Chapter 14

The General Case

First some notation. Given coefficients [a, b], we denote by $\mathcal{L}_s^{a, b}$ the operator

$$(\mathcal{L}_s^{a,b}f)(x) = \frac{1}{2}\sum_{i,j=1}^d a_{i,j}(s,x)f_{i,j}(x) + \sum_{j=1}^d b_j(s,x)f_j(x)$$

We denote by $C(a, b, s_0, x_0)$ the space of all solutions to the martingale problem corresponding to these coefficients that start from (s_0, x_0) , i.e the space of all stochastic processes that satisfy $P[x(s_0) = x_0] = 1$ and

$$f(x(t)) - f(x(s_0)) - \int_{s_0}^t \frac{1}{2} \sum_{i,j=1}^d a_{i,j}(s, x(s)) f_{i,j}(x(s)) ds$$

is a martingale with respect $(\Omega, \mathcal{F}_t^{s_0}, P)$.

Our goal is to prove that if $a_{i,j}(t,x)$ is continuous, uniformly bounded and strictly elliptic, i.e. nonsingular for every (t,x) and $b_j(t,x)$ are bounded and measurable, then for every $(s_0, x_0) C(a, b, s_0, x_0)$ consists of a unique element $P = P_{s_0,x_0}$ and the family $\{P_s, x\}$ is a strong Markov family.

Lemma 14.1 (Principle of Localization). We have an operator

$$(\mathcal{L}_s f)(x) = \frac{1}{2} \sum_{i,j=1}^d a_{i,j}(s,x) f_{i,j}(x) + \sum_{j=1}^d b_j(s,x) f_j(x)$$

with coefficients that are locally bounded. We want to show that for any (s_0, x_0) there is at most one solution starting from (s_0, x_0) , i.e. $C(a, b, s_0, x_0)$ consists of at most one element. Suppose we have a collection $\{a_{s,x}(t, y), b_{s,x}(t, y)\}$ of coefficients with the following properties:

• For each (s,x) there is $\epsilon(s,x) \ge \epsilon(K) > 0$ which is uniformly positive on compact sets such that $a(t,y) = a_{s,x}(t,y), b_{s,x}(t,y) = b(t,y)$ provided $|s-t| + |x-y| \leq \epsilon(s,x)$, i.e [a,b] and $[a_{s,x}, b_{s,x}]$ agree in an $\epsilon(s,x)$ neighborhood of (s,x). In other words we can think of $[a_{s,x}, b_{s,x}]$ as a modification of [a,b] outside an $\epsilon(s,x)$ neighborhood of (s,x).

• For every (s, x), $C(a_{s,x}, b_{s,x}, s_0, x_0)$ consists of exactly one solution $\{P_{s_0, x_0}^{s, x}\}$

Then for every (s_0, x_0) , $C(a, b, s_0, x_0)$ consists of at most one element. Local uniqueness implies global uniqueness.

Proof. We proceed in steps.

Step 1. Let (s_0, x_0) be arbitrary and let $P_1, P_2 \in \mathcal{C}(a, b, s_0, x_0)$. Then if $\tau = \inf\{t \geq s_0 : |x(t) - x_0| + |t - s| \geq \epsilon(s_0, x_0)\}$, then we will show that $P_1 = P_2$ on $\mathcal{F}_{\tau}^{s_0}$. To accomplish this we define new processes Q_1, Q_2 by taking $Q_i = P_i$ on $\mathcal{F}_{\tau}^{s_0}$ and $Q_1 | \mathcal{F}_{\infty}^{\tau} = Q_2 | \mathcal{F}_{\infty}^{\tau} = P_{\tau,x(\tau)}^{s_0,x_0}$. In other words after time τ we replace P_1 and P_2 by the solution for $[a_{s_0,x_0}, b_{s_0,x_0}]$. Since $[a, b] = [a_{s_0,x_0}, b_{s_0,x_0}]$ until the exit time from the ball of radius $\epsilon(s_0, x_0)$ around (s_0, x_0) both Q_1 and Q_2 are in $\mathcal{C}(a_{s_0,x_0}, b_{s_0,x_0}, s_0, x_0)$ which has exactly one element. Therefore $Q_1 = Q_2$ which implies that $P_1 = P_2$ on $\mathcal{F}_{\tau}^{s_0}$.

