(A) need not be commutative. For examples see Section 15.

Suppose k is an algebraically closed field of char(k) = p, and let A be a supersingular abelian
variety, i.e. N (A) = σ, all slopes are equal to 1/2; then A⊗k ∼ Eg, where E is a supersingular
elliptic curve. We have D := End0(A) = Mat(Kp,∞, g); in particular D is not commutative
and for g > 1 the abelian variety A is not simple. However this turns out to be the only
exceptional case in characteristic p where such a general statement holds.

(18.19) Theorem (Lenstra and FO). Let ξ be a symmetric Newton polygon, and let p be a
prime number. Suppose that ξ 6= σ, i.e. not all slopes in ξ are equal to 1/2. Then there exists
an abelian variety A over m = Fp such that D = L = End0(A) is a field. Necessarily A is
simple and L is a CM-field of degree 2·dim(A) over Q.
See [34].

(18.20) Corollary. For any p and for any ξ 6= σ there exists a simple abelian variety A
over Fp with N (A) = ξ.

For more general constructions of endomorphism algebra with given invariants of an abelian
variety over a finite field, see [9], Section 5.
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19 Appendix 4: Complex tori with smCM

See [72], [63],

(19.1) Let A be an abelian variety over C. Write T := A(C). This is a complex torus, i.e.
a complex Lie group obtained as quotient Cg/Λ, where Z2g ∼= Λ ⊂ Cg ∼= R2g is a discrete
subgroup. Indeed, we have an exact sequence

0 → Z2g ∼= Λ −→ V ∼= Cg e−→ T = A(C) → 0.

Here there are at least two different interpretations of the homomorphism e.
One can take the tangent space V := tA,0. This is also the tangent space of the complex

Lie groep T . The exponential map of commutatieve complex Lie groups gives e : V → T .
One can also consider the topological space T , and construct its universal covering space

V := T̃ . This is a complex Lie group (in a unique way) such that the covering map e is a
homomorphism. The kernel is the fundamental group π1(T, 0) = Λ ∼= Z2g.

(19.2) The complex torus T := A(C) is algebraizable, i.e. comes form an algebraic variety.
If this is the case, the structure of algebraic variety, and the structure of algebraic group giving
the complex torus is unique up to isomorphism (note that a complex torus is compact); see
[69], corollaire on page 30.

In general a complex torus of dimension at least two need not be algebraizable as is show
by the following two examples.

(19.3) Example. Choose any abelian variety A over C of dimension g > 1. There exists
an analytic family T →M, where M is a unit cube of dimension g2, such that over that in-
finitesimal thickening of the origin is the formal deformation space Def(A). Every polarization
µ on A gives a regular formal subscheme Sµ ⊂ Def(A) of dimension g(g + 1)/2. Let C →M
be a one dimensional regular analytic curve inside M whose tangent space is not contained
in the tangent spaces to Sµ for any µ; such a curve exists because the set of polarizations on
A is countable and because g(g + 1)/2 < g2 for g > 1. One shows that there exists a point
s ∈ C such that Ts is not algebraizable.

(19.4) Example (Zarhin - FO). Choose a division algebra of finite degree over Q which is
not an Albert algebra. For example take a field which is not totally real, and which is not a
CM-field; e.g. D = Q( 3

√
2). By [63], Corollary 2.3 we know there exists a complex torus T

with End0(T ) ∼= D. If this torus would be algebraizable, A(C) ∼= T , then this would imply
End0(A) ∼= D by GAGA, see [69], Proposition 15 on page 29. By Albert’s classification this
is not possible, see (18.4).

(19.5) Let A be an abelian variety over C. Suppose it is simple. Suppose it admits smCM.
In that case End0(A) = P is a field of degree 2g over Q. Moreover P is a CM-field. We obtain
a representation ρ0 : P → End(tA,0) ∼= GL(g,C). As P is commutative and C is algebraically
closed this representation splits a a direct sum of 1-dimensional representations. Each of
these is canonically equivalent to giving a homomorphism P → C. One shows that these g
homomorphisms are mutually different, and that no two are complex conjugated. Conclusion:
ρ0 is a CM-type, call it Φ; conversely a CM-type gives such a representation P operating via a
diagonal matrix given by the elements of Φ. This process (A/C, P ) 7→ (P,Φ) can be reversed,
and the construction gives complex tori which are algebraizable.
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(19.6) Theorem Let (P,Φ) be a CM-type. There exists an abelian variety A over C with
P ∼= End0(A) such that the representation ρ0 of P on the tangent space tA,0 is given by the
CM-type Φ. 2

See [72], §6. There are many more references possible.

