
Chapter 2

Stochastic Integration.

2.1 Brownian Motion as a Martingale

P is the Wiener measure on (Ω, B) where Ω = C[0, T ] and B is the Borel σ-field
on Ω. In addition we denote by Bt the σ-field generated by x(s) for 0 ≤ s ≤ t.
It is easy to see tha x(t) is a martingale with respect to (Ω, Bt, P ), i.e for each
t > s in [0, T ]

EP {x(t)|Bs} = x(s) a.e. P (2.1)

and so is x(t)2 − t. In other words

EP {x(t)2 − t |Fs} = x(s)2 − s a.e. P (2.2)

The proof is rather straight forward. We write x(t) = x(s) + Z where Z =
x(t) − x(s) is a random variable independent of the past history Bs and is
distributed as a Gaussian random variable with mean 0 and variance t − s.
Therefore EP {Z|Bs} = 0 and EP {Z2|Bs} = t − s a.e P . Conversely,

Theorem 2.1. Lévy’s theorem. If P is a measure on (C[0, T ], B) such that
P [x(0) = 0] = 1 and the the functions x(t) and x2(t) − t are martingales with
respect to (C[0, T ], Bt, P ) then P is the Wiener measure.

Proof. The proof is based on the observation that a Gaussian distribution is
determined by two moments. But that the distribution is Gaussian is a conse-
quence of the fact that the paths are almost surely continuous and not part of
our assumptions. The actual proof is carried out by establishing that for each
real number λ

Xλ(t) = exp
[
λx(t) −

λ2

2
t
]

(2.3)

is a martingale with respect to (C[0, T ], Bt, P ). Once this is established it is
elementary to compute

EP
[
exp

[
λ(x(t) − x(s))

]
|Bs

]
= exp

[λ2

2
(t − s)

]

13
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which shows that we have a Gaussian Process with independent increments with
two matching moments. The proof of (2.3) is more or less the same as proving
the central limit theorem. In order to prove (2.3) we can assume with out loss
of generality that s = 0 and will show that

EP
[
exp

[
λx(t) −

λ2

2
t
]]

= 1 (2.4)

To this end let us define successively τ0,ε = 0,

τk+1,ε = min
[
inf

{
s : s ≥ τk,ε, |x(s) − x(τk,ε)| ≥ ε

}
, t , τk,ε + ε

]

Then each τk,ε is a stopping time and eventually τk,ε = t by continuity of paths.
The continuity of paths also guarantees that |x(τk+1,ε)− x(τk,ε)| ≤ ε. We write

x(t) =
∑

k≥0

[x(τk+1,ε) − x(τk,ε)]

and
t =

∑

k≥0

[τk+1,ε − τk,ε]

To establish (2.4) we calculate the quantity on the left hand side as

lim
n→∞

EP
[
exp

[ ∑

0≤k≤n

[
λ[x(τk+1,ε) − x(τk,ε)] −

λ2

2
[τk+1,ε − τk,ε]

]]]

and show that it is equal to 1. Let us cosider the σ-field Fk = Bτk,ε
and the

quantity

qk(ω) = EP
[
exp

[
λ[x(τk+1,ε) − x(τk,ε)] −

λ2

2
[τk+1,ε − τk,ε]

]
∣∣∣∣Fk

]

Clearly, if we use Taylor expansion and the fact that x(t) as well as x(t)2 − t
are martingales

|qk(ω) − 1| ≤ CEP
[[
|λ|3|x(τk+1,ε) − x(τk,ε)|3 + λ2|τk+1,ε − τk,ε|2

]
∣∣∣∣Fk

]

≤ Cλ ε EP
[[
|x(τk+1,ε) − x(τk,ε)|2 + |τk+1,ε − τk,ε|

]∣∣Fk

]

= 2Cλ ε EP
[
|τk+1,ε − τk,ε|

∣∣Fk

]

In particular for some constant C depending on λ

qk(ω) ≤ EP
[
exp

[
C ε [τk+1,ε − τk,ε]

