
Large Deviations. Averaged case.

To carry out large deviations, we cannot ignore events that have exponentially small prob-
baility. In particular the process can behave like a recurrent one. So the space W has
to be enlarged to include recurrent paths. This makes q(z|w) unstable. It is continuous,
even when all paths are transient, only if the walks w(j) converge to a limit w with the
total number of visits kx(w(j)) of w(j) to x converges to the number of visits kx(w) of w
to x for every x. It is possible in the limit for kx(w) to be smaller. This requires a careful
comapctification of W to get W.

We denote by I the set of probability measures on W that are invariant under T ∗. T ∗

corresponds to erasing the last jump and shifting to end at the origin. T ∗Tz = Id . These
correspond to transient processes with stationary increments. We get a shift invariant
measure on z = {zj}, initially for j ≤ 0, which is easily extended to −∞ < j < ∞ to be
shift invariant in both directions. The ergodic measures are the extremals in I and these
are denoted by E . If µ ∈ I, the conditional probability qµ(z|w) of the next jump being
equal to z given the past history is well defined. Standard ergodic theory even yields a
version q̂, of this conditional probability that is universal, i.e. independent of µ. But this is
’cheating’ because the ergodic or extremal µ’s are supported on mutually disjoint sets and
one defines q̂(z|w) to equal qµ(z|w) on the support of µ. There is a natural large deviation
rate functional in this context given by

I(µ) =

∫

W

[
∑

z

q̂(z|w) log
q̂(z|w)

q(z|w)
]µ(dw)

Note that one consequence of the universality of q̂ is the affine linearity of I(·) on I.
Of course, each µ ∈ I being a process with stationary increments has a mean ’drift’
m(µ) = Eµ[z0]. It is natural to define by contraction, especially for ξ 6= 0, the rate
function

H(ξ) = inf
µ∈E

m(µ)=ξ

I(µ)

We can now state the main theorem regarding the ’averaged’ measure Q̄.

Theorem 1. The function H(ξ) defined above for ξ 6= 0 extends to Rd as a convex
function and is the rate function for large deviations of Xn

n
under ’averaged’ measure Q̄.

lim sup
n→∞

1

n
log Q̄

[Xn

n
∈ C

]
≤ − inf

ξ∈C
H(ξ) for closed C ⊂ Rd

lim inf
n→∞

1

n
log Q̄

[Xn

n
∈ G

]
≤ − inf

ξ∈G
H(ξ) for open G ⊂ Rd

While the lower bound is routine, the upper bound requires some careful handling due to
the lack of sufficient compactness and continuity of q(z|w).

Compactification. There are various sets of walks. W = ∪nWn is the space of all
walks of finite length. We have W obtained by adding all transient infinite walks to the
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collecetion. For large deviations we need to consider recurrent walks as well. We denote by
W the space obtained by adding all infinite walks to W. While W may be compact, if we
demand only the convergence of Xj(w), which is the position at time j < 0, the functions
q(z|w) are not well defined on W. So we need to construct a compactification W of W,
such that, there is a natural map of W onto W, which may not be one to one.

1. W is dense in W and is unramified.

2.The functions {xj(w)}, defined on Wn for n ≥ −j, have continuous extensions, as maps
into Zd, to the closure of W in W .

3.The number of visits and types of jumps {kx(z, w)} are continuous as maps into the
space of integers with ∞ added i.e. into Z+ = {0, 1, 2, · · · ,∞}.

4.The transition probabilities {q(z|(T ∗)kw)}, {q(z|Tzk
· · ·Tz2

Tz1
w)} are continuous maps

for every k ≥ 0 and every choice of z, z1, z2, · · · , zk ∈ Zd.

5.The set W while ramified, is embedded canonically as a subset of W characterized by
the property: for each x ∈ Zd,

kx(w) =
∑

j≤−1

1{xj(w)=x}

In general only the inequality

kx(w) ≥
∑

j≤−1

1{xj(w)=x}

is true. Of course, if for some x, equality holds then for that x and any z,

kx(z, w) =
∑

j≤−1

1{xj(w)=x,xj+1=x+z}

We continue to call it W .

6.The maps T ∗ and {Tz} are continuous maps of W into itself. (With T ∗ we need to leave
out W0 = {φ})

The existence of such a compactification, unique if it is minimal, is a routine exercise in
real analysis. The compactification is only for convenience and will not solve any real
problems. All it does is sweep some of the natural difficulties of the long range dependence
in our model under the rug. We have to prove later that we do not have to look too closely
underneath the rug.

