
Multidimensional version of Kolmogorov’s Theorem.

Let us do d = 2. d > 2 is not all that different. We need to interpolate a function from the

four corners of a square to its interior. Pretending the square to be [0, 1]2, the function

will be of the form

f(x1, x2) = a + bx1 + cx2 + dx1x2

It is linear in each variable. The values on the edge of a square are obtained by linear

interpolation from the corners. This guarantees that the function defined on each one for

the sub-squares separately matches at the common edges and defines a continuous function

on the big square. The comparison between the interpolated functions un, un+1 at n-th

stage and the n + 1-th stage involves differences at 22n possible nodes. [This will be 2nd

in d-dimensions]. As before

sup
x

|un(x) − un+1(x)| ≤ max
1≤i≤cd22n

|u(xi) − u(yi)|

with supi |xi − yi| ≤ 2−n. xi is the mid point of an edge at the n-th stage and yi is either

end point of that edge. At the n-th stage the number of such comparisons can be bounded

by cd22n where cd is a simple constant that depnds on the dimension. Now Tchebechev

inequality will do the trick provided we have for some α > 0,

E[|u(x)− u(y)|β] ≤ |x − y|2+α

Converse Estimate. We now prove the reverse estimate

Theorem.

‖f‖Lp(P ) ≤ Cp‖Λf‖1,p

Proof: This is done by duality. We note that

< −Lf, g >L2(P )=

∫

X

< Df, Dg >H (x)P (dx)

provided f and g are in ∪nKn i.e. are polynomials. Therefore

< f |g >=

∫

X

[< Df(x) , Dg(x) >H +f(x)g(x)]P (dx)
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defines an inner product on polynomials.

EP [fg] = EP [(Λ2f)((I −L)g)] =< Λf |Λg >

=

∫

X

[< (DΛf)(x) , (DΛg)(x) >H +(Λf)(x)(Λg)(x)]P (dx)

If we now take sup over g ∈ Lq(P ), and use the inequalities in the other direction we get

the theorem.

Comments on Higher Derivatives.

Suppose f(ω) is a function on X then the higher derivatives Drf are symmetric r-

linear functional on H and can be viewed as a symmetric element of the tensor product

⊗rH and derives its norm. For instance, for r = 2, it would be the Hilbert-Schmidt norm,

where an element in H⊗H is viewed as a symmetric operator. Now Leibnitz rule applies

and

Dk(fg) =
∑

r+s=k

cr,sD
rf ⊗ Dsg

for some coefficients cr,s. In particular if f, g ∈ S, where

S = ∩p,r

{

f ∈ Lp(P ), ‖Drf‖⊗rH ∈ Lp(P )
}

then fg ∈ S.

For each k, the norm

‖f‖k,p =
∑

0≤r≤k

‖Drf‖Lp

can be shown to be equivalent to the norm ‖Λ−kf‖Lp
i.e

DkΓk

is bounded from Lp → Lp.

We cannot use directly the estimates for maps into a Hilbert space because our goal

is to estimate DnΛnf with values in ⊗n
j=1H in terms of the scalar function f . The idea is

to study some intertwining operators and reduce the problem to the boundedness of DΛ.

The norms for higher derivatives can be defied inductively, in fact for functions with

values in some V.

‖f‖r,p = ‖f‖r−1,p + ‖Df‖Lp(P,H⊗(r−1)⊗V)
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Theorem. There exists a constant c = c(r, p) such that

c−1‖f‖Lp(P ) ≤ ‖Λrf‖r,p ≤ c‖f‖Lp(P )

Proof: Consider the map Γ : D1,p(X ;V) → Lp(P ;V ⊕ (H⊗ V)) defined by

Γf = (f , Df)

Basically by induction

c−1
r ‖f‖p,r ≤ ‖Γrf‖Lp(P ) ≤ cr‖f‖p,r

We construct a map Ak : Lp(P ;V) ⊕ Lp(P ;H⊗ V)) → Lp(P ;V) ⊕ Lp(P ;H⊗ V)) so that

AkΓ = Λ−kΓΛk

We seethat in the chaos decomposition D lowers the degree by 1, so that Γ leaves the first

component alone while lowering the degree by one in the second component. Therefore

Ak can be taken as I in the first component and as mutiplication by (n+1
n+2 )

k
2 on terms of

degree n. We see that

ΓnΛn = Γn−1ΓΛn−1Λ

= Γn−1Λn−1An−1ΓΛ

= (ΓΛ)A1(ΓΛ)A2 · · · (ΓΛ)An−1(ΓΛ)

Since at each step Aj and ΓΛ are bounded operators in every Lp we are done.

Divergence Operator: Given a map u ∈ Lp(P ;H⊗V) the divergence v = D∗ is defined

as the map X → V defined by

∫

X

< f(x) , v(x) >V=

∫

X

< (Df)(x) , u(x) >H⊗V P (dx)

for all smooth functions f with values in V.

Theorem. For u ∈ D1,p, v = D∗u exists in Lp(P ;V). More precisely there is a constant

cp such that

‖D∗u‖Lp(P ;V) ≤ cp‖u‖1,p

Proof:

3



Commutation relations.
DPt = e−tPt D

DΛ−1 = MΛ−1D

where

M f =

√

n + 1

n + 2
f

on Kn.