]∣∣Fk

]

and by induction

lim sup
n→∞

EP
[
exp

[ ∑

0≤k≤n

[
λ[x(τk+1,ε) − x(τk,ε)]−

λ2

2
[τk+1,ε − τk,ε]

]]]

≤ exp[C ε t ]



2.1. BROWNIAN MOTION AS A MARTINGALE 15

Since ε > 0 is arbitrary we prove one half of (2.4). Notice that in any case
supω |qk(ω) − 1| ≤ ε. Hence we have the lower bound

qk(ω) ≥ EP
[
exp

[
− C ε [τk+1,ε − τk ε]

]
∣∣∣∣Fk

]

which can be used to prove the other half. This completes the proof of the
theorem.

Exercise 2.1. Why does Theorem 2.1 fail for the process x(t) = N(t)− t where
N(t) is the standard Poisson Process with rate 1?

Remark 2.1. One can use the Martingale inequality in order to estimate the
probability P{sup0≤s≤t |x(s)| ≥ &}. For λ > 0, by Doob’s inequality

P
[

sup
0≤s≤t

exp
[
λx(s) −

λ2

2
s
]
≥ A

]
≤

1

A

and

P
[

sup
0≤s≤t

x(s) ≥ &
]
≤ P

[
sup

0≤s≤t
[x(s) −

λs

2
] ≥ &−

λt

2

]

= P
[

sup
0≤s≤t

[λx(s) −
λ2s

2
] ≥ λ&− λ2t2

]

≤ exp[−λ& +
λ2t

2
]

Optimizing over λ > 0, we obtain

P
[

sup
0≤s≤t

x(s) ≥ &
]
≤ exp[−

&2

2t
]

and by symmetry

P
[

sup
0≤s≤t

|x(s)| ≥ &
]
≤ 2 exp[−

&2

2t
]

The estimate is not too bad because by reflection principle

P
[

sup
0≤s≤t

x(s) ≥ &
]

= 2 P
[
x(t) ≥ &

]
=

√
2

π t

∫ ∞

%

exp[−
x2

2 t
] dx

Exercise 2.2. One can use the estimate above to prove the result of Paul Lévy

P
[
lim sup

δ→0

sup 0≤s,t≤1
|s−t|≤δ

|x(s) − x(t)|
√

δ log 1
δ

=
√

2
]

= 1

We had an exercise in the previous section that established the lower bound.
Let us concentrate on the upper bound. If we define

∆δ(ω) = sup
0≤s,t≤1
|s−t|≤δ

|x(s) − x(t)|



16 CHAPTER 2. STOCHASTIC INTEGRATION.

first check that it is sufficient to prove that for any ρ < 1, and a >
√

2

∑

n

P
[
∆ρn(ω) ≥ a

√
nρn log

1

ρ

]
< ∞ (2.5)

To estimate ∆ρn(ω) it is sufficient to estimate supt∈Ij
|x(t) − x(tj)| for kερ

−n

overlapping intervals {Ij} of the form [tj , tj + (1 + ε)ρn ] with length (1 + ε)ρn.
For each ε > 0, kε = ε−1 is a constant such that any interval [s , t] of length no
larger than ρn is completely contained in some Ij with tj ≤ s ≤ tj + ερn. Then

∆ρn(ω) ≤ sup
j

[
sup
t∈Ij

|x(t) − x(tj)| + sup
tj≤s≤tj+ερn

|x(s) − x(tj)|
]

Therefore, for any a = a1 + a2,

P

[
∆ρn(ω) ≥ a

√
nρn log

1

ρ

]

≤ P

[
sup

j
sup
t∈Ij

|x(t) − x(tj)| ≥ a1

√
nρn log

1

ρ

]

+ P

[
sup

j
sup

tj≤s≤tj+ερn

|x(s) − x(tj)| ≥ a2

√
nρn log

1

ρ

]

≤ 2kερ
−n

[
exp[−

a2
1 nρn log 1

ρ

2(1 + ε)ρn
] + exp[−

a2
2 nρn log 1

ρ

2ερn
]

]

Since a >
√

2, we can pick a1 >
√

2 and a2 > 0. For ε > 0 sufficiently small
(2.5) is easily verified.

