

We consider a probability space (Ω, \mathcal{F}, P) on which R^d acts as a group $\{\tau_x : x \in R^d\}$ of measure preserving transformations. P is assumed to be ergodic under this action. Let the function $H(p, \omega) : R^d \times \Omega \rightarrow R$ be convex in p for each ω . L is the conjugate function

$$L(y, \omega) = \sup_p [\langle p, y \rangle - H(p, \omega)]$$

We will assume some growth and regularity conditions on H or equivalently on L .

For any given $\epsilon > 0$ and $\omega \in \Omega$, we consider the solution $u_\epsilon = u_\epsilon(t, x, \omega)$ of equation

$$(1) \quad \frac{\partial u_\epsilon}{\partial t} = \frac{\epsilon}{2} \Delta u_\epsilon + H(\nabla u_\epsilon, \tau_{\frac{x}{\epsilon}} \omega), \quad (t, x) \in [0, \infty) \times R^d,$$

with the initial condition $u_\epsilon(0, x) = f(x)$.

We wish to show that as $\epsilon \rightarrow 0$ the solutions u_ϵ of 1 converge to the solution of an effective equation

$$(2) \quad u_t = \overline{H}(\nabla u)$$

with the same initial condition $u_\epsilon(0, x) = f(x)$

We note that the solution $u_\epsilon(t, x, \omega)$ of (1) is equal to $\epsilon v_\epsilon(\frac{t}{\epsilon}, \frac{x}{\epsilon}, \omega)$, the rescaled version of v_ϵ that solves

$$\frac{\partial v_\epsilon}{\partial t} = \frac{1}{2} \Delta v_\epsilon + H(\nabla v_\epsilon, \tau_x \omega), \quad (t, x) \in [0, \infty) \times R^d,$$

with $v_\epsilon(0, x) = \epsilon^{-1} f(\epsilon x)$.

We now construct the convex function $\overline{H}(p)$ that appears in (2). The translation group $\{\tau_x : x \in R^d\}$ acting on $L^2(\Omega, \mathcal{F}, P)$ will have infinitesimal generators $\{\nabla_i : 1 \leq i \leq d\}$ in the coordinate directions and the corresponding Laplace operator $\Delta = \sum_i \nabla_i^2$. For reasonable choices of $b(\omega) : \Omega \rightarrow R^d$, the operator

$$\mathcal{A}_b = \frac{1}{2} \Delta + \langle b(\omega), \nabla \rangle$$

will define a Markov process on Ω . Construction of this Markov Process is not difficult. Given a starting point $\omega \in \Omega$, we define $b(x, \omega) : R^d \rightarrow R^d$ by $b(x, \omega) = b(\tau_x \omega)$. This allows us to define the diffusion $Q_{0,0}^{b,\omega}$, starting from 0 at time 0, in the random environment that corresponds to the generator

$$\frac{1}{2} \Delta + \langle b(x, \omega), \nabla \rangle$$

The diffusion is then lifted to Ω by evolving ω randomly in time by the rule $\omega(t) = \tau_{x(t)} \omega$. The induced measure $P^{b,\omega}$ defines the Markov process on Ω that corresponds to \mathcal{A}_b . The problem of finding the invariant measures for the process $P^{b,\omega}$ with generator \mathcal{A}_b on Ω is very hard and nearly impossible to solve. However, if we can find a density $\phi > 0$ such

that ϕdP is an invariant ergodic probability measure for \mathcal{A}_b , then one has by the ergodic theorem,

$$\lim_{t \rightarrow \infty} \frac{1}{t} \int_0^t F(\omega(s)) ds = \int_{\Omega} F(\omega) \phi(\omega) dP$$

a.e $P^{b,\omega}$ or in $L^1(P^{b,\omega})$ for almost all ω with respect to P . Let us denote by \mathcal{B} the space of essentially bounded maps from $\Omega \rightarrow \mathbb{R}^d$ and by \mathcal{D} the space of probability densities $\phi : \Omega \rightarrow \mathbb{R}$ relative to P , with $\phi, \nabla\phi, \nabla^2\phi$ essentially bounded and ϕ in addition having a positive essential lower bound. Let us denote by \mathcal{E} the following subset of $\mathcal{B} \times \mathcal{D}$

$$\mathcal{E} = \left\{ (b, \phi) : \frac{1}{2} \Delta \phi = \nabla \cdot (b \phi) \right\}.$$

Here we assume that the equation $\frac{1}{2} \Delta \phi = \nabla \cdot (b \phi)$ is satisfied in the weak sense. We define the convex function \overline{H} on \mathbb{R}^d by

$$(3) \quad \overline{H}(p) = \sup_{(b, \phi) \in \mathcal{E}} [\langle p, E^P[b(\omega) \phi(\omega)] \rangle - E^P[L(b(\omega), \omega) \phi(\omega)]]$$

