
Chapter 14

The General Case

First some notation. Given coefficients [a, b], we denote by La,b
s the operator

(La,b
s f)(x) =

1

2

d
∑

i,j=1

ai,j(s, x)fi,j(x) +

d
∑

j=1

bj(s, x)fj(x)

We denote by C(a, b, s0, x0) the space of all solutions to the martingale problem
corresponding to these coefficients that start from (s0, x0), i.e the space of all
stochastic processes that satisfy P [x(s0) = x0] = 1 and

f(x(t)) − f(x(s0)) −

∫ t

s0

1

2

d
∑

i,j=1

ai,j(s, x(s))fi,j(x(s))ds

is a martingale with respect (Ω,Fs0

t , P ).
Our goal is to prove that if ai,j(t, x) is continuous, uniformly bounded and

strictly elliptic, i.e. nonsingular for every (t, x) and bj(t, x) are bounded and
measurable, then for every (s0, x0) C(a, b, s0, x0) consists of a unique element
P = Ps0,x0

and the family {Ps, x} is a strong Markov family.

Lemma 14.1 (Principle of Localization). We have an operator

(Lsf)(x) =
1

2

d
∑

i,j=1

ai,j(s, x)fi,j(x) +

d
∑

j=1

bj(s, x)fj(x)

with coefficients that are locally bounded. We want to show that for any (s0, x0)
there is at most one solution starting from (s0, x0), i.e. C(a, b, s0, x0) consists

of at most one element. Suppose we have a collection {as,x(t, y), bs,x(t, y)} of

coefficients with the following properties:

• For each (s, x) there is ǫ(s, x) ≥ ǫ(K) > 0 which is uniformly positive

on compact sets such that a(t, y) = as,x(t, y), bs,x(t, y) = b(t, y) provided
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|s − t| + |x − y| ≤ ǫ(s, x), i.e [a, b] and [as,x, bs,x] agree in an ǫ(s, x)
neighborhood of (s, x). In other words we can think of [as,x, bs,x] as a

modification of [a, b] outside an ǫ(s, x) neighborhood of (s, x).

• For every (s, x), C(as,x, bs,x, s0, x0) consists of exactly one solution {P s,x
s0,x0

}

Then for every (s0, x0), C(a, b, s0, x0) consists of at most one element. Local

uniqueness implies global uniqueness.

Proof. We proceed in steps.

Step 1. Let (s0, x0) be arbitrary and let P1, P2 ∈ C(a, b, s0, x0). Then if
τ = inf{t ≥ s0 : |x(t)−x0|+ |t− s| ≥ ǫ(s0, x0)}, then we will show that P1 = P2

on Fs0

τ . To accomplish thsis we define new processes Q1, Q2 by taking Qi = Pi

on Fs0

τ and Q1

∣

∣Fτ
∞

= Q2

∣

∣Fτ
∞

= P
s0,x0

τ,x(τ). In other words after time τ we replace

P1 and P2 by the solution for [as0,x0
, bs0,x0

]. Since [a, b] = [as0,x0
, bs0,x0

] until
the exit time from the ball of radius ǫ(s0, x0) around (s0, x0) both Q1 and Q2

are in C(as0,x0
, bs0,x0

, s0, x0) which has exactly one element. Therefore Q1 = Q2

which implies that P1 = P2 on Fs0

τ .

We have (indirectly) used the following (elementary) fact. Let Q be a prob-
ability measure on (Ω,Ft) and Z(t, ω) progressively measurable function. Let τ

be a stopping time and Qτ
ω be the regular conditional probability distribution

of Q
∣

∣Fτ . Suppose Z(t) − Z(τ) is a martingale for t ≥ τ(ω) with respect to Qτ
ω

for almost all ω and Z(τ ∧ t) is martingale with respect to Q, then Z(t) is a
martingale with respect to Q. This is needed to provide a formal proof that
Q1, Q2 ∈ C(as0,x0

, bs0,x0
, s0, x0).

Step 2. Define successively τ0 = s0 and for n ≥ 1,

τn = inf{t : t ≥ τn−1, |t − τn−1| + |x(t) − x(τn−1)| ≥ ǫ(tn−1, x(tn−1)}

By induction we can show that if P1, P2 ∈ C(as,x, bs,x, s0, x0), then P1 = P2

on Fs0

τn
. The induction step assumes that this is true for Fs0

τj−1
. For almost all

ω with respect to P1, P2, the conditionals Q
1,τj−1

ω , Q
2,τj−1

ω are both members of

C(aτj−1,x(τj−1), bτj−1,x(τj−1), τj−1, x(τj−1)). Therefore they agree on F
τj−1(ω)
τj for

almost all ω. Thus P1 = P2 on Fτj
and the induction works.

Step 3. We show that τn → ∞ a.e. with respect to both P1 and P2.
From the continuity of paths it is clear that if τn tends to a finite limit, then
ǫ(τn, x(τn)) must go to 0 and this happens only when x(τn) → ∞. Since the
trajectories are continuous this forces τn → ∞. If A ∈ Fs0

t then A ∩ {τn ≥ t} ∈
Fs0

τn
and P1 = P2 on that set. Therefore

|P1(A)−P2(A)| ≤ P1(A∩{τn ≤ t}+P2(A∩{τn ≤ t} ≤ P1[τn ≤ t]+P2[τn ≤ t] → 0

as n → ∞. But the left hand side is independent of n and so must equal 0.
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Lemma 14.2. For each positive definite symmetric matrix ā there is an ǫ(ā)
that depends only on the dimension d and lowest and highest eigenvalues of ā,

such that if ‖ai,j(t, x)− āi,j‖ ≤ ǫ(ā), then for any (s0, x0), C(a, 0, s0, x0) consists

of a single measure P a
s0,x0

. The family {P a
s0,x0

} depends continuously on (s0, x0)
.

