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Introduction

These notes were written to accompany a mini-course delivered during the
conference �Arithmetic of Surfaces,� which was held at the Lorentz Center in
Leiden, during October, 2010. The mini-course was aimed at graduate stu-
dents and consisted of three lectures, each corresponding to one section of
these notes. These notes are a faithful transcript of the material we went
over, with some added details and references. I have resisted the temptation
to add any more material. In particular, many aspects of the arithmetic of del
Pezzo surfaces are not treated here (most notably perhaps the uniqueness of
Brauer-Manin obstructions).

In preparing this document, I used the �background material� chapters of
my doctoral dissertation [VA09] quite freely (especially for the �rst and third
sections); these chapters were not meant for publication.
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1 Geometry of del Pezzo surfaces

1.1 Guiding questions in diophantine geometry

Let k be a global �eld, i.e., a �nite extension of Q or Fp(t) for some prime
p, let Ak denote its ring of adèles, and let X be a smooth projective geo-
metrically integral variety over k. Generally speaking, diophantine geometers
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seek to �describe� the set X(k) of k-rational points of X. For example, we are
interested in determining whether X(k) is empty or not. If X(k) 6= ∅, then we
may further want to know something about the qualitative nature of X(k): is
it dense for the Zariski topology of X? Is the image of the natural embedding
X(k) ↪→ X(Ak) dense for the adèlic topology? If not, can we account for the
paucity of k-rational points? We may also pursue a more quantitative study of
X(k). For instance, we might try to prove asymptotic formulas for the number
of k-points of bounded height on some special Zariski-open subset of X.

On the other hand, if X(k) = ∅, then we might try to account for
the absence of k-rational points. For example, the existence of embeddings
X(k) ↪→ X(kv) for every completion kv of k shows that a necessary condition
for X to have a k-rational point is

X(kv) 6= ∅ for all completions kv of k. (1)

We say that X is locally soluble whenever (1) is satis�ed. Whenever checking
(1) su�ces to show that X(k) 6= ∅, we say that X satis�es the Hasse principle1.
Many classes of varieties, such as quadrics, satisfy the Hasse principle.

Perhaps the �rst known counterexample to the Hasse principle is due to
Lind and Reichardt, who show that the genus 1 plane curve over Q with a�ne
model given by 2y2 = x4 − 17 is locally soluble, but lacks Q-rational points;
see [Lin40, Rei42]. Failures of the Hasse principle are often explained by the
presence of cohomologically �avored obstructions, such as the Brauer-Manin
obstruction. These kinds of obstructions may also produce examples of vari-
eties X as above, with X(k) 6= ∅, for which the embedding X(k) ↪→ X(Ak)
is not dense.

Notation. The following notation will remain in force throughout. First, k
denotes a �eld, k is a �xed algebraic closure of k, and ks ⊆ k is the separable
closure of k in k. If k is a global �eld then we write Ak for the adèle ring of
k, Ωk for the set of places of k, and kv for the completion of k at v ∈ Ωk. By
a k-variety X we mean a separated scheme of �nite type over k (we will omit
the reference to k when it can cause no confusion). If X and Y are S-schemes
then we write XY := X ×S Y . However, if Y = SpecA then we write XA

instead of XSpecA. A k-variety X is said to be nice if it is smooth, projective
and geometrically integral. If T is a k-scheme, then we write X(T ) for the
set of T -valued points of X. If, however, T = SpecA is a�ne, then we write
X(A) instead of X(SpecA).

1.2 Birational invariance and a theorem of Iskovskikh

Let X be a nice k-variety. Many properties of X(k), such as �being nonempty,�
depend only on X up to birational equivalence, as follows.

1Many authors refer only to the Hasse principle in the context of a class S
of varieties and say that S satis�es the Hasse principle if for every X ∈ S, the
implication X(kv) 6= ∅ for all v ∈ Ωk =⇒ X(k) 6= ∅ holds.
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Existence of a smooth k-point. The Lang-Nishimura lemma guarantees
that if X ′ 99K X is a birational map between proper integral k-varieties
then X ′ has a smooth k-point if and only if X has a smooth k-point;
see [Lan54, Nis55]. We give a short proof here due to Kollár and Szabó [RY00,
Proposition A.6].

Lemma 1.1 (Lang-Nishimura). Let k be a �eld, and let f : X ′ 99K X be a
rational map of k-schemes. Assume that X ′ has a smooth k-point and that X
is proper. Then X(k) 6= ∅.

Proof. We use induction on n := dimX ′. The case n = 0 is clear. Let x be a
smooth k-point of X ′. Consider the blow-up BlxX ′ of X ′ at x with exceptional
divisor E ∼= Pn−1

k , as well as the composition

BlxX ′ → X ′ 99K X.

By the valuative criterion of properness, this composition is de�ned outside a
set of codimension at least 2, so the restricting to E we obtain a rational map
E 99K X. Now X(k) 6= ∅ by induction. (Note that induction is only necessary
in the case where k is �nite.)

Zariski density of k-rational points. If X, X ′ are two nice birationally
equivalent k-varieties, then X(k) is Zariski dense in X if and only if X ′(k) is
Zariski dense in X ′: the key point to keep in mind is that any two nonempty
open sets in the Zariski topology have nonempty intersection.

Weak approximation. Let X be a geometrically integral variety over a
global �eld k. We say that X satis�es weak approximation if the diagonal
embedding

X(k) ↪→
∏
v∈Ωk

X(kv)

is dense for the product of the v-adic topologies. If X is a nice k-variety
then X(Ak) =

∏
vX(kv), the latter considered with the product topology

of the v-adic topologies; see [Sko01, pp. 98�99]. In this case X satis�es weak
approximation if the image of the natural map X(k) ↪→ X(Ak) is dense for
the adèlic topology. Note also that if X does not satisfy the Hasse principle,
then automatically X does not satisfy weak approximation.

Lemma 1.2. If X and X ′ are smooth, geometrically integral and birationally
equivalent varieties over a global �eld k, then X ′ satis�es weak approximation
if and only if X satis�es weak approximation.

Proof (Sketch of proof). It is enough to prove the lemma in the case X ′ =
X \W , where W is a proper closed subvariety of X, i.e., X ′ is a dense open
subset of X. Then, if X satis�es weak approximation, then clearly so does X ′.
On the other hand, by the v-adic implicit function theorem, the set X ′(kv) is
dense in X(kv); see [CTCS80, Lemme 3.1.2]. Suppose that X ′ satis�es weak
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approximation and let (xv) ∈
∏
vX(kv) be given. Choose (yv) ∈

∏
vX
′(kv) ⊆∏

vX(kv) as close as desired to (xv) for the product topology. By hypothesis,
there is a rational point y ∈ X ′(k) whose image in

∏
vX
′(kv) is arbitrarily

close to (yv); then y is also close to (xv), and X satis�es weak approximation.

Hasse principle. If k is a global �eld, and if X and X ′ are two nice bira-
tionally equivalent k-varieties, then X satis�es the Hasse principle if and only
if X ′ satis�es the Hasse principle: this follows from two applications of the
Lang-Nishimura lemma.

