We consider a probability space (€2, F, P) on which R? acts as a group {7, : € R4}
of measure preserving transformations. P is assumed to be ergodic under this action. Let
the function H(p,w) : R? x Q — R be convex in p for each w. L is the conjugate function

L(y,w) = Sl;p[< P,y > —H(p,w)]

We will assume some growth and regularity conditions on H or equivalently on L.

For any given € > 0 and w € 2, we consider the solution u. = u.(t, z,w) of equation

(1) 881:; — gAue + H(Vue,,w), (t,x)€[0,00) x R?,

with the initial condition u.(0,z) = f(x).

We wish to show that as € — 0 the solutions u. of 1 converge to the solution of an
effective equation

(2) u; = H(Vu)

with the same initial condition u.(0,x) = f(x)

We note that the solution u(t, z,w) of (1) is equal to ev(%, £,w), the rescaled version
of v, that solves

ove 1

ot - §Av€ + H(Vve, w), (L, 2) € [0,00) x Rd?

with v (0,2) = e 1 f(ex).

We now construct the convex function H (p) that appears in (2). The translation group
{7, : x € R%} acting on L?(Q, F, P) will have infinitesimal generators {V; : 1 < i < d}
in the coordinate directions and the corresponding Laplace operator A = > V2. For
reasonable choices of b(w) : Q — R?, the operator

1
Ap = SA+ <b(w), V>

will define a Markov process on (). Construction of this Markov Process is not difficult.
Given a starting point w € €2, we define b(x,w) : RY — R¢ by b(x,w) = b(7,w). This allows
us to define the diffusion ngg, starting from 0 at time 0, in the random environment that
corresponds to the generator

1
§A+ < b(m,w),v >

The diffusion is then lifted to € by evolving w randomly in time by the rule w(t) = 7, )w.

The induced measure P*“ defines the Markov process on Q that corresponds to Ap. The
problem of finding the invariant measures for the process P»“ with generator A, on (Q is
very hard and nearly impossible to solve. However, if we can find a density ¢ > 0 such
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that ¢ dP is an invariant ergodic probability measure for Ay, then one has by the ergodic

theorem,
t
1

im ¢ [ Fle(s)ds = | Fw)ofw)ap

t—o00
0

a.e P» or in L'(P"%) for almost all w with respect to P. Let us denote by B the space
of essentially bounded maps from  — R?% and by D the space of probability densities
¢ : Q) — R relative to P, with ¢, V¢, V2¢ essentially bounded and ¢ in addition having a
positive essential lower bound. Let us denote by £ the following subset of B x D

e~ {wo):380-v-00)}.

Here we assume that the equation %Aqf) = V(b o) is satisfied in the weak sense. We define
the convex function H on R? by

(3) H(p) = sup [<p,B'b(w)p(w)] > —E"[L(b(w),w)d(w)]]
(b,p)e€

The corresponding variational solution of (2) is given by

u(t, ) = supl (y) — 17(* ),

where 7 is related to H by the duality relation

I(z) = St;p[< p,x > —H(p)]

We will show that
lim u (¢, ) = u(t, )

€E—

The first step in establishing the lower bound is the variational representation of
solutions of Hamilton-Jacobi-Bellman equations. Let C be the set of all bounded maps
c(s,x) from [0,T] x R? to R? such that supy ;. [|c(s, 7)|| < oo. Consider the diffusion QF ,

on R? starting from x € R? at time 0 with time dependent generator
1
§A +c(s,z)-V

in the time interval [0, ¢]. For each ¢ € C and w € 2 we consider

et n,0) = B9 (£0(0) = [ Lletss (6D o)

If

v(t, z,w) = supv.(t, z,w)
ceC
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then v is the solution of

ov 1
— ==-Av+H w
5 = 500 + H(Vv, T,w)

with v(0, ) = f(x).
There is a simple relation between v(¢,y, -) and v(t, 0,-). If we define f¥(z) = f(z+vy),
then the solution of (1) with initial data v(0,z) = f¥(x) and w’ = T,w is given by

Vv (t,z,w') =0V (t, z, Tyw) = vtz + y,w).

In particular,

(3) v(t,y,w) =vY(t, 0, Tyw).

The solution u, of (1) with initial data f(z) is related to the solution v, of (2) with initial

data e~ ! f(ex) by
t
ue(t, x,w) = €ve (—, —,w) .
€ €

We, therefore, obtain the following variational expression for u.(t, x).

. t/e
uc(t, 2, w) = sup B9/ (f (ex (t/e)) — E/o L(c(s,x(s)),TI(s)w)ds>

ceC

— sup EQ0l= [f(z(t)) —&()]

ceC

where Qg”; is the diffusion on R? starting from 2 corresponding to the generator
€
§A +c(s,z)-V

i.e. almost surely with respect to QO ", x(t) satisfies

£(t) =z + / (s, 2(s))ds + V/eB(t)

and
E(t) = /O L(e(s, 2(5)), 7o 1a(s))ds

Since the supremum over ¢ € C is taken for each w one can choose ¢ to depend on w. A
special choice for ¢(t,z), one that depends on w € Q but not on ¢, is the choice c¢(t,x) =
c(t,r,w) = c(z,w) = b(r,w) with (b,¢) € £. With that choice we can consider either the
process {Qg’fg‘;} on RY or the process {P»“} with values in . It is easy to see that for
any y € R% the translation map 7, on C([0,7]; R%) defined by x(-) — z(-) + y has the
property

