A signed measure on (X, ) is a countably additive set function p(A) that can take both
positive and negative values. We assume that sup 45, |(A)| < oo.

Example. For A € ¥, u(A) = p1(A) — p2(A) where 3 and po are non negative measures
on X.

Theorem. Any signed measure i can be expressed as the difference of two nonnegative
measures [i1, fto With g9 L po in the sense that there are sets X7, Xo € X such that
X1NXy=0and p1(X{) =0 and pu2(X5) =0

Theorem. An equivalent version of the theorem is that there are two subsets X1, Xo € X
with X7 N Xy = 0 and X; U Xo = X such that u(A) > 0 for all A € ¥, A C X; and
u(A) <0forall Ae ¥ AC Xs.

Proof. A set A is totally positive if u(B) > 0 for all BC A,B € X. If u(A) > 0 but A is
not totally positive then there is a set By C A with u(By) < 0. Then u(A\By) = u(A) —
w(B1) > pu(A). We can choose By such that u(B;) < 1infpca pu(B). Define A; = A\B;
and proceed in a similar fashion. We either arrive at a totally positive set at a finite stage,
or we have a decreasing sequence Ay with p(Ag) > u(A) — 2?21 infpca,_, u(B) This
forces Z;X;l infpca,;_, u(B) to converge and consequently infgpca;_, u(B) — 0. Therefore
If AT =n;A; then infgca+ pu(B) = 0 and AT is totally positive. We have shown that if
p(A) > 0, it has a subset A1 that is totally positive with u(A™) > u(A).

Any finite or countable union of totally positive sets is totally positive. Any subset of the
union can be written as a disjoint union of subsets of the individual totally positive sets.

Let us choose the largest totally positive set, i.e. one with the largest measure. Its
complement must be totally negative. Proves the second version.

Uniqueness of sets to within sets of measure zero in the second version and uniqueness of
measures in the first.

Suppose i1, p2, i3, 4 are four measures pg L po, p3 L pa, gy — p2 = pg — pg the we must
show that p; = pg and pus = pg. We can re write it as g + g = po + p3. fi1, flo are
concentrated on disjoint sets F, E° and pus, 14 on disjoint sets F, F'°. On ENF, pus and
g4 are 0, so implying 1 = pg on subsets of ENF . On EN F¢ uy and pg are 0 making
1 = po = p3 = g = 0. Similarly on E°N F they are all 0. Finally on E¢ N F¢ we have
w1 = pe =0 and pus = pg. Makes E' = F' to with in a set of measure 0 under p; and ps.

One way of generating new measures from old ones is to define for A € X
NA) = [ Fa)di= [ xa(@)f @)

where f(z) is integrable with respect to u. f = f* — f~ and A = AT — A\~ where
[T (z) = max{f(z),0}, f~(z) = —min{f(z),0} and A*(A) = [, fEdu. X is countably
additive, by the dominated convergence theorem.

Given a nonnegative countably additive measure p and a signed countably additive measure
A on (X,¥) when can we find a measurable function f such that for all A € &
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A signed measure A is said to be absolutely continuous with respect to a nonnegative
measure 4 (A << p) if for every set with pu(A) = 0, we have A\(A) = 0.

Radon-Nikodym-Theorem. \ has a representaion A\(4) = [, f(x)du with an integrable
f if and only if it is absolutely continuous with respect to p.

Proof. If pu(A) = 0 clearly [ 4 Jdp = 0 for any integrable f. To prove the converse let
us write A = At — A~ supported on disjoint sets X and X~. If A C X and p(4) =0
then A\(A) = AT (A) = 0. So AT << p Similarly A~ << u. For proving the theorem we
can assume that A is nonnegative. We will try to find nonnegative functions f such that
fA fdup < A(A) for all A € ¥. Maximize fX fdup among those. It is easy to see that there
is a function f that achieves the maximum. If [, fdu = A\(A) then A = A =X >0
and Ay << p. There is now no nontrivial f with [, fdu < Xo(A). We can try with
(A2 —ep)t = ve and v, is supported on XF. [, edu < Ag(A) for A € X, A € B. This
has to be trivial or u(X) = 0. But Ay << p. Therefore A\o(XF) = 0 and v. = 0. This
implies A\3(A) < eu(A) for all A and € > 0. This means Ay = 0. The function f such that
J4 fdi = X(A) for all A € X is called the RN derivative and is denoted by f = %.

