
We consider a probability space (Ω,F , P ) on which Rd acts as a group {τx : x ∈ Rd}
of measure preserving transformations. P is assumed to be ergodic under this action. Let
the function H(p, ω) : Rd ×Ω → R be convex in p for each ω. L is the conjugate function

L(y, ω) = sup
p

[< p, y > −H(p, ω)]

We will assume some growth and regularity conditions on H or equivalently on L.

For any given ǫ > 0 and ω ∈ Ω, we consider the solution uǫ = uǫ(t, x, ω) of equation

(1)
∂uǫ
∂t

=
ǫ

2
∆uǫ +H(∇uǫ, τ x

ǫ
ω), (t, x) ∈ [0,∞)×Rd,

with the initial condition uǫ(0, x) = f(x).

We wish to show that as ǫ → 0 the solutions uǫ of 1 converge to the solution of an
effective equation

(2) ut = H(∇u)

with the same initial condition uǫ(0, x) = f(x)

We note that the solution uǫ(t, x, ω) of (1) is equal to ǫvǫ(
t
ǫ ,
x
ǫ , ω), the rescaled version

of vǫ that solves

∂vǫ
∂t

=
1

2
∆vǫ +H(∇vǫ, τxω), (t, x) ∈ [0,∞)×Rd,

with vǫ(0, x) = ǫ−1f(ǫx).
We now construct the convex functionH(p) that appears in (2). The translation group

{τx : x ∈ Rd} acting on L2(Ω,F , P ) will have infinitesimal generators {∇i : 1 ≤ i ≤ d}
in the coordinate directions and the corresponding Laplace operator ∆ =

∑

i∇2
i . For

reasonable choices of b(ω) : Ω → Rd, the operator

Ab =
1

2
∆+ < b(ω),∇ >

will define a Markov process on Ω. Construction of this Markov Process is not difficult.
Given a starting point ω ∈ Ω, we define b(x, ω) : Rd → Rd by b(x, ω) = b(τxω). This allows

us to define the diffusion Qb,ω0,0 , starting from 0 at time 0, in the random environment that
corresponds to the generator

1

2
∆+ < b(x, ω),∇ >

The diffusion is then lifted to Ω by evolving ω randomly in time by the rule ω(t) = τx(t)ω.

The induced measure P b,ω defines the Markov process on Ω that corresponds to Ab. The
problem of finding the invariant measures for the process P b,ω with generator Ab on Ω is
very hard and nearly impossible to solve. However, if we can find a density φ > 0 such
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that φdP is an invariant ergodic probability measure for Ab, then one has by the ergodic
theorem,

lim
t→∞

1

t

t
∫

0

F (ω(s))ds =

∫

Ω

F (ω)φ(ω) dP

a.e P b,ω or in L1(P b,ω) for almost all ω with respect to P . Let us denote by B the space
of essentially bounded maps from Ω → Rd and by D the space of probability densities
φ : Ω → R relative to P , with φ,∇φ,∇2φ essentially bounded and φ in addition having a
positive essential lower bound. Let us denote by E the following subset of B × D

E =

{

(b, φ) :
1

2
∆φ = ∇ · (b φ)

}

.

Here we assume that the equation 1
2
∆φ = ∇· (b φ) is satisfied in the weak sense. We define

the convex function H on Rd by

(3) H(p) = sup
(b,φ)∈E

[< p,EP [b(ω)φ(ω)] > −EP [L(b(ω), ω)φ(ω)]]

The corresponding variational solution of (2) is given by

u(t, x) = sup
y

[f(y)− tI(
y − x

t
)],

where I is related to H by the duality relation

I(x) = sup
p

[< p, x > −H(p)]

We will show that
lim
ǫ→0

uǫ(t, x) = u(t, x)

The first step in establishing the lower bound is the variational representation of
solutions of Hamilton-Jacobi-Bellman equations. Let C be the set of all bounded maps
c(s, x) from [0, T ] ×Rd to Rd such that sups,x ‖c(s, x)‖ <∞. Consider the diffusion Qc0,x
on Rd starting from x ∈ Rd at time 0 with time dependent generator

1

2
∆ + c(s, x) · ∇

in the time interval [0, t]. For each c ∈ C and ω ∈ Ω we consider

vc(t, x, ω) = EQ
c
0,x

(

f(x(t)) −
∫ t

0

L(c(s, x(s)), τx(s)ω)ds

)

,

If
v(t, x, ω) = sup

c∈C
vc(t, x, ω)
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then v is the solution of
∂v

∂t
=

1

2
∆v +H(∇v, τxω)

with v(0, x) = f(x).
There is a simple relation between v(t, y, ·) and v(t, 0, ·). If we define fy(x) = f(x+y),

then the solution of (1) with initial data v(0, x) = fy(x) and ω′ = τyω is given by

vy(t, x, ω′) = vy(t, x, τyω) = v(t, x+ y, ω).

