
We are all aware of what a random walk is. A random walk on Zd is a stochastic
process Xn = ξ1 +ξ2 + · · ·+ξn defined for n ≥ 0 with X0 = 0, where {ξi} are a sequence of
independent identically distributed random variables with a common distribution P [ξi =
x] = α(x). For simplicity one may assume that α has finite support and that α(±ei) > 0
where {ei} are the coordinate directions. It is viewed as a Markov chain on Zd with
transition probabilities

π(x, y) = α(y − x)

Various properties of the random walks are easy to establish. For instance in three or more
dimensions all random walks are transient. If the dimension is one or two then the random
walk is recurrent if and only if the mean is 0.

One has the law of large numbers that states that with probability 1

lim
n→∞

Xn

n
= m = E[ξ1] =

∑

x

xα(x)

and the central limit theorem that states

Xn − nm√
n

≃ N [0, C]

i.e. Xn−n m√
n

has an asymptotic distribution that is normal with mean 0 and covariance

〈Cu, v〉 =
∑

x

〈x−m, u〉〈x−m, v〉α(x)

where u, v ∈ Rd. Finally there is the large deviation result of Cramér, that shows that for
reasonable sets A ∈ Rd,

P [
Sn

n
∈ A] = exp[−n inf

x∈A
I(x) + o(n)]

where
I(x) = sup

θ

[< θ, x > − logM(θ)]

and
M(θ) = E[e<θ,ξ>] =

∑

x

e<θ,x>α(x)

Our goal initially is to see if the analogous results are valid for Random Walks in Random
Environments.
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We begin with a definition of what a random walk in a random environment is. Instead
of translation invariance of the type π(x, y) = α(y−x), we assume that π(x, y) = π(x, y, ω)
is random but is translation invariant in a statistical sense, i.e the processes π(x, y, ω) and
π(x + z, y + z, ω) have the same distribution. This is usually modeled by a measure
preserving (ergodic) action τz of z ∈ Zd on some probability space (Ω,Σ, P ), a random
probability measure π̂(z, ω) on Zd, i.e a map π̂ : Ω → M(Zd), where M(Zd) is the space
of all probability distributions on Zd, We shall assume for simplicity that π̂(·, ω) has a
fixed finite support, i.e. there exists ℓ such that π̂(z, ω) = 0 for all ω if |z| ≥ ℓ and
π̂(±ei, ω) ≥ c > 0 for some positive constant c, a condition that is often referred to as the
ellipticity condition. The random environment on Zd is defined by

π(x, y, ω) = π̂(y − x, τxω)

If the probability distribution P is such that π(τx, ω) are all statistically independent then
the environment is called a product environment and the distribution β on M(Zd) of
π(ω, ·) essentially determines P , provided we take Ω = Πx∈zdM(Zd).

For each ω one has a Markov Chain on Zd with transition probability π(x, y, ω), starting
from 0 at time 0 and we denote this measure by Qω. Properties valid for Qω for almost
all ω with respect to P are said to be valid for the quenched case. We can also define the
averaged measure

Q̄ =

∫

QωP (dω)

and see which results are valid for it. Laws of large numbers are about properties valid
with probability 1 and so validity for Qω for almost all ω is the same as validity for P̄ . On
the other hand central limit theorem could be valid for Q̄ with out being valid for Qω. The
large deviation results could be different except for the restriction imposed by Jensen’s
inequlity.

. The special case of d = 1, π(x, y, ω) = 0 unless y = x ± 1 is interesting because a
certain amount of exact computations are possible. The Markov Chain is determined by
π(x, x+ 1, ω) = p(x) and π(x, x− 1, ω) = 1 − p(x). Here {p(x)} is a stationary process in
x ∈ Z, and is bounded away from 0 and 1. Let us try to compute, for x ≤ 0,

u(x) = u(x, ω) = Qω[σ1 <∞|X0 = x]

where σ1 is the first time Xj equals 1. This is the solution of the linear equation

u(x) = p(x)u(x+ 1) + (1 − p(x))u(x− 1)

with u(1) = 1. Either u(x) ≡ 1 for all x ≤ 0 or u(x) < 1 and u(x) → 0 as x → −∞. The
latter is the necessary and sufficient condition for Xn → −∞ as n → ∞. If we denote by
v(x) = u(x+ 1) − u(x), then

v(x) =
p(x)