20 Appendix 5: Tate-ℓ and Tate-p conjectures for abelian va-
rieties

Most important reference: [75]. Also see [86]

(20.1) Notation. Let A be an abelian vareity over a scheme S, let ℓ be a prime number
invertible in the sheaf of local rings on S. Write

Tℓ(A) = lim
←i

A[li].

This is called the Tate-ℓ-group of A/S.

(20.2) Let G be a group scheme over a base scheme S such that the rank of G is prime to
every residue characteristic of S, i.e. the rank of G is invertible in the sheaf of local rings on
S. Then G→ S is étale; citeFO-reduced.

(20.3) étale finite group schemes as Galois modules. (Any characteristic.) Let K
be a field, and let G = Gal(Ksep/K). The main theorem of Galois theory says that there is
an equivalence between the category of algebras étale and finite over K, and the category of
finite sets with a continuous G-action. Taking group-objects on both sides we arrive at:
Theorem. There is an equivalence between the category of étale finite group schemes over K
and the category of finite continuous G-modules.
See [79], 6.4. Note that this equivalence also holds in the case of not necessarily commutative
group schemes.

Naturally this can be generalized to: let S be a connected scheme, and let s ∈ S(Ω) be a
base point, where Ω is an algebraically closed field; let π = π1(S, s). There is an equivalence
between the category of étale finite group schemes (not necessarily commutative) over S and
the category of finite continuous π-systems.

Exercise. Write out the main theorem of Galois theory as a theory describing separable field
extensions via sets with continuous action by the Galois group. Then formulate and prove the
equivalent theorem for étale finite group scheme over an arbitrary base as above.

Conclusion. The Tate-ℓ-group of an abelian scheme A/S such that ℓ is invertible on S either
can be seen as a pro-finite group scheme, or equivalently it can be seen as a projective system
of finite modules with a continuous action of the fundamental group of S.

(20.4) Exercise. For an abelian variety A over a field K and a prime number ℓ 6= char(K)
the natural map

End(A)⊗Z Zℓ →֒ End(Tℓ(A)(K))

is injective, as Weil showed. Prove this statement.
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(20.5) Theorem (Tate, Faltings, and many others). Suppose K is of finite type over its
prime field. (Any characteristic different from ℓ.) The canonical map

End(A)⊗Z Zℓ
∼−→ End(Tℓ(A)) ∼= EndGK

((Zℓ)
2g)

is an isomorphism.
This was conjectured by Tate. In 1966 Tate proved this in case K is a finite field, see [75].
The case of function field in characteristic p was proved by Zarhin and by Mori, see [84], [85],
[40]; also see [39], pp. 9/10 and VI.5 (pp. 154-161).

The case K is a number field this was open for a long time; it was finally proved by Faltings
in 1983, see [19]. For the case of a function field in characteristic zero, see [20], Th. 1 on page
204.

(20.6) We like to have a p-adic analogue of (20.5). For this purpose it is convenient to have
p-divisible groups instead of Tate-ℓ-groups:
Definition. Let A/S be an abelian scheme, and let p be a prime number (no restriction on
p). We write

A[p∞] = colimi→ A[pi],

called the p-divisible group (or the Barsotti-Tate group) of A/S.

Remark. Historically a Tate-ℓ-group is defined as a projective system, and the p-divisible
group as an inductive system; it turns out that these are the best ways of handling these
concepts (but the way in which direction to choose the limit is not very important). We see
that the p-divisible group of an abelian variety should be considered as the natural substitute
for the Tate-ℓ-group. Note that A[p∞] is defined over any base, while Tℓ(A) is only defined
when ℓ is invertible on the base scheme.

The notation A[p∞] is just symbolic; there is no morphism “p∞”, and there is no kernel
of this.

(20.7) Exercise. For an abelian variety A over a field K and a prime number p the natural
map

End(A) ⊗Z Zp →֒ End((A)[p∞])

is injective. Prove this statement. Or see [80], theorem 5 on page 56.