In particular,

(3) v(t, y, ω) = vy(t, 0, τyω).

The solution uǫ of (1) with initial data f(x) is related to the solution vǫ of (2) with initial
data ǫ−1f(ǫx) by

uǫ(t, x, ω) = ǫvǫ

(

t

ǫ
,
x

ǫ
, ω

)

.

We, therefore, obtain the following variational expression for uǫ(t, x).

uǫ(t, x, ω) = sup
c∈C

EQ
c
0,x/ǫ

(

f (ǫx (t/ǫ)) − ǫ

∫ t/ǫ

0

L(c(s, x(s)), τx(s)ω)ds

)

= sup
c∈C

EQ
c,ǫ
0,x [f(x(t)) − ξǫ(t)]

where Qc,ǫ0,x is the diffusion on Rd starting from x corresponding to the generator

ǫ

2
∆ + c(s, x) · ∇

i.e. almost surely with respect to Qc,ǫ0,x, x(t) satisfies

x(t) = x+

∫ t

0

c(s, x(s))ds+
√
ǫβ(t)

and

ξǫ(t) =

∫ t

0

L(c(s, x(s)), τǫ−1x(s)ω)ds

Since the supremum over c ∈ C is taken for each ω one can choose c to depend on ω. A
special choice for c(t, x), one that depends on ω ∈ Ω but not on t, is the choice c(t, x) =
c(t, x, ω) = c(x, ω) = b(τxω) with (b, φ) ∈ E . With that choice we can consider either the

process {Qb,ω0,x} on Rd or the process {P b,ω} with values in Ω. It is easy to see that for

any y ∈ Rd, the translation map τ̂y on C([0, T ];Rd) defined by x(·) → x(·) + y has the
property

Qb,ω0,y = Q
b,τyω
0,0 τ̂−1

y ,
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which is essentially a restatement of (3). Since (b, φ) ∈ E , by the ergodic theorem we have

lim
ǫ→0

ǫ

∫ t
ǫ

0

b(ω(s))ds = t

∫

b(ω)φ(ω)dP = tm(b, φ)

and

lim
ǫ→0

ǫ

∫ t
ǫ

0

L(b(ω(s)), ω(s))ds = t

∫

L(b(ω), ω)φ(ω)dP = t h(b, φ)

Both limits are valid in L1(P b,ω) for P almost all ω. If we define A ⊂ Rd ×R as

A = {(m(b, φ), h(b, φ)) : (b, φ) ∈ E}
then

lim inf
ǫ→0

uǫ(t, 0, ω) ≥ [f(tm) − t h]

for every (m, h) ∈ A. Therefore, for almost all ω with respect to P

lim inf
ǫ→0

uǫ(t, 0, ω) ≥ sup
(m,h)∈A

[f(tm) − t h]

= sup
y∈Rd

(f(y)− tI(
y

t
))

= u(t, 0)

This is a very weak form of convergence and work has to be done in order to strengthen
it to locally uniform convergence.

The upper bound is first obtained for linear f and then extended to general f . By
using the convex duality and the minimax theorem the right hand side of (3) is rewritten in
terms of the dual problem. If we take f(x) =< p, x >, we have established an asymptotic
lower bound for uǫ, which is the solution

u(t, x) =< p, x > +tH(p)

of (2) with u(0, x) =< p, x >. Here

H(p) = sup
(b,φ)∈E

EP [[< p, b(ω) > −L(b(ω), ω)]φ(ω)]

= sup
φ

sup
b

inf
ψ
EP [[< p, b(ω) > −L(b(ω), ω) + Abψ]φ(ω)]

= sup
φ

inf
ψ

sup
b
EP [[< p, b(ω) > −L(b(ω), ω) + Abψ]φ(ω)]

= sup
φ

inf
ψ

sup
b
EP [[< p+ ∇ψ, b(ω) > −L(b(ω), ω) +

1

2
∆ψ]φ(ω)]

= sup
φ

inf
ψ

[H(p+ (∇ψ)(ω), ω) +
1

2
∆ψ]

= inf
ψ

sup
φ

[H(p+ (∇ψ)(ω), ω) +
1

2
∆ψ]

= inf
ψ(·)

ess supω[H(p+ (∇ψ)(ω), ω) +
1

2
(∆ψ)(ω)].
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We have used the fact that
inf
ψ
EP [Abψ φ] = −∞

unless φdP is an invariant measure for Ab, in which case it is 0. It follows that for any
δ > 0, there exists a ”ψ” such that

1

2
(∆ψ)(ω) +H(θ + (∇ψ)(ω), ω) ≤ H(θ) + δ.