2.2 Brownian Motion as a Markov Process.

Brownian motion is a process with independent increments, the increment over
any interval of length t has the Gaussian distribution with density

q(t, y) =
1

(2πt)
d
2

e−
‖y‖2

2t

It is therefore a Markov process with transition probability

p(t, x, y) = q(t, y − x) =
1

(2πt)
d
2

e−
‖y−x‖2

2t

The operators

(Ttf)(x) =

∫
f(y)p(t, x, y)dy

satisfy TtTs = TsTt = Tt+s, i.e the semigroup property. This is seen to be an
easy consequence of the Chapman-Kolmogorov equations

∫
p(t, x, y)p(s, y, z)dy = p(t + s, x, z)
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The infinitesimal generator of the semigroup

(Af)(x) = lim
t→0

Ttf − f

t

is easily calculated as

(Af)(x) = lim
t→0

1

t

∫
[f(x + y) − f(x)]q(t, y)dy

= lim
t→0

1

t

∫
[f(x +

√
ty) − f(x)]q(t, y)dy

=
1

2
(∆f)(x)

by expanding f in a Taylor series in
√

t. The term that is linear in y integrates
to 0 and the quadratic term leads to the Laplace operator. The differential
equation

dTt

dt
= TtA = ATt

implies that u(t, x) = (Ttf)(x) satisfies the heat equation

ut =
1

2
∆u

and
d

dt

∫
f(y)p(t, x, y)dy =

∫
1

2
(∆f)(y)p(t, x, y)dy

In particular if Ex is expectation with respect to Brownian motion starting from
x,

Ex[f(x(t)] − f(x) = Ex

[∫ t

0

1

2
(∆f)(x(s))ds

]

By the Markov property

Ex

[
f(x(t) − f(x(s)) −

∫ t

s

1

2
(∆f)(x(τ))dτ

∣∣Fs

]
= 0

or

f(x(t) − f(x(0)) −
∫ t

0

1

2
(∆f)(x(τ))dτ

is a Martingale with respect to Brownian Motion.
It is just one step from here to show that for functions u(t, x) that are smooth

u(t, x(t)) − u(0, x(0)) −
∫ t

0
[
∂u

∂t
+

1

2
∆u](s, x(s))ds (2.6)

is a martingale. There are in addition some natural exponential Martingales
associated with Brownian motion. For instance for any λ ∈ Rd,

exp[< λ, x(t) − x(0) > −
1

2
‖λ‖2t]
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is a martingale. More generally for any smooth function u(t, x) that is bounded
away from 0,

u(t, x(t)) exp

[
−

∫ t

0

[ ∂u
∂t

+ 1
2∆u

u

]
(s, x(s))ds

]
(2.7)

is a martingale. In particular if

∂u

∂t
+

1

2
∆u + v(t, x)u(t, x) = 0

then

u(t, x(t)) exp[

∫ t

0
v(s, x(s))ds]

is a Martingale, which is the Feynman-Kac formula. To prove (2.7) from (2.6),
we make use of the following elementary lemma.

Lemma 2.2. Suppose M(t) is almost surely continuous martingale with respect
to (Ω,Ft, P ) and A(t) is a progressively measurable function, which is almost
surely continuous and of bounded variation in t. Then, under the assumption
that sup0≤s≤t |M(s)|V ar0,tA(·, ω) is integrable,

M(t)A(t) − M(0)A(0) −
∫ t

0
M(s)dA(s)

is again a Martingle.

Proof. The main step is to see why

E[M(t)A(t) − M(0)A(0) −
∫ t

0
M(s)dA(s)] = 0

Then the same argument, repeated conditionally will prove the martingale prop-
erty.

