
Chapter 18

Invariant Measures

If p(t, x, dy) are the transition probabilities of a Markov Process on a Polish
space X , then an invariant probability distribution for the process is a distribu-
tion µ on X that satisfies

∫

p(t, x, A)dµ(x) = µ(A)

for all Borel sets A and all t > 0. In general µ need not be unique. But if for
every pair x, y ∈ X , there exists a t = t(x, y) < ∞ such that supA |p(t, x, A) −
p(t, y, A)| < 1 then we will be able to show that µ is unique. To begin with
we construct a translation invariant measure P = Pµ on the space of maps
(−∞,∞) → X , that has µ as the stationary marginal distribution. Pµ may or
may not be ergodic with respect to time translations.

Theorem 18.1. The only way Pµ can fail to be ergodic is if there is a decom-

position of X in to Borel sets X1, X2 such that X = X1 ∪X2 with X1 ∩X2 = ∅
with the property that for i = 1, 2, we have 0 < µ(Xi) < 1 and

Pµ[x(t) ∈ Xi ∀t ∈ (−∞,∞)] = µ(Xi)

i.e. µ = µ(X1)µ1 + µ(X2)µ2 where the restrictions µ1, µ2 of µ to X1, X2 are

themselves invariant and p(t, x, Xi) = 1 for almost all x with respect to µi.

Remark 18.1. In particular if {p(t, x, dy)} has two distinct invariant measures
µ1, µ2, then Pµ = 1

2
[Pµ1

+ Pµ2
] is not ergodic and admits a decomposition of

the type stated in the theorem, which can not happen if p(t, x, )̇ and p(t, y, ·)
are not mutually orthogonal when x and y come from X1 and X2.

Proof. Let us recall the notation Fs
t = σ{x(u) : s ≤ u ≤ t}. F−∞ = ∩tF

−∞
t .

If Pµ is not ergodic, there is an invariant set E with 0 < Pµ(E) < 1. Given an
invariant set E and given any δ > 0, there is a tδ and a set Eδ ∈ F−tδ

tδ
such

that P (E∆Eδ) < δ. The translation invariance invariance allows us to replace
Eδ by Ttδ

Eδ and this means E can be well approximated by sets from F−∞
0

1
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and therefore E ∈ F−∞
0

. Now again by invariance E ∈ F−∞
t for every t and

therefore in the remote past F−∞. A similar argument places E in the remote
future. But for a Markov process past and future are independent given the
present. An invariant set is therefore independent of itself given the present.
But such an event is trivial. Therefore an invariant set is trivial given the
present, i.e. it is a function of the present. It is of the form {x(0) ∈ X1} for
some X1 ⊂ X .

To verify that a given µ is invariant for p(t, x, dy) is often difficult. The
transition probabilities may not be explicit. They are often defined through
the infinitesimal generator. Let us suppose for simplicity we are dealing with
a diffusion on a compact manifold X , given in local coordinates as a second
order strictly elliptic differential operator with continuous coefficients. We know
how L acts on smooth functions and we have a unique family of processes
{Px; x ∈ X} on Ω = C[[0,∞); X ] satisfying Px[x(0) = x] = 1 and

f(x(t)) − f(x(0)) −

∫ t

0

(Lf)(x(s))ds

is a martingale for smooth f , with respect to (Ω,F0

t , Px), where F0

t is the the
natural filtration σ{x(s) : 0 ≤ s ≤ t}. Formally we need to check that L∗µ = 0.
This can be checked ”weakly” by testing

∫

(Lf)(x)dµ(x) = 0

for all smooth f . Is that enough? Functional analysis does not answer the
question. With continuous coefficients, the relevant PDE’s can be solved only
in Sobolev spaces W2,p and unless µ ∈ Lq for some q > 1 we can not complete
the proof. However it is enough and that is the main thrust of the following
theorem.

Theorem 18.2. Let µ on X satisfy

∫

(Lf)(x)dµ(x) = 0

for all smooth f ∈ S. We can then construct a family Ph,x of Markov chains

taking values in X with transition probabilities πh(x, dy), and having µ as an

invariant distribution for the chain, i.e.