The corresponding variational solution of (2) is given by

$$u(t, x) = \sup_y [f(y) - t \mathcal{I}\left(\frac{y-x}{t}\right)],$$

where \mathcal{I} is related to \overline{H} by the duality relation

$$I(x) = \sup_p [\langle p, x \rangle - \overline{H}(p)]$$

We will show that

$$\lim_{\epsilon \rightarrow 0} u_{\epsilon}(t, x) = u(t, x)$$

The first step in establishing the lower bound is the variational representation of solutions of Hamilton-Jacobi-Bellman equations. Let \mathcal{C} be the set of all bounded maps $c(s, x)$ from $[0, T] \times \mathbb{R}^d$ to \mathbb{R}^d such that $\sup_{s, x} \|c(s, x)\| < \infty$. Consider the diffusion $Q_{0,x}^c$ on \mathbb{R}^d starting from $x \in \mathbb{R}^d$ at time 0 with time dependent generator

$$\frac{1}{2} \Delta + c(s, x) \cdot \nabla$$

in the time interval $[0, t]$. For each $c \in \mathcal{C}$ and $\omega \in \Omega$ we consider

$$v_c(t, x, \omega) = E^{Q_{0,x}^c} \left(f(x(t)) - \int_0^t L(c(s, x(s)), \tau_{x(s)} \omega) ds \right),$$

If

$$v(t, x, \omega) = \sup_{c \in \mathcal{C}} v_c(t, x, \omega)$$

then v is the solution of

$$\frac{\partial v}{\partial t} = \frac{1}{2} \Delta v + H(\nabla v, \tau_x \omega)$$

with $v(0, x) = f(x)$.

There is a simple relation between $v(t, y, \cdot)$ and $v(t, 0, \cdot)$. If we define $f^y(x) = f(x+y)$, then the solution of (1) with initial data $v(0, x) = f^y(x)$ and $\omega' = \tau_y \omega$ is given by

$$v^y(t, x, \omega') = v^y(t, x, \tau_y \omega) = v(t, x+y, \omega).$$

In particular,

$$(3) \quad v(t, y, \omega) = v^y(t, 0, \tau_y \omega).$$

The solution u_ϵ of (1) with initial data $f(x)$ is related to the solution v_ϵ of (2) with initial data $\epsilon^{-1}f(\epsilon x)$ by

$$u_\epsilon(t, x, \omega) = \epsilon v_\epsilon \left(\frac{t}{\epsilon}, \frac{x}{\epsilon}, \omega \right).$$

We, therefore, obtain the following variational expression for $u_\epsilon(t, x)$.

$$\begin{aligned} u_\epsilon(t, x, \omega) &= \sup_{c \in \mathcal{C}} E^{Q_{0,x/\epsilon}^c} \left(f(\epsilon x(t/\epsilon)) - \epsilon \int_0^{t/\epsilon} L(c(s, x(s)), \tau_{x(s)} \omega) ds \right) \\ &= \sup_{c \in \mathcal{C}} E^{Q_{0,x}^{c,\epsilon}} [f(x(t)) - \xi_\epsilon(t)] \end{aligned}$$

where $Q_{0,x}^{c,\epsilon}$ is the diffusion on R^d starting from x corresponding to the generator

$$\frac{\epsilon}{2} \Delta + c(s, x) \cdot \nabla$$

i.e. almost surely with respect to $Q_{0,x}^{c,\epsilon}$, $x(t)$ satisfies

$$x(t) = x + \int_0^t c(s, x(s)) ds + \sqrt{\epsilon} \beta(t)$$

and

$$\xi_\epsilon(t) = \int_0^t L(c(s, x(s)), \tau_{\epsilon^{-1}x(s)} \omega) ds$$

Since the supremum over $c \in \mathcal{C}$ is taken for each ω one can choose c to depend on ω . A special choice for $c(t, x)$, one that depends on $\omega \in \Omega$ but not on t , is the choice $c(t, x) = c(t, x, \omega) = c(x, \omega) = b(\tau_x \omega)$ with $(b, \phi) \in \mathcal{E}$. With that choice we can consider either the process $\{Q_{0,x}^{b,\omega}\}$ on R^d or the process $\{P^{b,\omega}\}$ with values in Ω . It is easy to see that for any $y \in R^d$, the translation map $\hat{\tau}_y$ on $C([0, T]; R^d)$ defined by $x(\cdot) \rightarrow x(\cdot) + y$ has the property

$$Q_{0,y}^{b,\omega} = Q_{0,0}^{b,\tau_y \omega} \hat{\tau}_y^{-1},$$

which is essentially a restatement of (3). Since $(b, \phi) \in \mathcal{E}$, by the ergodic theorem we have

$$\lim_{\epsilon \rightarrow 0} \epsilon \int_0^{\frac{t}{\epsilon}} b(\omega(s))ds = t \int b(\omega)\phi(\omega)dP = t m(b, \phi)$$

and

$$\lim_{\epsilon \rightarrow 0} \epsilon \int_0^{\frac{t}{\epsilon}} L(b(\omega(s)), \omega(s))ds = t \int L(b(\omega), \omega)\phi(\omega)dP = t h(b, \phi)$$