For any w ∈ W we denote its range S(w) as the set

S(w) = {x : kx(w) > 0}

S(w) always contains 0. While S(w) contains the actual range {xj(w) : j ≤ 0} it may in
general be larger. However for w ∈ W they are the same.
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We denote by I the convex set of T ∗ invariant probability measures on W and by E
its extremals or the ergodic ones. For each µ ∈ I, there is a natural process with stationary
increments zj(w) = xj(w) − xj−1(w) and we can define its mean drift by

m(µ) = Eµ[z0] = Eµ[−x−1]

Lemma 1: Suppose α ∈ E and m(α) 6= 0. Let s ∈ Sd−1 be such that < s, m(α) >> 0.
Let S(w) denote the support of w defined earlier. If

α
[
w : sup

x∈S(w)

< s, x >< ∞] > 0

then α is supported on W .

Proof: The proof is elementary. By ergodicity, the above probability, if it is not 0, is
actually 1. Because < s, m(α) >> 0 the whole scene is drifting away in the opposite
direction and all the new visits are eventually to sites that are not in the current S(w).
That means eventually there are no excess visits other than the ones generated from the
walk. Since the scene is invariant this was always true. In other words α[W] = 1

A combinatorial result.

We start with n steps z1, z2, · · · , zn and let Xn = z1 + z2 + · · ·+ zn. This generates a
history of n walks, {wj ; 1 ≤ j ≤ n} where wj = Tzj

· · ·Tz2
Tz1

φ and φ is the starting point
with no history. An empirical measures on W can be defined by

Rn =
1

n
[

n∑

j=0

δTzj
···Tz1

φ]

It is viewed as a measure on the compactification W. We assume that Xn

n
→ ξ ∈ Rd. Let

us denote by C the set of limit points of Rn in the space of probability measures M(W)
on the compactified space W. We recall that I is the set of T ∗ invariant measures on W

and E is the set of extremals in I. E was defined as the set of ergodic measures supported
on W and we denote by E0 measures α ∈ E with m(α) 6= 0. Clearly E0 ⊂ E ⊂ E .

Theorem 2. Every µ ∈ C is invariant under T ∗. And as such, it has an integral represen-
tation over the ergodic measures (extremals)

µ =

∫

E

αµ̂(dα)

ξ =

∫

E

m(α)µ̂(dα)

We can write µ̂ = µ̂1 + µ̂2 in such a way that µ̂2 is supported on E0 and

ξ =

∫

E0

m(α)µ̂2(dα)

0 =

∫

E

m(α)µ̂1(dα)
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Proof: The theorem is essentially combinatorial in character. All the probabilities come
from the empirical measures. The first part of the theorem is routine ergodic theory. Let
us concentrate on the second part. If ξ = 0, there is nothing to prove and we can take
µ̂2 = 0. Let us therefore assume that ξ 6= 0. Let us denote by

Bµ =

{∫

E0

ϕ(α)m(α)µ̂(dα) : 0 ≤ ϕ ≤ 1

}

Bµ ⊂ Rd is obviously a compact convex set in Rd containing the origin. The problem is to
show that ξ ∈ Bµ. Assume that ξ /∈ Bµ. Then there is s ∈ Sd−1 and a > a′ > 0 such that

(3) < s, ξ >> a >≥ sup
η∈Bµ

< s, η >

We now consider the sequence of real numbers yj =< s, z1 + z2 + · · · + zj > and define
successive times τ1 ≤ τ2 · · · ≤ τj ≤ τj+1 ≤ · · · as

τj = n ∧ inf{i : yi ≥ j}

These are times at which yi reaches successive predetermined levels that increase in unit
steps. Notice that {yj} can jump over more than one level in a single step in which case
τj = τj+1. There will be a last τr < n with yτr

≥ r and we will then have yn ≤ (r +1). We
pick a (large) integer k, fix it, and call the interval [τj +1, τj+1] a ’good run’ if yi ≥ yτj

−k
for all i ∈ [τj + 1, τj+1], and a ’bad run’ otherwise. If τj = τj+1 the run is empty and it
is natural to call it good. Each bad run uses up at least k