Riesz Transform. If we define R = D Λ : Lp(P ) → Lp(P ;H), then

‖R f‖Lp(P ;H) ≤ cp‖f‖Lp(P )

We also have

D = RΛ−1 and D = Λ−1MR

Finally,

∫

X

< (Df)(x) , u(x) >H P (dx) =

∫

X

< (Λ−1MR) f(x) , u(x) >H P (dx)

=

∫

X

f(x) (R∗MΛ−1)u(x) P (dx)

Therefore

D∗u = R∗MΛ−1u

and satisfies the bound

‖D∗u‖Lp(P ) ≤ cp‖u‖1,p .

We can think of a map A : X → H as a vector field and its divergence

δA = D∗A

satisfies

‖δA‖Lp(P ) ≤ cp‖A‖1,p .

Malliavin Covariance Matrix. Suppose g(x) : X → Rd is a map with ‖g‖1,p < ∞.

Then

(Dg)(x) ∈ H⊗ Rd a.e. P
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or representing g = {gi} we have for each i = 1, ·, d

(Dgi)(x) ∈ H a.e. P

The Malliavin Covariance Matrix is the symmetric positive semi-definite matrix

σ(x) = σi,j(x) =< (Dgi)(x) , (Dgj)(x) >H

exists and is in L p

2
(P ) provided p ≥ 2. The map g is called non degenerate if

[det σ(x)]−1 ∈ Lp(P )

for every 1 ≤ p < ∞. It is called weakly non degenerate if

det σ(x) > 0 a.e. P

The map g : X → Rd defines a gradient (Dg)(x) which is a linear map g′(x) from the

tangent space H of X at x to the tangent space Rd of Rd at g(x). Then σ(x) = g′(x)g′ ∗(x).

Given a map g and a vector field z = z(y) on Rd i.e. a map Rd → Rd, we can look for a

vector field Z̃ on X a lift of z such that

g′(x)Z̃(x) = z(g(x))

In the nondegenerate case this is possible, at least for almost all x. A canonical choice

which, for each x, minimizes ‖Z̃(x)‖H is given by

Z(x) = g′ ∗(x)[σ(x)]−1 z(g(x))

In particular we can lift ∂
∂yk

to

Zk(x) =
∑

j

γk,j(x)g′
j(x)

where γ(x) is the inverse of σ(x).

Smoothness of distributions. Let g(x) be a map into Rd that is nondegenerate and

smooth in the sense that ‖g‖r,p < ∞ for all r and p. If f(y) is a smooth function on Rd,

and ρ(dy) is the distribution ρ = Pg−1 = g∗P we have
∫

Rd

∂f

∂yk

(y)ρ(dy) =

∫

X

< Df̃ , Zk > (x)dP

=

∫

X

f̃(x) (δZk)(x) dP

=

∫

Rd

f(y)vk(y)ρ(dy)
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where f̃ = f(g(x)) is the lifted function f and vk(y) = EP [δZk|g(·)] is the conditional

expectation. If we can get estimates on ‖δZk‖Lp(P ) that will be fine because
∫

Rd

∣

∣

∂r

∂yk

(y)
∣

∣

p
r(y) dy =

∫

Rd

|vk(y)|pρ(dy) ≤

∫

X

|δZk(x)|pP (dx)

where ρ(dy) = r(y)dy.

Calculation of δZk. From the definition

Zk =
∑

j

γk,j(x)g′
j(x)

we can compute

(δZk)(x) =
∑

j

< [D γk,j](x) , (Dgj)(x) > +
∑

j

γk,j(x)(δDgj)(x)

and using the relations

δD = −L and Dγ = Dσ−1 = σ−1(Da)σ−1 = γ(Da)γ

we can write

(δZk)(x) = −
∑

j

γk,j(x)(Lgj)(x) +
∑

s,j,i

γk,s(x)γj,i(x) < (Dσs,j)(x) , (Dgi)(x) >

= −
∑

j

γk,j(x)(Lgj)(x)

+
∑

s,j,i

γk,s(x)γj,i(x) < (D < (Dgs)(·) , (Dgj)(·) >)(x) , (Dgi)(x) >

= −
∑

j

γk,j(x)(Lgj)(x) +
∑

s,j,i

γk,s(x)γj,i(x)

[

(D2gs)(x)[(Dgj)(x) , (Dgi)(x)]

]

+
∑

s,j,i

γk,s(x)γj,i(x)

[

(D2gj)(x)[(Dgs)(x) , (Dgi)(x)]

]

= −
∑

j

γk,j(x)(Lgj)(x) +
∑

s,i

γk,s(x)
[

(D2gs)(Zi , Dgi)
]

(x)

+
∑

j

[

(D2gj)(Zk , Zj)
]

(x)

Since terms of the form
[

(D2g)(u , v)
]

(x)

can be estimated by

‖(D2g)(x)‖H⊗H × ‖u(x)‖H × ‖v(x)‖H

we acn control ‖δZk‖Lp(P ) by ‖γ‖Lp′ (P ) and ‖g‖2,p′ with large enough p′.
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