
Lecture 5.

Some times we want to estimate a function f(θ) of θ rather than θ itself. If
f is a smooth function and tn(x1, . . . , xn) is an estimate of θ with

Eθ[(tn − θ)2] ' v(θ)

n

by Taylor expansion we saw that f(tn)−f(θ) = f ′(θ)(tn−θ) and we expect

Eθ[(f(tn)− f(θ))2] ' [f ′(θ)]2v(θ)

n

The Cramér-Rao inequality becomes

Eθ[f(tn)] = fn(θ)∑
x1,...,xn

[f(tn)
∂φ(θ, x1, . . . , xn)

∂θ
)] = f ′n(θ)

∑
x1,...,xn

[f(tn)
∂ log φ(θ, x1, . . . , xn)

∂θ
φ(θ, x1, . . . , xn)] = f ′n(θ)

Eθ[
∂ log φ(θ, x1, . . . , xn)

∂θ
φ(θ, x1, . . . , xn)] = 0

Eθ[(f(tn)− f(θ))
∂ log φ(θ, x1, . . . , xn)

∂θ
φ(θ, x1, . . . , xn)] = f ′n(θ)

Eθ[(f(tn)− f(θ))2] ≥ [f ′(θ)]2

nI(θ)

Maximum Likelihood estimate.

The maximum likelihood estimation is perhaps the most important method
of estimation for parametric families. Whether it is probabilities p(θ, x) or
densities f(θ, x) the likelihood function is the joint probability or density
and is given by

L(θ, x1, x2, . . . , xn) = Πip(θ, xi)

or
L(θ, x1, x2, . . . , xn) = Πif(θ, xi)
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Given the observed values (x1, x2, . . . , xn) this is viewed as a function of θ

and the value θ̂ = t(x1, . . . , xn) that maximizes it is taken as the estimate
of θ.

Examples.

1. Binomial. With t =
∑
xi the number of heads

L(θ,x) = θt(1− θ)n−t

d logL

dθ
= 0

t

θ̂
=
n− t
1− θ̂

reduces to θ̂ = t
n

2. Normal family with known variance equal to 1,

f(µ, x) =
1√
2π

exp[− (x− µ)2

2
]

logL(µ, x1, . . . , xn) = −1

2

n∑
i=1

(xi − µ)2 − n

2
log 2π

∂ logL

∂µ
=

n∑
i=1

(xi − µ) = 0

µ̂ = x̄ =
1

n

n∑
i=1

xi

3. Normal family with mean 0 but unknown variance θ.

f(θ, x) =
1√
2πθ

exp[−x
2

2θ
]

logL(θ, x1, . . . , xn) = − 1

2θ

n∑
i=1

x2i −
n

2
log 2π − n

2
log θ
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∂ logL

∂θ
=

1

2θ2

n∑
i=1

x2i −
n

2θ
= 0

θ̂ =
1

n

n∑
i=1

x2i

4. Gamma family.

f(p, x) =
1

Γ(p)
e−xxp−1

L(p, x1, . . . , xn) = −n log Γ(p)−
n∑
i=1

xi + (p− 1)
n∑
i=1

log xi

∂ logL

∂p
= −nΓ′(p)

Γ(p)
+

n∑
i=1

log xi = 0

p̂ is the solution of the equation

Γ′(p)

Γ(p)
=

1

n

n∑
i=1

log xi

Properties of a good estimator.

1. Consistency.
Pθ[|tn − θ| ≥ δ]→ 0

Enough if Eθ[|tn − θ|2]→ 0.

2. Efficiency

The variance Eθ[|tn − θ|2] must be as small as possible. If the Cramér-Rao
bound is approached it is good. Asymptotically efficient.

nEθ[(tn − θ)2]→ 1

I(θ)

3. It is good to know the asymptotic distribution of tn. A central limit
theorem of the form

P [
√
n(tn − θ)

√
I(θ) ≤ x]→ Φ(x) =

1√
2π

∫ x

−∞
exp[−y

2

2
]dy

3



will be useful.

4. If there is a sufficient statistic MLE is a function of it.

Theorem. If f(θ, x) is nice then the MLE satisfies 1,2 and 3.

Explanation. Why does it work? Consider the function log p(θ, x) as a
function of θ and compute its expectation under a particular value θ0 of θ.

Eθ0 [log p(θ, x)]− Eθ0 [log p(θ0, x)] = Eθ0

[
log

p(θ, x)

p(θ0, x)

]
≤ logEθ0

[
p(θ, x)

p(θ0, x)

]
= log

∑
x

p(θ, x)

= 0

If the sample is from the poulation with θ = θ0 by the law of large numbers
the function

1

n
logL(θ, x1, x2, . . . , xn) ' Eθ0 [log p(θ, x)]

has its maximum at θ0. Therefore L(θ, x1, x2, . . . , xn) is likely to have its
maximum close to θ0.

More Examples.

f(θ, x) =
1

θ
; 0 ≤ x ≤ θ

f(θ, x1, . . . , xn) =
1

θn

θ wants to be as small as possible. But θ ≥ xi for every i.

tn(x1, . . . , xn) = max{x1, . . . , xn}

Multiparameter families

1.

f(µ, θ, x) =
1√
2πθ

exp[− (x− µ)2

2θ
]
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logL(θ, x1, . . . , xn) = −n
2

log 2π − n

2
log θ − 1

2θ

n∑
i=1

(xi − µ)2]

∂ logL

∂θ
= 0,

∂ logL

∂µ
= 0

θ =
1

n

n∑
i=1

(xi − µ)2;
n∑
i=1

(xi − µ) = 0

µ̂ = x̄ =
1

n

n∑
i=1

xi

θ̂ = s2 =
1

n

n∑
i=1

(xi − x̄)2 =
1

n

n∑
i=1

x2i − x̄2

2. Multivariate Normal families. x = {x1, . . . , xd}, µ = µ1, . . . , µd ∈ Rd.
A = {ar,s)} is a symmetric positive definite d× d matrix.

f(µ,A, x) = (
1√

2π|A|
)d exp[−< x,A−1x >

2
]

∫
Rd

xrf(µ,A, x)dx = µr∫
Rd

(xr − µr)(xs − µs)f(µ,A, x)dx = ar,s

µ̂r = x̄r =
1

n

n∑
i=1

xi,r

âr,s =
1

n

n∑
i=1

(xi,r − µr)(xi,s − µs) =
1

n

n∑
i=1

xi,rxi,s − x̄rx̄s
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