1 − p(x)
v(x+ 1)
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In particular either v(x) = 0 for all x ≤ 0, i.e u(x) ≡ 1 or v(x) > 0 for every x ≤ 0
and

∑

x v(x) < ∞, the latter condition being the necessary and sufficient condition for
Xn → −∞ as n→ ∞. But

v(x) = v(0)
0

∏

y=x

p(y)

1 − p(y)

It is not hard to see that if E[log p(y)
1−p(y) ] < 0, then

∑

x<0

∏0
y=x

p(y)
1−p(y) < ∞ and we

have Xn → −∞ as n → ∞ and transience. Similarly if E[log p(y)
1−p(y) ] > 0, then we have

Xn → ∞ as n → ∞ and again transience. One can check that if E[log 1−p(y)
p(y)

] = 0 we

have recurrence. This does not require any assumption about the product nature of the
environment. No matter how dependent the recurrence or transience depends only on the
distribution of p(y) at one site.

We next look at the law of large numbers or the speed with which Xn → ±∞. Let us
compute

EQω [σ1|X0 = 0]

If EP [g(ω)] = θ <∞, then

lim
n→∞

Xn

n
= m = θ−1

We have the following simple identity.

g(ω) = p(0) + (1 − p(0))[1 + g(τ−1ω) + g(ω)]

or
p(0)g(ω) = p(0) + (1 − p(0)) + (1 − p(0))g(τ−1ω)

i.e.

g(ω) = 1 +
1 − p(0)

p(0)
+

1 − p(0)

p(0)
g(τ−1ω)

In a product environment p(0) and g(τ−1ω) are independent. Therefore

θ = 1 + EP [
1 − p(0)

p(0)
](1 + θ)

yielding

θ[1 − EP [
1 − p(0)

p(0)
]] = [1 +EP [

1 − p(0)

p(0)
]]

or

m =
[1 − EP [ 1−p(0)

p(0) ]]

[1 + EP [ 1−p(0)
p(0)

]]

provided EP [ 1−p(0)
p(0) ] < 1. For Sn to tend to ∞ we need EP [log p(0)

1−p(0) ] > 0 or equivalently

EP [log 1−p(0)
p(0) ] < 0. One can have that and still have EP [ 1−p(0)

p(0) ] > 1. In this case Sn

n
will
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tend to 0 as n → ∞. This cannot happen for ordinary random walks. The explanation
is that you come across environments that can slow you down. You have to get through
them. One cannot avoid them if d = 1.

Let us look at an invariant measure for the chain. This should satisfy

q(x− 1)p(x− 1) + q(x+ 1)(1 − p(x+ 1)) = q(x)

or
q(x− 1)p(x− 1) − q(x+ 1)p(x+ 1) = q(x) − q(x+ 1)

or equivalently
q(x− 1)p(x− 1) + q(x)p(x) = q(x) + c

i.e.

q(x− 1) =
1 − p(x)

p(x− 1)
q(x) +

c

p(x− 1)

admitting a solution

q(x, ω) = c

[

1

p(x, ω)
+

∞
∑

y=x+1

[ y−1
∏

z=x

1 − p(z + 1, ω)

p(z, ω)

]

1

p(y, ω)

]

Notice the covariant nature of the solution, i.e.

q(x, ω) = q(0, τxω) = q̂(ω)

In order to normalize with EP [q̂(ω)] = 1, we need E[ 1−p(0)
p(0) ] < 1. Then we can consider

the Markov Chain on Ω with transition probability ω → τ1ω or τ−1ω with probability p(ω)
and 1 − p(ω) respectively. q̂(ω) is an invariant density (with respect to P ) for the chain
and is ergodic. Therefore if ωn is the chain and Q̂ω is the measure of the ωn-process, which
is the environment as seen by the random walk, then

Xn −
n−1
∑

j=0

[2p(ωj) − 1]

is a Martingale and therefore

lim
n→∞

Xn

n
=

∫

Ω

[2p(ω) − 1]q̂(ω)dP =
2c

1 −EP [ 1−p(0)
p(0) ]

− 1

Normalization constant c can be evaluated by

c+ 1 =
2c

1 − EP [ 1−p(0)
p(0) ]

4



which matches with the earlier calculation.

