
Chapter 6

Banach Alegebras, Wiener’s
Theorem

There is a theorem due to Wiener that asserts the following.

Theorem 6.1. Suppose f(x) on the d-torus has an absoutely convergent
Fourier Series and f(x) is nonzero on the d-torus. Then the function g(x) =
1

f(x) also has an absolutely convergent Fourier Series.

Wiener’s original proof involves direct estimation. We will give a ”soft”
proof using functional analysis techniques developed by Naimark. The proof
will be broken up in to several steps as we develop the theory.

A (commutative) Banach algebra X is a Banach space with (associative)
mutiplication of two elements u, v defined as uv satisfying ∥uv∥ ≤ ∥u∥∥v∥.
It is commutatitve if uv = vu. A Banach algebra with a unit is one which
has a special element called 1 such that 1u = u for all u. Such a unit is
unique because if 1, 1′ are two units then 11′ = 1 = 1′. An element u is
invertible if there is a v such that uv = 1. The element v, which is unique
if it exists, is called the inverse of u. The unit 1 is its own inverse. We
can assume with out loss of generality that ∥1∥ = 1 by replacing ∥u∥ by the
equivalent norm of the operator Tu : Tuv = uv. An ideal I is a subspace with
the property that whenever x ∈ X, y ∈ I it follows that xy ∈ I. An ideal
is proper if it is not X and not just the 0 element. A proper ideal can not
contain 1 or any invertible element. A proper ideal is maximal if it is not
contained in any other proper ideal. The closure of a proper ideal is proper.
This needs proof. By a power series expansion if ∥1 − u∥ < 1, then u has
an inverse v =

∑∞
0 (1− u)n. Therefore any proper ideal is disjoint from the
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open unit ball around 1. So does its closure. We can therefore assume that
all our ideals are closed. Any ideal can be enlarged to a maximal ideal. Just
apply Zorn’s lemma and take the maximal element among those that do not
intersect the unit ball around 1. If I is any (closed) ideal X\I is again a
Banach Algebra, called the quotient algebra. If the ideal I is maximal then
the quotient Y = X\I has no proper ideals. In such an algebra every nonzero
element is invertible. Just look at the range of yY . It is an ideal. If y ≠ 0,
since it can not be proper, it must be all of Y , and therefore contains 1.

Theorem 6.2. A Banach algebra with a unit and with out proper ideals over
the complex numbers is the complex numbers.

Proof. Since every non zero element is invertible, if there is an element u
which is not a complex mutiple of 1, (z1 − u)−1 = f(z) exists for all z ∈ C
and is an entire function with values in Y .For z > ∥u∥ we can represent
f(z) =

∑
n≥0

un

zn+1 . Therefore ∥f(z)∥ → 0 as z → ∞ and by Liouville’s
theorem must be identically zero. Contradiction.

We now know that for any maximal ideal I, the map X → Y that sends
x → x+ I is a homomorphism onto C.

Theorem 6.3. If u ∈ X is not invertible, then there is a homomorphism,
i.e a mutiplicatve bounded linear functional, h such that h(u) = 0.

Proof. Consider the ideal uX and enlarge it to a maximal ideal I, and then
take the natuaral homomorphism into C = X\I.
Corollary 6.4. u ∈ X is invertible if and only if h(u) ≠ 0 for every homo-
morphism h.

Consider the Banach algebra X of absolutely convergent Fourier Series∑
n∈Zd anei<n,x> with norm

∑
n∈Zd |an|. Wiener’s theorem will be proved if

we show

Theorem 6.5. Every homomorphism h on X is given by

h(u) =
∑

n∈Zd

ane
i<n,θ>

for some θ on the d-torus.

Proof. Let h(uj) = zj ∈ C where uj = eixj . Since ∥uk
j∥ = 1 for all positive

and negative integrs k and h is a homomorphism zkj must be bounded and
therefore |zj | = 1. If we write zj = eiθj , then h(u) =

∑
n∈Zd anei<n,θ> for

finite sums and since they are dense we are done.


