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Introduction

These notes were written to accompany a mini-course delivered during the
conference “Arithmetic of Surfaces,” which was held at the Lorentz Center in
Leiden, during October, 2010. The mini-course was aimed at graduate stu-
dents and consisted of three lectures, each corresponding to one section of
these notes. These notes are a faithful transcript of the material we went
over, with some added details and references. I have resisted the temptation
to add any more material. In particular, many aspects of the arithmetic of del
Pezzo surfaces are not treated here (most notably perhaps the uniqueness of
Brauer-Manin obstructions).

In preparing this document, I used the “background material” chapters of
my doctoral dissertation [VA09] quite freely (especially for the first and third
sections); these chapters were not meant for publication.
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1 Geometry of del Pezzo surfaces

1.1 Guiding questions in diophantine geometry

Let k be a global field, i.e., a finite extension of Q or F,(¢) for some prime
p, let Ay denote its ring of adéles, and let X be a smooth projective geo-
metrically integral variety over k. Generally speaking, diophantine geometers
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seek to “describe” the set X (k) of k-rational points of X. For example, we are
interested in determining whether X (k) is empty or not. If X (k) # 0, then we
may further want to know something about the qualitative nature of X (k): is
it dense for the Zariski topology of X7 Is the image of the natural embedding
X (k) — X (Ay) dense for the adeélic topology? If not, can we account for the
paucity of k-rational points? We may also pursue a more quantitative study of
X (k). For instance, we might try to prove asymptotic formulas for the number
of k-points of bounded height on some special Zariski-open subset of X.

On the other hand, if X (k) = 0, then we might try to account for
the absence of k-rational points. For example, the existence of embeddings
X (k) — X (k,) for every completion k, of k shows that a necessary condition
for X to have a k-rational point is

X (ky) # 0 for all completions k, of k. (1)

We say that X is locally soluble whenever (1) is satisfied. Whenever checking
(1) suffices to show that X (k) # (), we say that X satisfies the Hasse principle!.
Many classes of varieties, such as quadrics, satisfy the Hasse principle.

Perhaps the first known counterexample to the Hasse principle is due to
Lind and Reichardt, who show that the genus 1 plane curve over Q with affine
model given by 2y? = 2* — 17 is locally soluble, but lacks Q-rational points;
see [Lin40, Rei42]. Failures of the Hasse principle are often explained by the
presence of cohomologically flavored obstructions, such as the Brauer-Manin
obstruction. These kinds of obstructions may also produce examples of vari-
eties X as above, with X (k) # (), for which the embedding X (k) — X (Ay)
is not dense.

Notation. The following notation will remain in force throughout. First, &k
denotes a field, k is a fixed algebraic closure of k, and k* C k is the separable
closure of k in k. If k is a global field then we write Ay for the adéle ring of
k, §2; for the set of places of k, and k, for the completion of k at v € 2. By
a k-variety X we mean a separated scheme of finite type over k (we will omit
the reference to k& when it can cause no confusion). If X and Y are S-schemes
then we write Xy := X xg Y. However, if Y = Spec A then we write X4
instead of Xgpec 4. A k-variety X is said to be nice if it is smooth, projective
and geometrically integral. If T' is a k-scheme, then we write X (7T') for the
set of T-valued points of X. If, however, T' = Spec A is affine, then we write
X (A) instead of X (Spec A).

1.2 Birational invariance and a theorem of Iskovskikh

Let X be anice k-variety. Many properties of X (k), such as “being nonempty,”
depend only on X up to birational equivalence, as follows.

!Many authors refer only to the Hasse principle in the context of a class S
of varieties and say that S satisfies the Hasse principle if for every X € S, the
implication X (k,) # 0 for all v € ), = X (k) # 0 holds.
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Existence of a smooth k-point. The Lang-Nishimura lemma guarantees
that if X’ --» X is a birational map between proper integral k-varieties
then X’ has a smooth k-point if and only if X has a smooth k-point;
see [Lan54, Nis55]. We give a short proof here due to Kollar and Szabé [RY00,
Proposition A.6].

Lemma 1.1 (Lang-Nishimura). Let k be a field, and let f: X' --» X be a
rational map of k-schemes. Assume that X' has a smooth k-point and that X
is proper. Then X (k) # 0.

Proof. We use induction on n := dim X’. The case n = 0 is clear. Let = be a
smooth k-point of X’. Consider the blow-up Bl, X’ of X’ at x with exceptional
divisor F = szl, as well as the composition

BLX — X' --» X.

By the valuative criterion of properness, this composition is defined outside a
set of codimension at least 2, so the restricting to E we obtain a rational map
E --» X. Now X (k) # 0 by induction. (Note that induction is only necessary
in the case where k is finite.)

Zariski density of k-rational points. If X, X’ are two nice birationally
equivalent k-varieties, then X (k) is Zariski dense in X if and only if X'(k) is
Zariski dense in X': the key point to keep in mind is that any two nonempty
open sets in the Zariski topology have nonempty intersection.

Weak approximation. Let X be a geometrically integral variety over a
global field k. We say that X satisfies weak approximation if the diagonal
embedding
X(k)— ] X (ko)
VES

is dense for the product of the v-adic topologies. If X is a nice k-variety
then X (Ay) = [], X(k,), the latter considered with the product topology
of the v-adic topologies; see [SkoO1, pp. 98-99]. In this case X satisfies weak
approximation if the image of the natural map X (k) — X (Ayg) is dense for
the adélic topology. Note also that if X does not satisfy the Hasse principle,
then automatically X does not satisfy weak approximation.

Lemma 1.2. If X and X' are smooth, geometrically integral and birationally
equivalent varieties over a global field k, then X' satisfies weak approzimation
if and only if X satisfies weak approzimation.

Proof (Sketch of proof). It is enough to prove the lemma in the case X’ =
X \ W, where W is a proper closed subvariety of X, i.e., X’ is a dense open
subset of X . Then, if X satisfies weak approximation, then clearly so does X".
On the other hand, by the v-adic implicit function theorem, the set X’(k,) is
dense in X (k,); see [CTCS80, Lemme 3.1.2]. Suppose that X' satisfies weak
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approximation and let (z,) € [[, X (kv) be given. Choose (y,) € [[, X'(kv) C
[I, X(ky) as close as desired to (z,) for the product topology. By hypothesis,
there is a rational point y € X'(k) whose image in [], X'(k,) is arbitrarily
close to (y,); then y is also close to (z,), and X satisfies weak approximation.

Hasse principle. If % is a global field, and if X and X’ are two nice bira-
tionally equivalent k-varieties, then X satisfies the Hasse principle if and only
if X’ satisfies the Hasse principle: this follows from two applications of the
Lang-Nishimura lemma.

