

Lecture 7.

Bayesian Estimation. Here we assume that while we do not know the exact value of the unknown parameter θ we suppose that it is chosen randomly from a set of possible values of θ and we have reason to believe that its distribution is given by some probability distribution $p_0(\theta)$ on the set of possible values of θ . For simplicity we assume that the set of possible values of θ is the real line or a subset of it and $p(\theta)$ represents the density of the distribution of θ . We have an observation (or a set of observations) x and their distribution is given by the density $f(\theta, x)$. The joint distribution of θ and x is given by $p_0(\theta)f(\theta, x)$ and the marginal of x is

$$\bar{f}(x) = \int f(\theta, x)p_0(\theta)d\theta$$

The conditional $p_1(\theta|x)$, the posterior distribution of θ given x is

$$p_1(\theta|x) = \frac{f(\theta, x)p_0(\theta)}{\bar{f}(x)}$$

As we gather more data, we can update by taking p_1 as the new p_0 .

Example. Let $0 \leq \theta \leq 1$ be the probability of head in a single toss. Initially we may take $p_0(\theta) \equiv 1$. Suppose we have n_1 tosses resulting in r_1 heads.

$$\begin{aligned} p_0(\theta)f(\theta, r_1) &= \binom{n_1}{r_1} \theta^{r_1} (1-\theta)^{n_1-r_1} \\ \bar{f}(r_1) &= \int_0^1 \binom{n_1}{r_1} \theta^{r_1} (1-\theta)^{n_1-r_1} d\theta \\ &= \binom{n_1}{r_1} \beta(r_1+1, n_1-r_1+1) \end{aligned}$$

and

$$p_1(\theta|n_1, r_1) = \frac{1}{\beta(r_1+1, n_1-r_1+1)} \theta^{r_1} (1-\theta)^{n_1-r_1}$$

If we now have an additional n_2 tosses that resulted in r_2 heads, doing the Bayesian procedure again we get for $p_2(\theta|n_1, r_1, n_2, r_2)$

$$\frac{1}{\beta(r_1+r_2+1, n_1+n_2-r_1-r_2+1)} \theta^{r_1+r_2} (1-\theta)^{n_1+n_2-r_1-r_2}$$

Example. For estimation of the mean of a normal population with an unknown mean θ and known variance 1, it is natural to start with a prior distribution for θ which is Normal with some mean a and some variance σ^2 . Says something about our best guess a for the mean and the level of our uncertainty as measured by σ^2 . If we have n observations with a mean of $y = \bar{x}$,

$$p_0(\theta) f(\theta, y) = \frac{1}{\sigma\sqrt{2\pi}} \frac{\sqrt{n}}{\sqrt{2\pi}} \exp\left[-\frac{(\theta - a)^2}{2\sigma^2} - \frac{n(y - \theta)^2}{2}\right]$$

$$\bar{f}(y) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{\frac{1}{n} + \sigma^2}} \exp\left[-\frac{(y - a)^2}{2(\frac{1}{n} + \sigma^2)}\right]$$

$$p_1(\theta|y) = \frac{1}{\sqrt{2\pi}} \sqrt{n + \frac{1}{\sigma^2}} \exp\left[-\frac{(n + \frac{1}{\sigma^2})(\theta - (\frac{\frac{a}{\sigma^2} + ny}{\frac{1}{\sigma^2} + n}))^2}{2}\right]$$

It is again normal with mean $\frac{a + n\sigma^2 y}{1 + n\sigma^2}$ and variance $\frac{\sigma^2}{1 + n\sigma^2}$.

Testing of Hypotheses. Suppose we have two possible densities $f_0(x)$ and $f_1(x)$ and an observation X from one of the two populations and we have to decide. What can we do?

If $X \in E_0$ we say f_0 and $X \in E_1$ we say f_1 . Seems reasonable. What should E_0 and E_1 be? $E_0 = E_1^c$. Basically we just need to choose $A = E_1$. Would like $\int_A f_0(x)dx$ should be small and $\int_A f_1(x)dx$ to be big. One way is to fix $\int_A f_0(dx) = \alpha$ and maximize $\int_A f_1(dx)$.

$$A = A_\lambda = \{x : \frac{f_1(x)}{f_0(x)} \geq \lambda\}$$

will do it. Fix λ so that $\int_{A_\lambda} f_0(x)dx = \alpha$

f_0 is called the null hypothesis. f_1 is called the alternate hypothesis. α is called the size of the test, or the size of type I error. $\beta = \int_A f_1(x)dx$ is called the power of the test. $1 - \beta$ is called the type II error. A hypothesis that fully specifies the distribution is called a simple hypothesis. We can have a simple null hypothesis or a composite null hypothesis and similarly a null or composite alternate.