C
steps and therefore there can

be atmost nC
k

bad runs. Each bad run gains a distance that is atmost C +1 and therefore

the sum total of gains during bad runs is at most nC(C+1)
k

. The last incomplete run may
be negative, but in any case, is bounded above by 1. Therefore

(4)
∑

good runs

(yτj+1
− yτj

) ≥ n[a −
C(C + 1)

k
] − 1

Note that during a good run, the walker currently at site x has never before visited any
site x′ with < s, x′ − x >> k + 1. The number of steps j, that are part of a good run, is

at least n( a
C
− (C+1)

k
) − 1

C
. Let us denote by

νn,k =
1

n

∑

j∈ ′goodruns′

δwj

the empirical distribution of wj over all the good runs, still normalized by n. The total

mass of νn,k can be less than 1. It is at least a
C

− (C+1)
k

+ o(1). We now let n → ∞,
along a subsequence if necessary, and get a limit νk. We assume that we have taken one
subsequence that works for all k. The limiting measure νk may not be invariant because
there are boundaries. As we let k → ∞, νk is monotone and the limit ν, which exists, is
invariant. This is because although a proportion of j among [1, n] may be omitted as part
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of a bad run, the number of such runs is at most nC(C+1)
k

. The contribution from the

boundary is at most 2C(C+1)
k

and is negligible for large k. We get in the limit a measure
ν ≤ µ which may still have total mass less than 1, but will now be invariant. There is then
a measure ν̂ on E that represents it. Note that ν̂ ≤ µ̂. Since νn,k was constructed during
’good runs’ we have for every n,

νn,k

[
w : S(w) ∩ {x :< s, x >≥ k + 1} 6= ∅

]
= 0

which leads to

νk

[
w : S(w) ∩ {x :< s, x >≥ k + 1} 6= ∅

]
= 0

Since the convergence of νk to ν is monotone

‖νk − ν‖ = |ν(W) − νk(W)| = δ(k) → 0

as k → ∞. Therefore

lim
k→∞

ν

[
w : S(w) ∩ {x :< s, x >≥ k + 1} 6= ∅

]
= 0

or
sup

x∈S(w)

< s, x >< ∞

a.e ν. This forces

ν̂

[
α : α[ sup

x∈S(w)

< s, x >< ∞] < 1

]
= 0

and in view of Lemma 1, we can conclude that ν̂ is supported on E . Relation (4) on the
other hand translates into ∫

< s, m(α) > ν̂(dα) ≥ a

after the limit on n and k are taken. Finally,

∫

E0

< s, m(α) > ν̂(dα) =

∫

E

< s, m(α) > ν̂(dα) ≥ a

Because ν ≤ µ, it follows that ν̂ ≤ µ̂ and ν̂(dα) = ϕ(α)µ̂(dα) for some 0 ≤ ϕ ≤ 1. Hence

sup
0≤φ≤1

∫

E0

< s, m(α) > φ(α)µ̂(dα) ≥ a

which contradicts (3)

We will provide a proof of the large deviation upper bound. We will begin with some
general facts regarding the local decay rate for Markov chaims on a countable sate space.
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Let X be a countable state space and π(x, y) the transition probability of a Markov
chain on X. We are interested in the local decay rate of the n-step transition probabilities
π(n)(x, y). We will assume that the chain is irreducible with some period p. In addition
we will assume that for each x, π(x, ·) is supported on a finite set Fx ⊂ X. For each
0 ≤ σ < ∞ we consider the convex set Uσ of positive sloutions of

∑

y

π(x, y)u(y) = e−σu(x)

normalized so that u(x0) = 1 for some fixed point x0 ∈ X. In general Uσ may be empty.
Note that the function 1 ∈ U0. There exists λ ≥ 0 which may be +∞, such that Uσ is
nonempty if and only if σ ≤ λ. In addition for any fixed x, y ∈ X

lim sup
n→∞

1

n
log π(n)(x, y) = −λ

If we let n → ∞ along the subsequence dictated by the periodicity we have

lim
n→∞

1

n
log π(n)(x, y) = −λ

Let F be a finite set we define the exit time τF = inf{n : Xn /∈ F} and compute for x ∈ F
the expected value

uF (σ, x) = E[eστF |X0 = x]

which may or may not be finite. Let us define

λF =
{

sup σ : uF (σ, x) < ∞ for all x ∈ F
}

Then λ = infF λF . The proofs of these assertions are elementary and depend on the fact
that uF (σ, x) is the solution of

∑

y

π(x, y)u(y) = e−σu(x) for x ∈ F

u(y) = 1 for x ∈ F c

For any finite set F , the value λF can be characterized as − log spect πF where πF is the
substochastic matrix {{π(x, y)} : x, y ∈ F} and spec refers to its spectral radius.