∫

πh(x, A)µ(dx) = µ(A)

for all Borel subsets of X. The piecewise constant processes {Ph,x : x ∈ X} on

D[[0, T ], X ] starting from the initial distribution µ, with transition probability πh

and time step h will converge weakly to the process Pµ =
∫

Px dµ(x). In partic-

ular µ being the common marginal of Ph,x, it will also be the common marginal

of Pµ. This implies µ is invariant for the Markov process with generator L.
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Proof. We start with the operator Lh = (I−hL) mapping S → Mh. According
to Lemma 18.3 there is an inverse Th : Mh → S that is a contraction, mapping
nonnegative functions to nonnegative functions and mapping 1 → 1. Fix h > 0.
We look at functions in C(X × X) of the form

φ(x, y) =

k
∑

i=1

Fi(x)Gi(y) + H(y)

where Gi = LhHi ∈ Mh, and Fi, H ∈ C(X). We define a linear functional
Λh(φ) on such φ

Λh(φ) =

∫

[H(x)+
∑

i

Fi(x)(ThHi)(x)]dµ(x) =

∫

[H(x)+
∑

i

Fi(x)Gi(x)]dµ(x)

According to Lemma 18.4 this is a well defined nonnegative linear function
which according to Lemma 18.5 can be extended to all of C(X × X) yielding
a probability distribution λ on X × X that has both marginals equal to µ.
This is then used to define a Markov process Ph,µ that has µ for an invariant
distribution. Finally in Lemma 18.6 it is shown that Ph,µ has a limit as h →
which is shown to be the diffusion with generator L and it has µ as the stationary
distribution and this will complete the proof.

Lemma 18.3. Th : Mh → C(X) is positivity preserving and supx |(ThF (x)| ≤
supx |F (x)|.

Proof. If LhF = (I − hL)F = G ≥ 0, then at x0 where the infimum of F is
attained, (LF )(x0) ≥ 0 by the maximum principle. Therefore F (x0) = G(x0)+
h(LF )(x0) ≥ G(x0) and G ≥ 0 implies F ≥ 0. In particular G = 0 implies F =
0. (I−hL) therefore has an inverse. Moreover L1 = 0 which implies that Th1 =
1. A linear positivity preserving map that maps 1 to 1 is a contraction.

Lemma 18.4. If φ(x, y) ≥ 0 on X × X, then Λh(φ) ≥ 0 and it is well defined.

Proof. If φ(x, y) = H(y) +
∑k

i=1
Fi(x)Gi(y) ≥ 0 for all x, in particular with

Ψ(G1, . . . , Gk) = infx∈X

∑

Fi(x)Gi, a concave function of G1, . . . , Gk

H(y) + inf
x∈X

k
∑

i=1

Fi(x)Gi(y)

= H(y) + Ψ(G1(y), . . . , Gk(y))

= H(y) + Ψ((LhH1)(y), . . . , ((LhHk)(y))

≥ 0

Consider the integral

I(t) =

∫

[

H(x) + Ψ((LtH1)(x), . . . , ((LtHk)(x))
]

dµ(x)
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for 0 ≤ t ≤ h. Let Ψ be any concave function, then I(t) will be a concave
function of t. If we can show that I ′(0) ≤ 0 then it will follow that I(0) ≥
I(h) ≥ 0. This in turn will imply that

0 ≤ I(0) =

∫

[

H(x) + Ψ(H1(x), . . . , Hk(x))
]

dµ(x)

≤

∫

[

H(x) +

k
∑

i=1

Fi(x)Hi(x)
]

dµ(x)

= Λh(φ)

In particular if φ1 ≡ φ2, then Λ(φ1) = Λ(φ2).
To show that I ′(0) ≤ 0 we can assume that Ψ is smooth. From the maximum

principle, or in the case of diffusions by direct calculation, it follows that for
concave Ψ

LΨ(u1, u2, . . . , uk) ≤
k

∑

j=1

Ψj(u1, . . . , uk)Luj

Therefore from
∫

LΨ(u1, u2, . . . , uk)(x)dµ(x) = 0

it follows that
∫

[

k
∑

j=1

Ψj(u1, . . . , uk)Luj ]dµ(x) ≥ 0

Hence

I ′(0) = −

∫ k
∑

j=1

∂Ψ

∂Hj

(H1(x), . . . , Hk(x))(LHj)(x) ≤ 0

Lemma 18.5. Λ(·) extends to all of C(X×X) as a continuous linear functional.