Example 1. $\{X_i\}$ are n i.i.d observations from $N(\mu, 1)$. $H_0 = \{\mu = 0\}$. $H_1 = \{\mu = 1\}$.

Example 2. $\{X_i\}$ are n i.i.d observations from $N(\mu, 1)$. $H_0 = \{\mu = 0\}$. $H_1 = \{\mu = 2\}$

Example 3. $\{X_i\}$ are n i.i.d observations from $N(\mu, 1)$. $H_0 = \{\mu = 0\}$. $H_1 = \{\mu = -1\}$

Example 4. $\{X_i\}$ are n i.i.d observations from $N(\mu, 1)$. $H_0 = \{\mu = 0\}$. $H_1 = \{\mu > 0\}$

Example 5. $\{X_i\}$ are n i.i.d observations from $N(\mu, 1)$. $H_0 = \{\mu = 0\}$. $H_1 = \{\mu < 0\}$ The set A where the null hypothesis is rejected is called the critical region.

$$A_\lambda = \{x_1, \dots, x_n : \frac{f_1(x_1) \dots f_1(x_n)}{f_0(x_1) \dots f_1(x_n)} \geq \lambda\}$$

$$-\sum (x_i - \mu)^2 \geq -\sum_i x_i^2 + \lambda$$

$$\mu \sum_i x_i \geq \lambda$$

$$\bar{x} > c \quad \text{if} \quad \mu > 0$$

and

$$\bar{x} < c \quad \text{if} \quad \mu < 0$$

Determine c so that $P_0[A_c] = \alpha$. Test is the same for 1, 2, 4. Uniformly most powerful tests. 2 and 5 have the same test. What if $H_1 = \{\mu \neq 0\}$? There is no UMP test. Need to take $A_c = \{|\bar{x}| > c\}$.

Some times the null hypothesis can be composite. For example we may want to test that the mean of a normal population is 0, without making any assumptions about its variance. $H_0 = \{\mu = 0, \theta > 0\}$, $H_1 = \{\mu > 0, \theta > 0\}$. The critical region should be of the form

$$\exp\left[-\frac{1}{2\theta} \sum_i x_i^2\right] < \exp\left[-\frac{1}{2\theta} \sum_i (x_i - \mu)^2\right]$$

Same as $\bar{x} > c$. But the distribution \bar{x} depends on θ and one can not determine the value of c that corresponds to a given size α . One uses instead the t test $\frac{\bar{x}}{s} > c$ for the critical region. Or equivalently

$$"t_{n-1}" = \frac{\bar{x}}{s} \sqrt{n-1} > c$$

The distribution of $"t_{n-1}"$ being independent of θ one can determine c from α . For two sided alternatives one can do two sided tests.

Testing for variances in normal populations. $H_0 = \{\mu = 0, \theta = 1\}$ and $H_1 = \{\mu = 0, \theta > 1\}$.

$$\log p(0, x_1, \dots, x_n) - \log p(\theta, x_1, \dots, x_n) = \frac{n}{2} \log \theta + [\frac{1}{2\theta} - 1] \sum_{i=1}^n x_i^2$$

Reject if $\sum_i x_i^2 = \chi_n^2 > c$. The alternative $\theta < 1$ and the two sided alternatives are handled in a similar way.

Likelihood ratio criterion. In general testing composite hypothesis is not easy. However for large samples there is a reasonable theory. Suppose there is a model where the population is specified by a parameter $\theta \in \Theta \subset R^d$. The null hypothesis states that $\theta \in \Theta_1 \subset \Theta$. For simplicity let us take $\theta = (\theta_1, \dots, \theta_d)$ and $\Theta_1 = \{\theta : \theta_1 = \theta_2 = \dots = \theta_k = 0\}$. $k < d$. We have the likelihood ratio

$$\lambda = \frac{\sup_{\theta \in \Theta_1} L(\theta, x_1, \dots, x_n)}{\sup_{\theta \in \Theta} L(\theta, x_1, \dots, x_n)}$$

It is clear that we should reject the null hypothesis if λ is small or $-2 \log \lambda > c$. If the null hypothesis is true then $-2 \log \lambda$ is a χ_k^2 for large n and that helps us to determine c .

