So far we have defined stochastic integrals with respect to processes x(t) that have
continuous paths and have certain martingales associated with them. (Q, F;, P), z(t,w) :
Q x [0,7] - R% b(t,w) : @ x [0,7T] — R% a(t,w) : Q x [0,T] — S, progressively
measurable and z(t,w) is continuous a.e. If a and b are uniformly bounded, then we saw
that the stochastic integrals

£(t) = /0 < o(s,w),dx(s) >

can be defined and is an almost surely continuous process  x [0,7] — R™ provided
o:Qx[0,T] - R" ® R? is progressivley measurable and bounded. The parameters of ¢
can be calculated according to the rules for computing means and variances under linear
transformations. If () € [b,a] and d§ = odz, then £ € [ob,0ac*]. Actaully, the class of
processes can cover [b, a] with the property

T
/ |b(s,w)|ds < oo a.e.
0

and
/ Tr a(s,w)ds < oo a.e.

Instead of Martingales, the expressions will be local martingales. x(t) is a local martingale
if there are stopping times 7,, T oo such that z(7, At) is a martingale for every n. Example
two dimesional Brownian motion. £(t) = logr(t)

logr(t) = log r(0) +/0 < ::(Z) , dx(s) >

The trouble comes from 0. If 7,, = {inf ¢ : r(¢) < 1}, then £(7,,At) is seen to be a martingle.
€ is not. It is easy to see that F[{(t)] — oo as t — co. A bounded local martingale is a
martingale. A nonnegative local martingale is a supermartingale. 1t6’s formula holds very
generally, because it is an almost sure statement.

Stochastic Differential Equations.

Given b(t, z) and o(t,z) and a Brownian motion 3(t) and £(w) € Fs, solve for ¢t > s,
da(t) = b(t,z(t))dt + o(t,x(t))dB(t); x(s) = §(w)
Can assume that s = 0 and £(w) = xg. Define iteratively

Tna1(t) = x0 -l-/o b(z,(s))ds +/0 < o(xn(s)), db(s) >

Assume that o and b are bounded and unifomly Lipshitz in  with a Lipshitz constant A.
Then, fixing a time interval [0, T,

Enr(t) — 2a(t) = / B (5)) — b(n_1(s)))ds + / < o(@n(s)) — o(@ns(s)), dB(s) >
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Denoting by A, (t) = E[supg<,<; |2n(s) — Zn—1(s)[?], we have, from Doob’s inequality

t t t
Apta(t) < 2TA2/ A, (s)ds + 8/ A, (s)ds < C(T)/ A, (s)ds
0 0 0
By induction
An(t) < w
n!

Therefore for almost all w, x(t) = lim, o x,(t), exists uniformly in ¢, and provides a
solution of

x(t) = xo —|—/0 b(s,:c(s))ds—i—/o < o(s,z(s)), dB(s) >

It is unique. If z(t),y(t) are two solutions, then A(t) = E[|x(t) — y(t)]?] satisfies

A(t) < C’(T)/O A(s)ds

and is 0. Clearly z(-) € [b(s,z(s,w)), a(s,z(s,w))] with a = oo*. One can easily verify
that x(t) is a Markov process, in fact a strong Markov process. The reason is that we have
a "black box”, we input zs and Brownian increments and the output is z(t) for t > s.
Since the Brownian increments [3(t) — 3(s) are independent of F;, we only need the value
of z(s,w) and the actual w is unimportant. That is really the Markov property. o(s, )
is not unique. One can change o’(s,x) = o(s,x)U(s,x) where U is an orthogonal matrix.
The oo™ = o'c™. df'(s) = U*(s,z(s))dB(s) defines another Brownian Motion. Therefore
the two solutions have the same distribution.

Of course we can start with a solution on some (2, F;, P) where both x and ( are
given and are related by

x(t) = x(0) -i—/o b(s,x(s))ds-ﬁ-/o < o(s,z(s)), dx(s) >

If b,0 are Lipshitz then = is measurable with respect to Brownian o-field and is the same
as the solution constructed earlier. Otherwise it is not clear. Such solutions are the same
as solutions to the Martingale problem. Given (2, F;, P), [b,a] and x, and any choice of o
with oo™ = a, there is a Brownian Motion (3 such that

dx = bdt + odf

If we assume that a is uniformly positive definite then we can define 3 as

p(t) :/0 o~ (s, 2(s))[dz(s) — b(s, z(s))ds]

It is easy to check that 8 € [0, I], because 0~ tac™'* = I and

dx = odf + bdt
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The problem is when a can be degenerate. Then we have to go outside to find our Brownian
motion. For instance x(t) = 0 coreesponds to a = b = 0 and there is no Brownian motion
on the space where there is only the zero path with probability 1. But we can take any
Brownian motion and say

dz =0 =0dj

But we should use the new Brownian only we need it. This is done in two steps. First build
a new Brownian motion by taking a product with Wiener space. Now we have a space
withx(t), 5(t) corresponding to [(b(s,w),0), (a(s,w),I)]. Let Q(s,w) be the orthogonal
projection on to the range of a(s,w). If co* = a, then the range of ¢ is the same as the
range of a and 071(Q is well defined. We can define a new Brownian motion 3'(t) by
t t
5t = [ o sw)Qssw)ldals) — bis,w)ds] + [ 1 - Qls.)ld(s)