Both limits are valid in $L^1(P^{b, \omega})$ for P almost all ω . If we define $\mathbf{A} \subset R^d \times R$ as

$$\mathbf{A} = \{(m(b, \phi), h(b, \phi)) : (b, \phi) \in \mathcal{E}\}$$

then

$$\liminf_{\epsilon \rightarrow 0} u_\epsilon(t, 0, \omega) \geq [f(t m) - t h]$$

for every $(m, h) \in \mathbf{A}$. Therefore, for almost all ω with respect to P

$$\begin{aligned} \liminf_{\epsilon \rightarrow 0} u_\epsilon(t, 0, \omega) &\geq \sup_{(m, h) \in \mathbf{A}} [f(t m) - t h] \\ &= \sup_{y \in R^d} (f(y) - t \mathcal{I}(\frac{y}{t})) \\ &= u(t, 0) \end{aligned}$$

This is a very weak form of convergence and work has to be done in order to strengthen it to locally uniform convergence.

The upper bound is first obtained for linear f and then extended to general f . By using the convex duality and the minimax theorem the right hand side of (3) is rewritten in terms of the dual problem. If we take $f(x) = \langle p, x \rangle$, we have established an asymptotic lower bound for u_ϵ , which is the solution

$$u(t, x) = \langle p, x \rangle + t \overline{H}(p)$$

of (2) with $u(0, x) = \langle p, x \rangle$. Here

$$\begin{aligned} \overline{H}(p) &= \sup_{(b, \phi) \in \mathcal{E}} E^P[\langle p, b(\omega) \rangle - L(b(\omega), \omega)\phi(\omega)] \\ &= \sup_{\phi} \sup_b \inf_{\psi} E^P[\langle p, b(\omega) \rangle - L(b(\omega), \omega) + \mathcal{A}_b \psi]\phi(\omega) \\ &= \sup_{\phi} \inf_{\psi} \sup_b E^P[\langle p, b(\omega) \rangle - L(b(\omega), \omega) + \mathcal{A}_b \psi]\phi(\omega) \\ &= \sup_{\phi} \inf_{\psi} \sup_b E^P[\langle p + \nabla \psi(\omega), b(\omega) \rangle - L(b(\omega), \omega) + \frac{1}{2} \Delta \psi]\phi(\omega) \\ &= \sup_{\phi} \inf_{\psi} [H(p + (\nabla \psi)(\omega), \omega) + \frac{1}{2} \Delta \psi] \\ &= \inf_{\psi} \sup_{\phi} [H(p + (\nabla \psi)(\omega), \omega) + \frac{1}{2} \Delta \psi] \\ &= \inf_{\psi(\cdot)} \text{ess sup}_{\omega} [H(p + (\nabla \psi)(\omega), \omega) + \frac{1}{2} (\Delta \psi)(\omega)]. \end{aligned}$$

We have used the fact that

$$\inf_{\psi} E^P[\mathcal{A}_b \psi \phi] = -\infty$$

unless ϕdP is an invariant measure for \mathcal{A}_b , in which case it is 0. It follows that for any $\delta > 0$, there exists a "ψ" such that

$$\frac{1}{2}(\Delta\psi)(\omega) + H(\theta + (\nabla\psi)(\omega), \omega) \leq \overline{H}(\theta) + \delta.$$

The "ψ" is a weak object and one has to do some work before we can use it as a test function and obtain the upper bound by comparison. The interchange of inf and sup that we have done freely needs justification.