Example. $\{x_i\}$ are $N(\mu, \theta)$. $H_0 = \{\mu = 0\}$. $d = 2, k = 1$.

$$\begin{aligned} \sup_{\theta} \log p(0, \theta, \mathbf{x}) &= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log \left[\frac{1}{n} \sum x_i^2 \right] - \frac{n}{2} \\ &= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log[s^2 + \bar{x}^2] - \frac{n}{2} \\ \sup_{\mu, \theta} \log p(\mu, \theta, \mathbf{x}) &= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log[s^2] - \frac{n}{2} \end{aligned}$$

$$-2 \log \lambda = n \log(1 + (\frac{\bar{x}}{s})^2) \simeq \chi_1^2$$

Example. $\{x_i\}$ are $N(\mu, \theta)$. $H_0 = \{\mu = 0, \theta = 1\}$. $d = 2, k = 2$

$$\begin{aligned} \log p(0, 1, \mathbf{x}) &= -\frac{n}{2} \log(2\pi) - \frac{1}{2} \sum x_i^2 \\ &= -\frac{n}{2} \log(2\pi) - \frac{n}{2} [s^2 + \bar{x}^2] \\ \sup_{\mu, \theta} \log p(\mu, \theta, \mathbf{x}) &= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log[s^2] - \frac{n}{2} \\ -2 \log \lambda &= n[s^2 - \log s^2 - 1] + n\bar{x}^2 \end{aligned}$$

If $s^2 - 1 = \xi$, then, for large n , $\sqrt{n}\xi \simeq N(0, 2)$

$$-2 \log \lambda = n(-\log(1 + \xi) + \xi) + n\bar{x}^2 \simeq \left[\sqrt{\frac{n\xi}{2}} \right]^2 + \sqrt{n}\bar{x}^2 \simeq \chi_2^2$$

Approximations. MLE estimate is often the solution of (not always)

$$\sum_{i=1}^n \frac{\partial \log f(\theta_1, \dots, \theta_d, x_i)}{\partial \theta_r} = 0; \quad r = 1, 2, \dots, d.$$

Therefore for $1 \leq r \leq d$, if $\tilde{\theta}_r$ are other estimates

$$\begin{aligned} 0 &= \sum_{i=1}^n \frac{\partial \log f(\hat{\theta}_1, \dots, \hat{\theta}_d, x_i)}{\partial \theta_r} \\ &= \sum_{i=1}^n \frac{\partial \log f(\tilde{\theta}_1, \dots, \tilde{\theta}_d, x_i)}{\partial \theta_r} \\ &\quad + \sum_{i=1}^n \sum_{s=1}^d (\hat{\theta}_s - \tilde{\theta}_s) \frac{\partial^2 \log f(\theta_1, \dots, \theta_d, x_i)}{\partial \theta_r \partial \theta_s} \end{aligned}$$

Provides a method for approximation. If $\tilde{\theta}$ is good estimate then the MLE $\hat{\theta}$ is given by

$$\hat{\theta} = \tilde{\theta} + [I(\tilde{\theta})]^{-1} \left[\frac{1}{n} \sum_{i=1}^n (\nabla_{\theta} \log f)(\tilde{\theta}_1, \dots, \tilde{\theta}_d, x_i) \right]$$

Likelihood Ratio Criterion.

$$\begin{aligned}
-2 \log \lambda &= \\
2[\log L(\hat{\theta}_1, \dots, \hat{\theta}_d, x_1, \dots, x_n) - \log L(\bar{\theta}_1, \dots, \bar{\theta}_k, \theta_{k+1}, \dots, \theta_d, x_1, \dots, x_n))] \\
&\geq 0
\end{aligned}$$

Here $(\theta_1, \dots, \theta_k)$ are the true values of the parameters. $\{\hat{\theta}_j\}$ and $\{\bar{\theta}_j\}$ are the two sets of MLE's. The second term is constrained optimization, where as the first term is unconditioned is therefore larger. Its distribution under the null hypothesis that $\theta_{k+1}, \dots, \theta_d$ are indeed the correct values for these parameter will be a χ^2_{d-k} and is used to test the hypothesis.

Goodness of fit. Often we have data grouped into categories and is presented as frequencies $\{f_i\}$ in k categories. $N = \sum_{i=1}^k$ being the total number of observations. We have a model that predicts the probabilities that an observation belongs to these categories are $\{p_j\}$. The expectation is then that $f_i \simeq Np_i$. The statistic used to test the hypothesis is

$$\sum_{i=1}^k \frac{(f_i - Np_i)^2}{Np_i} = \sum_{i=1}^k \frac{f_i^2}{Np_i} - N$$