We have (indirectly) used the following (elementary) fact. Let Q be a probability measure on (Ω, \mathcal{F}_t) and $Z(t, \omega)$ progressively measurable function. Let τ be a stopping time and Q_{ω}^{τ} be the regular conditional probability distribution of $Q|\mathcal{F}_{\tau}$. Suppose $Z(t) - Z(\tau)$ is a martingale for $t \geq \tau(\omega)$ with respect to Q_{ω}^{τ} for almost all ω and $Z(\tau \wedge t)$ is martingale with respect to Q, then Z(t) is a martingale with respect to Q. This is needed to provide a formal proof that $Q_1, Q_2 \in \mathcal{C}(a_{s_0,x_0}, b_{s_0,x_0}, s_0, x_0)$.

Step 2. Define successively $\tau_0 = s_0$ and for $n \ge 1$,

$$\tau_n = \inf\{t : t \ge \tau_{n-1}, |t - \tau_{n-1}| + |x(t) - x(\tau_{n-1})| \ge \epsilon(t_{n-1}, x(t_{n-1}))\}$$

By induction we can show that if $P_1, P_2 \in C(a_{s,x}, b_{s,x}, s_0, x_0)$, then $P_1 = P_2$ on $\mathcal{F}_{\tau_n}^{s_0}$. The induction step assumes that this is true for $\mathcal{F}_{\tau_{j-1}}^{s_0}$. For almost all ω with respect to P_1, P_2 , the conditionals $Q_{\omega}^{1,\tau_{j-1}}, Q_{\omega}^{2,\tau_{j-1}}$ are both members of $\mathcal{C}(a_{\tau_{j-1},x(\tau_{j-1})}, b_{\tau_{j-1},x(\tau_{j-1})}, \tau_{j-1}, x(\tau_{j-1}))$. Therefore they agree on $\mathcal{F}_{\tau_j}^{\tau_{j-1}(\omega)}$ for almost all ω . Thus $P_1 = P_2$ on \mathcal{F}_{τ_j} and the induction works.

Step 3. We show that $\tau_n \to \infty$ a.e. with respect to both P_1 and P_2 . From the continuity of paths it is clear that if τ_n tends to a finite limit, then $\epsilon(\tau_n, x(\tau_n))$ must go to 0 and this happens only when $x(\tau_n) \to \infty$. Since the trajectories are continuous this forces $\tau_n \to \infty$. If $A \in \mathcal{F}_t^{s_0}$ then $A \cap \{\tau_n \ge t\} \in \mathcal{F}_{\tau_n}^{s_0}$ and $P_1 = P_2$ on that set. Therefore

$$|P_1(A) - P_2(A)| \le P_1(A \cap \{\tau_n \le t\} + P_2(A \cap \{\tau_n \le t\} \le P_1[\tau_n \le t] + P_2[\tau_n \le t] \to 0$$

as $n \to \infty$. But the left hand side is independent of n and so must equal 0.

Lemma 14.2. For each positive definite symmetric matrix \bar{a} there is an $\epsilon(\bar{a})$ that depends only on the dimension d and lowest and highest eigenvalues of \bar{a} , such that if $||a_{i,j}(t,x) - \bar{a}_{i,j}|| \leq \epsilon(\bar{a})$, then for any (s_0, x_0) , $\mathcal{C}(a, 0, s_0, x_0)$ consists of a single measure P_{s_0, x_0}^a . The family $\{P_{s_0, x_0}^a\}$ depends continuously on (s_0, x_0)

Proof. The proof depends on the following estimate. Consider the fundamental solution of the heat equation

$$p(s, x, t, y) = (2\pi(t-s))^{-\frac{d}{2}} \exp\left[-\frac{\|y-x\|^2}{2(t-s)}\right]$$

and the associated Greens operator

$$(Gf)(s,x) = \int_s^\infty \int_{R^d} f(t,y) p(s,x,t,y) dt dy$$

Then if f is supported on $[0,T] \times \mathbb{R}^d$, we have with $\frac{1}{k} + \frac{1}{k^*} = 1$ and d(k-1) < 2 i.e., $k^* > \frac{d+2}{2}$

$$\begin{aligned} |(Gf)(s,x)| &\leq \left[\int_s^T \int_{R^d} |p(s,x,t,y)|^{\kappa} dt dy\right]^{\frac{1}{\kappa}} \left[\int_s^T \int_{R^d} |f(t,y)|^{\kappa^*} dt dy\right]^{\frac{1}{\kappa^*}} \\ &\leq C_{d,\kappa} (T-s) \|f\|_{\kappa^*} \end{aligned}$$