Proof. The proof depends on the following estimate. Consider the fundamental
solution of the heat equation

p(s, x, t, y) = (2π(t − s))−
d
2 exp[−

‖y − x‖2

2(t − s)
]

and the associated Greens operator

(Gf)(s, x) =

∫

∞

s

∫

Rd

f(t, y)p(s, x, t, y)dtdy

Then if f is supported on [0, T ]×Rd, we have with 1
k

+ 1
k∗ = 1 and d(k−1) < 2

i.e., k∗ > d+2
2

|(Gf)(s, x)| ≤

[
∫ T

s

∫

Rd

|p(s, x, t, y)|κdtdy

]
1

κ
[

∫ T

s

∫

Rd

|f(t, y)|κ
∗

dtdy

]
1

κ∗

≤ Cd,κ(T − s)‖f‖κ∗

Moreover according to a theorem of B.F. Jones if u(s, x) = (Gf)(s, x), then for
any p ∈ (1,∞), there is a constant Cp such that for any T ,

‖ut‖p +
∑

i,j

‖ui,j‖p ≤ Cp‖f‖p

In particular there is a δ > 0 such that if supi,j ‖ai,j(s, x) − δi,j‖ ≤ δ, then the
equation

us(s, x) +
1

2

∑

i,j

ai,j(s, x)ui,j(s, x) = f(s, x) on [0, T ]× Rd; u(T, x) ≡ 0

can be solved by perturbation as

u = G(I +
1

2
[ai,j(·, ·) − δi,j ](Gf)i,j)

−1f

For any d we need to have p > k∗ and δ small enough for the perturbation to
work for such a p. Then the solution u will be in the Sobolev space W

p
1,2 and

sup 0≤t≤T

x∈Rd

|u(t, x)| ≤ c(T )‖f‖p.

The rest of the proof proceeds exactly like the one dimensional case, or
the stationary two dimensional case. The only difference now is that we need
supi,j ‖ai,j(s, x) − δi,j‖ ≤ δ. By a linear transformation we can replace δi,j

by any constant coefficients āi,j so long as it is elliptic. δ will depend on the
ellipticity and will be uniformly positive so long as ā remains uniformly elliptic,
i.e. the eigenvalues have a uniform upper bound and uniform positive lower
bound.
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We are now ready to state and prove the main theorem.

Theorem 14.3. Let {ai,j(s, x)} be continuous, positive definite for each (s, x)
and satisfy the growth condition |ai,j(s, x)| ≤ C(1 + |x|2), while {bi(s, x)} are

measurable and satisfy the growth condition |bi(s, x)| ≤ C(1 + |x|). Then for

every (s0, x0) there is a unique element Ps0,x0
in C(a, b.s0, x0) which will be a

Markov process with transition probability

p(s, x, t, A) = Ps,x[x(t) ∈ A]

Proof. First we show that we can assume with out loss of generality that a and
b are bounded. Otherwise we can modify them outside {x : |x| ≤ ℓ} so that
the modified coefficients [aℓ, bℓ] have a unique solution P ℓ ∈ C(aℓ, bℓ, s0, x0).
Any solution in P ∈ C(a, b, s0, x0) must agree with P ℓ on Fs0

τℓ
where τℓ is the

exit time from the ball of radius ℓ. For any solution P , by continuity of paths
τℓ → ∞ a.e. and therefore P is unique if it exists. This is true with out any
growth conditions. We need to prove existence under growth conditions. This
needs an estimate

lim
ℓ→∞

P ℓ[τℓ ≤ t] = 0

Such an estimate would imply that for A ∈ Fs0

t ,

lim
ℓ1,ℓ2→∞

|P ℓ1(A) − P ℓ2(A)| ≤ lim
ℓ1,ℓ2→∞

2P ℓ1∧ℓ2 [τℓ1∧ℓ2 ≤ t] = 0

proving the existence of a limit P of P ℓ which can be easily verified to be in
C(a, b, s0, x0) To this end we consider the function u(x) = (1 + |x|2). From the
bounds on a, b

us +
1

2
Lsu ≤ C(1 + |x|2) ≤ Cu

By Itô’s formula, if τℓ is the exit time from the ball of radius ℓ,

E[u((x(τ))e−Cτℓ ] ≤ u(x0)

Therefore
EP [e−Cτℓ ] ≤ u(x0)(1 + ℓ2)−1 → 0

as ℓ → ∞ implying P [τℓ ≤ t] → 0 as ℓ → ∞ for any fixed t. It remains to
prove uniqueness for a, b bounded. For proving uniqueness there is no loss of
generality in assuming a is uniformly elliptic, because we can modify it ourside a
ball of radius ℓ. If it is uniformly elliptic, by Girsanov’s formula we can assume
b = 0. Now lemmas 14.1 and 14.2 complete the proof.


