Lecture 7.

Bayesian Estimation. Here we assume that while we do not know the
exact value of the unknown parameter 8 we suppose that it is chosen ran-
domly from a set of possible values of § and we have reason to believe that
its distribution is given by some probability distribution pg(€) on the set of
possible values of 6. For simplicity we assume that the set of possible values
of 6 is the real line or a subset of it and p(6) represents the density of the
distribution of 8. We have an observation (or a set of observations) x and
their distribution is given by the density f(6,z). The joint distribution of
0 and z is given by po(0)f(0,x) and the marginal of x is
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The conditional p; (6|z), the posterior distribution of 6 given x is
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As we gather more data, we can update by taking p; as the new py.
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Example. Let 0 < 6 < 1 be the probability of head in a single toss.

Initially we may take po(f) = 1. Suppose we have n; tosses resulting in ry

heads.
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If we now have an additional ny tosses that resulted in ro heads, doing the
Bayesian procedure again we get for ps(6|n1,r1,n2,72)
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Example. For estimation of the mean of a normal population with an
unknown mean 6 and known variance 1, it is natural to start with a prior
distribution for # which is Normal with some mean a and some variance o2.
Says some thing about our best guess a for the mean and the level of our

uncertainty as measured by o?. If we have n observations with a mean of
y=z,
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It is again normal with mean and variance

14+no? 1+no?"

Testing of Hypotheses. Suppose we have two possible densities fo(x)
and f1(x) and an observation X from one of the two populations and we
have to decide. What can we do?

If X € By we say fp and X € F; we say fi. Seems reasonable. What
should Ey and E; be? Ey = Ef. Basically we just need to choose A = Ej.
Would like [, fo(x)dz should be small and [, fi(z)dz to be big. One way
is to fix [, fo(dz) = o and maximize [, fi(dx).
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will do it. Fix A so that [, fo(z)dz =«

fo is called the null hypothesis. f; is called the alternate hypothesis.
« is called the size of the test, or the size of type I error. 8 = [ 4 Ji(x)dx is
called the power of the test. 1 — [ is called the type II error. A hypothe&ns
that fully specifies the distribution is called a simple hypothesis. We can
have a simple null hypothesis or a composite null hypothesis and similarly
a null or composite alternate.




Example 1. {X;} are n i.i.d observations from N(u,1). Hy = {u = 0}.
Example 2. {X;} are n i.i.d observations from N(u,1). Hy = {u = 0}.
Hy = {p=2}

Example 3. {X;} are n i.i.d observations from N(u,1). Hy = {u = 0}.
Hy ={p=-1}

Example 4. {X;} are n i.i.d observations from N(u,1). Hy = {u = 0}.
Hy ={p >0}

Example 5. {X;} are n i.i.d observations from N(u,1). Hy = {u = 0}.
H; = {§s < 0} The set A where the null hypothesis is rejected is called the
critical region.
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Determine ¢ so that Py[A.] = a. Test is the same for 1,2,4. Uniformly
most powerful tests. 2 and 5 have the same test. What if H; = {u # 0}7
There is no UMP test. Need to take A. = {|Z| > c}.

Some times the null hypothesis can be composite. For example we may
want to test that the mean of a normal population is 0, without making any
assumptions about its variance. Hy = {u = 0,0 >0}, H; = {u > 0,60 > 0}.
The critical region should be of the form
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Same as & > c. But the distribution # depends on 6 and one can not
determine the value of ¢ that corresponds to a given size a. One uses
instead the ¢ test < > c for the critical region. Or equivalently
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The distribution of ”t,,_1” being independent of # one can determine ¢ from
«. For two sided alternatives one can do two sided tests.

Testing for variances in normal populations. Hy = {u = 0,0 = 1} and
H, = {/,L:O,(9> 1}
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Reject if Y, 22 = x2 > c. The alternative § < 1 and the two sided alterna-
tives are handled in a simlar way.