It is thus natural to ask the qualitative questions of §1.1 in the context of
a fized birational class for X. In particular, we will fix the dimension of X.
We will consider these questions only for nice surfaces. In addition, we require
that X be geometrically rational, i.e., X x, k is birational to IE”%. The reason
for this last restriction is the existence of the following beautiful classification
theorem due to Iskovskikh, which describes the possible birational classes for
X.

Theorem 1.3 ([Isk79, Theorem 1)). Let k be a field, and let X be a smooth
projective geometrically rational surface over k. Then X is k-birational to
either a del Pezzo surface of degree 1 < d <9 or a rational conic bundle. 0O

Remark 1.4. It is possible for X as in Theorem 1.3 to be k-birational to both
a del Pezzo surface and a rational conic bundle. More precisely, a rational conic
bundle is birational to a minimal del Pezzo surface if and only if d = 1,2 or
4 and there are two distinct representations of X as a rational conic bundle;
see [Isk79, Theorems 4 and 5].

1.3 Del Pezzo surfaces

In light of Theorem 1.3, we take a moment to review the definition and some
basic properties of del Pezzo surfaces. In this section, we work over an arbitrary
field k.

We begin by recalling some basic facts and setting some notation. If X
is a nice surface, then there is an intersection pairing on the Picard group
(-, )x: PicX x PicX — Z; see [Kle05, Appendix B]. We omit the subscript
on the pairing if no confusion can arise. For such an X, we identify Pic(X)
with the Weil divisor class group (see [Har77, Corollary I1.6.16]); in particular,
we will use additive notation for the group law on Pic X. If X is a nice k-
variety, then we write K x for the class of the canonical sheaf wx in Pic X; the
anticanonical sheaf of X is w?}*l. An exceptional curve on a smooth projective
k-surface X is an irreducible curve C' C X} such that (C,C) = (Kx,C) = —1.
By the adjunction formula (see [Ser88, IV.8, Proposition 5]), an exceptional
curve on X has arithmetic genus 0, and hence it is k-isomorphic to IP’]%.

Definition 1.5. A del Pezzo surface X is a nice k-surface with ample anti-
canonical sheaf. The degree of X is the intersection number d := (Kx, Kx).
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If X is a del Pezzo surface then the Riemann-Roch theorem for surfaces
and Castelnuovo’s rationality criterion show that X is geometrically rational.
Moreover, Xgs is isomorphic to either ]P’,lcs X ]P’}CS (in which case d = 8), or the
blow-up of P2, at r < 8 distinct closed points (in which case d = 9 — r); this
is the content of Theorem 1.6 below. In the latter case, the points must be in
general position: this condition is equivalent to ampleness of the anticanonical
class on the blown-up surface; see [Dem80, Théoréme 1, p. 27].

1.4 Del Pezzo surfaces are separably split

Throughout this section, k& denotes a separably closed field and k& a fixed
algebraic closure of k. A collection of closed points in P?(k) is said to be in
general position if no 3 points lie on a line, no 6 points lie on a conic, and no
8 points lie on a singular cubic, with one of the points at the singularity. Our
goal is to prove the following strengthening of [Man74, Theorem 24.4].

Theorem 1.6. Let X be a del Pezzo surface of degree d over k. Then either
X is isomorphic to the blow-up of P? at 9 — d points in general position in
P2(k), or d =8 and X is isomorphic to P}, x P}.

We need two results of Coombes, as follows.

Proposition 1.7 ([Coo88, Proposition 5]). Let f: X — Y be a birational
morphism of smooth projective surfaces over k. Then [ factors as

X=Xy— X1 - - X, =Y,
where each map X; — X;11 is a blow-up at a closed k-point of X; 1. O

The above proposition is well-known if we replace k with k. The main
step in the proof of Proposition 1.7 is to show that the blow-up at a closed
point whose residue field is a nontrivial purely inseparable extension of k
cannot give rise to a smooth surface. Using Iskovskikh’s classification theorem
(Theorem 1.3), Coombes deduces the following proposition.

Proposition 1.8 ([Coo88, Proposition 7]). The minimal smooth projec-
tive rational surfaces over k are P and the Hirzebruch surfaces F, :=
P(ﬁ]})i ® Opr (n)), where either n =0 orn > 2. O

Finally, we need the following lemma.

Lemma 1.9 ([Man74, Theorem 24.3(ii)]). Let X be a del Pezzo surface
over an algebraically closed field. Then every irreducible curve with negative
self-intersection is exceptional.
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Proof. Let C C X be an irreducible curve with (C,C) < 0, and let p,(C)
denote its arithmetic genus. Since — K x is ample, we have (C, —K x) > 0. On
the other hand, by the adjunction formula we know that

2pa(c) -2= (Cv C) - (Ca _KX)'

Since C' is irreducible, we have p,(C) > 0. All this forces p,(C) = 0 and
(C,C) = (C,Kx)=—1, and thus C is exceptional.

Proof (of Theorem 1.6). Let f: X — Y be a birational k-morphism with Y
minimal, and write

X Xoo X1 X =Y (2)

for a factorization of f as in Proposition 1.7. By Proposition 1.8 we need only
consider the following cases:

1. Y = P2. We claim that no point that is blown-up in one step of the fac-
torization (2) may lie on the exceptional divisor of a previous blow-up:
otherwise X; would contain a curve with self-intersection less than —1,
contradicting Lemma 1.9. Hence X is the blow-up of P} at r distinct
closed k-points. We conclude that d = K% = 9 — r, as claimed; note that
d=(Kx,Kx) > 1since —K is ample, and so 0 < r < 8. Suppose that 3
of these points lie on a line L. Let f}E_ lL,; denote the strict transform of L
for the base-extension f;: X; — Yz. Then (f]glL,;, f]glL,;) < —1, but this
is impossible by Lemma 1.9. Similarly, if 6 of the blown-up points lie on a
conic @, or if 8 points lie on a singular cubic C' with one of the points at
the singularity, then (fg_lQ,;, fg_lQE) < —1,o0r (f’glCE, flglCE) < —1, re-
spectively, which is not possible. Hence the blown-up points are in general
position.

2.Y = P xPp. If X =Y then X is a del Pezzo surface of degree 8.
Otherwise, we may contract the two nonintersecting (—1)-curves of X, _4
and obtain a birational morphism ¢: X,_; — Pi. We may use the map ¢
to construct a new birational morphism X — IF’%, given by

X:XO—)X1—>~-'—>XT,1 i’P%7

and thus we may reduce this case to the previous case.
3. Y =F,,n > 2. There is a curve C' C (F,,); whose divisor class satisfies
(C,C) < —1. Let flgl(C) denote the strict transform of C' in X for the

base-extension f;: X; — (Fj);. Then (flglC7 f]glC) < —1, but this is
impossible by Lemma 1.9. O

1.5 Further properties of del Pezzo surfaces

The basic references on the subject are [Man74], [Dem80] and [Kol96, III.3].
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The Picard group

Let X be a del Pezzo surface over a field k of degree d. Recall that an ex-
ceptional curve on X is an irreducible curve C' on X such that (C,C) =
(C,Kx) = —1. Theorem 1.6 shows that exceptional curves on X are already
defined over k°.