Lemma. If A << pu, f = %, g is integrable with respect to A if and only if g f is integrable

with respect to p and
[ oar= | sgdu

Proof. True if g is the indicator of a set. True if g is simple. True for bounded g. True
for nonnegative g by taking sup over bounded nonnegative functions below it. Finally deal
with g% and ¢g~.

Lemma. If)\<<u,u<<uthen)\<<uandfl—i‘:%.%

Proof. Let 3—2 = f and ‘;—’Ij = g. Then
/hd)\:/hfdu:/hfgdy
This implies % = fg.

Remark. The RN derivative is unique. [, fdu = [, gdp for all A € ¥ and f, g are ¥
measurable then f = g a.e. To see this note that fA(f — g)dp = 0 and we can take for A
the set {z : f(z) — g(z) > 0}. Then f — g <0 a.e. A similar argument shows f —¢g > 0
a.e.. Implies f =gae If A\ << ponX and § C ¥ is a sub o— field then A << g on §
and the RN derivative will exist as an S measurable function that works only for A € S.
Usually different from the RN derivative on > which is ¥ measurable and works for A € X.

We can consider measures that are infinite for the whole space. We will restrict our selves
to o-finite measures, which have the property that the whole space is a countable union
of sets with finite measure. We consider simple functions 2521 c;jXa, (z) where each A;
is set of finite measure. The simple function is nonzero only on a set of finite measure.
Any bounded measurable function that is nonzero only on a set of finite measure can be
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integrated as before. If all the functions are zero outside a fixed set of finite measure,
bounded convergence theorem holds. For arbitrary nonnegative functions we define

/ fdp = sup / gdp
9:0<g<f
plwilg(2)]>0] <oo
It is easy to check that Fatou’s lemma and the dominated convergence theorem hold good
for o—finite measures without any change.

A continuous function F(x) on (—oo, 00) is said to be of bounded variation if

k—1

C= sup Z |F(a;) — F(aj—1)| < o0
ka1 <as<---<ag i=1

Theorem. If F' is of bounded variation then F' can be written as F(z) = ¢+ Fi(z) —
F5(z) where F; and Fy are bounded, nondecreasing, continuous functions with Fy(—oc) =
FQ(—OO) =0.

Proof. Given € > 0 there is some k,a = a1 < as < ---ax = b such that
k—1
> |F(aj41) = F(a;)] > C —e
j=1

This forces |F(z) — F(y)| < e for x <y < aor b <z < y. In particular lim,_,_ F(z) =
F(—00) exists. We can take that as c. We can now assume that F'(—oo) = 0. Define

k—1
Fi()=  sup > (F(aj41) — Fla;))*

k,a1<ag<---<ap ]
{aj}<=z J=

k—1
Fy(w)=  sup > (Flaj41) — Flay))”
k,a1<ag<---<ap 7
{aj}<a J=1
Since both 7 and 2~ are subadditive we can assume that the partitions are the same for
both and a; = x and a; is close to —oo that F;(a;) <e. Fori=1,2

B
|

Fy(z) = ) (Flaj1) = Flag)* <e

J

Taking the difference
|F(z) = (Fi(z) — Fa(2))] < F(a1) + Fi(a1) + F2(a1)

is as small as we want.



If f is integrable on (—oo,00) and F(z) = [*_ f(y)dy is F'(z) = f(z)? In Calculus it was
proved for f continuous is it true in some sense for integrable f7

To prove results that are special about measures on R we need to understand the special
relation between Borel sets and open sets.