0 0

then
o lQaQ e +T-Q=1

and
dr = odf’ + bdt

Finally there us uniqueness theorem. If for some ¢ uniqueness holds in the sense that when
ever z(t), y(t) are two solutions on any (2, F, P, 5(+)) of

x(t) = xo -l-/o b(s,x(s))ds—i—/o < o(s,z(s)), dB(s) >

y(t) = g -l-/o b(s,y(s))ds-l—/o < o(s,y(s)), dB(s) >

it follows that z(t) = y(t), then there is only one solution to the martingale problem for
[b, a] starting from z. The proof depends on a construction. Given Py, Py, [a,b],z, 0, i.e
two solutions to the martingale problem for [b,a] from the same starting point zy and
a o satisfying oo* = a, we will construct (2, F¢,z(+),y(:),3(+)) such that = and y are
solutions with the same b, o and the distribution of x(¢) is P; and that of y(t) is P,. Sinec
x(t) = y(t), P, = P,. the construction is staright forward. First construct z(t), 3(t) so
that
dz(t) = o(t,z(t))dp(t) + b(t, z(t))dt

This will produce a joint distribution of 3(-) and z(-) we write this as P(dw)Q. (dw:),
the marginal of Brownian Motion and the conditional of z(-) given the Brownian motion.
Similarly for y, P(dw)Q?(dws). Now we can put all three z,y,3 on the same space
aligning the Brownian trajectories, i.e. take the measure P(dw)Q} (dw;) ® Q2 (dws). Make
the processes x,y conditionally independent given 3. One verifies that now we have two
solutions on the same space.

Girsanov’s formula.



If b(t,x) is bounded and a(t,x) be bounded and uniformly positive definite. P a
solution to the martingale problem for [0, a] starting from x.

exp [ / < efs.a(s)) da(s) >~ [ < elssx(). als.als)e(s. o) > ds}

is a martingale. Choose e(s,z(s)) = 0+ a1 (s, z(s))b(s, z(s)).

exp [/0 <04 a (s, 2(s))b(s, x(s)),dz(s) >
— %/ <O+a t(s,2(5)b(s,2(s)), als, z(s)) [0+ a (s, z(s))b(s, z(s))] > ds]

is a martingale for every § € R%. This simplifies to
t
exp { <0,x(t) —x > +/ < a (s, z(s))b(s, x(s)), dx(s) >
0
t 1t
—/ < 0,b(s,x(s)) > ds — 5/ < 0,a(s,x(s))8 > ds
0 0
1t
—5 [ < Mealo), als.als))la s, (s))bls, o(5)) > ds
0
t

-3 /O < b(s,2(5)), als, 2(s)[a™" (5, 2(5))b(5, 2(5))] > ds

t
+<0,z2(t) —x > —/ < 0,b(s,x(s)) > ds
0

- % /Ot < 0,a(s,x(s))0 > ds]

If we set # = 0 then Y = 1 and R(¢,w) is a martingale. This defines a measure ) by
dQ = RdP and with respect to Q, Y (6,t,w) are martingales. In other words @ is a
solution for [b,a]. The steps are reversible so that there is a one to one correspondence
between solutions of [b, a] and [0, a]. Existence or uniqueness for one implies the same for
the other.

Warning. If b is unbounded R may not be a martingale but only a supermartingale. This
means that the paths explode and the total mass of () is less than 1. In fact then

Qe > t] = /R(t,w)dP



Random Time Changes. On the space [C[0, 00]; X we define a family of transforma-
tions. Given a function V(z) : X — R which is meausrable and satisfies 0 < ¢; < V(z) <
¢y < 00, we define (stopping) times 7; by

/ V(z(s))ds =t
0
and the transformation ®y : z(-) — y(-) by
y(t) = a(7)
It is not hard to check that
Oy o Py =Py o Py =Py

If P is a solution to the martingale problem for £ which is time homogeneous, then ) = @51

is seen to be solution for %E.
T, t
' 9(y(s))
g(x(s))ds = / ————=ds
|| steonas= [T

Since 7y are stopping times Doob’s stopping theorem applies. Since we can go back and
forth existence or uniqueness for £ is equivalent to the same for %E. In patitcular ind =1
we can go from [0, 1] to any [b,a] with a bounded b and a bounded above and below by
random time change and Girsanov.

PDE Methods.

If a is bounded and uniformly elliptic, b is bounded and they all satisfy Holder condi-
tions in ¢ and z, then the PDE

u + % Y aig(tw)uig + Y bt x)uy =05 u(T,z) = f()

has a classical solution, implying that the solutions to the martingale problem are unique.
If we drop the assumption of Holder continuity and assume only that a is continuous, then
there are solutions in Sobolev spaces Wpl’z. Then one has to show that for any solution to
the martingale problem the functional

A(f) = E7| / £(s,2(s))ds]

is bounded in L,. This can be done and implies uniquenss. Note that by Girsanov we can
assume b = 0.

Localization.

We say that a solution to the martingale problem starting from x is unique untill
the exit time 7¢ from G > =z, if any two solutions starting from x agree on F.,. The
localization principle says that if [a, b] is such that for every x there is a neighborhood G,
such that any two solutions starting from x agree until the exit time from G, then there
is atmost one solution. This means that for given coefficients we can prove uniqueness by
different methods at different points.