It is thus natural to ask the qualitative questions of �1.1 in the context of
a �xed birational class for X. In particular, we will �x the dimension of X.
We will consider these questions only for nice surfaces. In addition, we require
that X be geometrically rational, i.e., X ×k k is birational to P2

k
. The reason

for this last restriction is the existence of the following beautiful classi�cation
theorem due to Iskovskikh, which describes the possible birational classes for
X.

Theorem 1.3 ([Isk79, Theorem 1]). Let k be a �eld, and let X be a smooth
projective geometrically rational surface over k. Then X is k-birational to
either a del Pezzo surface of degree 1 ≤ d ≤ 9 or a rational conic bundle. ut

Remark 1.4. It is possible for X as in Theorem 1.3 to be k-birational to both
a del Pezzo surface and a rational conic bundle. More precisely, a rational conic
bundle is birational to a minimal del Pezzo surface if and only if d = 1, 2 or
4 and there are two distinct representations of X as a rational conic bundle;
see [Isk79, Theorems 4 and 5].

1.3 Del Pezzo surfaces

In light of Theorem 1.3, we take a moment to review the de�nition and some
basic properties of del Pezzo surfaces. In this section, we work over an arbitrary
�eld k.

We begin by recalling some basic facts and setting some notation. If X
is a nice surface, then there is an intersection pairing on the Picard group
( · , · )X : PicX ×PicX → Z; see [Kle05, Appendix B]. We omit the subscript
on the pairing if no confusion can arise. For such an X, we identify Pic(X)
with the Weil divisor class group (see [Har77, Corollary II.6.16]); in particular,
we will use additive notation for the group law on PicX. If X is a nice k-
variety, then we write KX for the class of the canonical sheaf ωX in PicX; the
anticanonical sheaf of X is ω⊗−1

X . An exceptional curve on a smooth projective
k-surface X is an irreducible curve C ⊆ Xk such that (C,C) = (KX , C) = −1.
By the adjunction formula (see [Ser88, IV.8, Proposition 5]), an exceptional
curve on X has arithmetic genus 0, and hence it is k-isomorphic to P1

k
.

De�nition 1.5. A del Pezzo surface X is a nice k-surface with ample anti-
canonical sheaf. The degree of X is the intersection number d := (KX ,KX).
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If X is a del Pezzo surface then the Riemann-Roch theorem for surfaces
and Castelnuovo's rationality criterion show that X is geometrically rational.
Moreover, Xks is isomorphic to either P1

ks × P1
ks (in which case d = 8), or the

blow-up of P2
ks at r ≤ 8 distinct closed points (in which case d = 9− r); this

is the content of Theorem 1.6 below. In the latter case, the points must be in
general position: this condition is equivalent to ampleness of the anticanonical
class on the blown-up surface; see [Dem80, Théorème 1, p. 27].

1.4 Del Pezzo surfaces are separably split

Throughout this section, k denotes a separably closed �eld and k a �xed
algebraic closure of k. A collection of closed points in P2(k) is said to be in
general position if no 3 points lie on a line, no 6 points lie on a conic, and no
8 points lie on a singular cubic, with one of the points at the singularity. Our
goal is to prove the following strengthening of [Man74, Theorem 24.4].

Theorem 1.6. Let X be a del Pezzo surface of degree d over k. Then either
X is isomorphic to the blow-up of P2

k at 9 − d points in general position in
P2(k), or d = 8 and X is isomorphic to P1

k × P1
k.

We need two results of Coombes, as follows.

Proposition 1.7 ([Coo88, Proposition 5]). Let f : X → Y be a birational
morphism of smooth projective surfaces over k. Then f factors as

X = X0 → X1 → · · · → Xr = Y,

where each map Xi → Xi+1 is a blow-up at a closed k-point of Xi+1. ut

The above proposition is well-known if we replace k with k. The main
step in the proof of Proposition 1.7 is to show that the blow-up at a closed
point whose residue �eld is a nontrivial purely inseparable extension of k
cannot give rise to a smooth surface. Using Iskovskikh's classi�cation theorem
(Theorem 1.3), Coombes deduces the following proposition.

Proposition 1.8 ([Coo88, Proposition 7]). The minimal smooth projec-
tive rational surfaces over k are P2

k and the Hirzebruch surfaces Fn :=
P
(
OP1

k
⊕ OP1

k
(n)
)
, where either n = 0 or n ≥ 2. ut

Finally, we need the following lemma.

Lemma 1.9 ([Man74, Theorem 24.3(ii)]). Let X be a del Pezzo surface
over an algebraically closed �eld. Then every irreducible curve with negative
self-intersection is exceptional.
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Proof. Let C ⊂ X be an irreducible curve with (C,C) < 0, and let pa(C)
denote its arithmetic genus. Since −KX is ample, we have (C,−KX) > 0. On
the other hand, by the adjunction formula we know that

2pa(C)− 2 = (C,C)− (C,−KX).

Since C is irreducible, we have pa(C) ≥ 0. All this forces pa(C) = 0 and
(C,C) = (C,KX) = −1, and thus C is exceptional.

Proof (of Theorem 1.6). Let f : X → Y be a birational k-morphism with Y
minimal, and write

X = X0 → X1 → · · · → Xr = Y (2)

for a factorization of f as in Proposition 1.7. By Proposition 1.8 we need only
consider the following cases:

1. Y = P2
k. We claim that no point that is blown-up in one step of the fac-

torization (2) may lie on the exceptional divisor of a previous blow-up:
otherwise Xk would contain a curve with self-intersection less than −1,
contradicting Lemma 1.9. Hence X is the blow-up of P2

k at r distinct
closed k-points. We conclude that d = K2

X = 9− r, as claimed; note that
d = (KX ,KX) ≥ 1 since −KX is ample, and so 0 ≤ r ≤ 8. Suppose that 3
of these points lie on a line L. Let f−1

k
Lk denote the strict transform of Lk

for the base-extension fk : Xk → Yk. Then (f−1

k
Lk, f

−1

k
Lk) < −1, but this

is impossible by Lemma 1.9. Similarly, if 6 of the blown-up points lie on a
conic Q, or if 8 points lie on a singular cubic C with one of the points at
the singularity, then (f−1

k
Qk, f

−1

k
Qk) < −1, or (f−1

k
Ck, f

−1

k
Ck) < −1, re-

spectively, which is not possible. Hence the blown-up points are in general
position.

2. Y = P1
k × P1

k. If X = Y then X is a del Pezzo surface of degree 8.
Otherwise, we may contract the two nonintersecting (−1)-curves of Xr−1

and obtain a birational morphism φ : Xr−1 → P2
k. We may use the map φ

to construct a new birational morphism X → P2
k, given by

X = X0 → X1 → · · · → Xr−1
φ−→ P2

k,

and thus we may reduce this case to the previous case.
3. Y = Fn, n ≥ 2. There is a curve C ⊆ (Fn)k whose divisor class satis�es

(C,C) < −1. Let f−1

k
(C) denote the strict transform of C in Xk for the

base-extension fk : Xk → (Fn)k. Then (f−1

k
C, f−1

k
C) < −1, but this is

impossible by Lemma 1.9. ut

1.5 Further properties of del Pezzo surfaces

The basic references on the subject are [Man74], [Dem80] and [Kol96, III.3].
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The Picard group

Let X be a del Pezzo surface over a �eld k of degree d. Recall that an ex-
ceptional curve on X is an irreducible curve C on Xk such that (C,C) =
(C,KX) = −1. Theorem 1.6 shows that exceptional curves on X are already
de�ned over ks.