Lemma. For any measure p on a o—field 3 generated by a field F, given any A € ¥ and
any € > 0, there is a B € F such that u(AAB) <e. (AAB = (AN B°)U(A°UB)).

Proof.. The class of A’s for which this is true is a monotone class that contains the field.

Theorem. Given a set A € B(R), a measure p and € > 0, there is an open set G O A and
a closed set C' C A such that u(G\A) < €, u(A\C) < e.

Proof. Let us look at the collection of sets A for which we can do it. If A is closed
Gn={z: |z —y| < L} decreases to A. n large will do it. The class of sets is closed under
finite unions. Take the unions of G’s and C’s. The errors just add up. Complement is
automatic because the definition is symmetric. Only need to show it is a monotone class.
Given A; pick G; and C; so that u(G;\A;) < €275 and p(A;\C;) < €270+, We can
take G D U;A4; D C with G = U;G; and C' = U;C;. But C is not closed. We can however
replace C' by Ué\]lej with IV large enough that u(C\Cy) < 5. G D U;A; D Cn works.

Theorem. Given a bounded measurable function f, there is a sequence { f,,} of continuous
functions such that f, — f in measure.

Proof. Approximate it first by simple functions. It is enough to show that for any A € X,
Xa(z) can be approximated by a continuous function such that u[{z : f(x) # xa(z)}] < €
Given € find an open set G and a closed set C' such that G D A D C' and u(G\C') < e. C' and
G¢ are disjoint closed sets and we can construct a continuous function g(z), 0 < g(z) <1,
g(x) =1on C and 0 on G°.

d(z, G%)
d(z,G¢) +d(z,C)

g(z) =
where d(z, B) = inf cp | — y|

Theorem. Let f > 0 be integrable with respect to Lebesgue measure on R. Let

Fwwz[ff@My

Then F is nondecreasing, and with

fh<x):F(33—l—h})L—F(x)

frn(z) = f(z) as h — 0 for almost all z, and lim,—o [°._ | fa(z) — f(z)|dz = 0.

Proof. Given € > 0, there is a function g, continuous and 0 outside a bounded interval
[a, b] such that f(y) = g(y) + k(y) and

| iy <

— 0




and
fu(z) = gn(z) + kn(z)

It is clear that gj(x) converges uniformly to g(x) and is 0 outside a fixed finite interval.
We can estimate for h > 0,

[ i<k [ k]

=5 [ asikyay
= [ kwlay

— 00

<e€
Finally to prove convergence a.e. we need a lemma.

Vitali Covering Lemma. A collection of intervals Z is said be a Vitali cover for a
measurable set F, if given any = € E, and € > 0, there is an I € Z such that z € I and
I(I)<e

Lemma. Given a Vitali covering Z of a set E of finite measure, and ¢ > 0 there are
disjoint, intervals I,...,Ix € T such that u[E N (UL, 1;)¢] <e.

Proof. Take an open set GG that contains E and has finite measure. We can assume that

every I € T is contained in G. We choose sequentially intervals Iy,...,I,,.... Unless
E C Uj_,1;, after I, I,41 is chosen so that its length is at least % where k,, is the
supremum of the lengths of all the intervals in Z that do not meet Iy, ..., I,,. Since {/;} are

disjoint and contained in G, 3, I(I;) < oo and we can find N such that > v, | I(I;) < .
Let R = Eﬂ(Uf’:le)C. Let z € R. There is an interval I with [(I) small enough containing
x and disjoint from U;yzlfj. Ifrni, =0, then I(I) <k, <2l(I,4+1). Since [(I,,+1) — 0.
I must meet one of the intervals {I;} say I,,. The distance from x to the mid point of I,
is {(I) + £1(I,) < 31(I,). If we blow up I,, by a factor of 5 keeping the center and call the
interval Jp,, R C Uy n 1 Jp and pu(R) < e.