E[M(t)A(t) − M(0)A(0)] = lim
∑

j

E[M(tj)A(tj) − M(tj−1)A(tj−1)]

= lim
∑

j

E[M(tj)A(tj−1) − M(tj−1)A(tj−1)]

+ lim
∑

j

E[M(tj)[A(tj) − A(tj−1)]

= lim
∑

j

E[M(tj)[A(tj) − A(tj−1)]

= E

[ ∫ t

0
M(s)dA(s)

]

The limit is over the partition {tj} becoming dense in [0, t] and ones uses the
integrability of sup0≤s≤t |M(s)|V ar0,tA(·) and the dominated convergence the-
orem to complete the proof.
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Now, to go from (2.6) to (2.7), we choose

M(t) = u(t, x(t)) − u(0, x(0)) −
∫ t

0
[
∂u

∂t
+

1

2
∆u](s, x(s))ds

and

A(t) = exp

[
−

∫ t

0

[ ∂u
∂t

+ 1
2∆u

u

]
(s, x(s))ds

]

2.3 Stochastic Integrals

If y1, . . . , yn is a martingale relative to the σ-fields Fj , and if ej(ω) are random
functions that are Fj measurable, the sequence

zj =
j−1∑

k=0

ek(ω)[yk+1 − yk]

is again a martingale with respect to the σ-fields Fj , provided the expectations
are finite. A computation shows that if

aj(ω) = EP [(yj+1 − yj)
2|Fj ]

then

EP [z2
j ] =

j−1∑

k=0

EP
[
ak(ω)|ek(ω)|2

]

or more precisely

EP
[
(zj+1 − zj)

2|Fj

]
= aj(ω)|ej(ω)|2 a.e. P

Formally one can write

δzj = zj+1 − zj = ej(ω)δyj = ej(ω)(yj+1 − yj)

zj is called a martingale transform of yj and the size of zn measured by its mean

square is exactly equal to EP
[∑n−1

j=0 |ej(ω)|2 aj(ω)
]
. The stochastic integral is

just the continuous analog of this.

Theorem 2.3. Let y(t) be an almost surely continuous martingale relative to
(Ω,Ft, P ) such that y(0) = 0 a.e. P , and

y2(t) −
∫ t

0
a(s , ω)ds

is again a martingale relative to (Ω,Ft, P ), where a(s , ω)ds is a bounded progres-
sively measurable function. Then for progressively measurable functions e(· , ·)
satisfying, for every t > 0,

EP

[ ∫ t

0
e2(s)a(s)ds

]
< ∞
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the stochastic integral

z(t) =

∫ t

0
e(s)dy(s)

makes sense as an almost surely continuous martingale with respect to (Ω,Ft, P )
and

z2(t) −
∫ t

0
e2(s)a(s)ds

is again a martingale with respect to (Ω,Ft, P ). In particular

EP
[
z2(t)

]
= EP

[ ∫ t

0
e2(s)a(s)ds

]
(2.8)

Proof.
Step 1. The statements are obvious if e(s) is a constant.

Step 2. Assume that e(s) is a simple function given by

e(s , ω) = ej(ω) for tj ≤ s < tj+1

where ej(ω) is Ftj measurable and bounded for 0 ≤ j ≤ N and tN+1 = ∞.
Then we can define inductively

z(t) = z(tj) + e(tj , ω)[y(t) − y(tj)]

for tj ≤ t ≤ tj+1. Clearly z(t) and

z2(t) −
∫ t

0
e2(s , ω)a(s , ω)ds

are martingales in the interval [tj , tj+1]. Since the definitions match at the end
points the martingale property holds for t ≥ 0.

Step 3. If ek(s , ω) is a sequence of uniformly bounded progressively measurable
functions converging to e(s , ω) as k → ∞ in such a way that

lim
k→∞

∫ t

0
|ek(s)|2a(s)ds = 0

for every t > 0, because of the relation (2.8)

lim
k,k′→∞

EP

[
|zk(t) − zk′(t)|2

]
= lim

k,k′→∞
EP

[ ∫ t

0
|ek(s) − ek′(s)|2a(s)ds

]
= 0.

Combined with Doob’s inequality, we conclude the existence of a an almost
surely continuous martingale z(t) such that

lim
k→∞

EP

[
sup

0≤s≤t
|zk(s) − z(s)|2

]
= 0
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and clearly

z2(t) −
∫ t

0
e2(s)a(s)ds

is an (Ω,Ft, P ) martingale.