We have seen that if Xj- 2 P, x P}, then X} is isomorphic to a blow-up
of P2, at r := 9—d closed points {P; ..., P} in general position. It follows that
the group Pic Xy is isomorphic to Z°~? (see [Har77, Proposition V.3.2]); if
d < 7 then it is generated by the classes of exceptional curves. Let e; be the
class of an exceptional curve corresponding to P; under the blow-up map, and
let ¢ be the class of the pullback of a line in P, not passing through any of
the P;. Then {ey,...,e,, £} is a basis for Pic X;s. Note that

(eirej) = —bij, (e, ) =0, (£,€) =1,

where d;; is the usual Kronecker delta function. With respect to this basis,
the anticanonical class is given by —Kx =3¢ — > e;.

This basis also allows us to interpret the exceptional curves in terms of
strict transforms of our blow-up: for example, if C' = ¢ — e; — e as classes in
Pic Xy, then C is the strict transform of the line in P2 through the points P;
and Ps.

The number of exceptional curves on X is finite, and is computed as fol-
lows: if C'=al — " :_, bie; is an exceptional curve, then

a® — ibf =—1.
=1

3a — Zbi =1.
1=1

These equations are easily solved (keep in mind that a and b; are integers).
The number of exceptional curves on X as r (and hence d) varies is shown in
Table 1.

d(X) 765 4 3 2 1
# of exceptional curves|3 6 10 16 27 56 240

Table 1. Number of exceptional curves on X

Root systems

Suppose that r = 9 —d > 3. The orthogonal complement Ky of Ky in
Pic Xis ® R, equipped with the negative of the intersection form on X, is a
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Euclidean space. Its group of orthogonal transformations O(Kx), being an
intersection of a compact group and a discrete group, is finite. The set of
vectors

R, :={v € Pic Xys : (v, Kx) =0, (v,v) = =2}

is a root system of rank r. Using standard facts about root systems, it is not
too hard to identify R, as r varies; see [Man74, Theorem 25.4]. An important
fact for our purposes is that the group of automorphisms of Pic Xjs that
preserve the intersection form and Kx coincides with the Weyl group W (R,.)
of the root system R, [Man74, Theorem 23.9], i.e., O(Kx)* = W(R,).

r 3 4 5 6 7 8
RTA1><A2A4D5E6E7ES

Table 2. Root systems on Pic Xs

Galois action on the Picard group

The Galois group Gal(k®/k) acts on Pic Xs as follows. For o € Gal(k®/k),
let 6: Speck® — Speck?® be the corresponding morphism. Then

idX X0 st — st

induces an automorphism (idx x&)* of Pic Xj-. This gives a group homomor-
phism
Gal(k®/k) — Aut(Pic Xy:) o (idx x&)*.

The action of Gal(k®/k) on Pic(X}-) fixes the canonical class Kx and pre-
serves the intersection pairing; in particular, the action of Gal(k®/k) takes
exceptional curves to exceptional curves (see [Man74, Theorem 23.8]). By our
discussion in §1.5, it follows that Gal(k®/k) acts as a subgroup of W(R,) on
Pic st .

Let K be the smallest extension of k in k® over which all exceptional curves
of X are defined. We say that K is the splitting field of X. The natural action
of Gal(k®/k) on Pic Xps = Pic Xk factors through the quotient Gal(K/k),
giving a homomorphism

¢x: Gal(K/k) — Aut(Pic Xg). (3)

If we have equations with coefficients in K for an exceptional curve C of X,
then an element o € Gal(K/k) acts on C' by applying o to each coefficient.
The map (3) conjecturally determines much of the arithmetic of X: there
is a conjecture of Colliot-Théléne and Sansuc (first asked as a question
in [CTS80], based on evidence published in [CTCS80, CTS82]) that says that
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the Brauer-Manin obstruction explains all violations of the Hasse principle
for del Pezzo surfaces over a number field k. One can use ¢x to compute the
Brauer-Manin obstruction, so if the conjecture is true, then one can decide
whether X has a k-point.

Anticanonical models
For any scheme X and line sheaf .Z on X, we may construct the graded ring

R(X, %)= P H(x,2°™).

m>0

When £ = w$ ™!, we call R(X,w$ ") the anticanonical ring of X. If X is a del
Pezzo surface then X is isomorphic to the scheme Proj R(X,w$ ™), because
w}‘%_l is ample. This scheme is known as the anticanonical model of the del
Pezzo surface.

The construction of anticanonical models is reminiscent of the procedure
that yields a Weierstrass model of an elliptic curve. In fact, we can use the
Riemann-Roch theorem for surfaces (and Kodaira vanishing—which is valid
even in positive characteristic for rational surfaces) to prove the following
dimension formula for a del Pezzo surface X over k of degree d:

hO(X, *me) - w

see [Kol96, Corollary IT1.3.2.5] or [CO99]. For example, if X has degree 1, then
the anticanonical model for X is a smooth sextic hypersurface in Py (1, 1,2, 3),
and we may compute such a model, up to isomorphism, as follows:

d+1;

1. Choose a basis {x,y} for the 2-dimensional k-vector space H° (X, —KX).

2. The elements 22, zy, y* of H(X, —2Kx) are linearly independent.
However, h%(X, —2K x) = 4; choose an element z to get a basis {z?, zy, y*, 2}
for this k-vector space.

3. The elements z3,z%y, zy?,y3, vz, yz of H° (X, —3KX) are linearly inde-
pendent, but h°(X,-3Kx) = 7. Choose an element w to get a basis
{23, 2%y, xy?, 4>, 2, yz, w} for this k-vector space.

4. The vector space H° (X, —GKX) is 22-dimensional, so the 23 elements

6 .5, 4,2 .33 24 5 6 4 3 2,2 3
{"E ":l: y7xy’xy5zy7xy?y?x Z?x yz7xyz7zy Z?

222 ay2?, %22, 28 2w, 2Pyw, vyPw, yPw, zzw, yzw, w2}

ylz,x
must be k-linearly dependent. Let f(x,y,z,w) = 0 be a linear depen-
dence relation among these elements. Then an anticanonical model of X
is Proj k[z,y, z, w]|/(f), where z, y, z, w are variables with weights 1, 1,2
and 3 respectively. This way X may be described as the (smooth) sextic
hypersurface V(f) in Px(1,1,2,3).
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For more details on this construction, see [CO99, pp.1199-1201].