By Riesz’s representation theorem there is a λ(dx, dy) such that

Λ(φ) =

∫

X×X

φ(x, y)λ(dx, dy)

The measure λ(A × X) = λ(X × A) = µ(A). In particular if we write

λ(dx, dy) = µ(dx)πh(x, dy)

then µ(dx)π(x, A) = µ(A)

Proof. The extension is just Hahn-Banach theorem. Any nonnegative linear
functional Λ defined on a subspace of the space of bounded continuous functions
of a compact metric space C(X) that contains constants and has the property
λ(1) = 1 is a bounded linear functional with norm 1. For any f , ‖f‖ ± f ≥ 0
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and therefore ‖f‖Λ(1) ± λ(f) ≥ 0. Conversely if Λ(1) = 1 and |Λ(f)| ≤ ‖f‖
then if nonnegative, then ‖f − 1

2
‖f‖‖ = 1

2
‖f‖. Therefore

Λ(f) =
1

2
‖f‖Λ(1)−

1

2
‖f‖ ≥ 0

Our Λ on C(X × X) satisfies Λ(h(x)) = Λ(h(y)) =
∫

h(x)µ(dx) and this iden-
tifies both marginals of λ(dx, dy) as µ.

Lemma 18.6. The piecewise constant Markov process with transition prob-

ability πh(x, dy), initial distribution µ and time step h, is tight in the space

D[[0, T ], X ] and any limit point P is a stationary Markov process with marginal

µ and satisfies the Martingale relations for L. Therefore P =
∫

Pxdµ(x)

Proof. If we consider gh = f − hLf , then under Ph,x, πhgh = f and

gh(X(nh) − gh(x) −
n

∑

j=1

(f − gh)(X((j − 1)h)

is a martingale. To prove compactness we only need to estimate the exit time
from a small ball. Consider such a ball S of size δ with center at x. Let f be
a smooth function with f = 1 on Sc and f(x) = 0. Its smoothness will depend
only on δ. In particular ‖Lf‖ ≤ Cδ uniformly in x. gh will be uniformly close
to f and for small h, again uniformly in x, gh(x0) ≤ Cδh and gh(x) ≥ 1 − Cδh

on S(x, δ)c. ‖f − gh‖ = h‖Lf‖ ≤ hCδ. By Doob’s stopping theorem, if τ is the
exit time from S(x, δ), then Ph,x[τ ≤ t] can be estimated from

E[gh(x(τ ∧ t))] − gh(x) ≤ Cδt

which leads to

Ph,x[τ ≤ t] ≤ Cδ(t + h)

which is enough to prove tightness. In the limit

f(x(t)) − f(x) −

∫ t

0

(Lf)(x(s))ds

is a martingale and µ is the common distribution of x(t) under
∫

Pxdµ(x).

This completes the proof of the theorem.

Remark 18.2. We do not really need compactness. If we had Rd for the state
space, nothing really would change, except for Reisz representation theorem.
We would need instead the following version of it. Let C = C(X × Y ) be the
space of bounded continuous functions on X×Y where X, Y are locally compact
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Polish spaces. Let Λ be a nonnegative linear functional on C with Λ(1) = 1. If
there are probability measures α, β on X and Y such that

∫

f(x)α(dx) = Λ(f) for f ∈ C(X) ⊂ C

and
∫

g(y)β(dy) = Λ(g) for g ∈ C(Y ) ⊂ C

then there is a probability measure λ on X × Y with marginals α and β such
that

Λ(h) =

∫

h(x, y)λ(dx, dy) for h ∈ C

The proof requires us to show that Λ is σ-smooth, i.e if hn(x, y) ↓ 0, then
Λ(hn) ↓ 0. Given any ǫ > 0 we can find continuous functions f(x) and g(y)
with compact support such that 0 ≤ f(x) ≤ 1, 0 ≤ g(y) ≤ 1,

∫

(1−f(x))α(dx)+
∫

(1 − g(y))β(dy) ≤ ǫ. We can then verify that

Λ(hn) = Λ(hn(x, y)f(x)g(y)) + Λ(hn(x, y)(1 − f(x)g(y))

≤ sup
x,y

hn(x, y)f(x)g(y) + Λ(1 − f(x)) + Λ(1 − g(y))

≤ sup
x,y

hn(x, y)f(x)g(y) + ǫ

By Dini’s theorem the first term goes to 0. ǫ can be made arbitrarily small.

Having established that a measure is invariant for a Markov process with
transition probabilities p(t, x, dy) two natural questions arise. Is it unique and
does p(t, x, ·) converge to it as t → ∞ for every x? In the context of elliptic
diffusions on Rd the answer to both questions is yes. We will prove it in a few
steps. They depend on certain estimates from PDE. We state it without proof.