(20.8) Remark. On could feel the objects Tℓ(A) and A[p∞] as arithemetic objects in the
following sense. If A and B are abelian varieites over a field K which are isomorphic over K,
then they are isomorphic over a finite extension of K; these are geometric objects. Suppose X
and Y are p-divisible groups over a field K which are isomorphic over K then they need not
be isomorphic over a finite extension of K, these are arithmetic objects. The same statement
for pro-ℓ-group schemes

(20.9) Theorem (Tate and De Jong). Let K be a field finitely generated over Fp. Let A
and B be abelian varieties over K. The natural map

Hom(A,B)⊗ Zp
∼−→ Hom(A[p∞], B[p∞])

is an isomorphism.
This was proved by Tate in case K is a finite field; a proof was written up in [80]. The case
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of a function field over a finite field was proved by Johan de Jong, see [27], Th. 2.6. This case
follows from the result by Tate and from the following result on extending homomorphisms
(20.10).

(20.10) Theorem (Tate, De Jong). Let R be an integrally closed, Noetherian integral
domain with field of fractions K. (Any characteristic.) Let X,Y be p-divisible group over
Spec(R). Let βK : XK → YK be a homomorphism. There exists (uniquely) β : X → Y over
Spec(R) extending βK .
This was proved by Tate, under the extra assumption that the characteristic of K is zero. For
the case char(K) = p, see [27], 1.2 and [28], Th. 2 on page 261.

21 Appendix 6: Some properties in characteristic p

See [36]. For information on group schemes see [51], [65], [79].

In characteristic zero we have strong tools at our disposal: besides algebraic-geometric theories
we can use analytic and topological methods. It seems that we are at a loss in positive char-
acteristic. However the opposite is true. Phenomena, only occurring in positive characteristic
provide us with strong tools to study moduli spaces. And, as it turns out again and again,
several results in characteristic zero can be derived using reduction modulo p. These tools in
positive characteristic will be of great help in this talk.

(21.1) A finite group scheme in characteristic zero, of more generally a finite group scheme
of rank prime to all residue characteristics, is étale over the base; e.g. see [52]. However if the
rank of a finite group scheme is not invertible on the base, it need not be étale.

(21.2) The Frobenius morphism. For a scheme T over Fp (i.e. p·1 = 0 in all fibers of
OT ), we define the absolute Frobenius morphism fr : T → T ; if T = Spec(R) this is given by
x 7→ xp in R.

For a scheme A → S over Spec(Fp) we define A(p) as the fiber product of A → S
fr←− S.

The morphism fr : A → A factors through A(p). This defines FA/S = FA : A → A(p), a
morphism over S; this is called the relative Frobenius morphism. If A is a group scheme over
S, the morphism FA : A → A(p) is a homomorphism of group schemes. For more details see
[65], Exp. VIIA.4. The notation A(p/S) is (maybe) more correct.

Example. Suppose A ⊂ An
R is given as the zero set of a polynomial

∑

I aIX
I (multi-index

notation). Then A(p) is given by
∑

I a
p
IX

I , and A → Ap is given, on coordinates, by raising
these to the power p. Note that if a point (x1, · · · , xn) ∈ A then indeed (xp

1, · · · , xp
n) ∈ A(p),

and xi 7→ xp
i describes FA : A→ A(p) on points.

Let S = Spec(Fp); for any T → S we have a canonical isomorphism T ∼= T (p). In this case
FT/S = fr : T → T .

(21.3) Verschiebung. Let A be a commutative group scheme over a characteristic p base
scheme. In [65], Exp. VIIA.4 we find the definition of the “relative Verschiebung”

VA : A(p) → A; we have: FA·VA = [p]A(p) , VA·FA = [p]A.
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In case A is an abelian variety we see that FA is surjective, and Ker(FA) ⊂ A[p]. In this case
we do not need the somewhat tricky construction of [65], Exp. VIIA.4, but we can define VA

by VA·FA = [p]A and check that FA·VA = [p]A(p) .

(21.4) Examples of finite group scheme of rank p. Let k ⊃ Fp be an algebraically closed
field, and let G be a commutative group scheme of rank p over k. Then we are in one of the
following three cases:

G = Z/p
k
. This is the scheme Spec(kp), with the group structure given by Z/p. Here VG = 0

and FG is an isomorphism.

