
Chapter 3

Stochastic Integration

3.1 Stochastic Integrals

If y1, . . . , yn is a martingale relative to the σ-fields Fj , and if ej(ω) are random
functions that are Fj measurable, the sequence

zj =
j−1∑
k=0

ek(ω)[yk+1 − yk]

is again a martingale with respect to the σ-fields Fj , provided the expectations
are finite. A computation shows that if

aj(ω) = EP [(yj+1 − yj)2|Fj ]

then

EP [z2
j ] =

j−1∑
k=0

EP
[
ak(ω)|ek(ω)|2]

or more precisely

EP
[
(zj+1 − zj)2|Fj

]
= aj(ω)|ej(ω)|2 a.e. P

Formally one can write

δzj = zj+1 − zj = ej(ω)δyj = ej(ω)(yj+1 − yj)

zj is called a martingale transform of yj and the size of zn measured by its mean
square is exactly equal to EP

[∑n−1
j=0 |ej(ω)|2 aj(ω)

]
. The stochastic integral is

just the continuous analog of this.

Theorem 3.1. Let y(t) be an almost surely continuous martingale relative to
(Ω,Ft, P ) such that y(0) = 0 a.e. P , and

y2(t)−
∫ t

0

a(s , ω)ds

29
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is again a martingale relative to (Ω,Ft, P ), where a(s , ω)ds is a bounded progres-
sively measurable function. Then for progressively measurable functions e(· , ·)
satisfying, for every t > 0,

EP

[∫ t

0

e2(s)a(s)ds
]
<∞

the stochastic integral

z(t) =
∫ t

0

e(s)dy(s)

makes sense as an almost surely continuous martingale with respect to (Ω,Ft, P )
and

z2(t)−
∫ t

0

e2(s)a(s)ds

is again a martingale with respect to (Ω,Ft, P ). In particular

EP
[
z2(t)

]
= EP

[ ∫ t

0

e2(s)a(s)ds
]

(3.1)

Proof.
Step 1. The statements are obvious if e(s) is a constant.

Step 2. Assume that e(s) is a simple function given by

e(s , ω) = ej(ω) for tj ≤ s < tj+1

where ej(ω) is Ftj measurable and bounded for 0 ≤ j ≤ N and tN+1 = ∞.
Then we can define inductively

z(t) = z(tj) + e(tj , ω)[y(t)− y(tj)]

for tj ≤ t ≤ tj+1. Clearly z(t) and

z2(t)−
∫ t

0

e2(s , ω)a(s , ω)ds

are martingales in the interval [tj , tj+1]. Since the definitions match at the end
points the martingale property holds for t ≥ 0.

Step 3. If ek(s , ω) is a sequence of uniformly bounded progressively measurable
functions converging to e(s , ω) as k →∞ in such a way that

lim
k→∞

∫ t

0

|ek(s)|2a(s)ds = 0

for every t > 0, because of the relation (3.1)

lim
k,k′→∞

EP

[
|zk(t)− zk′(t)|2

]
= lim

k,k′→∞
EP

[ ∫ t

0

|ek(s)− ek′(s)|2a(s)ds
]

= 0.
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Combined with Doob’s inequality, we conclude the existence of a an almost
surely continuous martingale z(t) such that

lim
k→∞

EP

[
sup

0≤s≤t
|zk(s)− z(s)|2

]
= 0

and clearly

z2(t)−
∫ t

0

e2(s)a(s)ds

is an (Ω,Ft, P ) martingale.

Step 4. All we need to worry now is about approximating e(· , ·). Any bounded
progressively measurable almost surely continuous e(s , ω) can be approximated
by ek(s , ω) = e( [ks]∧k2

k , ω) which is piecewise constant and levels off at time k.
It is trivial to see that for every t > 0,

lim
k→∞

∫ t

0

|ek(s)− e(s)|2a(s) ds = 0

Step 5. Any bounded progressively measurable e(s , ω) can be approximated
by continuous ones by defining

ek(s , ω) = k

s∫
(s− 1

k )∨0

e (u , ω)du

and again it is trivial to see that it works.

Step 6. Finally if e(s , ω) is un bounded we can approximate it by truncation,

ek(s , ω) = fk(e(s , ω))

where fk(x) = x for |x| ≤ k and 0 otherwise.
This completes the proof of the theorem.

