
Lp spaces are uniformly convex.

The case p ≥ 2.

Lemma: Given p ≥ 2, there exists a constant c = c(p) > 0 such that for all real numbers
f, g
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Proof: It is valid with c = 1 if f = 0. We can assume with out loss of generality that
f > 0. Dividing through by f and denoting f

g
by x, we need
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for −∞ < x < ∞. Clearly F (x) > 0 unless x = 1 when F (1) = 0. Check that F ′′(1) =
p(p−1)

4 > 0. G(x) which is also 0 only at x = 1 vanishes faster there than F (x). Near ±∞,

they are both asymptotic to multiples |x|p and hence G(x)
F (x) is bounded above by some 1

c
.

Now
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Integrating
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In particular if ‖f‖p = ‖g‖p = 1 and
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≤ c−1δ. This proves

uniform convexity.

The case p < 2. If we define G(x) = |1−x|2

(1+|x|)2−p , then we can show F (x) ≥ c G(x). The

extra (1 + |x|)2−p in the denominator adjusts the behavior at ∞. We start with
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Done!
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