Step 4. All we need to worry now is about approximating e(· , ·). Any bounded
progressively measurable almost surely continuous e(s , ω) can be approximated

by ek(s , ω) = e( [ks]∧k2

k
, ω) which is piecewise constant and levels off at time k.

It is trivial to see that for every t > 0,

lim
k→∞

∫ t

0
|ek(s) − e(s)|2a(s) ds = 0

Step 5. Any bounded progressively measurable e(s , ω) can be approximated
by continuous ones by defining

ek(s , ω) = k

s∫

(s− 1
k )∨0

e (u , ω)du

and again it is trivial to see that it works.

Step 6. Finally if e(s , ω) is un bounded we can approximate it by truncation,

ek(s , ω) = fk(e(s , ω))

where fk(x) = x for |x| ≤ k and 0 otherwise.
This completes the proof of the theorem.

Suppose we have an almost surely continuous process x(t , ω) defined on some
(Ω,Ft, P ), and progressively measurable functions b(s, ω), a(s, ω) with a ≥ 0,
such that

x(t , ω) = x(0 , ω) +

∫ t

0
b(s , ω)ds + y(t , ω)

where y(t, ω) and

y2(t, ω) −
∫ t

0
a(s, ω)ds

are martingales with respect to (Ω,Ft, P ). The stochastic integral z(t) =∫ t

0 e(s)dx(s) is defined by

z(t) =

∫ t

0
e(s)dx(s) =

∫ t

0
e(s)b(s)ds +

∫ t

0
e(s)dy(s)

For this to make sense we need for every t,

EP
[ ∫ t

0
|e(s)b(s)|ds

]
< ∞ and EP

[ ∫ t

0
|e(s)|2a(s)ds

]
< ∞
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If we assume for simplicity that eb and e2a are uniformly bounded functions in
t and ω. It then follows, that for any F0 measurable z(0), that

z(t) = z(0) +

∫ t

0
e(s)dx(s)

is again an almost surely continuous process such that

z(t) = z(0) +

∫ t

0
b′(s, ω)ds + y′(t, ω)

where y′(t) and

y′(t)2 −
∫ t

0
a′(s, ω)ds

are martingales with b′ = eb and a′ = e2a.

Exercise 2.3. If e is such that eb and e2a are bounded, then prove directly that
the exponentials

exp
[
λ(z(t) − z(0)) − λ

∫ t

0
e(s)b(s)ds −

λ2

2

∫ t

0
a(s)e2(s)ds

]

are (Ω,Ft, P ) martingales.

We can easily do the mutidimensional generalization. Let y(t) be a vector
valued martingale with n components y1(t), · · · , yn(t) such that

yi(t)yj(t) −
∫ t

o

ai,j(s , ω)ds

are again martingales with respect to (Ω,Ft, P ). Assume that the progressively
measurable functions{ai,j(t , ω)} are symmetric and positive semidefinite for ev-
ery t and ω and are uniformly bounded in t and ω. Then the stochastic integral

z(t) = z(0) +

∫ t

0
< e(s), dy(s) >= z(0) +

∑

i

∫ t

0
ei(s)dyi(s)

is well defined for vector velued progressively measurable functions e(s , ω) such
that

EP
[ ∫ t

0
< e(s) , a(s)e(s) > ds

]
< ∞

In a similar fashion to the scalar case, for any diffusion process x(t) corre-
sponding to b(s , ω) = {bi(s , ω)} and a(s , ω) = {ai,j(s , ω)} and any e(s , ω)) =
{ei(s , ω)} which is progressively measurable and uniformly bounded

z(t) = z(0) +

∫ t

0
< e(s) , dx(s) >
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is well defined and is a diffusion corresponding to the coefficients

b̃(s , ω) =< e(s , ω) , b(s , ω) > and ã(s , ω) =< e(s , ω) , a(s , ω)e(s , ω) >

It is now a simple exercise to define stocahstic integrals of the form

z(t) = z(0) +

∫ t

0
σ(s , ω)dx(s)

where σ(s , ω) is a matrix of dimension m × n that has the suitable properties
of boundedness and progressive measurability. z(t) is seen easily to correspond
to the coefficients

b̃(s) = σ(s)b(s) and ã(s) = σ(s)a(s)σ∗(s)

The analogy here is to linear transformations of Gaussian variables. If ξ is a
Gaussian vector in Rn with mean µ and covariance A, and if η = Tξ is a linear
transformation from Rn to Rm, then η is again Gaussian in Rm and has mean
Tµ and covariance matrix TAT ∗.