If we have a continuous diffusion process x(t , ω) defined on (Ω,Ft, P ), corre-
sponding to coefficients a(t , ω) and b(t , ω), then we can define stochastic inte-
grals with respect to x(t). We write

x(t , ω) = x(0 , ω)) +
∫ t

o

b(s , ω)ds+ y(t , ω))

and the stochastic integral
∫ t

0
e(s)dx(s) is defined by∫ t

0

e(s)dx(s) =
∫ t

0

e(s)b(s)ds+
∫ t

0

e(s)dy(s)
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For this to make sense we need for every t,

EP
[ ∫ t

0

|e(s)b(s)|ds] <∞ and EP
[ ∫ t

0

|e(s)|2a(s)ds] <∞

If we assume for simplicity that e is bounded then eb and e2a are uniformly
bounded functions in t and ω. It then follows, that for any F0 measurable z(0),
that

z(t) = z(0) +
∫ t

0

e(s)dx(s)

is again a diffusion process that corresponds to the coefficients be, ae2. In par-
ticular all of the equivalent relations hold good.

Exercise 3.1. If e is such that eb and e2a are bounded, then prove directly that
the exponentials

exp
[
λ(z(t)− z(0))− λ

∫ t

0

e(s)b(s)ds− λ2

2

∫ t

0

a(s)e2(s)ds
]

are (Ω,Ft, P ) martingales.

We can easily do the mutidimensional generalization. Let y(t) be a vector
valued martingale with n components y1(t), · · · , yn(t) such that

yi(t)yj(t)−
∫ t

o

ai,j(s , ω)ds

are again martingales with respect to (Ω,Ft, P ). Assume that the progressively
measurable functions{ai,j(t , ω)} are symmetric and positive semidefinite for ev-
ery t and ω and are uniformly bounded in t and ω. Then the stochastic integral

z(t) = z(0) +
∫ t

0

< e(s), dy(s) = z(0) +
∑

i

∫ t

0

ei(s)dyi(s)

is well defined for vector velued progressively measurable functions e(s , ω) such
that

EP
[ ∫ t

0

< e(s) , a(s)e(s) > ds
]
<∞

In a similar fashion to the scalar case, for any diffusion process x(t) corre-
sponding to b(s , ω) = {bi(s , ω)} and a(s , ω) = {ai,j(s , ω)} and any e(s , ω)) =
{ei(s , ω)} which is progressively measurable and uniformly bounded

z(t) = z(0) +
∫ t

0

< e(s) , dx(s) >

is well defined and is a diffusion corresponding to the coefficients

b̃(s , ω) =< e(s , ω) , b(s , ω) > and ã(s , ω) =< e(s , ω) , a(s , ω)e(s , ω) >
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It is now a simple exercise to define stocahstic integrals of the form

z(t) = z(0) +
∫ t

0

σ(s , ω)dx(s)

where σ(s , ω) is a matrix of dimension m × n that has the suitable properties
of boundedness and progressive measurability. z(t) is seen easily to correspond
to the coefficients

b̃(s) = σ(s)b(s) and ã(s) = σ(s)a(s)σ∗(s)

The analogy here is to linear transformations of Gaussian variables. If ξ is a
Gaussian vector in Rn with mean µ and covariance A, and if η = Tξ is a linear
transformation from Rn to Rm, then η is again Gaussian in Rm and has mean
Tµ and covariance matrix TAT ∗.

Exercise 3.2. If x(t) is Brownian motion in Rn and σ(s , ω) is a progreessively
measurable bounded function then

z(t) =
∫ t

0

σ(s , ω)dx(s)

is again a Brownian motion in Rn if and only if σ is an orthogonal matrix for
almost all s (with repect to Lebesgue Measure) and ω (with respect to P )

Exercise 3.3. We can mix stochastic and ordinary integrals. If we define

z(t) = z(0) +
∫ t

0

σ(s)dx(s) +
∫ t

0

f(s)ds

where x(s) is a process corresponding to b(s), a(s), then z(t) corresponds to

b̃(s) = σ(s)b(s) + f(s) and ã(s) = σ(s)a(s)σ∗(s)

The analogy is again to affine linear transformations of Gaussians η = Tξ + γ.