We have seen that if Xks � P1
ks ×P1

ks then Xks is isomorphic to a blow-up
of P2

ks at r := 9−d closed points {P1 . . . , Pr} in general position. It follows that
the group PicXks is isomorphic to Z10−d (see [Har77, Proposition V.3.2]); if
d ≤ 7 then it is generated by the classes of exceptional curves. Let ei be the
class of an exceptional curve corresponding to Pi under the blow-up map, and
let ` be the class of the pullback of a line in P2

ks not passing through any of
the Pi. Then {e1, . . . , er, `} is a basis for PicXks . Note that

(ei, ej) = −δij , (ei, `) = 0, (`, `) = 1,

where δij is the usual Kronecker delta function. With respect to this basis,
the anticanonical class is given by −KX = 3`−

∑
ei.

This basis also allows us to interpret the exceptional curves in terms of
strict transforms of our blow-up: for example, if C = `− e1 − e2 as classes in
PicXks , then C is the strict transform of the line in P2 through the points P1

and P2.
The number of exceptional curves on X is �nite, and is computed as fol-

lows: if C = a`−
∑r
i=1 biei is an exceptional curve, then

a2 −
r∑
i=1

b2i = −1.

3a−
r∑
i=1

bi = 1.

These equations are easily solved (keep in mind that a and bi are integers).
The number of exceptional curves on X as r (and hence d) varies is shown in
Table 1.

d(X) 7 6 5 4 3 2 1

# of exceptional curves 3 6 10 16 27 56 240

Table 1. Number of exceptional curves on X

Root systems

Suppose that r = 9 − d ≥ 3. The orthogonal complement K⊥X of KX in
PicXks ⊗ R, equipped with the negative of the intersection form on X, is a
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Euclidean space. Its group of orthogonal transformations O(K⊥X), being an
intersection of a compact group and a discrete group, is �nite. The set of
vectors

Rr := {v ∈ PicXks : (v,KX) = 0, (v, v) = −2}

is a root system of rank r. Using standard facts about root systems, it is not
too hard to identify Rr as r varies; see [Man74, Theorem 25.4]. An important
fact for our purposes is that the group of automorphisms of PicXks that
preserve the intersection form and KX coincides with the Weyl group W (Rr)
of the root system Rr [Man74, Theorem 23.9], i.e., O(KX)⊥ = W (Rr).

r 3 4 5 6 7 8

Rr A1 ×A2 A4 D5 E6 E7 E8

Table 2. Root systems on PicXks

Galois action on the Picard group

The Galois group Gal(ks/k) acts on PicXks as follows. For σ ∈ Gal(ks/k),
let σ̃ : Spec ks → Spec ks be the corresponding morphism. Then

idX ×σ̃ : Xks → Xks

induces an automorphism (idX ×σ̃)∗ of PicXks . This gives a group homomor-
phism

Gal(ks/k)→ Aut(PicXks) σ 7→ (idX ×σ̃)∗.

The action of Gal(ks/k) on Pic(Xks) �xes the canonical class KX and pre-
serves the intersection pairing; in particular, the action of Gal(ks/k) takes
exceptional curves to exceptional curves (see [Man74, Theorem 23.8]). By our
discussion in �1.5, it follows that Gal(ks/k) acts as a subgroup of W (Rr) on
PicXks .

LetK be the smallest extension of k in ks over which all exceptional curves
of X are de�ned. We say that K is the splitting �eld of X. The natural action
of Gal(ks/k) on PicXks ∼= PicXK factors through the quotient Gal(K/k),
giving a homomorphism

φX : Gal(K/k)→ Aut(PicXK). (3)

If we have equations with coe�cients in K for an exceptional curve C of X,
then an element σ ∈ Gal(K/k) acts on C by applying σ to each coe�cient.

The map (3) conjecturally determines much of the arithmetic of X: there
is a conjecture of Colliot-Thélène and Sansuc (�rst asked as a question
in [CTS80], based on evidence published in [CTCS80, CTS82]) that says that
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the Brauer-Manin obstruction explains all violations of the Hasse principle
for del Pezzo surfaces over a number �eld k. One can use φX to compute the
Brauer-Manin obstruction, so if the conjecture is true, then one can decide
whether X has a k-point.

Anticanonical models

For any scheme X and line sheaf L on X, we may construct the graded ring

R(X,L ) :=
⊕
m≥0

H0(X,L ⊗m).

When L = ω⊗−1
X , we call R(X,ω⊗−1

X ) the anticanonical ring of X. If X is a del
Pezzo surface then X is isomorphic to the scheme ProjR(X,ω⊗−1

X ), because
ω⊗−1
X is ample. This scheme is known as the anticanonical model of the del

Pezzo surface.
The construction of anticanonical models is reminiscent of the procedure

that yields a Weierstrass model of an elliptic curve. In fact, we can use the
Riemann-Roch theorem for surfaces (and Kodaira vanishing�which is valid
even in positive characteristic for rational surfaces) to prove the following
dimension formula for a del Pezzo surface X over k of degree d:

h0
(
X,−mKX

)
=
m(m+ 1)

2
d+ 1;

see [Kol96, Corollary III.3.2.5] or [CO99]. For example, if X has degree 1, then
the anticanonical model for X is a smooth sextic hypersurface in Pk(1, 1, 2, 3),
and we may compute such a model, up to isomorphism, as follows:

1. Choose a basis {x, y} for the 2-dimensional k-vector space H0
(
X,−KX

)
.

2. The elements x2, xy, y2 of H0
(
X,−2KX

)
are linearly independent.

However, h0
(
X,−2KX

)
= 4; choose an element z to get a basis {x2, xy, y2, z}

for this k-vector space.
3. The elements x3, x2y, xy2, y3, xz, yz of H0

(
X,−3KX

)
are linearly inde-

pendent, but h0
(
X,−3KX

)
= 7. Choose an element w to get a basis

{x3, x2y, xy2, y3, xz, yz, w} for this k-vector space.
4. The vector space H0

(
X,−6KX

)
is 22-dimensional, so the 23 elements

{x6, x5y, x4y2, x3y3, x2y4, xy5, y6, x4z, x3yz, x2y2z, xy3z,

y4z, x2z2, xyz2, y2z2, z3, x3w, x2yw, xy2w, y3w, xzw, yzw,w2}

must be k-linearly dependent. Let f(x, y, z, w) = 0 be a linear depen-
dence relation among these elements. Then an anticanonical model of X
is Proj k[x, y, z, w]/(f), where x, y, z, w are variables with weights 1, 1, 2
and 3 respectively. This way X may be described as the (smooth) sextic
hypersurface V (f) in Pk(1, 1, 2, 3).
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For more details on this construction, see [CO99, pp.1199�1201].

