
Lecture 7.

Bayesian Estimation. Here we assume that while we do not know the
exact value of the unknown parameter θ we suppose that it is chosen ran-
domly from a set of possible values of θ and we have reason to believe that
its distribution is given by some probability distribution p0(θ) on the set of
possible values of θ. For simplicity we assume that the set of possible values
of θ is the real line or a subset of it and p(θ) represents the density of the
distribution of θ. We have an observation (or a set of observations) x and
their distribution is given by the density f(θ, x). The joint distribution of
θ and x is given by p0(θ)f(θ, x) and the marginal of x is

f̄(x) =

∫

f(θ, x)p0(θ)dθ

The conditional p1(θ|x), the posterior distribution of θ given x is

p1(θ|x) =
f(θ, x)p0(θ)

f̄(x)

As we gather more data, we can update by taking p1 as the new p0.

Example. Let 0 ≤ θ ≤ 1 be the probability of head in a single toss.
Initially we may take p0(θ) ≡ 1. Suppose we have n1 tosses resulting in r1
heads.

p0(θ)f(θ, r1) =

(

n1

r1

)

θr1(1− θ)n1−r1

f̄(r1) =

∫ 1

0

(

n1

r1

)

θr1(1− θ)n1−r1dθ

=

(

n1

r1

)

β(r1 + 1, n1 − r1 + 1)

and

p1(θ|n1, r1) =
1

β(r1 + 1, n1 − r1 + 1)
θr1(1− θ)n1−r1

If we now have an additional n2 tosses that resulted in r2 heads, doing the
Bayesian procedure again we get for p2(θ|n1, r1, n2, r2)

1

β(r1 + r2 + 1, n1 + n2 − r1 − r2 + 1)
θr1+r2(1− θ)n1+n2−r1−r2

1



Example. For estimation of the mean of a normal population with an
unknown mean θ and known variance 1, it is natural to start with a prior
distribution for θ which is Normal with some mean a and some variance σ2.
Says some thing about our best guess a for the mean and the level of our
uncertainty as measured by σ2. If we have n observations with a mean of
y = x̄,

p0(θ)f(θ, y) =
1

σ
√
2π

√
n√
2π

exp[− (θ − a)2

2σ2
− n(y − θ)2

2
]

f̄(y) =
1√
2π

1
√

1

n
+ σ2

exp[− (y − a)2

2( 1
n
+ σ2)

]

p1(θ|y) =
1√
2π

√

n+
1

σ2
exp[−

(n + 1

σ2 )(θ − (
a

σ2
+ny

1

σ2
+n

))2

2
]

It is again normal with mean a+nσ2y
1+nσ2 and variance σ2

1+nσ2 .

Testing of Hypotheses. Suppose we have two possible densities f0(x)
and f1(x) and an observation X from one of the two populations and we
have to decide. What can we do?

If X ∈ E0 we say f0 and X ∈ E1 we say f1. Seems reasonable. What
should E0 and E1 be? E0 = Ec

1. Basically we just need to choose A = E1.
Would like

∫

A
f0(x)dx should be small and

∫

A
f1(x)dx to be big. One way

is to fix
∫

A
f0(dx) = α and maximize

∫

A
f1(dx).

A = Aλ = {x :
f1(x)

f0(x)
≥ λ}

will do it. Fix λ so that
∫

Aλ

f0(x)dx = α

f0 is called the null hypothesis. f1 is called the alternate hypothesis.
α is called the size of the test, or the size of type I error. β =

∫

A
f1(x)dx is

called the power of the test. 1− β is called the type II error. A hypothesis
that fully specifies the distribution is called a simple hypothesis. We can
have a simple null hypothesis or a composite null hypothesis and similarly
a null or composite alternate.
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Example 1. {Xi} are n i.i.d observations from N(µ, 1). H0 = {µ = 0}.
H1 = {µ = 1}.
Example 2. {Xi} are n i.i.d observations from N(µ, 1). H0 = {µ = 0}.
H1 = {µ = 2}
Example 3. {Xi} are n i.i.d observations from N(µ, 1). H0 = {µ = 0}.
H1 = {µ = −1}
Example 4. {Xi} are n i.i.d observations from N(µ, 1). H0 = {µ = 0}.
H1 = {µ > 0}
Example 5. {Xi} are n i.i.d observations from N(µ, 1). H0 = {µ = 0}.
H1 = {µ < 0} The set A where the null hypothesis is rejected is called the
critical region.