Remark 1.10. If k is a field of characteristic not equal to 2 or 3, then in step
(4) above we may complete the square with respect to the variable w and the
cube with respect to the variable z to obtain an equation f(z,y,z,w) = 0
involving only the monomials

6 .5, 4,2 3.3 24 5 6 4 3 2,2 3, ,4, 3 2
{x71:y’my7xy7xy’xy7y71‘Z7xyz)xyz7xyz7yz7z7w}

Moreover, we may also rescale the variables so that the coefficients of w? and
3
z” are £1.

Remark 1.11. If X has degree d > 3, then the anticanonical model recovers
the usual description of X as a smooth degree d surface in P¢. In particular,
when d = 3 we get a smooth cubic surface in P§. If X has degree 2 then
the anticanonical model is a smooth quartic hypersurface in the weighted
projective space Py(1,1,1,2); such a surface can then be thought of as a
double cover of a P? ramified along a quartic curve.

Remark 1.12. If we write a del Pezzo surface X of degree 1 over a field k
as the smooth sextic hypersurface V(f(z,y, z,w)) in Pr(1, 1,2, 3), then {z,y}
is a basis for H° (X7 —KX). In particular, |—-Kx| has a unique base point:
0:0:1:1].

2 Arithmetic of del Pezzo surfaces of degree at least 5

The goal for this section is to prove the following theorem.

Theorem 2.1. Let X be a del Pezzo surface of degree d > 5. If X (k) # 0,
then X is k-birational to P%. This hypothesis is automatically satisfied if d = 5
or 7.

In particular, if k is a global field then X satisfies weak approximation. In
addition, X (k) # 0 provided X (k,) # 0 for allv € (2, (i.e., del Pezzo surfaces
of degree at least 5 satisfy the Hasse principle).

We will prove this theorem by a case-by-case analysis on the degree of X,
making attributions as we go along. Our exposition is influenced by [CT99,

§4].

2.1 Case 1: d(X) =9

By Theorem 1.6, X is isomorphic to }P’%, i.e., X; is a form of the projective
plane. It is a classical theorem of Chatelet that such a surface is k-isomorphic
to P2 if and only if X (k) # (). We will prove this result more generally for
Severi-Brauer varieties.
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Definition 2.2. A Severi-Brauer variety X is a projective scheme over a field k
that becomes isomorphic to some n-dimensional projective space upon passage
to an algebraic closure k of k, i.e., X = Pg for some n.

Theorem 2.3 (Chatelet). Let X be a Severi-Brauer variety of dimension n
over a field k. The following are equivalent:

1. X s k-isomorphic to P} ;
2. X (k) # 0.

Proof. The proof we give here is due to Endre Szabé; we follow the exposition
in [GS06]. The implication (1) = (2) is clear. We claim that if X (k) # () then
X contains a twisted linear subvariety D of codimension 1. Let 7: Y — X
be the blow-up of X at a k-rational point P. The variety Y7 is isomorphic to
the blow-up of Pg at a closed point and we can think of it as a subvariety

of P2 x }P’g_l. Let ¢;: Y — ]P’g_l be the projection onto the second factor.

Choose a hyperplane L on the exceptional divisor £ =2 PZ‘I of the blow-up.
The subvariety Dy := W,;(%gl(?ﬁ,;(lj,;))) of X} is a hyperplane in P7.

Choose an ample divisor A of X, of degree d over k. The linear system
|m*A — dE| defines a k-rational map ¢: Y --» P&. Since (7*A — dE); has
degree 0 on the fibers of 1; and degree d on Er, the map ¢ factors as vy
followed by the d-uple embedding. In particular, ¢ is defined everywhere. The
subvariety D := (¢~ (¢(L))) of X is defined over k and becomes Dy, after
base extension to k.

The linear system |D| gives a rational map ¢p: X --» P}, Over k, D
becomes a hyperplane and thus (¢p); is an isomorphism with ]P’g. This shows
that n; = n, and ¢ is an everywhere-defined isomorphism.

Over a global field, forms of P} satisfy the Hasse principle. This also follows
from work of Chatelet [Cha44].

Theorem 2.4 (Chatelet). Severi-Brauer varieties over a global field satisfy
the Hasse principle.

Proof (Idea of the proof). Let SB,(k) be the pointed set of isomorphism
classes of Severi-Brauer varieties of dimension n over k (the base point is the
class of P}). There is a base-point preserving bijection

SB, (k) «—— H'( Gal(k®*/k), PGLy+1(k%));

see [GS06, Theorem 5.2.1]. If K is a finite Galois extension of k, then there
is a base-point preserving bijection between k-isomorphism classes of cen-
tral simple algebras of degree n split by K and H'( Gal(K/k), PGL;11(K));
see [GS06, Theorem 2.4.3]. Thus, to a Severi-Brauer variety X over k, we may
naturally associate a class of Br(k) in a unique way, and this class is trivial
if and only if X = P?, ie., if and only if X (k) # 0, by Theorem 2.3. The
theorem now follows from the fact that the map
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Br(k) — @D Br(k,), A~ (A& k)

vELy,

is an injection [NSWO08, Theorem 8.1.17].

2.2 Case 2: d(X) = 8

By Theorem 1.6, Xys is isomorphic to either a blow-up of IP’%S at a point or
to ]P’}CS X ]P’,lC We deal with these cases separately. In the former case, there
is exactly one exceptional curve on X, and Gal(k®/k) must fix it (see 1.5).
Blowing down this curve we obtain a del Pezzo surface of degree 9 with a
k-point, so by Theorem 2.3 we conclude that X is k-birational to P?. In
particular, X (k) # 0, so these surfaces trivially satisfy the Hasse principle.

Suppose now that Xy is isomorphic to P}, x ]P’,lC Then Pic Xys = ZL1 @
ZLs, where Ly and Ly give the two rulings of IP’,lﬁs X IP’}CS. Note that Kx =
—2(Ly + Ls), and hence L; + Lo is stable under the action of Gal(k®/k). If
X (k) # 0, or if k is a global field and X (k,) # 0 for all v € (2, then the
inclusion .

Pic X — (Pic Xj. ) /P

is an isomorphism (see §3.4). In either case, the class of L; + Lo may be rep-
resented over k by some divisor D. The linear system |D| gives an embedding
ép: X — P} of X as a quadric surface, defined over k. If P € X(k), then
composing ¢p with projection away from ¢p(P) we obtain a k-birational map
X --» Pi.

