

Lecture 5.

Some times we want to estimate a function $f(\theta)$ of θ rather than θ itself. If f is a smooth function and $t_n(x_1, \dots, x_n)$ is an estimate of θ with

$$E_\theta[(t_n - \theta)^2] \simeq \frac{v(\theta)}{n}$$

by Taylor expansion we saw that $f(t_n) - f(\theta) = f'(\theta)(t_n - \theta)$ and we expect

$$E_\theta[(f(t_n) - f(\theta))^2] \simeq \frac{[f'(\theta)]^2 v(\theta)}{n}$$

The Cramér-Rao inequality becomes

$$\begin{aligned} E_\theta[f(t_n)] &= f_n(\theta) \\ \sum_{x_1, \dots, x_n} [f(t_n) \frac{\partial \phi(\theta, x_1, \dots, x_n)}{\partial \theta}] &= f'_n(\theta) \\ \sum_{x_1, \dots, x_n} [f(t_n) \frac{\partial \log \phi(\theta, x_1, \dots, x_n)}{\partial \theta} \phi(\theta, x_1, \dots, x_n)] &= f'_n(\theta) \\ E_\theta \left[\frac{\partial \log \phi(\theta, x_1, \dots, x_n)}{\partial \theta} \phi(\theta, x_1, \dots, x_n) \right] &= 0 \\ E_\theta[(f(t_n) - f(\theta)) \frac{\partial \log \phi(\theta, x_1, \dots, x_n)}{\partial \theta} \phi(\theta, x_1, \dots, x_n)] &= f'_n(\theta) \\ E_\theta[(f(t_n) - f(\theta))^2] &\geq \frac{[f'(\theta)]^2}{n I(\theta)} \end{aligned}$$

Maximum Likelihood estimate.

The maximum likelihood estimation is perhaps the most important method of estimation for parametric families. Whether it is probabilities $p(\theta, x)$ or densities $f(\theta, x)$ the likelihood function is the joint probability or density and is given by

$$L(\theta, x_1, x_2, \dots, x_n) = \prod_i p(\theta, x_i)$$

or

$$L(\theta, x_1, x_2, \dots, x_n) = \prod_i f(\theta, x_i)$$

Given the observed values (x_1, x_2, \dots, x_n) this is viewed as a function of θ and the value $\hat{\theta} = t(x_1, \dots, x_n)$ that maximizes it is taken as the estimate of θ .

Examples.

1. Binomial. With $t = \sum x_i$ the number of heads

$$L(\theta, \mathbf{x}) = \theta^t (1 - \theta)^{n-t}$$

$$\frac{d \log L}{d\theta} = 0$$

$$\frac{t}{\hat{\theta}} = \frac{n-t}{1-\hat{\theta}}$$

reduces to $\hat{\theta} = \frac{t}{n}$

2. Normal family with known variance equal to 1,

$$f(\mu, x) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{(x - \mu)^2}{2}\right]$$

$$\log L(\mu, x_1, \dots, x_n) = -\frac{1}{2} \sum_{i=1}^n (x_i - \mu)^2 - \frac{n}{2} \log 2\pi$$

$$\frac{\partial \log L}{\partial \mu} = \sum_{i=1}^n (x_i - \mu) = 0$$

$$\hat{\mu} = \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

3. Normal family with mean 0 but unknown variance θ .

$$f(\theta, x) = \frac{1}{\sqrt{2\pi\theta}} \exp\left[-\frac{x^2}{2\theta}\right]$$

$$\log L(\theta, x_1, \dots, x_n) = -\frac{1}{2\theta} \sum_{i=1}^n x_i^2 - \frac{n}{2} \log 2\pi - \frac{n}{2} \log \theta$$

$$\frac{\partial \log L}{\partial \theta} = \frac{1}{2\theta^2} \sum_{i=1}^n x_i^2 - \frac{n}{2\theta} = 0$$

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^n x_i^2$$

4. Gamma family.

$$f(p, x) = \frac{1}{\Gamma(p)} e^{-x} x^{p-1}$$

$$L(p, x_1, \dots, x_n) = -n \log \Gamma(p) - \sum_{i=1}^n x_i + (p-1) \sum_{i=1}^n \log x_i$$

$$\frac{\partial \log L}{\partial p} = -n \frac{\Gamma'(p)}{\Gamma(p)} + \sum_{i=1}^n \log x_i = 0$$

\hat{p} is the solution of the equation

$$\frac{\Gamma'(p)}{\Gamma(p)} = \frac{1}{n} \sum_{i=1}^n \log x_i$$

Properties of a good estimator.