We next consider a simple dynamic programming problem. At each site x, a choice of
π(x, ·) can be made from a set Px of possible distributions supported on some fixed finite
set Nx. The goal is to maximize uF (σ, x). The Bellman equation for this problem is

sup
π(x,·)∈Px

∑

y

π(x, y)u(y) = e−σu(x) for x ∈ F

u(y) = 1 for x ∈ F c
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which may or may not have a solution for a give σ. There will be a largest value λ̂F such
that u = ûF exists if σ < λ̂F . It is clear from the Bellman equation that ûF and λ̂F are
not changed if we repalce each Px by its convex hull. Moreover

λ̂F = inf
π:πx∈Px,x∈F

λF (π)

While the quenched rate function h(ξ) is not in general explicit, h(0) has a natural
and important interpretation. Consider for each environment ω the n step transition
probability π(n)(ω, 0, 0). From the Chapman-Kolmogorov equations, we have

π(n+m)(ω, x, x) =
∑

y∈zd

π(n)(ω, x, y)π(m)(ω, y, x) ≥ π(n)(ω, x, x)π(m)(ω, x, x)

making − log π(n)(ω, x, x) subadditive. Therefore, if p is the period

k(x, ω) = − lim
n→∞

1

np
log π(np)(ω, x, x) = inf

n
[−

1

n
log π(n)(ω, x, x)]

exists for every x for almost all ω. Moreover, by ellipticity k(x, ω) = k(ω) is independent
of x and, by ergodicity, it is then equal to a constant k = k(β). In particular

π(n)(ω, 0, 0) ≤ e−k(β) n

for every n, and ω in the support of P . The value k(β) is the largest constant for which this
is true. According to our earlier discussion, we can define k(β) alternately in the following
way. For each x, let us choose Px as {p(· − x)} as p(·) varies over K. Then, for a finite set

F , the largest spectral radius over all possible choices of π with π(x, ·) ∈ Px, is e−λ̂F and

k(β) = inf
F

λ̂F

depends only on the convex hull K̂ of the support K of the distribution β on M(Zd).

Now we can integrate with respect to P to obtain

Q̄[xn = 0] ≤ e−k(β) n

Of course k(β) can and often is 0. The case k(β) = 0 is called the ’nestling’ case and
k(β) > 0 the ’non-nestling’ case. There is a simple formula for k(β).

Lemma: The value of k(β) is given by

k(β) = − log
[

inf
θ∈Rd

sup
p∈K̂

[
∑

z

e<θ,z>p(z)]
]

where K̂ is the convex hull of the support K of β. In order that k(β) > 0, it is necessary
and sufficient that 0 be not in the closed convex hull of the support of the distribution of
m(p) =

∑
z zp(z) induced by the distribution β on M(Zd).
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Proof: Suppose there is θ such that

sup
p∈K̂

[
∑

z

e<θ,z>p(z)] ≤ e−λ

then, for any environment ω, one has by induction

EP ω[
exp[< θ, xn >]

]
≤ e−nλ

and this in turn implies immediately, that

π(n)(ω, 0, 0) ≤ e−nλ

or k(β) ≥ λ. On the other hand, because

Ψ(p(·), θ) = log[
∑

z

e<θ,z>p(z)]

is convex in θ and concave in p(·), by standard minimax argument

inf
θ∈Rd

sup
p∈K̂

[
∑

z

e<θ,z>p(z)] = sup
p∈K̂

inf
θ∈Rd

[
∑

z

e<θ,z>p(z)]

If there a p(·) ∈ K̂ such that

c = inf
θ

∑

z

e<θ,z>p(z) ≥ e−λ

then, the uniform environment of simple random walk with jump distributed according to
p(·) will have the property

lim
n→∞

1

n
log π(n)(0, 0) = log c ≥ −λ

establishing k(β) ≤ λ. This proves the first part of the lemma. Now, k(β) = 0 if and only

if there is a p(·) ∈ K̂ such that

inf
θ∈Rd

[
∑

z

e<θ,z>p(z)] = 1

i.e.
∑

z z p(z) = 0.

