L, spaces are uniformly convex.
The case p > 2.

Lemma: Given p > 2, there exists a constant ¢ = ¢(p) > 0 such that for all real numbers
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Proof: It is valid with ¢ = 1 if f = 0. We can assume with out loss of generality that

f > 0. Dividing through by f and denoting § by x, we need
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for —oo < z < c0. Clearly F(z) > 0 unless z = 1 when F(1) = 0. Check that F"(1) =
% > 0. G(x) which is also 0 only at # = 1 vanishes faster there than F'(x). Near £oo,

they are both asymptotic to multiples |x|P and hence ggg is bounded above by some %
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In particular if || f]|, = ||gll, = 1 and H%Hi > 1— ¢ then H%Hi < ¢71§. This proves
uniform convexity.

The case p < 2. If we define G(x) = %, then we can show F'(z) > c¢G(x). The

extra (1+ |z])27P in the denominator adJusts the behavior at co. We start with
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We estimate
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Done!