Exercise 3.4. Chain Rule. If we transform from x to z and again from z to w,
it is the same as makin a single transformation from z to w.

dz(s) = σ(s)dx(s) + f(s)ds and dw(s) = τ(s)dz(s) + g(s)ds

can be rewritten as

dw(s) = [τ(s)σ(s)]dx(s) + [τ(s)f(s) + g(s)]ds

3.2 Ito’s Formula.

The chain rule in ordinary calculus allows us to compute

df(t , x(t)) = ft(t , x(t))dt +∇f(t , x(t)).dx(t)
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We replace x(t) by a Brownian path, say in one dimension to keep things simple
and for f take the simplest nonlinear function f(x) = x2 that is independent of
t. We are looking for a formula of the type

β2(t)− β2(0) = 2
∫ t

0

β(s) dβ(s) (3.2)

We have already defined integrals of the form∫ t

0

β(s) dβ(s) (3.3)

as Ito’s stochastic integrals. But still a formula of the type (3.2) cannot possibly
hold. The left hand side has expectation t while the right hand side as a stochas-
tic integral with respect to β(·) is mean zero. For Ito’s theory it was important
to evaluate β(s) at the back end of the interval [tj−1 , tj ] before multiplying by
the increment (β(tj) − β(tj−1) to keeep things progressively measurable. That
meant the stochastic integral (3.3) was approximated by the sums∑

j

β(tj−1)(β(tj)− β(tj−1)

over successive partitions of [0 , t]. We could have approximated by sums of the
form ∑

j

β(tj)(β(tj)− β(tj−1).

In ordinary calculus, because β(·) would be a continuous function of bounded
variation in t, the difference would be negligible as the partitions became finer
leading to the same answer. But in Ito calculus the differnce does not go to 0.
The difference Dπ is given by

Dπ =
∑

j

β(tj)(β(tj)− β(tj−1)−
∑

j

β(tj−1(β(tj)− β(tj−1)

=
∑

j

(β(tj)− β(tj−1)(β(tj)− β(tj−1)

=
∑

j

(β(tj)− β(tj−1)2

An easy computation gives E[Dπ] = t and E[(Dπ − t)2] = 3
∑

j(tj − tj−1)2

tends to 0 as the partition is refined. On the other hand if we are neutral and
approximate the integral (3.3) by∑

j

1
2
(β(tj−1) + β(tj))(β(tj)− β(tj−1)

then we can simplify and calculate the limit as

lim
∑

j

β(tj)2 − β(tj−1)2

2
=

1
2
(β2(t)− β2(0))
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This means as we defined it (3.3) can be calculated as∫ t

0

β(s) dβ(s) =
1
2
(β2(t)− β2(0))− t

2

or the correct version of (3.2) is

β2(t)− β2(0) =
∫ t

0

β(s) dβ(s) + t

Now we can attempt to calculate f(β(t))−f(β(0)) for a smooth function of one
variable. Roughly speaking, by a two term Taylor expansion

f(β(t))− f(β(0)) =
∑

j

[f(β(tj))− f(β(tj−1))]

=
∑

j

f ′(β(tj−1)(β(tj))− β(tj−1))

+
1
2

∑
j

f ′′(β(tj−1)(β(tj))− β(tj−1))2

+
∑

j

O|β(tj))− β(tj−1)|3

The expected value of the error term is approximately

E
[∑

j

O|β(tj))− β(tj−1)|3
]

=
∑

j

O|tj − tj−1| 32 = o(1)

leading to Ito’s formula

f(β(t)) − f(β(0)) =
∫ t

0

f ′(β(s))dβ(s) +
1
2

∫ t

0

f ′′(β(s))ds (3.4)

It takes some effort to see that∑
j

f ′′(β(tj−1)(β(tj))− β(tj−1))2 →
∫ t

0

f ′′(β(s))ds

But the idea is, that because f ′′(β(s)) is continuous in t, we can pretend that it
is locally constant and use that calculation we did for x2 where f ′′ is a constant.

While we can make a proof after a careful estimation of all the errors, in
fact we do not have to do it. After all we have already defined the stochastic
integral (3.3). We should be able to verify (3.4) by computing the mean square
of the difference and showing that it is 0.