The ”ψ” is a weak object and one has to do some work before we can use it as a test
function and obtain the upper bound by comparison. The interchange of inf and sup that
we have done freely needs justification.

We start with the formula

H(p) = sup
(b,φ)∈E

EP [[< p, b(ω) > −L(b(ω), ω)]φ(ω)]

If L(b, ω) grows faster than linear in b, say like a power |b|α (uniformly in ω), then H(p)
is finite and grows at most like the conjugate power |p|α′

. Since E is an inconvenient set
to work with, we rewrite this as

H(p) = sup
φ

sup
b

inf
ψ
EP [[< p, b(ω) > −L(b(ω), ω) + Abψ]φ(ω)]

The inf over ψ is −∞ unless (b, φ) ∈ E in which case it is 0. We limit the sup over b to a
bounded set Bk = {b : ‖b‖∞ ≤ k} and φ to a set Dr with 1

r
≤ φ ≤ r and |∇φ| ≤ r2. We

would then have

H(p) ≥ sup
φ∈Dr

sup
b∈Bk

inf
ψ
EP [[< p, b(ω) > −L(b(ω), ω) + Abψ]φ(ω)]

We now are in a position to interchange the sup and inf in order to rewrite

H(p) ≥ sup
φ∈Dr

inf
ψ

sup
b∈Bk

EP [[< p, b(ω) > −L(b(ω), ω) + Abψ]φ(ω)]

We can carry out the sup over b for each ω to obtain

H(p) ≥ sup
φ∈Dr

inf
ψ
EP [[

1

2
(∆ψ)(ω) +Hk((p+ ∇ψ)(ω), ω)]φ(ω)]

where
Hk(p, ω) = sup

b:|b|≤k

[< p, b > −L(b, ω)]

After integration by parts

H(p) ≥ sup
φ∈Dr

inf
ψ
EP [[−1

2
< (∇ψ)(ω),

∇φ
φ

(ω) > +Hk((p+ ∇ψ)(ω), ω)]φ(ω)]
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We can again interchange the sup and inf to get

H(p) ≥ inf
ψ

sup
φ∈Dr

EP [[−1

2
< (∇ψ)(ω),

∇φ
φ

(ω) > +Hk((p+ ∇ψ)(ω), ω)]φ(ω)]

In other words we have ψk,r such that for all φ ∈ Dr

EP [[−1

2
< (∇ψk)(ω),

∇φ
φ

(ω) > +Hk((p+ ∇ψk)(ω), ω)]φ(ω)] ≤ H(p) + δ

While Hk will only grow linearly but the rate grows with k and it is not hard to see that
because Hk ↑ H, ∇ψk,r is an uniformly integrable sequence in k. We can take a weak limit
to get Wr that satisfies EP [Wr] = 0, ∇×Wr = 0, and for all φ ∈ Dr

EP [−1

2
< Wr(ω),∇φ(ω) > +H((p+Wr)(ω), ω)φ(ω)] ≤ H(p)

It is easy to see that, under suitable growth conditions on H, Wr is bounded in Lβ(P ) for
some β > 1, and if W is a weak limit, we have W ∈ Lβ(P ), EPW = 0, ∇×W = 0 and

EP [−1

2
< W (ω),∇φ(ω) > +H((p+W )(ω), ω)φ(ω)] ≤ H(p)

for all φ ∈ ∪rDr, and therefore

ess supω[H(p+W (ω), ω) +
1

2
(∇ ·W )(ω)] ≤ H(p)

If we define W (x, ω) = W (τxω), then we can integrate it on Rd to get U(x, ω) with
U(0, ω) = 0 and ∇U = W on Rd. Then for almost all ω

H(p+ (∇U)(x, ω)) +
1

2
(∆U)(x, ω) ≤ H(p)

on Rd as a distribution. Morally, by the ergodic theorem U will be sublinear and and
< p, x > +U(x, ω) can be used as test function to bound uǫ with f(x) =< p, x > with the
help of the maximum principle. To actually do it one may have to mollify U and that can
be done provided H is regular enough to transfer the convolution inside.
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