G = αp. We write αp = Ga,Fp [F ] the kernel of the Frobenius morphism on the linear group
Ga,Fp . This group scheme is defined over Fp, and we have the habit to write for any scheme
S → Spec(Fp) just αp, although we should write αp ×Spec(Fp) S. For any field K ⊃ Fp

we have αp,K = Spec(K[τ ]/(τp)) and the group structure is given by the comultiplication
τ 7→ τ ⊗ 1 + 1 + τ on the algebra K[τ ]/(τp). Here VG = 0 = FG.

G = µp,k. We write µt,K = Gm,K [t] for any field K and any t ∈ Z>1. Here FG = 0 and VG

is an isomorphism. Note that the algebras defining αp,Fp and µp,Fp are isomorphic, but the
comultiplications are different.

Any finite commutative group scheme over k of rank a power of p is a successive extension
of group schemes of these three types. for an arbitrary field K ⊃ Fp the first and the last
example can be “twisted” by a Galois action. However if G⊗K k ∼= αp,k then G ∼= αp,K.

For duality, and for the notion of “local” and “etale” group scheme see [51].

Commutative group scheme of p-power rank over a perfect base field can be classified with
the help of Dieudonné modules, not dicussed here, but see [36], see [16].

(21.5) For an abelian variety A over a field K ⊃ Fp we define its p-rank f(A) = f as the

integer such that A[p](K) ∼= (Z/p)f .
We say A is ordinary iff f(A) = dim(A) =: g.

(21.6) For a classification of ordinary abelian varieties over finite fields (using Serre-Tate
canonical lifts, and classical theory) see the wonderful paper [14].

(21.7) Examples. If E is an elliptic curve in characteristic p then:

E is ordinary ⇔ E[p](K) 6= 0 ⇔ E[F ] := Ker(F : E → E(p))⊗ k ∼= µp.

In this case E[p]⊗ k ∼= µp × Z/p.

E is supersingular ⇔ E[p](K) = 0 ⇔ E[F ] := Ker(F : E → E(p)) ∼= αp.

In this case E[p] is a non-trivial extension of αp by αp.

Warning. For a higher dimensional abelian varieties A[F ] and A[p] can be quite complicated.
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(21.8) Exercise. Show that the following properties are equivalent:
(1) A is ordinary,
(2) Hom(αp, A) = 0,
(3) the kernel of V : A(p) → A is étale,
(4) the rank of the group Hom(µp, A⊗K) equals pg.
(5) Hom(µp, A⊗K) ∼= (Z/p)g .

(21.9) Duality; see [GM], Chapter V. For a finite locally free group scheme G→ S over a
base S → Spec(Fp) we study FG/S : G→ G(p). We can apply Cartier-duality.

Fact.
(

FG/S : G→ G(p)
)D

=
(

VGD : (G(p))D = (GD)(p) → GD
)

.

In the same way Cartier duality gives (VG)D = FGD .

Using duality of abelian varieties, in particular see [51], Theorem 19.1, we arrive at:

For an abelian scheme A→ S over a base S → Spec(Fp) we have

(

FA/S : A→ A(p)
)t

=
(

VAt : (A(p))t = (At)(p) → At
)

, and (VA)t = FAt .

(21.10) Newton polygons. In order to being able to handle the isogeny class of A[p∞] we
need the notion of Newton polygons.

Suppose given integers h, d ∈ Z≥0; here h = “height”, d = “dimension”, and in case of abelian
varieties we will choose h = 2g, and d = g. A Newton polygon γ (related to h and d) is a
polygon γ ⊂ Q×Q (or, if you wish in R× R), such that:

((((((�������
�

�

q

q

q

q

h

d

ζ

• γ starts at (0, 0) and ends at (h, d);

• γ is lower convex;

• any slope β of γ has the property 0 ≤ β ≤ 1;

• the breakpoints of γ are in Z× Z; hence β ∈ Q.

−

|

Note that a Newton polygon determines (and is determined by)

β1, · · · , βh ∈ Q with 0 ≤ β1 ≤ · · · ≤ βh ≤ 1 ↔ ζ.

