Chapter 9

Girsanov Formula

If α is Gaussian with mean b_1 and variance a while β has the same variance but a mean b_2 the Radon-Nikodym derivative can be explicitly calculated

$$\frac{d\beta}{d\alpha}(x) = e^{-\frac{(x-b_2)^2}{2a} + \frac{(x-b_1)^2}{2a}} = e^{\frac{(b_2-b_1)(x-b_1)}{a} - \frac{(b_2-b_1)^2}{2a}}$$

This suggests that if $P \in \mathcal{I}(a,b)$ and $Q \in \mathcal{I}(a,b+ac)$ for some bounded c, then

$$\frac{dQ}{dP}|\mathcal{F}_t = \exp\left[\int_{s_0}^t c(s, x(s))dy(s) - \frac{1}{2}\int_{s_0}^t \langle a(s, x(s))c(s, x(s)), c(s, x(s))\rangle ds\right]$$

where

$$y(t) = x(t) - \int_{s_0}^t b(s, x(s))ds$$

Theorem 9.1. With

$$R(t,\omega) = \exp[\int_{s_0}^t c(s,x(s))dy(s) - \frac{1}{2} \int_{s_0}^t \langle a(s,x(s))c(s,x(s)),c(s,x(s))\rangle ds]$$

if $P \in \mathcal{I}(a,b)$ then Q with $\frac{dQ}{dP}|\mathcal{F}_t = R(t,\omega)$ is in $\mathcal{I}(a,b+ac)$ and conversely if $Q \in \mathcal{I}(a,b+ac)$ then P with $\frac{dP}{dQ}|\mathcal{F}_t = \frac{1}{R(t,\omega)}$ is in $\mathcal{I}(a,b)$.

Proof. If $P \in \mathcal{I}(a,b)$ then with

$$y(t) = x(t) - \int_{s_0}^t b(s, x(s))ds$$

$$R(t,\omega) = \exp\left[\int_{s_0}^t c(s,x(s)) \cdot dy(s) - \frac{1}{2} \int_{s_0}^t \langle a(s,x(s))c(s,x(s)), c(s,(x(s))\rangle ds\right]$$

is martingale. We can define Q by $\frac{dQ}{dP}|\mathcal{F}_t=R(t,\omega)$. We can replace c by $c(s,x)+\theta$ and will have

$$R(t,\theta,\omega) = \exp\left[\int_{s_0}^t (\theta + c(s,x(s))) \cdot dy(s) - \frac{1}{2} \int_{s_0}^t \langle a(s,x(s))(\theta + c(s,x(s))), (\theta + c(s,(x(s)))\rangle ds\right]$$

$$= R(t,\omega) \exp\left[\langle \theta, y(t) - y(s_0) \rangle - \int_{s_0}^t \langle a(s,x(s))c(s,x(s)), \theta \rangle - \frac{1}{2} \int_{s_0}^t \langle a(s,(x(s))\theta,\theta) \rangle\right]$$

is a martingale for all θ . It is easy to see that this equivalent to

$$\exp\left[\langle \theta, y(t) - y(s_0) \rangle - \int_{s_0}^t \langle \theta, a(s, x(s))c(s, x(s)) \rangle ds - \frac{1}{2} \int_{s_0}^t \langle a(s, (x(s))\theta, \theta) ds \right]$$

$$= \exp\left[\langle \theta, x(t) - x(s_0) - \int_{s_0}^t \langle \theta, b(s, x(s)) + a(s, x(s))c(s, x(s)) \rangle ds - \frac{1}{2} \int_{s_0}^t \langle a(s, (x(s))\theta, \theta) ds \right]$$

being a martingale with respect to $(C[s_0, T], \mathcal{F}_t, Q)$ i.e. $Q \in \mathcal{I}(a, b + ac)$. The steps can be retraced to prove the converse.