Aλ = {x1, . . . , xn :
f1(x1) . . . f1(xn)

f0(x1) . . . f1(xn)
≥ λ}

−
∑

(xi − µ)2 ≥ −
∑

i

x2
i + λ

µ
∑

i

xi ≥ λ

x̄ > c if µ > 0

and
x̄ < c if µ < 0

Determine c so that P0[Ac] = α. Test is the same for 1, 2, 4. Uniformly
most powerful tests. 2 and 5 have the same test. What if H1 = {µ 6= 0}?
There is no UMP test. Need to take Ac = {|x̄| > c}.
Some times the null hypothesis can be composite. For example we may
want to test that the mean of a normal population is 0, without making any
assumptions about its variance. H0 = {µ = 0, θ > 0}, H1 = {µ > 0, θ > 0}.
The critical region should be of the form

exp[− 1

2θ

∑

i

x2
i ] < exp[− 1

2θ

∑

i

(xi − µ)2]
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Same as x̄ > c. But the distribution x̄ depends on θ and one can not
determine the value of c that corresponds to a given size α. One uses
instead the t test x̄

s
> c for the critical region. Or equivalently

”tn−1” =
x̄

s

√
n− 1 > c

The distribution of ”tn−1” being independent of θ one can determine c from
α. For two sided alternatives one can do two sided tests.

Testing for variances in normal populations. H0 = {µ = 0, θ = 1} and
H1 = {µ = 0, θ > 1}.

log p(0, x1, . . . , xn)− log p(θ, x1, . . . , xn) =
n

2
log θ + [

1

2θ
− 1]

n
∑

i=1

x2
i

Reject if
∑

i x
2
i = χ2

n > c. The alternative θ < 1 and the two sided alterna-
tives are handled in a simlar way.

Likelihood ratio criterion. In general testing composite hypothesis is not
easy. However far large samples there is a reasonable theory. Suppose there
is a model where the population is specified by a parameter θ ∈ Θ ⊂ Rd.
The null hypothesis states that θ ∈ Θ1 ⊂ Θ. For simplicity let us take
θ = (θ1, . . . , θd) and Θ1 = {θ : θ1 = θ2 = θk = 0}. k < d. We have the
likelihood ratio

λ =
supθ∈Θ1

L(θ, x1, . . . , xn)

supθ∈Θ L(θ, x1, . . . , xn)

It is clear that we should reject the null hypothesis if λ is small or −2 log λ >

c. If the null hypothesis is true then −2 log λ is a χ2
k for large n and that

helps us to determine c.

Example. {xi} are N(µ, θ). H0 = {µ = 0}. d = 2, k = 1.

sup
θ

log p(0, θ,x) = −n

2
log(2π)− n

2
log[

1

n

∑

x2
i ]−

n

2

= −n

2
log(2π)− n

2
log[s2 + x̄2]− n

2

sup
µ,θ

log p(µ, θ,x) = −n

2
log(2π)− n

2
log[s2]− n

2
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−2 log λ = n log(1 + (
x̄

s
)2) ≃ χ2

1

Example. {xi} are N(µ, θ). H0 = {µ = 0, θ = 1}. d = 2, k = 2

log p(0, 1,x) = −n

2
log(2π)− 1

2

∑

x2
i

= −n

2
log(2π)− n

2
[s2 + x̄2]

sup
µ,θ

log p(µ, θ,x) = −n

2
log(2π)− n

2
log[s2]− n

2

−2 log λ = n[s2 − log s2 − 1] + nx̄2

If s2 − 1 = ξ, then, for large n,
√
nξ ≃ N(0, 2)

−2 log λ = n(− log(1 + ξ) + ξ) + nx̄2 ≃
[

√

nξ

2

]2

+
√
nx̄

2 ≃ χ2
2

Approximations. MLE estimate is often the solution of (not always)

n
∑

i=1

∂ log f(θ1, . . . , θd, xi)

∂θr
= 0; r = 1, 2 . . . , d.

Therefore for 1 ≤ r ≤ d, if θ̃r are other estimates

0 =

n
∑

i=1

∂ log f(θ̂1, . . . , θ̂d, xi)

∂θr

=
n
∑

i=1

∂ log f(θ̃1, . . . , θ̃d, xi)

∂θr

+
n
∑

i=1

d
∑

s=1

(θ̂s − θ̃s)
∂2 log f(θ1, . . . , θd, xi)

∂θr∂θs

Provides a method for approximation. If θ̃ is good estimate then the MLE
θ̂ is given by

θ̂ = θ̃ + [I(θ̃)]−1[
1

n

n
∑

i=1

(∇θ log f)(θ̃1, . . . , θ̃d, xi)]
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Likelihood Ratio Criterion.