Remark 1.10. If k is a �eld of characteristic not equal to 2 or 3, then in step
(4) above we may complete the square with respect to the variable w and the
cube with respect to the variable z to obtain an equation f(x, y, z, w) = 0
involving only the monomials

{x6, x5y, x4y2, x3y3, x2y4, xy5, y6, x4z, x3yz, x2y2z, xy3z, y4z, z3, w2}.

Moreover, we may also rescale the variables so that the coe�cients of w2 and
z3 are ±1.

Remark 1.11. If X has degree d ≥ 3, then the anticanonical model recovers
the usual description of X as a smooth degree d surface in Pdk. In particular,
when d = 3 we get a smooth cubic surface in P3

k. If X has degree 2 then
the anticanonical model is a smooth quartic hypersurface in the weighted
projective space Pk(1, 1, 1, 2); such a surface can then be thought of as a
double cover of a P2

k rami�ed along a quartic curve.

Remark 1.12. If we write a del Pezzo surface X of degree 1 over a �eld k
as the smooth sextic hypersurface V (f(x, y, z, w)) in Pk(1, 1, 2, 3), then {x, y}
is a basis for H0

(
X,−KX

)
. In particular, |−KX | has a unique base point:

[0 : 0 : 1 : 1].

2 Arithmetic of del Pezzo surfaces of degree at least 5

The goal for this section is to prove the following theorem.

Theorem 2.1. Let X be a del Pezzo surface of degree d ≥ 5. If X(k) 6= ∅,
then X is k-birational to P2

k. This hypothesis is automatically satis�ed if d = 5
or 7.

In particular, if k is a global �eld then X satis�es weak approximation. In
addition, X(k) 6= ∅ provided X(kv) 6= ∅ for all v ∈ Ωk (i.e., del Pezzo surfaces
of degree at least 5 satisfy the Hasse principle).

We will prove this theorem by a case-by-case analysis on the degree of X,
making attributions as we go along. Our exposition is in�uenced by [CT99,
�4].

2.1 Case 1: d(X) = 9

By Theorem 1.6, Xk is isomorphic to P2
k
, i.e., Xk is a form of the projective

plane. It is a classical theorem of Châtelet that such a surface is k-isomorphic
to P2

k if and only if X(k) 6= ∅. We will prove this result more generally for
Severi-Brauer varieties.
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De�nition 2.2. A Severi-Brauer variety X is a projective scheme over a �eld k
that becomes isomorphic to some n-dimensional projective space upon passage
to an algebraic closure k of k, i.e., Xk

∼= Pn
k
for some n.

Theorem 2.3 (Châtelet). Let X be a Severi-Brauer variety of dimension n
over a �eld k. The following are equivalent:

1. X is k-isomorphic to Pnk ;
2. X(k) 6= ∅.

Proof. The proof we give here is due to Endre Szabó; we follow the exposition
in [GS06]. The implication (1) =⇒ (2) is clear. We claim that if X(k) 6= ∅ then
X contains a twisted linear subvariety D of codimension 1. Let π : Y → X
be the blow-up of X at a k-rational point P . The variety Yk is isomorphic to
the blow-up of Pn

k
at a closed point and we can think of it as a subvariety

of Pn
k
× Pn−1

k
. Let ψk : Yk → Pn−1

k
be the projection onto the second factor.

Choose a hyperplane L on the exceptional divisor E ∼= Pn−1
k of the blow-up.

The subvariety Dk := πk
(
ψ−1

k
(ψk(Lk))

)
of Xk is a hyperplane in Pn

k
.

Choose an ample divisor A of X, of degree d over k. The linear system
|π∗A − dE| de�nes a k-rational map φ : Y 99K PNk . Since (π∗A − dE)k has
degree 0 on the �bers of ψk and degree d on Ek, the map φk factors as ψk
followed by the d-uple embedding. In particular, φ is de�ned everywhere. The
subvariety D := π

(
φ−1(φ(L))

)
of X is de�ned over k and becomes Dk after

base extension to k.
The linear system |D| gives a rational map φD : X 99K Pn1

k . Over k, D
becomes a hyperplane and thus (φD)k is an isomorphism with Pn

k
. This shows

that n1 = n, and φ is an everywhere-de�ned isomorphism.

Over a global �eld, forms of Pnk satisfy the Hasse principle. This also follows
from work of Châtelet [Châ44].

Theorem 2.4 (Châtelet). Severi-Brauer varieties over a global �eld satisfy
the Hasse principle.

Proof (Idea of the proof). Let SBn(k) be the pointed set of isomorphism
classes of Severi-Brauer varieties of dimension n over k (the base point is the
class of Pnk ). There is a base-point preserving bijection

SBn(k)←→ H1
(
Gal(ks/k),PGLn+1(ks)

)
;

see [GS06, Theorem 5.2.1]. If K is a �nite Galois extension of k, then there
is a base-point preserving bijection between k-isomorphism classes of cen-
tral simple algebras of degree n split by K and H1

(
Gal(K/k),PGLn+1(K)

)
;

see [GS06, Theorem 2.4.3]. Thus, to a Severi-Brauer variety X over k, we may
naturally associate a class of Br(k) in a unique way, and this class is trivial
if and only if X ∼= Pnk , i.e., if and only if X(k) 6= ∅, by Theorem 2.3. The
theorem now follows from the fact that the map
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Br(k)→
⊕
v∈Ωk

Br(kv), A 7→ (A⊗k kv)

is an injection [NSW08, Theorem 8.1.17].

2.2 Case 2: d(X) = 8

By Theorem 1.6, Xks is isomorphic to either a blow-up of P2
ks at a point or

to P1
ks × P1

ks . We deal with these cases separately. In the former case, there
is exactly one exceptional curve on X, and Gal(ks/k) must �x it (see 1.5).
Blowing down this curve we obtain a del Pezzo surface of degree 9 with a
k-point, so by Theorem 2.3 we conclude that X is k-birational to P2

k. In
particular, X(k) 6= ∅, so these surfaces trivially satisfy the Hasse principle.

Suppose now that Xks is isomorphic to P1
ks × P1

ks . Then PicXks ∼= ZL1 ⊕
ZL2, where L1 and L2 give the two rulings of P1

ks × P1
ks . Note that KX =

−2(L1 + L2), and hence L1 + L2 is stable under the action of Gal(ks/k). If
X(k) 6= ∅, or if k is a global �eld and X(kv) 6= ∅ for all v ∈ Ωk, then the
inclusion

PicX →
(
PicXks

)Gal(ks/k)

is an isomorphism (see �3.4). In either case, the class of L1 + L2 may be rep-
resented over k by some divisor D. The linear system |D| gives an embedding
φD : X → P3

k of X as a quadric surface, de�ned over k. If P ∈ X(k), then
composing φD with projection away from φD(P ) we obtain a k-birational map
X 99K P2

k.
If k is a global �eld and X(kv) 6= ∅ for all v ∈ Ωk, then (φD)kv

(Xkv
) is a

quadric in P3
kv
, and φD(X)(kv) 6= ∅ for all v ∈ Ωk. Quadrics over global �elds

satisfy the Hasse principle, so φD(X)(k) 6= ∅ and hence X(k) 6= ∅.