The situation in Zd with d ≥ 2 is much more complicated. There is no simple criterion
for determining when a random walk in a random environment is recurrent or transient,
even in the case of a product environment. One trivial sufficient condition for transience
is

(1)
∑

y

< ℓ, y − x > π(x, y, ω) ≥ c > 0

for almost all ω. A uniform positive drift in some direction will make the random walk go
off to ∞!. Even for a product environment, under this assumption, it is not easy to show
the existence of the limit

lim
n→∞

xn

n
= m

a.e. There is no simple formula for m. The density q̂(ω) does not seem to exist, because the
chain on Ω may not have an invariant measure that is absolutely continuous with respect
to P .

We will approach this problem from a different perspective. We look at the process
Q̄ =

∫

QωdP where P is a product measure.
We need to look at the process Q̄ in its own right. Let β be the marginal distribution

of π(x, x+ ·) viewed as a probability distribution on M(Zd). Then Q̄ is a process with long
memory which is not Markov. If we start from 0, the first step ξ1 under Q̄ has distribution

π̄(z) =

∫

M(Zd)

π(z)dβ(π)

which is the prior distribution of jumps at any site. If we arrive at a site that has never
been visited before, the conditional distribution of the next jump is still the same, since
the environment is a product measure. However if the current site of the random walk has
already been visited k times and produced k(z) jumps of size z, with k =

∑

z k(z), then a

posteriori probability of the jump is given by

(2) π̂(z|w) =

∫

π(z)
∏

[π(z′)]k(z′)dβ(π)
∫

∏

[π(z′)]k(z′)dβ(π)

where w is the past information. It is more convenient to slide the walk back so it ends
at the origin rather starting from it. Let us denote by Wn the space of walks that end at
0, starting from time −n at some point which is really −Xn, if Xn is where the original
walk ended up at time n. We denote by W∞ = ∪nWn and we have a Markov Chain on
W. The transition probability is w → Tzw with probabilty π̂(z|w). Here Tzw is obtained
by appending a jump of size z at the front and shifting back by −z. Of course Tz maps
Wn → Wn+1. One can denote by W = W ∪Wtr and include transient paths with infinite
past. Then π̂(z|w) can be extended to W and a Markov Chain defined on it with transition
probability given by π̂(z|w).
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Suppose ν is an invariant measure for this Markov Chain. Suppose it is unique. Then
this will define a process with stationary increments. It is not hard to see that we can
expect

Xn

n
→ m(ν) =

∫

W

[

∑

z

zπ̂(z|w)
]

dν(w)

a.e Q̄ and therefore a.e Qω a.e P .
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Under the assumption (1), we will prove the existence and uniqueness of the invariant
measure ν.

The transition probabilities from w to Tzw are given by {π̂(z|w)} given by formula (2). We
note the fact that {π̂(z|w)} depends on local information, i.e on {k(z′) : z′ ∈ F} for some
finite F . We assume bounded step size as well as ellipticity, i.e. for some fixed function
Q̄(·) ≥ 0 with Q̄(z) = 0 for |z| > C and Q̄(±ei) > 0, (where ±ei are the nearest neighbors
of 0) and a constant c > 0, we have

cQ̄(z) ≥ π(z) ≥ Q̄(z), a.e β

Existence. The problem is to keep the process uniformly transient. A uniform exponential
estimate for Qw[z1 + z2 + · · · zn = 0] will do the trick. Since the zi have a uniform bound
and E[< s, zj+1 > |z1, z2, . . . , zj ] ≥ c > 0 this is elementary with the help of

ψj = exp[−λ < s, z1 + z2 + · · · + zj > +f(λ)j]

which is a supermartingale with f(λ) > 0 provided λ is sufficiently small.