If & is a global field and X (k,) # 0 for all v € {2, then (¢p)k, (Xk,) is a
quadric in P} , and ¢p(X)(k,) # 0 for all v € £2;.. Quadrics over global fields
satisfy the Hasse principle, so ¢p(X)(k) # 0 and hence X (k) # 0.

2.3 Case 3: d(X) =7

By Theorem 1.6, Xj- is isomorphic to a blow-up of P%. at two points. There
are only three exceptional curves on X, and their configuration is quite simple.
Label these curves e, eo and e3; without loss of generality we have

(e1,e2) = (ea,e3) =1 and (eq,e3) =0.

Since the action of Gal(k®/k) on Pic Xj- respects the intersection pairing, it
follows that es is defined over k. Contracting it we obtain a del Pezzo surface of
degree 8 with a point, and hence X (k) # () by the Lang-Nishimura lemma. In
particular, del Pezzo surfaces of degree 7 trivially satisfy the Hasse principle.
It follows from our work above that X is k-birational to P%.
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2.4 Case 4: d(X) =6

By Theorem 1.6, Xy is isomorphic to a blow-up of P%, at three non-colinear
points. If we have a point P € X (k) that lies on at least one exceptional curve
then one can show that X is not minimal and conclude using our work above.
If P is not on any exceptional curve, then we may blow-up P to obtain a del
Pezzo surface of degree 5. On this surface, there are three exceptional curves
that meet the exceptional divisor of the blow-up, are pairwise skew, and form
a Gal(k®/k)-set. Contracting them we obtain a del Pezzo surface of degree 8
that contains a rational point. Hence X is k-birational to ]P’i.

The exceptional curves of Xs form a “hexagon.” Let e,...,es be the
exceptional curves of X, numbered to correspond clockwise to the vertices of
the hexagon. Thus {e1,e3,e5} and {ea,e4,e6} are triplets of curves that do
not pairwise intersect, and {ej, e4}, {€2,e5} and {es, eg} are couples of curves
whose vertices in the hexagon are “as far apart as possible.” Since the action
of Gal(k®/k) respects the intersection form, it induces an action on the sets

= {{e1,e3,e5}, {ea,ea,66}} and D := {{e1, e}, {e2,€5}, {e3,¢6}}.

If any element of T or D is fixed by the action of Gal(k®/k), then it is defined
over k. Hence there exist

e an element of T defined over a field extension K of k with [K : k] | 2.
e an element of D defined over a field extension L of k with [L : k] | 3.

On Xk we may contract the curves in the fixed element of T' to obtain a
del Pezzo surface of degree 9. On X, we may contract the curves in the fixed
element of D to obtain a del Pezzo surface of degree 8 that is a form of P} xPj .

If k is a global field and X (k,) # 0 for all v € §2,, then both X, and Xx
also have points everywhere locally. Since del Pezzo surfaces of degree 8 and 9
satisfy the Hasse principle, it follows that X is K-birational to P2 and X, is
L-birational to P2. This means that there is a closed point P; of X consisting
of a pair of K-points that are conjugate, as well as a closed point P, of X
consisting of three L-points that are conjugate. Choose a four-dimensional
linear subspace L of P} that passes through P; and P». By Bezout’s theorem,
XN Lj consists of 6 points, counted with multiplicity (because X has degree
6—this assumes the intersection is the right dimension; when the intersection
contains a curve one has to do a little more work). The points P; and P
account for 5 of the geometric points in X; N L. The remaining point must
be defined over k (how else would Galois act on it?). Thus del Pezzo surfaces
of degree 6 satisfy the Hasse principle (this proof is essentially due to Colliot-
Théléne [CTT2]).

2.5 Case 5: d(X) =5

We shall assume first that X (k) # 0. If X contains a k-point P that does
not lie on any exceptional curve, then the blow-up of X at P is a del Pezzo
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surface Y of degree 4. Let e be the exceptional curve of Y corresponding to
the blown-up point P. Examining the graph of intersections of exceptional
curves on Y, we see that there are five curves that do not intersect e, and
that are pairwise skew to each other. These five curves form an invariant set
under the action of Gal(k®/k) because e is defined over k. Contracting this
set we obtain a del Pezzo surface of degree 9 with k-point (since X (k) # 0),
so by Theorem 2.3 we conclude that X is k-birational to P7. An easy case-by-
case analysis shows that if P lies on at least one exceptional curve, then it is
possible to contract at least one exceptional curve over k and thus reduce to
previous cases to conclude that X is k-birational to ]P’i.

Theorem 2.5 (Enriques, Swinnerton-Dyer, Skorobogatov, Shepherd-
Barron, Kollar, Hassett). Let X be a del Pezzo surface of degree 5 over
a field k. Then X (k) # 0. In particular, if k is a global field, then del Pezzo
surfaces of degree 5 trivially satisfy the Hasse principle.

Proof (Sketch of proof ). We follow Swinnerton-Dyer’s approach [SD72[; other
proofs can be found in [Enr97, Sko93, Kol96, SB92, Has09]. Recall that the
anticanonical model of X is a quintic surface in P} (i.e., the linear system
|-K x| embeds X as a quintic in P}; see §1.5). Under this embedding, X is
cut out by 5 quadrics, defined over k. It suffices to verify this claim after
a base-extension of the field. Over k°, the surface Xjs is isomorphic to the
blow-up of P%. at four points, no three of which are colinear. By a projective
transformation (defined over k°), we may assume that these points are

[1:0:0], [0:1:0], [0:0:1] and [1:1:1].

It is now not difficult to check that the ideal I(Xjs) of X C ]P’ZS is generated
by 5 quadrics. Let @ be a general element of I(Xy:)o, let II; be a general
plane lying in @, and let L be a general threefold through I7; of X. Then

Q- L=1L+ 1,
where Il is another plane residual to I7;. One can show that
X -L=(X -I1)o+ (X -11)g,
and that, after possibly interchanging ITy and 15,
deg(X - II1)g =2 and deg(X -Ilz)g =3

These two equalities can now be used to show that II; may be chosen in such
a way that it is defined over an extension K of k with [K : k] = 2" with
0 < n < 3. Suppose for simplicity that n = 1. Let P be a K-point of II; and
let P¢ be its conjugate over k. Let H C P} be any hyperplane defined over
K. Then Hys - X is a curve C of genus one defined over K containing the
zero-cycle P + P¢, and a zero-cycle of degree 5 obtained by intersecting X
with any 3-dimensional linear subspace of H. Hence C contains a zero-cycle
of degree 1 and thus a k-rational point. If n > 1, we just repeat this procedure
a total of n times.
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Remark 2.6. Here is an alternative strategy [Has09, Exercise 3.1.4]: show
that if Q1, Q2, Q3 are general elements of I(X)s then

V(Q1,Q2,Q3) = X UW,

where W is isomorphic to the blow-up of P2, at a point. By our work in §2.2,
the exceptional divisor of Wys is defined over k. Now show that this excep-
tional divisor intersects X in one point.