2.3 Case 3: d(X) = 7

By Theorem 1.6, Xks is isomorphic to a blow-up of P2
ks at two points. There

are only three exceptional curves onX, and their con�guration is quite simple.
Label these curves e1, e2 and e3; without loss of generality we have

(e1, e2) = (e2, e3) = 1 and (e1, e3) = 0.

Since the action of Gal(ks/k) on PicXks respects the intersection pairing, it
follows that e2 is de�ned over k. Contracting it we obtain a del Pezzo surface of
degree 8 with a point, and hence X(k) 6= ∅ by the Lang-Nishimura lemma. In
particular, del Pezzo surfaces of degree 7 trivially satisfy the Hasse principle.
It follows from our work above that X is k-birational to P2

k.
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2.4 Case 4: d(X) = 6

By Theorem 1.6, Xks is isomorphic to a blow-up of P2
ks at three non-colinear

points. If we have a point P ∈ X(k) that lies on at least one exceptional curve
then one can show that X is not minimal and conclude using our work above.
If P is not on any exceptional curve, then we may blow-up P to obtain a del
Pezzo surface of degree 5. On this surface, there are three exceptional curves
that meet the exceptional divisor of the blow-up, are pairwise skew, and form
a Gal(ks/k)-set. Contracting them we obtain a del Pezzo surface of degree 8
that contains a rational point. Hence X is k-birational to P2

k.
The exceptional curves of Xks form a �hexagon.� Let e1, . . . , e6 be the

exceptional curves of X, numbered to correspond clockwise to the vertices of
the hexagon. Thus {e1, e3, e5} and {e2, e4, e6} are triplets of curves that do
not pairwise intersect, and {e1, e4}, {e2, e5} and {e3, e6} are couples of curves
whose vertices in the hexagon are �as far apart as possible.� Since the action
of Gal(ks/k) respects the intersection form, it induces an action on the sets

T :=
{
{e1, e3, e5}, {e2, e4, e6}

}
and D :=

{
{e1, e4}, {e2, e5}, {e3, e6}

}
.

If any element of T or D is �xed by the action of Gal(ks/k), then it is de�ned
over k. Hence there exist

• an element of T de�ned over a �eld extension K of k with [K : k] | 2.
• an element of D de�ned over a �eld extension L of k with [L : k] | 3.

On XK we may contract the curves in the �xed element of T to obtain a
del Pezzo surface of degree 9. On XL we may contract the curves in the �xed
element ofD to obtain a del Pezzo surface of degree 8 that is a form of P1

L×P1
L.

If k is a global �eld and X(kv) 6= ∅ for all v ∈ Ωv, then both XL and XK

also have points everywhere locally. Since del Pezzo surfaces of degree 8 and 9
satisfy the Hasse principle, it follows that XK is K-birational to P2

K and XL is
L-birational to P2

L. This means that there is a closed point P1 of X consisting
of a pair of K-points that are conjugate, as well as a closed point P2 of X
consisting of three L-points that are conjugate. Choose a four-dimensional
linear subspace L of P4

k that passes through P1 and P2. By Bezout's theorem,
Xk ∩Lk consists of 6 points, counted with multiplicity (because X has degree
6�this assumes the intersection is the right dimension; when the intersection
contains a curve one has to do a little more work). The points P1 and P2

account for 5 of the geometric points in Xk ∩ Lk. The remaining point must
be de�ned over k (how else would Galois act on it?). Thus del Pezzo surfaces
of degree 6 satisfy the Hasse principle (this proof is essentially due to Colliot-
Thélène [CT72]).

2.5 Case 5: d(X) = 5

We shall assume �rst that X(k) 6= ∅. If X contains a k-point P that does
not lie on any exceptional curve, then the blow-up of X at P is a del Pezzo
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surface Y of degree 4. Let e be the exceptional curve of Y corresponding to
the blown-up point P . Examining the graph of intersections of exceptional
curves on Y , we see that there are �ve curves that do not intersect e, and
that are pairwise skew to each other. These �ve curves form an invariant set
under the action of Gal(ks/k) because e is de�ned over k. Contracting this
set we obtain a del Pezzo surface of degree 9 with k-point (since X(k) 6= ∅),
so by Theorem 2.3 we conclude that X is k-birational to P2

k. An easy case-by-
case analysis shows that if P lies on at least one exceptional curve, then it is
possible to contract at least one exceptional curve over k and thus reduce to
previous cases to conclude that X is k-birational to P2

k.

Theorem 2.5 (Enriques, Swinnerton-Dyer, Skorobogatov, Shepherd-
Barron, Kollár, Hassett). Let X be a del Pezzo surface of degree 5 over
a �eld k. Then X(k) 6= ∅. In particular, if k is a global �eld, then del Pezzo
surfaces of degree 5 trivially satisfy the Hasse principle.

Proof (Sketch of proof). We follow Swinnerton-Dyer's approach [SD72]; other
proofs can be found in [Enr97, Sko93, Kol96, SB92, Has09]. Recall that the
anticanonical model of X is a quintic surface in P5

k (i.e., the linear system
|−KX | embeds X as a quintic in P5

k; see �1.5). Under this embedding, X is
cut out by 5 quadrics, de�ned over k. It su�ces to verify this claim after
a base-extension of the �eld. Over ks, the surface Xks is isomorphic to the
blow-up of P2

ks at four points, no three of which are colinear. By a projective
transformation (de�ned over ks), we may assume that these points are

[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1] and [1 : 1 : 1].

It is now not di�cult to check that the ideal I(Xks) of Xks ⊆ P5
ks is generated

by 5 quadrics. Let Q be a general element of I(Xks)2, let Π1 be a general
plane lying in Q, and let L be a general threefold through Π1 of X. Then

Q · L = Π1 +Π2,

where Π2 is another plane residual to Π1. One can show that

X · L = (X ·Π1)Q + (X ·Π1)Q,

and that, after possibly interchanging Π1 and Π2,

deg(X ·Π1)Q = 2 and deg(X ·Π2)Q = 3

These two equalities can now be used to show that Πi may be chosen in such
a way that it is de�ned over an extension K of k with [K : k] = 2n with
0 ≤ n ≤ 3. Suppose for simplicity that n = 1. Let P be a K-point of Π1 and
let P c be its conjugate over k. Let H ⊂ P5

k be any hyperplane de�ned over
K. Then Hks ·Xks is a curve C of genus one de�ned over K containing the
zero-cycle P + P c, and a zero-cycle of degree 5 obtained by intersecting X
with any 3-dimensional linear subspace of H. Hence C contains a zero-cycle
of degree 1 and thus a k-rational point. If n > 1, we just repeat this procedure
a total of n times.
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Remark 2.6. Here is an alternative strategy [Has09, Exercise 3.1.4]: show
that if Q1, Q2, Q3 are general elements of I(X)2 then

V (Q1, Q2, Q3) = X ∪W,

whereWks is isomorphic to the blow-up of P2
ks at a point. By our work in �2.2,

the exceptional divisor of Wks is de�ned over k. Now show that this excep-
tional divisor intersects X in one point.

Proof (Proof of Theorem 2.1). At this point, it only remains to note that since
X is k-birational to P2

k, it must satisfy weak approximation, by Lemma 1.2.