Sometimes we will give a Newton polygon by data
∑

i (di, ci); here di, ci ∈ Z≥0, with
gcd(di, ci) = 1, and di/(di + ci) ≤ dj/(dj + cj) for i ≤ j, and h =

∑

i (di + ci), d =
∑

i di.
From these data we construct the related Newton polygon by choosing the slopes di/(di + ci)
with multiplicities hi = di + ci. Conversely clearly any Newton polygon can be encoded in a
unique way in such a form.

Remark. The Newton polygon of a polynomial. Let g ∈ Qp[T ] be a monic polynomial
of degree h. We are interested in the p-adic values of its zeroes (in an algebraic closure of Qp).
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These can be computed by the Newton polygon of this polynomial. Write g =
∑

j γjT
h−j.

Plot the pairs (j, vp(γj)) for 0 ≤ j ≤ h. Consider the lower convex hull of {(j, vp(γj)) | j}.
This is a Newton polygon according to the definition above. The slopes of the sides of this
polygon are precisely the p-adic values of the zeroes of g, ordered in non-decreasing order.
Exercise. Prove this.
Hint. Write g = Π (T − zi), with zi ∈ Qp. Write βi := vp(zi) ∈ Q≥0. Suppose the order of the
{zi} chosen in such a way that

0 ≤ β1 ≤ β2 ≤ · · · ≤ βi ≤ βi+1 ≤ · · · ≤ βh.

Let σj be the elementary symmetric functions in zi. Show that:

σj = γj , vp(σj) ≥ β1 + · · · + βj , βh = vp(γh),

and
N < h, βN < βN+1 =⇒ σN = β1 + · · ·+ βN .

2

(21.11) A p-divisible group X over a field of characteristic p determines uniquely a Newton
polygon. The general definition can be found in [36]. The isogeny class of a p-divisible group
over and algebraically closed field k uniquely determines (and is uniquely determined by) its
Newton polygon:

(21.12) Theorem (Dieudonné and Manin), see [36], “Classification theorem ” on page 35 .

{X}/ ∼k
∼−→ {Newton polygon}

(21.13) We sketch the construction of a Newton polygon of a p-divisible group X, or of an
abelian variety.

(Incorrect.) Here we indicate what the Newton polygon of a p-divisible group is (in a slightly
incorrect way ...). Consider “the Frobenius endomorphism“ of X. This has a “characteristic
polynomial”. This polynomial determines a Newton polygon, which we write as N (X), the
Newton polygon of X. For an abelian variety A we write N (A) instead of N (A[p∞]).

Well, this “definition” is correct over Fp as ground field. However over any other field
F : X → X(p) is not an endomorphism, and the above “construction” fails.

Over a finite field there is a method which repairs this. Let A be an abelian variety over
Fq. The geometric Frobenius πA ∈ End(A) has a characteristic polynomial f = fA = fA,πA

∈
Z[T ] ⊂ Qp[T ]. Take NP(fA) the Newton polygon of fA. That is: write f =

∑

0≤i≤2g biT
2g−i;

consider all points {(i, vp(bi))} in the plane, and let NP(fA) be the lower convex hull of this set
of points. Note that (0, vp(b0)) = (0, 0), because the polynomial is monic, and (2g, vp(b2g)) =
(2g, n·2g), because b2g = q2g = pn·2g. We define N (A), the Newton polygon of A to be the
lower convex hull of the set of {(i, 1

n ·vp(bi))}.

However one can define the Newton polygon of an abelian variety over an arbitrary field in
positive characteristic. we can work with the “explanation” given above: N (X) is the “Newton
polygon of the Frobenius on X”.
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(21.14) Dieudonné-Manin theory. (We only give some definitions and facts.) For co-
prime integers d, c ∈ Z≥0 one can define a p-divisible group Gd,c. In fact, G1,0 = Gm[p∞], and
G0,1 = (Qp/Zp). For d > 0 and c > 0 we have a formal p-divisible group Gd,c of dimension d
and of height h = d + c. We do not give the construction here; see the first two chapters of
Manin’s thesis [36]; the definition of Gd,c is on page 35 of [36]. The p-divisible group Gd,c is
defined over Fp; we will use the same symbol for this group over any base field or base scheme
over Fp, i.e. we write Gd,c instead of Gd,c ⊗Fp K.

Let K = Fpn , and X = Gd,c ⊗Fp K. Let πX ∈ End(X) be the geometric Frobenius. Then

vp(πX) = d·n
h , h := d+ c, q = pn.