Exercise 2.4. If x(t) is Brownian motion in Rn and σ(s , ω) is a progreessively
measurable bounded function then

z(t) =

∫ t

0
σ(s , ω)dx(s)

is again a Brownian motion in Rn if and only if σ is an orthogonal matrix for
almost all s (with repect to Lebesgue Measure) and ω (with respect to P )

Exercise 2.5. We can mix stochastic and ordinary integrals. If we define

z(t) = z(0) +

∫ t

0
σ(s)dx(s) +

∫ t

0
f(s)ds

where x(s) is a process corresponding to b(s), a(s), then z(t) corresponds to

b̃(s) = σ(s)b(s) + f(s) and ã(s) = σ(s)a(s)σ∗(s)

The analogy is again to affine linear transformations of Gaussians η = Tξ + γ.

Exercise 2.6. Chain Rule. If we transform from x to z and again from z to w,
it is the same as makin a single transformation from z to w.

dz(s) = σ(s)dx(s) + f(s)ds and dw(s) = τ(s)dz(s) + g(s)ds

can be rewritten as

dw(s) = [τ(s)σ(s)]dx(s) + [τ(s)f(s) + g(s)]ds
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2.4 Ito’s Formula.

The chain rule in ordinary calculus allows us to compute

df(t , x(t)) = ft(t , x(t))dt + ∇f(t , x(t)).dx(t)

We replace x(t) by a Brownian path, say in one dimension to keep things simple
and for f take the simplest nonlinear function f(x) = x2 that is independent of
t. We are looking for a formula of the type

β2(t) − β2(0) = 2

∫ t

0
β(s) dβ(s) (2.9)

We have already defined integrals of the form
∫ t

0
β(s) dβ(s) (2.10)

as Ito’s stochastic integrals. But still a formula of the type (2.9) cannot possibly
hold. The left hand side has expectation t while the right hand side as a stochas-
tic integral with respect to β(·) is mean zero. For Ito’s theory it was important
to evaluate β(s) at the back end of the interval [tj−1 , tj ] before multiplying by
the increment (β(tj) − β(tj−1) to keeep things progressively measurable. That
meant the stochastic integral (2.10) was approximated by the sums

∑

j

β(tj−1)(β(tj) − β(tj−1)

over successive partitions of [0 , t]. We could have approximated by sums of the
form ∑

j

β(tj)(β(tj) − β(tj−1).

In ordinary calculus, because β(·) would be a continuous function of bounded
variation in t, the difference would be negligible as the partitions became finer
leading to the same answer. But in Ito calculus the differnce does not go to 0.
The difference Dπ is given by

Dπ =
∑

j

β(tj)(β(tj) − β(tj−1) −
∑

j

β(tj−1(β(tj) − β(tj−1)

=
∑

j

(β(tj) − β(tj−1)(β(tj) − β(tj−1)

=
∑

j

(β(tj) − β(tj−1)
2

An easy computation gives E[Dπ] = t and E[(Dπ − t)2] = 3
∑

j(tj − tj−1)2

tends to 0 as the partition is refined. On the other hand if we are neutral and
approximate the integral (2.10) by

∑

j

1

2
(β(tj−1) + β(tj))(β(tj) − β(tj−1)
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then we can simplify and calculate the limit as

lim
∑

j

β(tj)2 − β(tj−1)2

2
=

1

2
(β2(t) − β2(0))

This means as we defined it (2.10) can be calculated as
∫ t

0
β(s) dβ(s) =

1

2
(β2(t) − β2(0)) −

t

2

or the correct version of (2.9) is

β2(t) − β2(0) =

∫ t

0
β(s) dβ(s) + t

Now we can attempt to calculate f(β(t))−f(β(0)) for a smooth function of one
variable. Roughly speaking, by a two term Taylor expansion

f(β(t)) − f(β(0)) =
∑

j

[f(β(tj)) − f(β(tj−1))]