Proof (Proof of Theorem 2.1). At this point, it only remains to note that since
X is k-birational to PZ, it must satisfy weak approximation, by Lemma 1.2.

3 Counterexamples in small degree

We have seen that del Pezzo surfaces of degree at least 5 over global fields
satisfy both the Hasse principle and weak approximation. This is no longer
the case for surfaces of lower degree. Of course, a counterexample to the
Hasse principle immediately gives a counterexample to weak approximation.
However, in degrees 2, 3 or 4, there exist examples of surfaces with a Zariski
dense set of points for which weak approximation fails. Curiously, del Pezzo
surfaces of degree 1 always have a k-rational point: the unique base-point of
the anticanonical linear system (see Remark 1.12). These surfaces, however,
need not satisfy weak approximation.

In Table 3 we have compiled a list of references for the earliest recorded
counterexamples to the Hasse principle and weak approximation in low de-
grees. A little care must be taken with counterexamples to weak approxima-
tion: for example, by Lemma 1.2, if X is a counterexample to weak approxi-
mation and X (k) # 0, then the blow-up of X at a k-point is also a counterex-
ample to weak approximation. Thus, when dealing with counterexamples to
weak approximation on del Pezzo surfaces, it is important to make sure that
the surfaces are k-minimal: the surface should not have a Galois-stable set of
pairwise skew exceptional curves.

Phenomenon d>5 d=4 d=3 d=2 d=1
Hasse principle v [BSD75] [SD62] [KT04] v
Weak approximation| v [CTS77] [SD62] [KT08] [VA0S]

Table 3. Arithmetic phenomena on del Pezzo surfaces over global fields. A check
mark (v') indicates that the relevant arithmetic phenomenon holds for the indicated
class of surfaces. An entry with a reference indicates the existence of a counterex-
ample to the arithmetic phenomenon which can be found in the paper cited.
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3.1 The Brauer-Manin set I

Let X be a nice variety over a global field k. Since X is proper, we have
[I, X(kv) = X(Ag). In [Man71|, Manin used the Brauer group of the variety
to construct an intermediate “obstruction set” between X (k) and X (Ay):

X (k) C X(A)P" C X (Ap).

In fact, the set X (Aj)B" already contains the closure of X (k) for the adelic
topology and thus may be used to explain the failure of both the Hasse prin-
ciple and weak approximation on many classes of varieties.

Definition 3.1. Let X be a nice variety over a global field k, and assume
that X (Ay) # 0. We say that X is a counter-ezample to the Hasse principle
explained by the Brauer-Manin obstruction if X (A)B" = (). We say that X is
a counter-example to the weak approximation explained by the Brauer-Manin
obstruction if X (Ay)\ X (Ag)B* # 0.

3.2 Brauer groups of schemes

Recall that the Brauer group of a field k£ can be defined in two different
ways: as the set of similarity classes of central simple algebras over k, or as
the Galois cohomology group HQ(GaI(kS/k), ks*). These two points of view
can be naturally identified, and each has its own advantages, depending on
context. Both definitions have natural generalizations to schemes, but these
generalizations need no longer be naturally isomorphic.

Definition 3.2. An Azumaya algebra on a scheme X is an Ox -algebra A that
is coherent and locally free as an Ox-module, such that the fiber A(x) =
A®py , k() is a central simple algebra over the residue field k(x) for each
reX.

Two Azumaya algebras A and B on X are similar if there exist nonzero
locally free coherent &x-modules £ and F such that

A®g, Endg, () 2 B®g, Endg, (F).

Definition 3.3. The Azumaya Brauer group of a scheme X is the set of simi-
larity classes of Azumaya algebras on X, with multiplication induced by tensor
product of sheaves. We denote this group by Bra, X.

The inverse of [A] € Bry, X is the class [A°P] of the opposite algebra of
A; the identity element is [Ox] (see [Gro68, p. 47]).

Definition 3.4. The Brauer group of a scheme X is Br X := H%,(X,G,,).

Remark 3.5. Note that if £ is a field, then Bra, Speck = BrSpeck = Brk,
the usual Brauer group of a field.
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For any scheme X there is a natural inclusion
Bra, X — Br X;

see [Mil80, Theorem IV.2.5]. The following result of Gabber, a proof of which
can be found in [dJ], determines the image of this injection for a scheme with
some kind of polarization.

Theorem 3.6 (Gabber, de Jong). If X is a scheme quasi-projective over
a noetherian ring, then the natural map Bra, X — Br X induces an isomor-
phism

Bra, X = (Br X)iors- |

If X is an integral scheme with function field k(X), then the inclusion
Speck(X) — X gives rise to a map BrX — Brk(X) via functoriality of
étale cohomology. If further X is regular and quasi-compact then this induced
map is injective; see [Mil80, Example I11.2.22]. On the other hand, the group
Brk(X) is torsion, because it is a Galois cohomology group. These two facts
imply the following corollary of Theorem 3.6.

Corollary 3.7. Let X be a regular quasiprojective variety over a field. Then

Brg, X =2 BrX. O

This corollary allows us to think of elements in “the” Brauer group of a
nice k-variety either as Azumaya algebras or as étale cohomology classes. Each
point of view has its advantages: the former is useful for computations, while
the latter allows us to use theorems from étale cohomology to deduce things
about the structure of the Brauer group.

3.3 The Brauer-Manin set 11

Let X be a nice variety over a global field k. For each A € Br X and each
field extension K/k there is a specialization map

eva: X(K)— BrkK, = Ay Qo , K.

In words, ev4(x) is the central simple algebra over the residue field of z
encoded in A. These specialization maps may be put together to construct a
pairing

¢:BrX x X(Ap) > Q/Z, (A (z)— Y invy(eva(zy)), (4)

vENy

where inv,: Brk, — Q/Z is the usual invariant map from local class field
theory. The sum in (4) is in fact finite because for (z,) € X(Aj) we have
eva(z,) = 0 € Brk, for all but finitely many v; see [SkoO1, p. 101]. For
A € Br X we obtain a commutative diagram
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X(k) —— X(Ay) (5)
l \L ¢(-Aa7)
ev.a ev.a
>, inv,
0 Brk @, Brk, Q/z 0

where the bottom row is the usual exact sequence from class field theory.