Qve = Qe
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which is essentially a restatement of (3). Since (b, ¢) € &, by the ergodic theorem we have

lim e / " b(w(s))ds = t / b(w)p(w)dP = t m(b, d)

e—0 0

and

lim 6/0 L(b(w(s)),w(s))ds = t/L(b(w), w)p(w)dP =t h(b, @)

e—0

Both limits are valid in L'(P>“) for P almost all w. If we define A C R? x R as

A = {(m(b, ¢),h(b,9)) : (b,¢) € £}
then
liminf u(¢,0,w) > [f(t m) — t A

e—0

for every (m,h) € A. Therefore, for almost all w with respect to P

liminfuc(¢t,0,w) > sup [f(tm)—th]
=0 (m,h)eA

Y
= sup (£() ~ 17(%))
yeRd
= u(t,0)
This is a very weak form of convergence and work has to be done in order to strengthen
it to locally uniform convergence.

The upper bound is first obtained for linear f and then extended to general f. By
using the convex duality and the minimax theorem the right hand side of (3) is rewritten in
terms of the dual problem. If we take f(z) =< p,z >, we have established an asymptotic
lower bound for u., which is the solution

u(t,x) =< p,x > +tH(p)

of (2) with u(0,z) =< p,x >. Here

H(p) = sup BP[[<p,b(w) > —L(b(w),w)]¢(w)]
(b,p)eE

= supsup inf EP[[< p,b(w) > =L(b(w),w) + Ap]d(w)]

= sup inf sup EP[[< p,b(w) > —L(b(w),w) + Aptp]p(w)]

— supintsup EP[[< p+ Vb, b(w) > —L(b(w), o) + ~ Ad]é(w)
o Y b 2

— supinf[H (p + (Vo) (w),w) + 5 A0
¢ v 2

= inf suplH(p+ (Vo)().) + 5A0]
o

‘ 1
= 11/Jr(1f) ess sup,[H(p + (Vi) (w),w) + §(A¢)(w)]
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We have used the fact that
igf EP[Ap) ¢] = —o0

unless ¢ dP is an invariant measure for A, in which case it is 0. It follows that for any
0 > 0, there exists a 71" such that

S(A0) () + HO + (V) (w),w) < F(6) +6

The 71" is a weak object and one has to do some work before we can use it as a test
function and obtain the upper bound by comparison. The interchange of inf and sup that
we have done freely needs justification.

We start with the formula

H(p) = sup E"[[<p,bw) > —L(bw),w)]d(w)]
(b,¢)€E

If L(b,w) grows faster than linear in b, say like a power |b|* (uniformly in w), then H(p)
is finite and grows at most like the conjugate power |p|* . Since £ is an inconvenient set
to work with, we rewrite this as

H(p) = SL;p Sl;p iﬁf EP[[< p,b(w) > —L(b(w),w) + Apb]p(w)]

The inf over ¢ is —oo unless (b, ¢) € € in which case it is 0. We limit the sup over b to a
bounded set By = {b: [|b]|c < k} and ¢ to a set D, with 2 < ¢ < r and |[V¢| < r2. We
would then have

H(p) > sup sup inf E”[[< p,b(w) > —L(b(w),w) + Ap)]p(w)]
€D, beBy ¥

We now are in a position to interchange the sup and inf in order to rewrite

H(p) > sup inf sup E”[[< p,b(w) > —L(b(w),w) + Apth]p(w)]
$eD, ¥ beBy

We can carry out the sup over b for each w to obtain

F(p) > sup inf EP[[2 (M) () + Hi((p + V) (@), w)]$(w)]
€D, V¥ 2

where
Hk(p,CU> = Ssup [< b, b> _L(b7w)]
b:|b| <k
After integration by parts

H(p) > sup inf E7[— 2 < (Vo)) (@), ~2(w) > +Hi((p+ Vi) (w), w)]$(w)
beD, ¢ 2 )
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We can again interchange the sup and inf to get

H(p) 2 inf sup BF[—3 < (V)(). 22) > +Hil(p + V4)(),w)o(w)
$€D,

In other words we have 1)}, , such that for all ¢ € D,

BP[l— < (Vo)) ~ @) > +Hul(p + V) ), ) é(w)] < () + 8

While Hj, will only grow linearly but the rate grows with k and it is not hard to see that
because Hy, T H, Vi, , is an uniformly integrable sequence in k. We can take a weak limit
to get W, that satisfies EX[W,] =0, V x W,. = 0, and for all ¢ € D,

BP[— < W, (w), Volw) > +H((p+ W,) (), w)o(w)] < Hp)

It is easy to see that, under suitable growth conditions on H, W, is bounded in Lg(P) for
some (3 > 1, and if W is a weak limit, we have W € Lg(P), EYW =0, V x W =0 and

BP[-3 < W(), Vo() > +H((p + W)(w), ©)o(w)] < H()
for all ¢ € U, D,., and therefore
ess sup, [H(p + W (w),) + (V- W)()] < F(p)

If we define W(z,w) = W(r,w), then we can integrate it on R? to get U(x,w) with
U(0,w) =0 and VU = W on R?. Then for almost all w

Hp-+ (VU)(a,)) + 3 (AU)(w,) < F(p)

on R? as a distribution. Morally, by the ergodic theorem U will be sublinear and and
< p,x > +U(z,w) can be used as test function to bound u, with f(z) =< p,x > with the
help of the maximum principle. To actually do it one may have to mollify U and that can
be done provided H is regular enough to transfer the convolution inside.