=
∑

j

f ′(β(tj−1)(β(tj)) − β(tj−1))

+
1

2

∑

j

f ′′(β(tj−1)(β(tj)) − β(tj−1))
2

+
∑

j

O|β(tj)) − β(tj−1)|3

The expected value of the error term is approximately

E
[∑

j

O|β(tj)) − β(tj−1)|3
]

=
∑

j

O|tj − tj−1|
3
2 = o(1)

leading to Ito’s formula

f(β(t)) − f(β(0)) =

∫ t

0
f ′(β(s))dβ(s) +

1

2

∫ t

0
f ′′(β(s))ds (2.11)

It takes some effort to see that

∑

j

f ′′(β(tj−1)(β(tj)) − β(tj−1))
2 →

∫ t

0
f ′′(β(s))ds

But the idea is, that because f ′′(β(s)) is continuous in t, we can pretend that it
is locally constant and use that calculation we did for x2 where f ′′ is a constant.

While we can make a proof after a careful estimation of all the errors, in fact
we do not have to do it. After all we have already defined the stochastic integral
(2.10). We should be able to verify (2.11) by computing the mean square of the
difference and showing that it is 0.

In fact we will do it very generally with out much effort. We have the tools
already.
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Theorem 2.4. Let x(t) be an almost surely continuous process with values on
Rd such that

yi(t) = xi(t) − xi(0) −
∫ t

0
bi(s, ω)ds (2.12)

and

yi(t)yj(t) −
∫ t

0
ai,j(s, ω)ds (2.13)

are martingales for 1 ≤ i, j ≤ d. For any smooth function u(t , x) on [0 ,∞)×Rd

u(t , x(t)) − u(0 , x(0)) =

∫ s

0
us(s , x(s))ds +

∫ t

0
< (∇u)(s , x(s)) , dx(s) >

+
1

2

∫ t

0

∑

i,j

ai,j(s , ω)
∂2u

∂xi∂xj
(s , x(s))ds

Proof. Let us define the stochastic process

ξ(t) =u(t , x(t)) − u(0 , x(0)) −
∫ s

0
us(s , x(s))ds

−
∫ t

0
< (∇u)(s , x(s)) , dx(s) > −

1

2

∫ t

0

∑

i,j

ai,j(s , ω)
∂2u

∂xi∂xj
(s , x(s))ds

(2.14)

We define a d + 1 dimensional process x̃(t) = {u(t , x(t)), x(t)} which is again
a process with almost surely continuous paths satisfying relations analogous to
(2.12) and (2.13) with [b̃, ã]. If we number the extra coordinate by 0, then

b̃i =

{
[∂u
∂s

+ Ls,ωu](s , x(s)) if i = 0

bi(s , ω) if i ≥ 1

ãi,j =






< a(s , ω)∇u ,∇u > if i = j = 0

[a(s , ω)∇u]i if j = 0, i ≥ 1

ai,j(s , ω) if i, j ≥ 1

The actual computation is interesting and reveals the connection between
ordinary calculus, second order operators and Ito calculus. If we want to know
the parametrs of the process y(t), then we need to know what to subtract from
v(t , y(t))−v(0 , y(0)) to obtain a martingale. But v(t, , y(t)) = w(t , x(t)), where
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w(t, x) = v(t , u(t , x) , x) and if we compute

(
∂w

∂t
+ Ls,ωw)(t , x) = vt + vu[ut +

∑

i

biuxi +
∑

i

bivxi +
1

2

∑

i,j

ai,juxi,xj ]

+ vu,u
1

2

∑

i,j

ai,juxiuxj +
∑

i

vu,xi

∑

j

ai,juxj

+
1

2

∑

i,j

ai,jvxi,xj

= vt + L̃t,ωv

with

L̃t,ωv =
∑

i≥0

b̃i(s , ω)vyi +
1

2

∑

i,j≥0

ãi,j(s , ω)vyi,yj

We can construct stochastic integrals with respect to the d + 1 dimensional
process y(·) and ξ(t) defined by (2.14) is again an almost surely continuous
process and its parameters can be calculated. After all