In fact we will do it very generally with out much effort. We have the tools
already.
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Theorem 3.2. Let x(t) be a Diffusion Process with values on Rd corresponding
to [b, a], a collection of bounded, progressively measurable coefficients. For any
smooth function u(t , x) on [0 ,∞)×Rd

u(t , x(t))− u(0 , x(0)) =
∫ s

0

us(s , x(s))ds +
∫ t

0

< (∇u)(s , x(s)) , dx(s) >

+
1
2

∫ t

0

∑
i,j

ai,j(s , ω)
∂2u

∂xi∂xj
(s , x(s))ds

Proof. Let us define the stochastic process

ξ(t) = u(t , x(t)) − u(0 , x(0))−
∫ s

0

us(s , x(s))ds −
∫ t

0

< (∇u)(s , x(s)) , dx(s) >

− 1
2

∫ t

0

∑
i,j

ai,j(s , ω)
∂2u

∂xi∂xj
(s , x(s))ds

(3.5)

We define a d + 1 dimensional process y(t) = {u(t , x(t)), x(t)} which is also a
diffusion, and has its parameters [̃b, ã]. If we number the extra coordinate by 0,
then

b̃i =

{
[∂u
∂s + Ls,ωu](s , x(s)) if i = 0
bi(s , ω) if i ≥ 1

ãi,j =


< a(s , ω)∇u ,∇u > if i = j = 0
[a(s , ω)∇u]i if j = 0, i ≥ 1
ai,j(s , ω) if i, j ≥ 1

The actual computation is interesting and reveals the connection between
ordinary calculus, second order operators and Ito calculus. If we want to know
the parametrs of the process y(t), then we need to know what to subtract from
v(t , y(t))−v(0 , y(0)) to obtain a martingale. But v(t, , y(t)) = w(t , x(t)), where
w(t, x) = v(t , u(t , x) , x) and if we compute

(
∂w

∂t
+ Ls,ωw)(t , x) = vt + vu[ut +

∑
i

biuxi +
∑

i

bivxi +
1
2

∑
i,j

ai,juxi,xj ]

+ vu,u
1
2

∑
i,j

ai,juxiuxj +
∑

i

vu,xi

∑
j

ai,juxj

+
1
2

∑
i,j

ai,jvxi,xj

= vt + L̃t,ωv
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with
L̃t,ωv =

∑
i≥0

b̃i(s , ω)vyi +
1
2

∑
i,j≥0

ãi,j(s , ω)vyi,yj

We can construct stochastic integrals with respect to the d + 1 dimensional
process y(·) and ξ(t) defined by (3.5) is again a diffusion and its parameters can
be calculated. After all

ξ(t) =
∫ t

0

< f(s , ω) , dy(s) > +
∫ t

0

g(s , ω)ds

with

fi(s , ω) =

{
1 if i = 0
−(∇u)i(s , x(s)) if i ≥ 1

and

g(s , ω) = −[∂u
∂s

+
1
2

∑
i,j

ai,j(s , ω)
∂2u

∂xi∂xj

]
(s , x(s))

Denoting the parameters of ξ(·) by [B(s , ω), A(s , ω)], we find

A(s , ω) =< f(s , ω) , ã(s , ω)f(s , ω) >
=< a∇u ,∇u > −2 < a∇u ,∇u > + < a∇u ,∇u >
= 0

and

B(s , ω) =< b̃ , f > +g = b̃0(s , ω)− < b(s , ω) ,∇u(s , x(s)) >

− [∂u
∂s

(s , ω) +
1
2

∑
i,j

ai,j(s , ω)
∂2u

∂xi∂xj
(s , x(s))

]
= 0

Now all we are left with is the following

Lemma 3.3. If ξ(t) is a scalar process corresponding to the coefficients [0, 0]
then

ξ(t)− ξ(0) ≡ 0 a.e.

Proof. Just compute

E[(ξ(t) − ξ(0))2] = E[
∫ t

0

0 ds] = 0

This concludes the proof of the theorem.
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Exercise 3.5. Ito’s formula is a local formula that is valid for almost all paths. If
u is a smooth function i.e. with one continuous t derivative and two continuous x
derivatives (3.4) must still be valid a.e. We cannot do it with moments, because
for moments to exist we need control on growth at infinity. But it should not
matter. Should it?

Application: Local time in one dimension. Tanaka Formula.

If β(t) is the one dimensional Brownian Motion, for any path β(·) and any t,
the occupation meausre Lt(A ,ω) is defined by

Lt(A,ω) = m{s : 0 ≤ s ≤ t & β(s) ∈ A}

Theorem 3.4. There exists a function `(t , y, ω) such that, for almost all ω,

Lt(A,ω) =
∫

A

`(t , y , ω) dy

identically in t.