3 Counterexamples in small degree

We have seen that del Pezzo surfaces of degree at least 5 over global �elds
satisfy both the Hasse principle and weak approximation. This is no longer
the case for surfaces of lower degree. Of course, a counterexample to the
Hasse principle immediately gives a counterexample to weak approximation.
However, in degrees 2, 3 or 4, there exist examples of surfaces with a Zariski
dense set of points for which weak approximation fails. Curiously, del Pezzo
surfaces of degree 1 always have a k-rational point: the unique base-point of
the anticanonical linear system (see Remark 1.12). These surfaces, however,
need not satisfy weak approximation.

In Table 3 we have compiled a list of references for the earliest recorded
counterexamples to the Hasse principle and weak approximation in low de-
grees. A little care must be taken with counterexamples to weak approxima-
tion: for example, by Lemma 1.2, if X is a counterexample to weak approxi-
mation and X(k) 6= ∅, then the blow-up of X at a k-point is also a counterex-
ample to weak approximation. Thus, when dealing with counterexamples to
weak approximation on del Pezzo surfaces, it is important to make sure that
the surfaces are k-minimal: the surface should not have a Galois-stable set of
pairwise skew exceptional curves.

Phenomenon d ≥ 5 d = 4 d = 3 d = 2 d = 1

Hasse principle X [BSD75] [SD62] [KT04] X
Weak approximation X [CTS77] [SD62] [KT08] [VA08]

Table 3. Arithmetic phenomena on del Pezzo surfaces over global �elds. A check
mark (X) indicates that the relevant arithmetic phenomenon holds for the indicated
class of surfaces. An entry with a reference indicates the existence of a counterex-
ample to the arithmetic phenomenon which can be found in the paper cited.
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3.1 The Brauer-Manin set I

Let X be a nice variety over a global �eld k. Since X is proper, we have∏
vX(kv) = X(Ak). In [Man71], Manin used the Brauer group of the variety

to construct an intermediate �obstruction set� between X(k) and X(Ak):

X(k) ⊆ X(Ak)Br ⊆ X(Ak).

In fact, the set X(Ak)Br already contains the closure of X(k) for the adelic
topology and thus may be used to explain the failure of both the Hasse prin-
ciple and weak approximation on many classes of varieties.

De�nition 3.1. Let X be a nice variety over a global �eld k, and assume
that X(Ak) 6= ∅. We say that X is a counter-example to the Hasse principle
explained by the Brauer-Manin obstruction if X(Ak)Br = ∅. We say that X is
a counter-example to the weak approximation explained by the Brauer-Manin

obstruction if X(Ak) \X(Ak)Br 6= ∅.

3.2 Brauer groups of schemes

Recall that the Brauer group of a �eld k can be de�ned in two di�erent
ways: as the set of similarity classes of central simple algebras over k, or as
the Galois cohomology group H2

(
Gal(ks/k), ks∗

)
. These two points of view

can be naturally identi�ed, and each has its own advantages, depending on
context. Both de�nitions have natural generalizations to schemes, but these
generalizations need no longer be naturally isomorphic.

De�nition 3.2. An Azumaya algebra on a scheme X is an OX-algebra A that
is coherent and locally free as an OX-module, such that the �ber A(x) :=
A ⊗OX,x

k(x) is a central simple algebra over the residue �eld k(x) for each
x ∈ X.

Two Azumaya algebras A and B on X are similar if there exist nonzero
locally free coherent OX -modules E and F such that

A⊗OX
EndOX

(E) ∼= B ⊗OX
EndOX

(F).

De�nition 3.3. The Azumaya Brauer group of a scheme X is the set of simi-
larity classes of Azumaya algebras on X, with multiplication induced by tensor
product of sheaves. We denote this group by BrAzX.

The inverse of [A] ∈ BrAzX is the class [Aop] of the opposite algebra of
A; the identity element is [OX ] (see [Gro68, p. 47]).

De�nition 3.4. The Brauer group of a scheme X is BrX := H2
ét

(
X,Gm

)
.

Remark 3.5. Note that if k is a �eld, then BrAz Spec k = BrSpec k = Br k,
the usual Brauer group of a �eld.
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For any scheme X there is a natural inclusion

BrAzX ↪→ BrX;

see [Mil80, Theorem IV.2.5]. The following result of Gabber, a proof of which
can be found in [dJ], determines the image of this injection for a scheme with
some kind of polarization.

Theorem 3.6 (Gabber, de Jong). If X is a scheme quasi-projective over
a noetherian ring, then the natural map BrAzX ↪→ BrX induces an isomor-
phism

BrAzX
∼−→ (BrX)tors. ut

If X is an integral scheme with function �eld k(X), then the inclusion
Speck(X) → X gives rise to a map BrX → Brk(X) via functoriality of
étale cohomology. If further X is regular and quasi-compact then this induced
map is injective; see [Mil80, Example III.2.22]. On the other hand, the group
Brk(X) is torsion, because it is a Galois cohomology group. These two facts
imply the following corollary of Theorem 3.6.

Corollary 3.7. Let X be a regular quasiprojective variety over a �eld. Then

BrAzX ∼= BrX. ut

This corollary allows us to think of elements in �the� Brauer group of a
nice k-variety either as Azumaya algebras or as étale cohomology classes. Each
point of view has its advantages: the former is useful for computations, while
the latter allows us to use theorems from étale cohomology to deduce things
about the structure of the Brauer group.

3.3 The Brauer-Manin set II

Let X be a nice variety over a global �eld k. For each A ∈ BrX and each
�eld extension K/k there is a specialization map

evA : X(K)→ BrK, x 7→ Ax ⊗OX,x
K.

In words, evA(x) is the central simple algebra over the residue �eld of x
encoded in A. These specialization maps may be put together to construct a
pairing

φ : BrX ×X(Ak)→ Q/Z, (A, (xv)) 7→
∑
v∈Ωk

invv(evA(xv)), (4)

where invv : Br kv → Q/Z is the usual invariant map from local class �eld
theory. The sum in (4) is in fact �nite because for (xv) ∈ X(Ak) we have
evA(xv) = 0 ∈ Br kv for all but �nitely many v; see [Sko01, p. 101]. For
A ∈ BrX we obtain a commutative diagram
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X(k) //

evA

��

X(Ak)

evA

��

φ(A,−)

((QQQQQQQQQQQQQ

0 // Br k // ⊕
v Br kv

P
v invv // Q/Z // 0

(5)

where the bottom row is the usual exact sequence from class �eld theory.
Manin's observation is that the kernel of the map φ(A,−) contains X(k)

(because the bottom row of the above commutative diagram is a complex),
and thus an element A ∈ BrX can be used to �carve out� a subset of X(Ak)
that contains X(k):

X(Ak)A :=
{
(xv) ∈ X(Ak) : φ(A, (xv)) = 0

}
.

Moreover, if Q/Z is given the discrete topology, then the map

φ(A,−) : X(Ak)→ Q/Z

is continuous, so X(Ak)A is a closed subset of X(Ak); see [Har04, �3.1]. This
shows that X(k) ⊆ X(Ak)A.