Manin’s observation is that the kernel of the map ¢(A, —) contains X (k)
(because the bottom row of the above commutative diagram is a complex),
and thus an element A € Br X can be used to “carve out” a subset of X (Ay)
that contains X (k):

X (AR = {(20) € X(Ag) : (A, (2,)) = 0}.
Moreover, if Q/Z is given the discrete topology, then the map
d(A,—): X(Ax) — Q/Z

is continuous, so X (Aj)* is a closed subset of X (Ay); see [Har04, §3.1]. This
shows that X (k) C X(Ay)A.

Definition 3.8. Let X be a nice variety over a global field k. We call

X(AP = ) x4
AEBr X

the Brauer-Manin set of X.

The structure map X — Speck gives rise to a map Brk — Br X, by
functoriality. The group Bro X :=im (Brk — Br X) is known as the subgroup
of constant algebras. The exactness of the bottom row of (5) implies that if A €
Bro X then X(Aj)* = X (Ay). This shows that to compute () 4cp, x X (Ag)?
it is enough to calculate the intersection over a set of representatives for the
group Br X/ Brg X.

3.4 The Hochschild-Serre spectral sequence in étale cohomology

Let X be a nice locally soluble variety over a global field k. If Br Xy = 0,
then the Hochschild-Serre spectral sequence in étale cohomology provides a
tool for computing the group Br X/ Brk.

Let K be a finite Galois extension of k, with Galois group G. The
Hochschild-Serre spectral sequence

B9 :=HP (G, HY, (Xk,Gn)) = HE (X, G,,) =: LPHY
gives rise to the usual “low-degree” long exact sequence

1 1 2 2 1,1
0— By’ — L' - By — E3° — ker (L? — Ey?) — Ey' — E3°
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which in our case is
0 — Pic X — (Pic Xk)¢ — H?*(G, K*) — ker(Br X — Br Xk)

6
— H'(G,Pic Xk) — H*(G, K*). ©)

Taking the direct limit over all finite Galois extensions of k gives the exact
sequence

0 — Pic X — (Pic Xz ) /%) _ Brk — ker(Br X — Br X;-)

— H'(Gal(k*®/k), Pic Xy ) — H*( Gal(k® /k), k**). @

Furthermore, if &k is a global field, then H3(Ga1(ks/k), ks*) = 0; this fact is
due to Tate—see [NSWO08, 8.3.11(iv), 8.3.17].

For each v € (2, local solubility of X gives a morphism Spec k, — X that
splits the base extension m,: X3, — Speck, of the structure map of X. Thus,
by functoriality of the Brauer group, the natural maps =;: Brk, — Br Xy,
split for every v € (2. The exactness of the bottom row of (5) then shows
that the natural map Brk — Br X coming from the structure morphism of
X is injective. Moreover, if X is a del Pezzo surface, then Br Xz = 0 and
thus (7) gives rise to the short exact sequence

0 — Brk — BrX — H'(Gal(k*/k), Pic Xy:) — 0,
and hence to an isomorphism
Br X/Brk = H'( Gal(k®/k), Pic Xj-). (8)

If K is a splitting field for X, i.e., a field extension K of k& where a set of
generators for Pic X- have representatives defined over K, then the inflation
map

H'( Gal(K/k), Pic X ) — H'( Gal(k®/k), Pic Xj:)

is an isomorphism, because the cokernel maps into the first cohomology group
of a free Z-module with trivial action by a profinite group, which is trivial.
Hence

Br X/Brk = H'( Gal(K/k),Pic Xf). (9)

Finally, we note that since X (Ay) # 0, if H is a subgroup of G, then by (6)
and the injectivity of the map Brk — Br X, we know that

Pic Xpen = (Pic Xg)¥,

where K is the fixed field of K by H.

In summary, one way of constructing Brauer-Manin obstructions on del
Pezzo surfaces of small degree is to compute the group H! ( Gal(K /k), Pic Xk )
on “reasonable” surfaces, and then try to invert the isomorphism (9). Many
authors have pursued this set of ideas, and not just for del Pezzo surfaces
(see, for example, [Man74, CTCS80, CTSSD87, CTKS87, SD93, SD99, Bri02,
KT04, Brio6, BBFL0O7, Cor07, KT08, Log08, VA08], to name but a few refer-
ences).
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3.5 A counterexample to weak approximation in degree 1

We will use the remainder of this section to go through the details of a coun-
terexample to weak approximation. We will deal with del Pezzo surfaces of
degree 1 for two reasons: (1) we were explicitly asked to talk a little bit about
our research in these lectures, and (2) the example shows that del Pezzo sur-
faces of degree 1 are not as scary as they may appear at first, if one is willing
to use a computer to work out a little bit of algebra that is beyond what is
reasonable to do with pencil and paper.

Let us quickly review what we know about del Pezzo surfaces of degree
1. First, recall their anticanonical model is a smooth sextic hypersurface in
Py(1,1,2,3) := Proj(k[z,y, z,w]), e.g.,

w? = 23 + A2® + By, A, Bek™.

Conversely, any smooth sextic X in Py(1,1,2,3) is a del Pezzo surface of
degree 1. The surface Xy is isomorphic to the blow-up of PZ. at 8 points in
general position, so in particular, Pic X = Z°.

Fix a primitive sixth root of unity ¢ in Q. Our goal is to prove the following
theorem.

Theorem 3.9 ([VAO08]). Let X be the del Pezzo surface of degree 1 over

k=Q(¢) given by
w? = 2% + 1625 + 16y°

inP(1,1,2,3). Then X is k-minimal and there is a Brauer-Manin obstruction

to weak approzimation on X. Moreover, the obstruction arises from a cyclic
algebra class in Br X/ Brk.

In order to compute the Galois cohomology group H* ( Gal(k® /k), Pic Xj-),
we need an explicit description of the action of Gal(k®/k) on Pic Xj-. Recall
that Pic Xjs is generated by the exceptional curves of X. The following the-
orem, which can be deduced from work of Shioda on Mordell-Weil lattices
(see [Shi90, Theorem 10.10]—we also give a different proof in [VA08, Theo-
rem 1.2]), helps us compute the exceptional curves and a splitting field for a
del Pezzo surface of degree 1.

Theorem 3.10. Let X be a del Pezzo surface of degree 1 over a field k, given
as a smooth sextic hypersurface V(f(z,y,z,w)) in Px(1,1,2,3). Let

Ir= V(Z - Q(‘r?y)vw - C(Jf,y)) g Pks(17 1a2a3)7

where Q(z,y) and C(x,y) are homogenous forms of degrees 2 and 3, respec-
tively, in k®[x,y]. If I is a divisor on Xys, then it is an exceptional curve of
X. Conversely, every exceptional curve on X is a divisor of this form. O
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We explain how to use this theorem to compute the exceptional curves
on the del Pezzo surface X of Theorem 3.9. Let a, b, ¢, r, s, t and u be
indeterminates, and let

Q(z,y) = az® + bry + cy?,
C(x,y) = ra® + sx?y + tey? + uy.