1. Consistency.

$$P_\theta[|t_n - \theta| \geq \delta] \rightarrow 0$$

Enough if $E_\theta[|t_n - \theta|^2] \rightarrow 0$.

2. Efficiency

The variance $E_\theta[|t_n - \theta|^2]$ must be as small as possible. If the Cramér-Rao bound is approached it is good. Asymptotically efficient.

$$nE_\theta[(t_n - \theta)^2] \rightarrow \frac{1}{I(\theta)}$$

3. It is good to know the asymptotic distribution of t_n . A central limit theorem of the form

$$P[\sqrt{n}(t_n - \theta)\sqrt{I(\theta)} \leq x] \rightarrow \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x \exp[-\frac{y^2}{2}] dy$$

will be useful.

4. If there is a sufficient statistic MLE is a function of it.

Theorem. If $f(\theta, x)$ is nice then the MLE satisfies 1,2 and 3.

Explanation. Why does it work? Consider the function $\log p(\theta, x)$ as a function of θ and compute its expectation under a particular value θ_0 of θ .

$$\begin{aligned} E_{\theta_0}[\log p(\theta, x)] - E_{\theta_0}[\log p(\theta_0, x)] &= E_{\theta_0} \left[\log \frac{p(\theta, x)}{p(\theta_0, x)} \right] \\ &\leq \log E_{\theta_0} \left[\frac{p(\theta, x)}{p(\theta_0, x)} \right] \\ &= \log \sum_x p(\theta, x) \\ &= 0 \end{aligned}$$

If the sample is from the population with $\theta = \theta_0$ by the law of large numbers the function

$$\frac{1}{n} \log L(\theta, x_1, x_2, \dots, x_n) \simeq E_{\theta_0}[\log p(\theta, x)]$$

has its maximum at θ_0 . Therefore $L(\theta, x_1, x_2, \dots, x_n)$ is likely to have its maximum close to θ_0 .

More Examples.

$$f(\theta, x) = \frac{1}{\theta}; \quad 0 \leq x \leq \theta$$

$$f(\theta, x_1, \dots, x_n) = \frac{1}{\theta^n}$$

θ wants to be as small as possible. But $\theta \geq x_i$ for every i .

$$t_n(x_1, \dots, x_n) = \max\{x_1, \dots, x_n\}$$

Multiparameter families

1.

$$f(\mu, \theta, x) = \frac{1}{\sqrt{2\pi\theta}} \exp\left[-\frac{(x - \mu)^2}{2\theta}\right]$$

$$\log L(\theta, x_1, \dots, x_n) = -\frac{n}{2} \log 2\pi - \frac{n}{2} \log \theta - \frac{1}{2\theta} \sum_{i=1}^n (x_i - \mu)^2]$$

$$\frac{\partial \log L}{\partial \theta} = 0, \quad \frac{\partial \log L}{\partial \mu} = 0$$

$$\theta = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2; \quad \sum_{i=1}^n (x_i - \mu) = 0$$

$$\hat{\mu} = \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

$$\hat{\theta} = s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2$$

2. Multivariate Normal families. $x = \{x_1, \dots, x_d\}, \mu = \mu_1, \dots, \mu_d \in R^d$. $A = \{a_{r,s}\}$ is a symmetric positive definite $d \times d$ matrix.

$$f(\mu, A, x) = \left(\frac{1}{\sqrt{2\pi|A|}} \right)^d \exp\left[-\frac{\langle x, A^{-1}x \rangle}{2}\right]$$

$$\int_{R^d} x_r f(\mu, A, x) dx = \mu_r$$

$$\int_{R^d} (x_r - \mu_r)(x_s - \mu_s) f(\mu, A, x) dx = a_{r,s}$$

$$\hat{\mu}_r = \bar{x}_r = \frac{1}{n} \sum_{i=1}^n x_{i,r}$$

$$\hat{a}_{r,s} = \frac{1}{n} \sum_{i=1}^n (x_{i,r} - \mu_r)(x_{i,s} - \mu_s) = \frac{1}{n} \sum_{i=1}^n x_{i,r}x_{i,s} - \bar{x}_r\bar{x}_s$$