Moreover according to a theorem of B.F. Jones if u(s,x) = (Gf)(s,x), then for any $p \in (1, \infty)$, there is a constant C_p such that for any T,

$$||u_t||_p + \sum_{i,j} ||u_{i,j}||_p \le C_p ||f||_p$$

In particular there is a $\delta > 0$ such that if $\sup_{i,j} ||a_{i,j}(s,x) - \delta_{i,j}|| \le \delta$, then the equation

$$u_s(s,x) + \frac{1}{2} \sum_{i,j} a_{i,j}(s,x) u_{i,j}(s,x) = f(s,x) \text{ on } [0,T] \times \mathbb{R}^d; \quad u(T,x) \equiv 0$$

can be solved by perturbation as

$$u = G(I + \frac{1}{2}[a_{i,j}(\cdot, \cdot) - \delta_{i,j}](Gf)_{i,j})^{-1}f$$

For any d we need to have $p > k^*$ and δ small enough for the perturbation to work for such a p. Then the solution u will be in the Sobolev space $W_{1,2}^p$ and $\sup_{0 \le t \le T} |u(t,x)| \le c(T) ||f||_p$.

The rest of the proof proceeds exactly like the one dimensional case, or the stationary two dimensional case. The only difference now is that we need $\sup_{i,j} ||a_{i,j}(s,x) - \delta_{i,j}|| \leq \delta$. By a linear transformation we can replace $\delta_{i,j}$ by any constant coefficients $\bar{a}_{i,j}$ so long as it is elliptic. δ will depend on the ellipticity and will be uniformly positive so long as \bar{a} remains uniformly elliptic, i.e. the eigenvalues have a uniform upper bound and uniform positive lower bound. We are now ready to state and prove the main theorem.

Theorem 14.3. Let $\{a_{i,j}(s,x)\}$ be continuous, positive definite for each (s,x)and satisfy the growth condition $|a_{i,j}(s,x)| \leq C(1+|x|^2)$, while $\{b_i(s,x)\}$ are measurable and satisfy the growth condition $|b_i(s,x)| \leq C(1+|x|)$. Then for every (s_0, x_0) there is a unique element P_{s_0, x_0} in $C(a, b.s_0, x_0)$ which will be a Markov process with transition probability

$$p(s, x, t, A) = P_{s,x}[x(t) \in A]$$

Proof. First we show that we can assume with out loss of generality that a and b are bounded. Otherwise we can modify them outside $\{x : |x| \leq \ell\}$ so that the modified coefficients $[a^{\ell}, b^{\ell}]$ have a unique solution $P^{\ell} \in C(a^{\ell}, b^{\ell}, s_0, x_0)$. Any solution in $P \in C(a, b, s_0, x_0)$ must agree with P^{ℓ} on $\mathcal{F}_{\tau_{\ell}}^{s_0}$ where τ_{ℓ} is the exit time from the ball of radius ℓ . For any solution P, by continuity of paths $\tau_{\ell} \to \infty$ a.e. and therefore P is unique if it exists. This is true with out any growth conditions. We need to prove existence under growth conditions. This needs an estimate

$$\lim_{\ell \to \infty} P^{\ell} [\tau_{\ell} \le t] = 0$$

Such an estimate would imply that for $A \in \mathcal{F}_t^{s_0}$,

$$\lim_{\ell_1,\ell_2 \to \infty} |P^{\ell_1}(A) - P^{\ell_2}(A)| \le \lim_{\ell_1,\ell_2 \to \infty} 2P^{\ell_1 \wedge \ell_2} [\tau_{\ell_1 \wedge \ell_2} \le t] = 0$$

proving the existence of a limit P of P^{ℓ} which can be easily verified to be in $\mathcal{C}(a, b, s_0, x_0)$ To this end we consider the function $u(x) = (1 + |x|^2)$. From the bounds on a, b

$$u_s + \frac{1}{2}\mathcal{L}_s u \le C(1+|x|^2) \le Cu$$

By Itô's formula, if τ_{ℓ} is the exit time from the ball of radius ℓ ,

$$E[u((x(\tau))e^{-C\tau_{\ell}}] \le u(x_0)$$

Therefore

$$E^{P}[e^{-C\tau_{\ell}}] \le u(x_{0})(1+\ell^{2})^{-1} \to 0$$

as $\ell \to \infty$ implying $P[\tau_{\ell} \leq t] \to 0$ as $\ell \to \infty$ for any fixed t. It remains to prove uniqueness for a, b bounded. For proving uniqueness there is no loss of generality in assuming a is uniformly elliptic, because we can modify it ourside a ball of radius ℓ . If it is uniformly elliptic, by Girsanov's formula we can assume b = 0. Now lemmas 14.1 and 14.2 complete the proof.