The identity C(z,y)? = Q(x,y)3 + 162° + 169° gives

a>—r2+16=0,

3a%b — 2rs = 0,

3a%c+ 3ab? — 2rt — s> = 0,

6abe + b3 — 2ru — 2st = 0,

3ac® 4 3b%c — 2su — 2 = 0,

3bc? — 2tu = 0,

¢ —u® +16 =0.
We can use Grébner bases to solve this system of equations. We get 240 solu-
tions, one for each exceptional curve of the surface. The action of Gal(k®/k)

can be read off from the coefficients of the equations of the exceptional curves.
Let s = /2, and consider the exceptional curves on X given by

=V(z +2sz®,w — 4y°),
(z — + 1)2s2%, w + 4y°),
=V(z~ 2csx +4y*,w — 4s(¢ — 2)2°y — 4(=2¢ + 1)y°),
Ey=V(z+4¢sa” — 25°(2¢ — Day — 4(—C + 1)y°
w—122% — 8s(—¢ — 1)’y — 12¢s%xy” — 4(—2¢ + 1)),
Es=V(z+ A¢sz? — 252((: —2)xy — acy?
w+122° — 8s(2¢ — 1)’y — 1257wy — 4(—2¢ + 1)),
Ee¢ =V (z—25(—s°C+s° — 25 + 20)a” — 25(25°¢C — 25° + 3s — 4Q)xy
—2s(—8%C + 57 — 25 + 20)1°,
w— 4(252C —45% 4+ 25¢ 4 25 — 6¢ + 3)x3
— 4(—55%¢C +10s* — 65¢ — 65 + 16¢ — &)’y
— 4(55%¢C — 10s* + 65¢ + 65 — 16¢ + 8)xy®
—4(- 25°¢ + 4s° —25§—28+6C—3)y ),
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Er; =V(z—2s(—s> — 25C + 25 + 20)a” — 25(—25°C 4+ 3s + 4¢ — 4)zy
—25(—s°C + 5% 4 25¢ — 2)y/°,
w — 4(25%C + 25% 4 2s¢ — 4s — 6¢ + 3)2®
— 4(10s*¢ — 5s* — 6s¢ — 65 — 8¢ + 16)2”y
— 4(55°¢C — 105 — 125¢ + 65 + 8¢ + 8)xy?
— 4(—2$2§ — 257 — 25¢ +4s + 6¢ — 3)y3),
Es = V(z — 25(s°C + 25¢ 4 20)2” — 25(25” + 3s + 4)zy
—25(—5%C 4+ 8> — 25¢ + 25 — 2¢ + 2)y/,
w — 4(—452§ +25% —4sC + 25— 6C + ?))av3
— 4(—55%¢ — 5s® — 6sC — 65 — 8C — 8)z’y
— 4(5s°¢ — 108 4 65¢ — 125 + 8¢ — 16)zy”
— 4(45°¢C — 25° 4+ 45¢ — 25+ 6¢ — 3)y°),

as well as the exceptional curve
Eo = V(z — 2(s%ay, w — 423 + 49°).

Then
8

Pic X},s = Pic Xf (@Z[Ei]) ®Z[H] =17°,
i=1
where H = E; + E5 + E9. The exceptional curves of X are defined over
K := k(¥/2). Let p be a generator for the cyclic group Gal(K/k).
To invert the isomorphism (8), we will use the following diagram, whose
individual maps we now explain:

Br X/ Brk ——— = H'( Gal(k®/k), Pic X-) (10)
infTN
Brk(X)/Brk H'( Gal(K/k), Pic X )
Breyo (X, K) f ker]vK/k/imA

First, the map BrX — Brk(X) is obtained by functoriality from the
inclusion of the generic point Speck(X) — X (see §3.2). Since X is nice and
X (Ag) # 0 (because X (k) # 0), this map induces an injection Br X/Brk —
Brk(X)/Brk.

Second, we have maps

NK/k: Pic Xg — Pic X A: Pic X — Pic X
[D] — [D + "D + D) [D] — [D — D]
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and the isomorphism
H'( Gal(K/k),Pic X ) = ker N5,/ im A

comes from Tate cohomology, since K is a cyclic extension of k.

To define the group Breyo(X, K), we first need to recall the notion of a
cyclic algebra. If L/ is a finite cyclic extension of fields of degree n, and if p is
a generator for Gal(L/k), then we let L[x], be the “twisted” polynomial ring,
where ¢x = xP{ for all ¢ € L. Given b € k*, we write (L/k,b) for the central
simple k-algebra L[z],/(z™ —b). Let f € k(X)*; since X is geometrically
integral, we have Gal(k(X1)/k(X)) = Gal(L/k), and hence we write (L/k, f)
instead of (k(X)/k(X), f) for the cyclic algebra in Brk(X) given by f.

We now define the group

Broye (X, K) i {classes [(K/k, f)] in the image of the}

map Br X/Brk — Brk(X)/Brk
The map 1 in (10) is defined by
¥: ker N /p,/im A — Breye(X, K) [D] — [(K/E, )],

where f € k(X)* is any function such that Ng (D) = (f). This map is a
group isomorphism; see [VAO8, Theorem 3.3].
With our explicit generators for Pic K in hand, we use Magma [BCP97]
to compute
ker N /1./ im A = (Z/3Z)*.

The classes

by = [E2 +2Es — HJ, ho = [Es + 2Es — H,
hs = [E7 + 2Es — HJ, hs = [3Es — H]

of Pic X give a set of generators for this group.

Proof (of Theorem 3.9). Consider the divisor class h; — hy = [E2 — Es] €
Pic Xg. It gives rise to a cyclic algebra o := (K/k, f) € Brey(X, K), where
f € k(X)* is any function such that

Ng (B2 — Es) = (f),
To wit, f is a function with zeroes along
Ey+PEy + 7B,

and poles along
2
Es+°PE5+ " Es.

Using the explicit equations for Fs and E5 we find that
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. w + 4y3
T ow+ (2¢+2)2y + (=8¢ + 4)y3 + 1223

does the job.
Recall that X is given by w? = 22 + 162° + 16y5. Note that

P=[1:0:0:4 and P,=1[0:1:0:4]
are in X (k). Let p be the unique prime above 3 in k. We compute
inv,(&/(P1)) =0 and inv,(&/(P))=1/3.

Let P € X(Ay) be the point that is equal to Py at all places except p, and is
P at p. Then
> invy (o (Py)) = 1/3,

vE N

so P € X(A)\ X(Ay)P" and X is a counterexample to weak approximation.
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