De�nition 3.8. Let X be a nice variety over a global �eld k. We call

X(Ak)Br :=
⋂

A∈BrX

X(A)A

the Brauer-Manin set of X.

The structure map X → Spec k gives rise to a map Br k → BrX, by
functoriality. The group Br0X := im (Br k → BrX) is known as the subgroup

of constant algebras. The exactness of the bottom row of (5) implies that if A ∈
Br0X then X(Ak)A = X(Ak). This shows that to compute

⋂
A∈BrX X(Ak)A

it is enough to calculate the intersection over a set of representatives for the
group BrX/Br0X.

3.4 The Hochschild-Serre spectral sequence in étale cohomology

Let X be a nice locally soluble variety over a global �eld k. If BrXks = 0,
then the Hochschild-Serre spectral sequence in étale cohomology provides a
tool for computing the group BrX/Br k.

Let K be a �nite Galois extension of k, with Galois group G. The
Hochschild-Serre spectral sequence

Ep,q2 := Hp
(
G,Hq

ét

(
XK ,Gm

))
=⇒ Hp+q

ét

(
X,Gm

)
=: Lp+q

gives rise to the usual �low-degree� long exact sequence

0→ E1,0
2 → L1 → E0,1

2 → E2,0
2 → ker

(
L2 → E0,2

2

)
→ E1,1

2 → E3,0
2
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which in our case is

0→ PicX → (PicXK)G → H2
(
G,K∗

)
→ ker(BrX → BrXK)

→ H1
(
G,PicXK

)
→ H3

(
G,K∗

)
.

(6)

Taking the direct limit over all �nite Galois extensions of k gives the exact
sequence

0→ PicX → (PicXks)Gal(ks/k) → Br k → ker(BrX → BrXks)

→ H1
(
Gal(ks/k),PicXks

)
→ H3

(
Gal(ks/k), ks∗

)
.

(7)

Furthermore, if k is a global �eld, then H3
(
Gal(ks/k), ks∗

)
= 0; this fact is

due to Tate�see [NSW08, 8.3.11(iv), 8.3.17].
For each v ∈ Ωk, local solubility of X gives a morphism Spec kv → X that

splits the base extension πv : Xkv
→ Spec kv of the structure map of X. Thus,

by functoriality of the Brauer group, the natural maps π∗v : Br kv → BrXkv

split for every v ∈ Ωk. The exactness of the bottom row of (5) then shows
that the natural map Br k → BrX coming from the structure morphism of
X is injective. Moreover, if X is a del Pezzo surface, then BrXks = 0 and
thus (7) gives rise to the short exact sequence

0→ Br k → BrX → H1
(
Gal(ks/k),PicXks

)
→ 0,

and hence to an isomorphism

BrX/Br k ∼−→ H1
(
Gal(ks/k),PicXks

)
. (8)

If K is a splitting �eld for X, i.e., a �eld extension K of k where a set of
generators for PicXks have representatives de�ned over K, then the in�ation
map

H1
(
Gal(K/k),PicXK

)
→ H1

(
Gal(ks/k),PicXks

)
is an isomorphism, because the cokernel maps into the �rst cohomology group
of a free Z-module with trivial action by a pro�nite group, which is trivial.
Hence

BrX/Br k ∼= H1
(
Gal(K/k),PicXK

)
. (9)

Finally, we note that since X(Ak) 6= ∅, if H is a subgroup of G, then by (6)
and the injectivity of the map Br k → BrX, we know that

PicXKH
∼−→ (PicXK)H ,

where KH is the �xed �eld of K by H.
In summary, one way of constructing Brauer-Manin obstructions on del

Pezzo surfaces of small degree is to compute the group H1
(
Gal(K/k),PicXK

)
on �reasonable� surfaces, and then try to invert the isomorphism (9). Many
authors have pursued this set of ideas, and not just for del Pezzo surfaces
(see, for example, [Man74, CTCS80, CTSSD87, CTKS87, SD93, SD99, Bri02,
KT04, Bri06, BBFL07, Cor07, KT08, Log08, VA08], to name but a few refer-
ences).
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3.5 A counterexample to weak approximation in degree 1

We will use the remainder of this section to go through the details of a coun-
terexample to weak approximation. We will deal with del Pezzo surfaces of
degree 1 for two reasons: (1) we were explicitly asked to talk a little bit about
our research in these lectures, and (2) the example shows that del Pezzo sur-
faces of degree 1 are not as scary as they may appear at �rst, if one is willing
to use a computer to work out a little bit of algebra that is beyond what is
reasonable to do with pencil and paper.

Let us quickly review what we know about del Pezzo surfaces of degree
1. First, recall their anticanonical model is a smooth sextic hypersurface in
Pk(1, 1, 2, 3) := Proj(k[x, y, z, w]), e.g.,

w2 = z3 +Ax6 +By6, A,B ∈ k∗.

Conversely, any smooth sextic X in Pk(1, 1, 2, 3) is a del Pezzo surface of
degree 1. The surface Xks is isomorphic to the blow-up of P2

ks at 8 points in
general position, so in particular, PicXks ∼= Z9.

Fix a primitive sixth root of unity ζ in Q. Our goal is to prove the following
theorem.

Theorem 3.9 ([VA08]). Let X be the del Pezzo surface of degree 1 over
k = Q(ζ) given by

w2 = z3 + 16x6 + 16y6

in Pk(1, 1, 2, 3). Then X is k-minimal and there is a Brauer-Manin obstruction
to weak approximation on X. Moreover, the obstruction arises from a cyclic
algebra class in BrX/Br k.

In order to compute the Galois cohomology group H1
(
Gal(ks/k),PicXks

)
,

we need an explicit description of the action of Gal(ks/k) on PicXks . Recall
that PicXks is generated by the exceptional curves of X. The following the-
orem, which can be deduced from work of Shioda on Mordell-Weil lattices
(see [Shi90, Theorem 10.10]�we also give a di�erent proof in [VA08, Theo-
rem 1.2]), helps us compute the exceptional curves and a splitting �eld for a
del Pezzo surface of degree 1.

Theorem 3.10. Let X be a del Pezzo surface of degree 1 over a �eld k, given
as a smooth sextic hypersurface V (f(x, y, z, w)) in Pk(1, 1, 2, 3). Let

Γ = V (z −Q(x, y), w − C(x, y)) ⊆ Pks(1, 1, 2, 3),

where Q(x, y) and C(x, y) are homogenous forms of degrees 2 and 3, respec-
tively, in ks[x, y]. If Γ is a divisor on Xks , then it is an exceptional curve of
X. Conversely, every exceptional curve on X is a divisor of this form. ut
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We explain how to use this theorem to compute the exceptional curves
on the del Pezzo surface X of Theorem 3.9. Let a, b, c, r, s, t and u be
indeterminates, and let

Q(x, y) = ax2 + bxy + cy2,

C(x, y) = rx3 + sx2y + txy2 + uy3.

The identity C(x, y)2 = Q(x, y)3 + 16x6 + 16y6 gives

a3 − r2 + 16 = 0,

3a2b− 2rs = 0,

3a2c+ 3ab2 − 2rt− s2 = 0,

6abc+ b3 − 2ru− 2st = 0,

3ac2 + 3b2c− 2su− t2 = 0,

3bc2 − 2tu = 0,

c3 − u2 + 16 = 0.