Likelihood ratio criterion. In general testing composite hypothesis is not
easy. However far large samples there is a reasonable theory. Suppose there
is a model where the population is specified by a parameter § € © C R?.
The null hypothesis states that § € ©; C ©. For simplicity let us take
0= (01,...,04) and ©1 = {0 : 0, = 03 = 0, = 0}. k < d. We have the
likelihood ratio
\ — SWPseo, LO,x1,...,25)

Supgee L(0, 21, ..., 2,)

It is clear that we should reject the null hypothesis if A is small or —2log A >
c. If the null hypothesis is true then —2log A is a x% for large n and that
helps us to determine c.

Example. {z;} are N(u,0). Hy={p=0}. d=2,k=1.
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—2log A = nlog(1+ (%)?) ~x3
s
Example. {z;} are N(u,0). Hy={pu=0,0=1}. d=2,k=2
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—2log A = n[s* — log s* — 1] + nz?
If s — 1 = &, then, for large n, \/n& ~ N(0,2)
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Approximations. MLE estimate is often the solution of (not always)
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Therefore for 1 < r <d, if QNT are other estimates
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Provides a method for approximation. If 6 is good estimate then the MLE
0 is given by
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Likelihood Ratio Criterion.

—2log A =
2[logL(é1, Oy, 1, yTn) —log L(01, ... 06,0k 1,...,04,21,...,2,))]
> 0

Here (61, ...,0)) are the true values of the parameters. {éj} and {6;} are

the two sets of MLE’s. The second term is constrained optimization, where
as the first term is unconditioned is therefore larger. Its distribution under
the null hypothesis that 0541, ...,0; are indeed the correct values for these
parameter will be a x%_, and is used to test the hypothesis.

Goodness of fit. Often we have data grouped into categories and is pre-
sented as frequencies {f;} in k categories. N = Z?:l being the total
number of observations. We have a model that predicts the probabilities
that an observation belongs to these categories are {p;}. The expectation
is then that f; ~ Np;. The statistic used to test the hypothesis is

k
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Its distribution is a x? with &k — 1 degrees of freedom. If the model had
a certain number r of parameters {#,} and we used maximum likelihood
method to estimate them and used p;({f;}) to compare then

Xz _ zk: (fz’ - Npi)2

= Mp

will be a x2_, .. degrees of freedom. We lose one degree of freedom for
each parameter we estimate. Note that {p;} although there are k of them
are only £ — 1 parameters. All this depends on the following. We have
a quadratic form @ =< &, B > in Gaussian random variables {{;} with
mean 0 and covariance C; ; = E[£;£;]. When is the distribution of Q a x?
and what is its degrees of freedom‘7 We need a calculation.

Blexpl- Q) = (<o W [ewl-zte @+ cene
- [ICHAQ +o7

2
= A\CQ+ 1|77
= [\Q2CQ: + 1|73

6



This will be the same as E[exp[—)\xg]] provided Q2 (CQ? is projection of
rank ¢. For the multinomial goodness of fit
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P is a projection of rank 1. We have a x7_;.

Example. Let fi,..., fr be multinomial cell frequencies form N = >_ f;
observations. The individual probabilities p; are modeled by a binomial. Is
this valid?. MLE is given by maximizing

N
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where p; = (]:)91(1 — 6)k~%. The equation for MLE is




. then we use

N[

Is the data consistent with a model of Binomial with 6 =
pi(0) = (’;)2_’“. The degrees of freedom is k — 1.

Checking for Independence. We have two classifications labeled by X
and Y that can take values from 1,2,...,k and 1,2,...,¢ We have frequen-
cies f;; the number with labels X = ¢ and Y = j. Is there dependence?
The model is that the probabilities are given by

P[X = i,Y :]] = 7Ti,j :piqj

The MLE are easily calculated as
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The degrees of freedom is

d=K—1)—(k—1)—((—1)=(k—1)({ 1)