Since we have a Feller process with transition probabilities q(w, w′) on the compact
space W the standard theory of large deviation applies and we get a lower semi-continuous
rate function J (µ) defined by

J (µ) = sup
u∈C+(W)

∫
log

u(w)

(qu)(w)
µ(dw)
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which is infinite unless µ ∈ Î, the set of invariant measures on W. For the empirical
measure Rn we get the estimates

lim sup
n→∞

1

n
sup
w

log Qw
[
Rn ∈ C

]
≤ − inf

µ∈C
J (µ)

for closed sets C, and for open sets G we have

lim inf
n→∞

1

n
sup
w

log Qw
[
Rn ∈ Gµ

]
≥ − inf

µ∈G∩Ê

J (µ)

which is much weaker and can only be improved under some sort of transitivity condition.

Lemma: With k = k(β) defined before

inf
µ∈Î

m(µ)=0

J (µ) ≥ k(β)

Proof: We need to find a u and use the formula

J (µ) ≥

∫
log

u(w)

(qu)(w)
µ(dw)

We will try u(w) = e<θ,z0(w)>. Since m(µ) = 0, we obtain the lower bound

J (µ) ≥ − inf
θ∈Rd

∫
log[

∑

z

q(z|w)e<θ,z>]µ(dw)

Since q(w, ·) ∈ K, we are done.

Lemma For 0 6= ξ ∈ Rd and any open set G ∋ ξ

lim inf
n→∞

Q̄[
xn

n
∈ G] ≥ −H(ξ)

Proof: Let α ∈ E with m(α) = ξ be given. Let us denote by

α̂(z|w) = α[z1 = z|w]

the conditional probability of the next step being z given the past. Then

I(α) = Eα[
∑

z

α̂(z|w) log
α̂(z|w)

q(z|w)
]

By the ergodic theorem, for any ǫ > 0, as n → ∞

α

[
|z̄(n) − ξ| ≤ ǫ, |Ī(n) − I(α)| ≤ ǫ

]
→ 1
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where

z̄(n) =
1

n

n∑

i=1

zi

Ī(n) =
1

n

n∑

i=1

log
α̂(zi|wi−1)

q(zi|wi−1)

Moreover we can assume that ℓ is large enough that for all n,

α[H(n, S(w), z) ≤ ℓ] ≥
1

2

for some s ∈ Sd−1 with < s, ξ >> 0. We wish to estimate

Qφ[|z̄(n) − ξ| ≤ ǫ]

≥ Qφ[|z̄(n) − ξ| ≤ ǫ, H(n, S(w), z) ≤ ℓ]

≥ e−Cℓ sup
w

Pw[|z̄(n) − ξ| ≤ ǫ, H(n, S(w), z) ≤ ℓ]

≥ e−Cℓ

∫
Pw[|z̄(n) − ξ| ≤ ǫ, H(n, S(w), z) ≤ ℓ]α(dw)

= e−Cℓ

∫

{|z̄(n)−ξ|≤ǫ}∩{H(n,S(w),z)≤ℓ}

Rn(w)α(dw)

≥ e−Cℓe−n(I(α)+ǫ)α
[
|z̄(n) − ξ| ≤ ǫ, |Ī(n) − I(α)| ≤ ǫ, H(n, S(w), z) ≤ ℓ

]

Theorem: The function
H(ξ) = inf

µ∈E

m(µ)=ξ

J (µ)

is a convex function in every half space {ξ :< s, ξ >> 0} ⊂ Rd. The limit limξ→0 H(ξ)
exists and equals k(β). If we define H(0) as this limit then H(·) is a convex function on
Rd.