ξ(t) =

∫ t

0
< f(s , ω) , dy(s) > +

∫ t

0
g(s , ω)ds

with

fi(s , ω) =

{
1 if i = 0

−(∇u)i(s , x(s)) if i ≥ 1

and

g(s , ω) = −
[∂u

∂s
+

1

2

∑

i,j

ai,j(s , ω)
∂2u

∂xi∂xj

]
(s , x(s))

Denoting the parameters of ξ(·) by [B(s , ω), A(s , ω)], we find

A(s , ω) =< f(s , ω) , ã(s , ω)f(s , ω) >

=< a∇u ,∇u > −2 < a∇u ,∇u > + < a∇u ,∇u >

= 0

and

B(s , ω) =< b̃ , f > +g = b̃0(s , ω)− < b(s , ω) ,∇u(s , x(s)) >

−
[∂u

∂s
(s , ω) +

1

2

∑

i,j

ai,j(s , ω)
∂2u

∂xi∂xj
(s , x(s))

]

= 0

Now all we are left with is the following

Lemma 2.5. If ξ(t) is a scalar process corresponding to the coefficients [0, 0]
then

ξ(t) − ξ(0) ≡ 0 a.e.
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Proof. Just compute

E[(ξ(t) − ξ(0))2] = E[

∫ t

0
0 ds] = 0

This concludes the proof of the theorem.

Exercise 2.7. Ito’s formula is a local formula that is valid for almost all paths. If
u is a smooth function i.e. with one continuous t derivative and two continuous
x derivatives (2.11) must still be valid a.e. We cannot do it with moments,
because for moments to exist we need control on growth at infinity. But it
should not matter. Should it?

Application: Local time in one dimension. Tanaka Formula.

If β(t) is the one dimensional Brownian Motion, for any path β(·) and any t,
the occupation meausre Lt(A ,ω) is defined by

Lt(A,ω) = m{s : 0 ≤ s ≤ t & β(s) ∈ A}

Theorem 2.6. There exists a function &(t , y, ω) such that, for almost all ω,

Lt(A,ω) =

∫

A

&(t , y , ω) dy

identically in t.

Proof. Formally

&(t , y , ω) =

∫ t

0
δ(β(s) − y)ds

but, we have to make sense out of it. From Ito’s formula

f(β(t)) − f(β(0)) =

∫ t

0
f ′(β(s)) dβ(s) +

1

2

∫ t

0
f ′′(β(s))ds

If we take f(x) = |x − y| then f ′(x) = sign x and 1
2f ′′(x) = δ(x − y). We get

the ‘identity’

|β(t) − y| − |β(0) − y| −
∫ t

0
sign β(s)dβ(s) =

∫ t

0
δ(β(s) − y)ds = &(t , y , ω)

While we have not proved the identity, we can use it to define &(· , · , ·). It is
now well defined as a continuous function of t for almost all ω for each y, and
by Fubini’s theorem for almost all y and ω.
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Now all we need to do is to check that it works. It is enough to check that
for any smooth test function φ with compact support

∫

R

φ(y)&(t , y , ω) dy =

∫ t

0
φ(β(s))ds (2.15)

The function

ψ(x) =

∫

R

|x − y|φ(y) dy

is smooth and a straigt forward calculation shows

ψ′(x) =

∫

R

sign (x − y)φ(y) dy

and
ψ′′(x) = −2φ(x)

It is easy to see that (2.15) is nothing but Ito’s formuls for ψ.

Remark 2.2. One can estimate

E
[ ∫ t

0
[ sign (β(s) − y) − sign (β(s) − z)]dβ(s)

]4 ≤ C|y − z|2

and by Garsia- Rodemich- Rumsey or Kolmogorov one can conclude that for
each t, &(t , y , ω) is almost surely a continuous function of y.

Remark 2.3. With a little more work one can get it to be jointly continuous in
t and y for almost all ω.