− 2 log λ =

2[logL(θ̂1, . . . θ̂d, x1, . . . , xn)− logL(θ̄1, . . . θ̄k, θk+1, . . . , θd, x1, . . . , xn))]

≥ 0

Here (θ1, . . . , θk) are the true values of the parameters. {θ̂j} and {θ̄j} are
the two sets of MLE’s. The second term is constrained optimization, where
as the first term is unconditioned is therefore larger. Its distribution under
the null hypothesis that θk+1, . . . , θd are indeed the correct values for these
parameter will be a χ2

d−k and is used to test the hypothesis.

Goodness of fit. Often we have data grouped into categories and is pre-
sented as frequencies {fi} in k categories. N =

∑k
I=1

being the total
number of observations. We have a model that predicts the probabilities
that an observation belongs to these categories are {pj}. The expectation
is then that fi ≃ Npi. The statistic used to test the hypothesis is

k
∑

i=1

(fi −Npi)
2

Npi
=

k
∑

i=1

f2
i

Npi
−N

Its distribution is a χ2 with k − 1 degrees of freedom. If the model had
a certain number r of parameters {θj} and we used maximum likelihood
method to estimate them and used pi({θj}) to compare then

χ2 =
k

∑

i=1

(fi −Npi)
2

Npi

will be a χ2
k−1−r degrees of freedom. We lose one degree of freedom for

each parameter we estimate. Note that {pi} although there are k of them
are only k − 1 parameters. All this depends on the following. We have
a quadratic form Q =< ξ,Bξ > in Gaussian random variables {ξj} with
mean 0 and covariance Ci,j = E[ξiξj ]. When is the distribution of Q a χ2

and what is its degrees of freedom? We need a calculation.

E[exp[−λ

2
Q]] =

( 1√
2π

)d 1
√

|C|

∫

exp[−1

2
〈ξ, (Q+ C−1)ξ〉]dξ

= [|C||λQ+ C−1|]− 1

2

= |λCQ+ I|− 1

2

= |λQ 1

2CQ
1

2 + I|− 1

2
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This will be the same as E[exp[−λχ2
q ]] provided Q

1

2CQ
1

2 is projection of
rank q. For the multinomial goodness of fit

Q =









1

p1

0 · · · 0

0 1

p2

· · · 0
· · · · · · · · · · · ·
0 0 · · · 1

pk









C =







p1(1− p1) −p1p2 · · · −p1pk
−p1p2 p2(1− p2) · · · −p2pk
· · · · · · · · · · · ·

−p1pk −p2pk · · · pk(1− pk)







Q
1

2CQ
1

2 = I − P

where

P =







p1
√
p1p2 · · · √

p1pk√
p1p2 p2 · · · √

p2pk
· · · · · · · · · · · ·√
p1pk

√
p2pk · · · pk







P is a projection of rank 1. We have a χ2
k−1.

Example. Let f1, . . . , fk be multinomial cell frequencies form N =
∑

fi
observations. The individual probabilities pi are modeled by a binomial. Is
this valid?. MLE is given by maximizing

N !

f1! · · · fk!
p
f1
1 · · · pfkk

where pi =
(

k
i

)

θi(1− θ)k−i. The equation for MLE is

∑

i

fi

[

i

θ
− k − i

1− θ

]

= 0

θ̂ =
1

kN

k
∑

i=1

ifi

p̂i =

(

k

i

)

θ̂i(1− θ̂)k−1

χ2
k−2 =

∑

i

(fi −Np̂i)
2

Np̂i
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Is the data consistent with a model of Binomial with θ = 1

2
. then we use

pi(θ) =
(

k
i

)

2−k. The degrees of freedom is k − 1.

Checking for Independence. We have two classifications labeled by X

and Y that can take values from 1, 2, . . . , k and 1, 2, . . . , ℓ We have frequen-
cies fi,j the number with labels X = i and Y = j. Is there dependence?
The model is that the probabilities are given by

P [X = i, Y = j] = πi,j = piqj

The MLE are easily calculated as

p̂i =
1

N

ℓ
∑

j=1

fi,j q̂j =
1

N

k
∑

i=1

fi,j

χ2
d =

∑

i,j

(fi,j −Np̂ip̂j)
2

Np̂ip̂j

The degrees of freedom is

d = (kℓ− 1)− (k − 1)− (ℓ− 1) = (k − 1)(ℓ− 1)

8