Proof: First, assume that ξ = aξ1 + (1 − a)ξ2, with both ξ1 and ξ2 belonging to the
same half space, i.e. there exists s ∈ Sd−1 such that < s, ξi >> 0 for i = 1, 2. There are
processes with stationary increments µi that are ergodic with means ξi and J (µi) = ci.
The measure µ = aµ1 + (1 − a)µ2 is not ergodic but has stationary increments. It can
be approximated by ergodic ones by the usual method of taking a block of length ℓ and
constructing a product measure over distinct blocks and then averaging over ℓ translates
to produce some thing that is ergodic and stationary. If we call this approximation by µℓ,
then it is ergodic and m(µℓ) = m(µ) for every ℓ. One needs to prove only that

lim
ℓ→∞

J (µℓ) = J (µ)

From the lower semi-continuity of J (·), it is clearly enough to prove that µℓ → µ weakly
as measures on W. From our earlier results it follows that the limit µ′ of µℓ along any
subsequence will be represented by

µ′ = θ

∫

E

αν′(dα) + (1 − θ)

∫

Ê

αν(dα)

10



with ∫

E

m(α)ν′(dα) = 0

However, µ′ on W projects to µ on Wtr
∞. Therefore both ν and ν′ can only be supported

on measures α with m(α) = ξ1 or ξ2. Since 0 is not in the convex hull of ξ1 and ξ2 we
must have ν′ = 0. Therefore µ′ = µ and we are done.

Now we turn to the proof of limξ→0 H(ξ) = k(β). If m(µn) = ξn and ξn → ξ, then
along a subsequence µn → µ and m(µ) = 0 even if it is not ergodic. By the semicontinuity
of J (·)

J (µ) ≤ lim inf
n→∞

J (µn) ≤ lim inf
n→∞

H(ξn)

But from Lemma
k(β) ≤ inf

m(µ)=0
J (µ)

Hence
k(β) ≤ lim inf

ξ→0
H(ξ)

To prove the inequality in the reverse direction, given ξ ∈ Sd−1, for sufficiently small δ, we
have to construct an ergodic α ∈ E with m(α) = δξ and J (α) ≤ k(β)+ǫ(δ), where ǫ(δ) → 0
with δ. This can be accomplished as follows. Let ξ ∈ Sd−1, integers L, k, and δ > 0 be
given. Let us select a deterministic path connecting the origin and a lattice site close to kδξ
in Ckδ steps, where each step has conditional probability atleast ρ. Assume that the path
is such that the end point is a boundary point of a cube CL of size L and the path has no
other common points with the cube CL. We will construct a probability distribution µL,k

of a walk that will start at where the deterministic path ends, remain inside the cube CL for
k(1−Cδ) steps and ends up at the boundary point where it entered, making essentially a
loop. The two walks together will produce a probability distribution, which we will denote
by µL,δ,k,ξ which in k steps goes from 0 to kδξ. We can take a countable product of this
and will get a process whose increments will be stationary under the k shift. We can do
the averaging over k steps and get an ergodic process with stationary increments, that we
call αL,δ,k,ξ. It is not difficult to estimate J (αL,δ,k,ξ). The deterministic part contributes
at most Ckδ log 1

ρ
and the part confining the walk to a box of size L depends on the choice

of µL,k and it can be chosen so that it contributes at most σLk(1 − Cδ) + o(k), where σL

is given by

σL = − lim inf
n→∞

1

n
log Qφ

[
z1 + z2 + · · ·+ zj ∈ CL for all 1 ≤ j ≤ n

]

and σL → k(β) as L → ∞. this leads to an estimate of the form

J (αL,δ,k,ξ) ≤ σL(1 − Cδ) + Cδ log
1

ρ
+ o(1)

as k → ∞. We let k → ∞ and then L to infty, to obtain the estimate

H(δξ) ≤ k(β)(1 − Cδ) + Cδ log
1

ρ

11



for arbitrary ξ ∈ Sd−1 and δ small enough.

Finally to prove convexity at 0, we need to show that for any {ξj} with convex
combination

∑
j ajξj = 0 we have

∑
j ajk(ξj) ≥ k(β). But µ =

∑
j ajµj with m(µj) = ξj

has m(µ) = 0 and therefore

∑

j

ajJ (µj) = J (µ) ≥ k(β)

and we are done.

Proof of Theorem 1. We have already established the lower bounds and the upper
bound at 0. We need to prove only the upper bound for ξ 6= 0. In view of Theorem 2, we
have the following inequalities valid for closed sets C not containing 0.

lim sup
n→∞

1

n
log Qφ

[xn

n
∈ C

]
≤ − inf

ξ∈C
inf
θ

[
(1 − θ)k(β) + θH(

ξ

θ
)

]

≤ − inf
ξ∈C

inf
θ

[
(1 − θ)H(0) + θH(

ξ

θ
)

]

≤ − inf
ξ∈C

H(ξ)
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