We start with the formula

$$\overline{H}(p) = \sup_{(b, \phi) \in \mathcal{E}} E^P[[< p, b(\omega) > -L(b(\omega), \omega)]\phi(\omega)]$$

If $L(b, \omega)$ grows faster than linear in b , say like a power $|b|^\alpha$ (uniformly in ω), then $\overline{H}(p)$ is finite and grows at most like the conjugate power $|p|^\alpha$. Since \mathcal{E} is an inconvenient set to work with, we rewrite this as

$$\overline{H}(p) = \sup_{\phi} \sup_b \inf_{\psi} E^P[[< p, b(\omega) > -L(b(\omega), \omega) + \mathcal{A}_b \psi]\phi(\omega)]$$

The inf over ψ is $-\infty$ unless $(b, \phi) \in \mathcal{E}$ in which case it is 0. We limit the sup over b to a bounded set $\mathcal{B}_k = \{b : \|b\|_\infty \leq k\}$ and ϕ to a set \mathcal{D}_r with $\frac{1}{r} \leq \phi \leq r$ and $|\nabla\phi| \leq r^2$. We would then have

$$\overline{H}(p) \geq \sup_{\phi \in \mathcal{D}_r} \sup_{b \in \mathcal{B}_k} \inf_{\psi} E^P[[< p, b(\omega) > -L(b(\omega), \omega) + \mathcal{A}_b \psi]\phi(\omega)]$$

We now are in a position to interchange the sup and inf in order to rewrite

$$\overline{H}(p) \geq \sup_{\phi \in \mathcal{D}_r} \inf_{\psi} \sup_{b \in \mathcal{B}_k} E^P[[< p, b(\omega) > -L(b(\omega), \omega) + \mathcal{A}_b \psi]\phi(\omega)]$$

We can carry out the sup over b for each ω to obtain

$$\overline{H}(p) \geq \sup_{\phi \in \mathcal{D}_r} \inf_{\psi} E^P[[\frac{1}{2}(\Delta\psi)(\omega) + H_k((p + \nabla\psi)(\omega), \omega)]\phi(\omega)]$$

where

$$H_k(p, \omega) = \sup_{b:|b| \leq k} [< p, b > -L(b, \omega)]$$

After integration by parts

$$\overline{H}(p) \geq \sup_{\phi \in \mathcal{D}_r} \inf_{\psi} E^P[[-\frac{1}{2} < (\nabla\psi)(\omega), \frac{\nabla\phi}{\phi}(\omega) > + H_k((p + \nabla\psi)(\omega), \omega)]\phi(\omega)]$$

We can again interchange the sup and inf to get

$$\overline{H}(p) \geq \inf_{\psi} \sup_{\phi \in \mathcal{D}_r} E^P \left[\left[-\frac{1}{2} \langle (\nabla \psi)(\omega), \frac{\nabla \phi}{\phi}(\omega) \rangle + H_k((p + \nabla \psi)(\omega), \omega) \right] \phi(\omega) \right]$$

In other words we have $\psi_{k,r}$ such that for all $\phi \in \mathcal{D}_r$

$$E^P \left[\left[-\frac{1}{2} \langle (\nabla \psi_k)(\omega), \frac{\nabla \phi}{\phi}(\omega) \rangle + H_k((p + \nabla \psi_k)(\omega), \omega) \right] \phi(\omega) \right] \leq \overline{H}(p) + \delta$$

While H_k will only grow linearly but the rate grows with k and it is not hard to see that because $H_k \uparrow H$, $\nabla \psi_{k,r}$ is an uniformly integrable sequence in k . We can take a weak limit to get W_r that satisfies $E^P[W_r] = 0$, $\nabla \times W_r = 0$, and for all $\phi \in \mathcal{D}_r$

$$E^P \left[\left[-\frac{1}{2} \langle W_r(\omega), \nabla \phi(\omega) \rangle + H((p + W_r)(\omega), \omega) \phi(\omega) \right] \right] \leq \overline{H}(p)$$

It is easy to see that, under suitable growth conditions on H , W_r is bounded in $L_\beta(P)$ for some $\beta > 1$, and if W is a weak limit, we have $W \in L_\beta(P)$, $E^P W = 0$, $\nabla \times W = 0$ and

$$E^P \left[\left[-\frac{1}{2} \langle W(\omega), \nabla \phi(\omega) \rangle + H((p + W)(\omega), \omega) \phi(\omega) \right] \right] \leq \overline{H}(p)$$

for all $\phi \in \cup_r \mathcal{D}_r$, and therefore

$$ess \sup_{\omega} [H(p + W(\omega), \omega) + \frac{1}{2} (\nabla \cdot W)(\omega)] \leq \overline{H}(p)$$

If we define $W(x, \omega) = W(\tau_x \omega)$, then we can integrate it on R^d to get $U(x, \omega)$ with $U(0, \omega) = 0$ and $\nabla U = W$ on R^d . Then for almost all ω

$$H(p + (\nabla U)(x, \omega)) + \frac{1}{2} (\Delta U)(x, \omega) \leq \overline{H}(p)$$

on R^d as a distribution. Morally, by the ergodic theorem U will be sublinear and $\langle p, x \rangle + U(x, \omega)$ can be used as test function to bound u_ϵ with $f(x) = \langle p, x \rangle$ with the help of the maximum principle. To actually do it one may have to mollify U and that can be done provided H is regular enough to transfer the convolution inside.