In [36], Chapter II we find:
Theorem. Let k be an algebraically closed field of characteristic p. Let X be a p-divisible
group over k. Then there exists an isogeny

X ∼
∏

i

Gdi,ci
.

see [36], Classification Theorem on page 35.

The isogeny class of
∏

iGdi,ci
will be encoded in the form of a Newton polygon. The simple

p-divisible group Gd,c will be represented by d + c slopes equal to d/(d + c). The slopes of
∑

iGdi,ci
will be ordered in non-decreasing order. For a p-divisible group of dimension d,

height h with h = d+ c together these slopes form a polygon in Q×Q.

Example. Suppose A[p∞] = X ∼ Gd,c ×Gc,d. Then the Newton polygon N (A) of A equals
(d, c) + (c, d); this has d+ c slopes equal to d/(d+ c) and d+ c slopes equal to c/(d + c).

The theorem just cited reads: there is a bijection between the set of k-isogeny classes of p-
divisible groups over k and the set of Newton polygons:

{X}/ ∼k
∼−→ {Newton polygon}

(21.15) Exercise. Let Y be a p-divisible group over a field K. Suppose Y ∼ ∏

iGdi,ci
.

Suppose there exist integers d, h ∈ Z>0 such that Y [F h] = Y [pd]. Show: only factors Gdi,ci
do

appear with di/(di + ci) = d/h.

(21.16) Proposition. For every pair (d, c) of coprime non-negative integers we have Gd,c
∼=

(Gc,d)
t. Let A be an abelian variety over a field K ⊃ Fp, and X = A[p∞]. The Newton polygon

N (A) := N (X) is symmetric, in the sense of (11.1).
Proof. The first equality follows form the definitions.

By (16.6) we have A[m]D = At[m] for every m ∈ Z>0. Hence A[p∞]t = At[p∞]; use
the definition of the Serre dual Xt; this formula is less trivial than notation suggests. Hence
Gd,cand Gc,d appear with the same multiplicity in the isogeny type of X = A[p∞]. This proves
symmetry of N (X). 2
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(21.17) A proof for the Manin Conjecture. We have seen that the Manin Conjecture can
be proved using the Honda-Tate theory, see Section 11. In [61], Section 5 we find a proof of
that conjecture, using only methods of characteristic p. We sketch that proof (and please see
the reference cited for notations and details).

We know that the conjecture holds for G1,1: in every characteristic p there exists a su-
persingular elliptic curve, and E[p∞] ∼= G1,1. Hence every supersingular p-divisibel group
is algebraizable. We show that for a given g ≥ 1 there exists an abelian variety A0 with a
principal polarization λ0 such that A0 is supersingular, and a(A0) = 1. Methods of [61] show
that for a given symmetric Newton polygon ξ, which automatically lies below σ = N (A0),
there exists a formal deformation of (X0, λ0) = (A0, λ0)[p

∞] to (X,λ) with N (X) = ξ. By the
Serre-Tate Theorem we know that a formal deformation of an algebraizable p-divisible group
is algebraizable; hence there exists (A,λ) with (X,λ) = (A,λ)[p∞]; this proves the Manin
Conjecture.

22 Some questions

In this section we gather some remarks, questions and open problems.

(22.1) Definition. Let B0 be an abelian variety over a field K of characteristic p > 0.
We say B is a CM-lift of B0 if there exists an integral domain R of characteristic zero with
a surjective homomorphism R ։ K with field of fractions Q(R) and an abelian scheme
B → Spec(R) such that B ⊗K ∼= B0 and such that B ⊗Q(R) admits smCM.

Remarks. (1) If A0 admits a CM-lift, then A0 ⊗K admits smCM.
(2) By Tate we know that any abelian variety over a finite field admits smCM, [75].
(3) If A0 is an ordinary abelian variety over a finite field K, then by using the canonical
Serre-Tate lift we see that A0 admits a CM-lift.
(4) Deuring has proved that any elliptic curve over a finite field admits a CM-lift; see [17],
pp. 259 – 263; for a proof also see [58], Section 14, in particular 14.7.
(5) The previous method can be used to show that any abelian variety of dimension g defined
over a finite field of p-rank equal to g − 1 admits a CM-lift; use [58], 14.6.
(6) We have seen that for an abelian variety A0 over a finite field K there exists a finite
extension K ⊂ K ′, and a K ′-isogeny A0 ⊗ K ′ ∼ B0 such that B0 admits a CM lift. Do we
really need the finite extension and the isogeny to assure a CM-lift ?
(7) (We need the isogeny.) In [59], Theorem B we find: suppose g ≥ 3, and let f be an integer,
0 ≤ f ≤ g − 2. Then there exists an abelian variety A0 over F := Fp of dimension g with
p-rank equal to f such that A0 does not admit a CM-lift.