Some mixing properties.

Given a starting point w, we have the measure Qw corresponding to the Markov chain
starting with this initial walk w. The measure in particular will generate a random walk
{Xj : j ≥ 1} in the future with steps z = {zj} where zj = z0(wj) and Xk = z1+z2+· · ·+zk.
Remember that z0(w) is the last jump of w and zj will be the last jump after j steps. Given
a set A ⊂ Zd, let us denote by

H(n,A, z) = #

{

k : 0 ≤ k ≤ n and Xk ∈ A

}

the number of visits to A by Xk = z1 + z2 + · · · + zk during 0 ≤ k ≤ n. Clearly, by our
ellipticity condition,

| log
dQw1

dQw2

(z)|Fn
≤ CH(n, S(w1) ∪ S(w2), z)

where Fn is the σ-filed generated by z1, z2, . . . , zn and S(w) = {Xj(w) : j ≤ 0} is the
range of the past. Let us fix a direction s ∈ Sd−1 and define the events Es ⊂ Fs

Es = {z : lim
n→∞

〈s,Xn〉 = ∞}

Fs = {z : lim sup
n→∞

〈s,Xn〉 = ∞}

and their probabilities U(w) = Qw[Es] and V (w) = Qw[Fs] with U(w) ≤ V (w). Let

s∗(w) = sup
y∈S(w)

< s, y >
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Lemma. If for some w̄ with s∗(w̄) < ∞, we have U(w̄) > 0, then for every w with
s∗(w) <∞ we have U(w) = V (w) > 0 and

1 − U(w) = Qw

[

lim
n→∞

〈s,Xn〉 = −∞
]

Proof: We will first prove an estimate of the form

U(w) ≥ u(s∗(w))

for some function u(r) that is non-increasing in r and positive for each r > 0. Since
U(w̄) > 0, for every k there is a r = r(k) such that

Qw̄

[

〈s,Xn〉 ≥ max{k, s∗(w̄)} + 1 for all n ≥ r(k)

]

≥ 1

2
U(w̄)

Then for any w and z satisfying 〈s,Xn〉 ≥ max{s∗(w), s∗(w̄)} + 1 for all n ≥ r(s∗(w))

sup
n

H(n, S(w) ∪ S(w̄), z) ≤ r(s∗(w))

providing a lower bound

U(w) ≥ 1

2
U(w̄)e−Cr(s∗(w))

Since
U(wn) = Qw[E|Fn]

is a Qw martingale it must converge to 0 almost surely on Ec
s . Which means that

lim
n→∞

s∗(wn) = ∞ a.e. Qw on Ec
s

But clearly s∗(wn) = 0 infinitely often on Fs, proving that Fs and Ec
s are almost surely

disjoint. In fact because of ellipticity lim supn→∞〈s,Xn〉 can only be ±∞, proving the
lemma.

Theorem: Let {νi : i = 1, 2} be two invariant ergodic measures for π̂(z|w) such that
m(νi) 6= 0 for i = 1, 2. Then m(ν1) = c0m(ν2) for some c0 < 0.

Proof: Assume otherwise. Then there is an s′ ∈ Sd−1 such that 〈s′, m(νi)〉 > 0 for i = 1
and i = 2. From our assumptions

sup
n
H(n, S(w), z) <∞

a.e. αi(dw)Qw(dz) for both i = 1 and i = 2. This proves the mutual absolute continuity
of Qw1(dz) and Qw2(dz) for almost all w1, w2, with respect to ν1 × ν2. This implies, by
the ergodic theorem, that ν1 = ν2. Since under assumption (1), < s,m(ν) >≥ c > 0 there
is at most one invariant measure.

Remark: A zero-one law of Merkl and Zerner proves in d = 2 (d = 1 is trivial) that for
any w ∈ W , in particular for w = φ, U(w) = 0 or 1.
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