We can use Gröbner bases to solve this system of equations. We get 240 solu-
tions, one for each exceptional curve of the surface. The action of Gal(ks/k)
can be read o� from the coe�cients of the equations of the exceptional curves.
Let s = 3

√
2, and consider the exceptional curves on X given by

E1 = V (z + 2sx2, w − 4y3),

E2 = V (z − (−ζ + 1)2sx2, w + 4y3),

E3 = V (z − 2ζsx2 + 4y2, w − 4s(ζ − 2)x2y − 4(−2ζ + 1)y3),

E4 = V (z + 4ζsx2 − 2s2(2ζ − 1)xy − 4(−ζ + 1)y2,

w − 12x3 − 8s(−ζ − 1)x2y − 12ζs2xy2 − 4(−2ζ + 1)y3),

E5 = V (z + 4ζsx2 − 2s2(ζ − 2)xy − 4ζy2

w + 12x3 − 8s(2ζ − 1)x2y − 12s2xy2 − 4(−2ζ + 1)y3),

E6 = V (z − 2s(−s2ζ + s2 − 2s+ 2ζ)x2 − 2s(2s2ζ − 2s2 + 3s− 4ζ)xy

− 2s(−s2ζ + s2 − 2s+ 2ζ)y2,

w − 4(2s2ζ − 4s2 + 2sζ + 2s− 6ζ + 3)x3

− 4(−5s2ζ + 10s2 − 6sζ − 6s+ 16ζ − 8)x2y

− 4(5s2ζ − 10s2 + 6sζ + 6s− 16ζ + 8)xy2

− 4(−2s2ζ + 4s2 − 2sζ − 2s+ 6ζ − 3)y3),
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E7 = V (z − 2s(−s2 − 2sζ + 2s+ 2ζ)x2 − 2s(−2s2ζ + 3s+ 4ζ − 4)xy

− 2s(−s2ζ + s2 + 2sζ − 2)y2,

w − 4(2s2ζ + 2s2 + 2sζ − 4s− 6ζ + 3)x3

− 4(10s2ζ − 5s2 − 6sζ − 6s− 8ζ + 16)x2y

− 4(5s2ζ − 10s2 − 12sζ + 6s+ 8ζ + 8)xy2

− 4(−2s2ζ − 2s2 − 2sζ + 4s+ 6ζ − 3)y3),

E8 = V (z − 2s(s2ζ + 2sζ + 2ζ)x2 − 2s(2s2 + 3s+ 4)xy

− 2s(−s2ζ + s2 − 2sζ + 2s− 2ζ + 2)y2,

w − 4(−4s2ζ + 2s2 − 4sζ + 2s− 6ζ + 3)x3

− 4(−5s2ζ − 5s2 − 6sζ − 6s− 8ζ − 8)x2y

− 4(5s2ζ − 10s2 + 6sζ − 12s+ 8ζ − 16)xy2

− 4(4s2ζ − 2s2 + 4sζ − 2s+ 6ζ − 3)y3),

as well as the exceptional curve

E9 = V (z − 2ζs2xy,w − 4x3 + 4y3).

Then

PicXks = PicXK
∼=

(
8⊕
i=1

Z[Ei]

)
⊕ Z[H] = Z9,

where H = E1 + E2 + E9. The exceptional curves of X are de�ned over
K := k( 3

√
2). Let ρ be a generator for the cyclic group Gal(K/k).

To invert the isomorphism (8), we will use the following diagram, whose
individual maps we now explain:

BrX/Br k ∼ //
_�

��

H1
(
Gal(ks/k),PicXks

)

Brk(X)/Br k H1
(
Gal(K/k),PicXK

)inf ∼

OO

∼
��

Brcyc(X,K)
?�

OO

kerNK/k/ im∆
ψ

∼
oo

(10)

First, the map BrX → Brk(X) is obtained by functoriality from the
inclusion of the generic point Speck(X)→ X (see �3.2). Since X is nice and
X(Ak) 6= ∅ (because X(k) 6= ∅), this map induces an injection BrX/Br k →
Brk(X)/Br k.

Second, we have maps

NK/k : PicXK → PicX ∆ : PicXK → PicX

[D] 7→ [D + ρD + ρ2D] [D] 7→ [D − ρD]
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and the isomorphism

H1
(
Gal(K/k),PicXK

) ∼= kerNK/k/ im∆

comes from Tate cohomology, since K is a cyclic extension of k.
To de�ne the group Brcyc(X,K), we �rst need to recall the notion of a

cyclic algebra. If L/k is a �nite cyclic extension of �elds of degree n, and if ρ is
a generator for Gal(L/k), then we let L[x]ρ be the �twisted� polynomial ring,
where `x = xρ` for all ` ∈ L. Given b ∈ k∗, we write (L/k, b) for the central
simple k-algebra L[x]σ/(xn − b). Let f ∈ k(X)∗; since X is geometrically
integral, we have Gal(k(XL)/k(X)) ∼= Gal(L/k), and hence we write (L/k, f)
instead of (k(XL)/k(X), f) for the cyclic algebra in Brk(X) given by f .

We now de�ne the group

Brcyc(X,K) :=
{
classes [(K/k, f)] in the image of the

mapBrX/Br k → Brk(X)/Br k

}
.

The map ψ in (10) is de�ned by

ψ : kerNK/k/ im∆→ Brcyc(X,K) [D] 7→ [(K/k, f)],

where f ∈ k(X)∗ is any function such that NK/k(D) = (f). This map is a
group isomorphism; see [VA08, Theorem 3.3].

With our explicit generators for PicKK in hand, we use Magma [BCP97]
to compute

kerNK/k/ im∆ ∼= (Z/3Z)4.

The classes

h1 = [E2 + 2E8 −H], h2 = [E5 + 2E8 −H],
h3 = [E7 + 2E8 −H], h4 = [3E8 −H]

of PicXK give a set of generators for this group.

Proof (of Theorem 3.9). Consider the divisor class h1 − h2 = [E2 − E5] ∈
PicXK . It gives rise to a cyclic algebra A := (K/k, f) ∈ Brcyc(X,K), where
f ∈ k(X)∗ is any function such that

NK/k(E2 − E5) = (f),

To wit, f is a function with zeroes along

E2 + ρE2 + ρ2E2

and poles along

E5 + ρE5 + ρ2E5.

Using the explicit equations for E2 and E5 we �nd that
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f :=
w + 4y3

w + (2ζ + 2)zy + (−8ζ + 4)y3 + 12x3

does the job.
Recall that X is given by w2 = z3 + 16x6 + 16y6. Note that

P1 = [1 : 0 : 0 : 4] and P2 = [0 : 1 : 0 : 4]

are in X(k). Let p be the unique prime above 3 in k. We compute

invp(A (P1)) = 0 and invp(A (P2)) = 1/3.

Let P ∈ X(Ak) be the point that is equal to P1 at all places except p, and is
P2 at p. Then ∑

v∈Ωk

invv(A (Pv)) = 1/3,

so P ∈ X(Ak) \X(Ak)Br and X is a counterexample to weak approximation.
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