(22.2) Question. (Do we need a finite extension?) Does there exist a finite field K and an
abelian variety A0 over K such that any B0 over K isogenous over K with A0 does not admit
a CM-lift?

(22.3) In the proof of the Honda-Tate theorem analytic tools are used. Indeed we construct
CM abelian varieties over C in order to prove surjectivity of the map A 7→ πA. As a corollary
of the Honda-Tate theory we have seen a proof of the Manin Conjecture. However it turns out
that for the Manin Conjecture we now have a purely geometric proof, indeed a proof which
only uses characteristic p methods, see [61], Section 5.
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(22.4) Open Problem. Does there exist a proof of the Honda-Tate theorem (1.2) only
using methods in characteristic p ?

(22.5) Over an algebraically closed field k of characteristic zero for a given g it is exactly
known which algebras can appear as the endomorphism algebra of a simple abelian variety
over k; see [71], pp. 175/176; also see [44] pp. 202/203; see [33], 5.5.

For any Albert algebra (an algebra of finite dimension over Q, with a positive definite
anti-involution, equivalently: a finite product of algebras in the classification list of Albert),
and any characteristic, there exists a simple abelian variety over an algebraically closed field
of that characteristic having that endomorphism algebra; see [71], pp. 175/176 and [44] pp.
202/203 for characteristic zero; for arbitrary characteristic see [22]; for a discussion see [57],
Theorem 3.3 and Theorem 3.4.

(22.6) Open Problem. Suppose a prime number p > 0 given. Determine for every g ∈ Z>0

the possible endomorphism algebras appearing for that g in characteristic p.

(22.7) Open Problem. For every characteristic and every g ∈ Z>0 determine all possible
endomorphism rings of an abelian variety over an algebraically closed field in that character-
istic.

(22.8) Exercise. For an abelian variety of dimension g over a field K of characteristic
zero we have

m(X) :=
2g

[End0(A) : Q]
∈ Z.

Give examples of an abelian variety A in positive characteristic where

2g

[End0(A) : Q]
6∈ Z.

(22.9) Expectation. For every γ ∈ Q>0 and every prime number p > 0 there exists a field
k in characteristic p, and an abelian variety A over k such that

2g

[End0(A) : Q]
= γ.

See [60], Section 2.
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Not all references below are needed for this talk, but I include relevant literature for complete-
ness sake.
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63 (1979), Soc. Math. France, 113 - 164. are due to Tate

[31] S. Lang – Fundamentals of diophantine geometry. Springer – Verlag 1983.

[32] S. Lang – Complex multiplication. Grundl. math. Wissensch. 255, Springer – Verlag 1983.

[33] H. Lange & C. Birkenhake - Complex abelian varieties. Grundl. math. Wissensch. 302,
Springer – Verlag 1992.

[34] H. W. Lenstra jr & F. Oort – Simple abelian varieties having a prescribed formal isogeny
type. Journ. Pure Appl. Algebra 4 (1974), 47 - 53.

[35] K.-Z. Li & F. Oort – Moduli of supersingular abelian varieties. Lecture Notes Math. 1680,
Springer - Verlag 1998.

[36] Yu. I. Manin – The theory of commutative formal groups over fields of finite characteristic.
Usp. Math. 18 (1963), 3-90; Russ. Math. Surveys 18 (1963), 1-80.

52



[37] J. Milne – it The fundamental theorem of complex multiplication.
arXiv:0705.3446v1, 23 May 2007

[38] S. Mochizuki – The local pro-p anabelian geometry of curves. Invent. Math. 138 (1999),
319 – 423.

[39] L. Moret-Bailly – Pinceaux de variétés abéliennes. Astérisque 129. Soc. Math. France
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