For any t > 0, p(t, x, ·) is continuous as a map (0,∞) × Rd into L1(R
d). In

particular for any Borel set A, p(t, x, A) is continuous as a function of t > 0
and x.

Lemma 18.7. We have a diffusion process with transition probability p(t, x, A)
that corresponds to a uniformly elliptic operator

L =
∑

i,j

ai,j(x)Dij +
∑

j

bj(x)Dj

with continuous coefficients. {ai,j(x)} is bounded and uniformly positive defi-

nite. bj(x) are have at most linear growth. This is enough to yield the conti-

nuity of p(t, x, A) for t > 0 in (t, x) for every A. If G is any nonempty open

set p(t, x, G) > 0 for all x ∈ Rd and t > 0. If for some t > 0 and x ∈ Rd,

p(t, x, A) = 0, then for any x ∈ Rd and t > 0, p(t, x, A) = 0.
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Proof. Assume p(t0, x0, G) = 0 for some non empty open set, i.e. Px[x(t0) ∈
G] = 0. Since {P : P [x(t0) ∈ G] = 0} is a closed set, this is true for any process
which is a limit of processes that are absolutely continuous with respect to Px.
In particular the process with generator

L̃ =
∑

i,j

ai,j(x)Dij + λ
∑

j

cj(x)Dj

where cj(x) = − x−x0

‖x−x0‖
and λ is large will at time t0 stay away from a neigh-

borhood of x0. Computing with f(x) = ‖x − x0‖
2

(L̃f)(x) ≤ −2λ‖x − x0‖
2 + C

If g(t) = E[‖x(t) − x0‖2] then g′(t) ≤ −2λg(t) + C. It is easy to see that g(t0)
will be small if λ is large. If p(t, x, A) is positive for some t > 0, x and A, then
p(t, x, A) =

∫

p( t
2
, y, A)p( t

2
, x, dy) and therefore p( t

2
, y, A) > 0 for some y. But

p( t
2
, y, A) is continuous in y and therefore it is uniformly positive on some open

set G around y. Since p(t, x, A) ≥
∫

G
p( t

2
, y, A)p( t

2
, x, dy) and p( t

2
, x, G) > 0

the lemma is proved.

Lemma 18.8. The invariant probability measure if it exists is unique.

Proof. Since either p(t, x, A) ≡ 0 for all x ∈ Rd, t > 0 or strictly positive for all
x ∈ Rd, t > 0, the set of A ’s for which any invariant measure is positive are
exactly the same. There can not be two mutually orthogonal invariant measures.
Therefore it is unique.

Lemma 18.9. If µ is an invariant probability measure then p(t, x, ·) → µ as

t → ∞ for every x.

Proof.

‖p(t + s, x, ·) − p(t + s, y, ·)‖L1
=

∫

|

∫

[p(t, x, z) − p(t, y, z)]p(s, z, z′)dz|dz′

≤

∫ ∫

|p(t, x, z) − p(t, y, z)|p(s, z, z′)dzdz′

≤

∫

|p(t, x, z) − p(t, y, z)|dz

Hence ∆(t, x, y) = ‖p(t, x, ·) − p(t, y, ·)‖ is ↓ as a function of t.Let us denote by
∆(x, y) its limit as t → ∞. It is sufficient to prove that ∆(x, y) is identically
zero. It is upper semi continuous in x and y and is identically 0 on the diagonal
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x = y.

∫

p(s, x, y)p(s, x′, y′)∆(y, y′)dydy′

= lim
t→∞

∫

p(s, x, y)p(s, x′, y′)|p(t, y, z) − p(t, y′, z)|dzdydy′

≥ lim
t→∞

∫

|

∫

p(s, x, y)p(s, x′, y′)(p(t, y, z) − p(t, y′, z))dydy′|dz

= lim
t→∞

∫

|

∫

p(s + t, x, z) − p(s + t, x′, z)|dz

= ∆(x, x′)

If we consider the process Z(t) = ∆(x(t), y(t)) where x(t), y(t) are independent
copies of the Markov process then Z(t) is a nonnegative sub-martingale that is
bounded by 2. Hence Z(t) has a limit as t → ∞. Since the process is recurrent
on Rd × Rd and comes arbitrarily close to the diagonal infinitely often this can
only mean ∆(x, y) ≡ 0.