Proof. Formally

`(t , y , ω) =
∫ t

0

δ(β(s)− y)ds

but, we have to make sense out of it. From Ito’s formula

f(β(t))− f(β(0)) =
∫ t

0

f ′(β(s)) dβ(s) +
1
2

∫ t

0

f ′′(β(s))ds

If we take f(x) = |x − y| then f ′(x) = sign x and 1
2f

′′(x) = δ(x − y). We get
the ‘identity’

|β(t) − y| − |β(0)− y| −
∫ t

0

sign β(s)dβ(s) =
∫ t

0

δ(β(s)− y)ds = `(t , y , ω)

While we have not proved the identity, we can use it to define `(· , · , ·). It is
now well defined as a continuous function of t for almost all ω for each y, and
by Fubini’s theorem for almost all y and ω.

Now all we need to do is to check that it works. It is enough to check that
for any smooth test function φ with compact support∫

R

φ(y)`(t , y , ω) dy =
∫ t

0

φ(β(s))ds (3.6)

The function
ψ(x) =

∫
R

|x− y|φ(y) dy

is smooth and a straigt forward calculation shows

ψ′(x) =
∫

R

sign (x − y)φ(y) dy
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and
ψ′′(x) = −2φ(x)

It is easy to see that (3.6) is nothing but Ito’s formuls for ψ.

Application: Estimating the moments of a Stochastic Integral. If we
have a Stochastic integral of the form

ξ(t) =
∫ t

0

e(s, ω)dβ(s)

with

E[
∫ T

0

|e(s, ω)|2ds] <∞

with additional hypothesis on e we can estimate higher moments of ξ(T ).

Theorem 3.5. There exist constants Cn depending only on n, such that

E[|ξ(T )|2n] ≤ CnE

[( ∫ T

0

|e(s, ω)|2ds
)n]

Proof. Assume that e is bounded. Then, by Itô’s formula,

E[ξ(T )2n] = E

[
2n(2n− 1)

2

∫ T

0

ξ(s)2n−2e2(s, ω)ds
]

≤ 2n(2n− 1)
2

E

[
[ sup
0≤t≤T

|ξ(t)|]2n−2

∫ T

0

e2(s, ω)ds
]

≤ 2n(2n− 1)
2

[
E[ sup

0≤t≤T
|ξ(t)|]2n

] 2n−2
2n

[
E

( ∫ T

0

e2(s, ω)ds
)n] 1

n

≤ 2n(2n− 1)
2

[( 2n
2n− 1

)2n
E[|ξ(T )|]2n

] 2n−2
2n

[
E

( ∫ T

0

e2(s, ω)ds
)n] 1

n

This can be unscrambled to provide the estimate claimed in the theorem with

Cn =
(

2n(2n− 1)
2

)n(
2n

2n− 1

)n(2n−2)

Remark 3.1. One can estimate

E
[ ∫ t

0

[ sign (β(s) − y)− sign (β(s) − z)]dβ(s)
]4 ≤ C|y − z|2

and by Garsia-Rodemich-Rumsey or Kolmogorov one can conclude that for each
t, `(t , y , ω) is almost surely a continuous function of y.
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Remark 3.2. With a little more work one can get it to be jointly continuous in
t and y for almost all ω. This is the content of the next two exercises.

Exercise 3.6. First, extend Kolmogorov’s theorem, to stochastic processes in-
dexed by two parameters t = (t1, t2). If

E[|X(t)−X(s)|n] ≤ C|t− s|2+α

for some α > 0, then X(t) has an almost surely continuous version. The idea
is to do it one dimension at a time. Since X(t1, t2) is almost sure continuos in
t1 for each t2, think of X(t1, t2) as a stochastic process Y (t2) with values in the
Banach space C[0, T ]. Either from Garsia-Rodemich-Rumsey inequality or by
directly tracking the estimate in Kolmogorov’s theorem, obtain the following
type of estimate.

E[‖Y (t2)− Y (t1)‖m ≤ |t2 − t1|1+β

for some β > 0. Both proofs extend easily from real valued processes to processes
with values in any Banach space.

Exercise 3.7. Now show that

E

[[ ∫ t2

0

[ sign (β(s) − z)dβ(s)−
∫ t1

0

sign (β(s) − y)]dβ(s)
]6

]
≤ C[|y − z|3 + |t2 − t1|3]