Its distribution is a χ^2 with $k - 1$ degrees of freedom. If the model had a certain number r of parameters $\{\theta_j\}$ and we used maximum likelihood method to estimate them and used $p_i(\{\theta_j\})$ to compare then

$$\chi^2 = \sum_{i=1}^k \frac{(f_i - Np_i)^2}{Np_i}$$

will be a χ^2_{k-1-r} degrees of freedom. We lose one degree of freedom for each parameter we estimate. Note that $\{p_i\}$ although there are k of them are only $k - 1$ parameters. All this depends on the following. We have a quadratic form $Q = \langle \xi, B\xi \rangle$ in Gaussian random variables $\{\xi_j\}$ with mean 0 and covariance $C_{i,j} = E[\xi_i \xi_j]$. When is the distribution of Q a χ^2 and what is its degrees of freedom? We need a calculation.

$$\begin{aligned}
E[\exp[-\frac{\lambda}{2}Q]] &= \left(\frac{1}{\sqrt{2\pi}}\right)^d \frac{1}{\sqrt{|C|}} \int \exp[-\frac{1}{2}\langle \xi, (Q + C^{-1})\xi \rangle] d\xi \\
&= [|C| |\lambda Q + C^{-1}|]^{-\frac{1}{2}} \\
&= |\lambda C Q + I|^{-\frac{1}{2}} \\
&= |\lambda Q^{\frac{1}{2}} C Q^{\frac{1}{2}} + I|^{-\frac{1}{2}}
\end{aligned}$$

This will be the same as $E[\exp[-\lambda\chi_q^2]]$ provided $Q^{\frac{1}{2}}CQ^{\frac{1}{2}}$ is projection of rank q . For the multinomial goodness of fit

$$Q = \begin{pmatrix} \frac{1}{p_1} & 0 & \cdots & 0 \\ 0 & \frac{1}{p_2} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \frac{1}{p_k} \end{pmatrix}$$

$$C = \begin{pmatrix} p_1(1-p_1) & -p_1p_2 & \cdots & -p_1p_k \\ -p_1p_2 & p_2(1-p_2) & \cdots & -p_2p_k \\ \cdots & \cdots & \cdots & \cdots \\ -p_1p_k & -p_2p_k & \cdots & p_k(1-p_k) \end{pmatrix}$$

$$Q^{\frac{1}{2}}CQ^{\frac{1}{2}} = I - P$$

where

$$P = \begin{pmatrix} p_1 & \sqrt{p_1p_2} & \cdots & \sqrt{p_1p_k} \\ \sqrt{p_1p_2} & p_2 & \cdots & \sqrt{p_2p_k} \\ \cdots & \cdots & \cdots & \cdots \\ \sqrt{p_1p_k} & \sqrt{p_2p_k} & \cdots & p_k \end{pmatrix}$$

P is a projection of rank 1. We have a χ^2_{k-1} .

Example. Let f_1, \dots, f_k be multinomial cell frequencies from $N = \sum f_i$ observations. The individual probabilities p_i are modeled by a binomial. Is this valid?. MLE is given by maximizing

$$\frac{N!}{f_1! \cdots f_k!} p_1^{f_1} \cdots p_k^{f_k}$$

where $p_i = \binom{k}{i} \theta^i (1-\theta)^{k-i}$. The equation for MLE is

$$\sum_i f_i \left[\frac{i}{\theta} - \frac{k-i}{1-\theta} \right] = 0$$

$$\hat{\theta} = \frac{1}{kN} \sum_{i=1}^k i f_i$$

$$\hat{p}_i = \binom{k}{i} \hat{\theta}^i (1-\hat{\theta})^{k-1}$$

$$\chi^2_{k-2} = \sum_i \frac{(f_i - N\hat{p}_i)^2}{N\hat{p}_i}$$

Is the data consistent with a model of Binomial with $\theta = \frac{1}{2}$. then we use $p_i(\theta) = \binom{k}{i} 2^{-k}$. The degrees of freedom is $k - 1$.

Checking for Independence. We have two classifications labeled by X and Y that can take values from $1, 2, \dots, k$ and $1, 2, \dots, \ell$. We have frequencies $f_{i,j}$ the number with labels $X = i$ and $Y = j$. Is there dependence? The model is that the probabilities are given by

$$P[X = i, Y = j] = \pi_{i,j} = p_i q_j$$

The MLE are easily calculated as

$$\hat{p}_i = \frac{1}{N} \sum_{j=1}^{\ell} f_{i,j} \quad \hat{q}_j = \frac{1}{N} \sum_{i=1}^k f_{i,j}$$

$$\chi_d^2 = \sum_{i,j} \frac{(f_{i,j} - N\hat{p}_i\hat{p}_j)^2}{N\hat{p}_i\hat{p}_j}$$

The degrees of freedom is

$$d = (k\ell - 1) - (k - 1) - (\ell - 1) = (k - 1)(\ell - 1)$$