We define for any nondecreasing bounded function f(z) on [a, b] the derivatives

(DEf)(@) = limsup flz+ hlz — f(x)

h>0

(D7 £)(@) = lim it L5 h; — (=)

(D¥)(@) = limsup flz + h}z — f(=)

h<0
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_ S h) — f(x)
(DZf)(x) = lim inf N

h <0
are defined on (a,b).

Theorem. For almost all x the four derivatives are finite and equal. The derivative g is
nonnegative, integrable and

Proof. It is enough to show that for any two rationals u < v
ule : (DEf)(@) < u<v < (DEf)()] =0

Let E = E, , be the set in question. Assume p(E) = s > 0. Find an open set G D E with
p[G\E] < e. For each z € E we can find h as small as we please such that the intervals
are contained in the open set G and f(x + h) — f(z) < uwh. By Vitali covering lemma we
can find disjoint intervals I, = [z,, x, + h,| such that their union A covers E to within e.
Each z € A is the end point of [x — k, z] with f(z) — f(z — k) > vk and contained in some
I.. We can find intervalsJ; = [y; — k;, y;] with f(y; — k;—)f(y;) > vk their union covers A
to within measure €. Each J; is contained in some I,.. Since f is increasing the sum over
the J; must be less than the sum over I,.

(s —2e)v < (s+€)u

Contradicts v < v. Fatou’s lemma shows

/ g(x)dx < liminfn/ [f(x+ %) — f(z)]dx

n—oo

= lim inf [n /b+% f(x)dx — n/aJrZ f(:l:)da:}
b a

< f(b) — f(a)

Given F'(z) that is continuous and nondecreasing on [0, 1] we know F'(z) = f(x) exists
a.e and is integrable with fol f(z)dz < F(1) — F(0). When does equality hold?

Equivalently when does the measure \ corresponding to F' absolutely continuous with
respect to Lebesgue measure.

A continuous and nondecreasing function F'(x) is absolutely continuous if for any € > 0
there is a § > 0 such that when ever >  (b; — a;) < &, where {(a;,b;)} are any finite
collection of disjoint intervals in [0, 1] we have Y " (F(b;) — F(a;)) < e.

What we need to show if for any € > 0 there is a § > 0 such that for any set A € F
with pu(A) < 0 we have A(A) < €, then A << p on ¥ generated by F. We can choose A,
from F approximating A under both A and p. Eventually u(A) will get smaller than any
J forcing A(A) to be small and eventually 0.

Absolutely continuous functions are the indefinite integrals of Lebesgue integable func-
tions.



Product Measures and Fubini’s Theorem.

Let (X;,%;, u;) for i = 1,2 be two measure spaces and we define (X, X, 1), the product of
the two as follows.

X = X; x X5 is the cartesian product. Sets of the form Ay x Ay = {(x1,22) : 71 €
Ay, 19 € Ay with A; € 3; are called rectangles and they form a semiring. Finite disjoint
unions form a field and the o—field generated by it is ¥ = 31 x 3o. We define the product
measure by (A X Az) = p1 (A1) p2(Az) and show that it extends uniquely as a countably
additive measure on ¥; X Y. We need to show that if R; are disjoint rectangles A} X A?
and their union is a rectangle A' x A? then

Ml(A1> 'Mz(A2> = ZHl(A}) 'Mz(f‘@)

g=1

What we have is

Xar(T1)xaz(z2) = le,ax; (931>XA§($2)
]:
We can integrate x5 term by term with respect to ps. Using the Bounded convergence
theorem we have for each z;

Xar(@1)p2(A?) = ZXA; (21)p2(A3)

Now integrate x1 with respect to p; and we have what we need.

We denote by p = p1 X pe the product measure. Fubini’s Theorem asserts that if
f(x1,22) is integrable with respect to p then for almost all x; with respect to pp it is
integrable in x5 with respect to ps and the integral g;(z1) is integrable with respect to pg.
Moreover

/f(«%"l,xz)dMZ/ [ f(3717372>dﬂ2}dll1:/ [ f (@1, m2)dp | dps
X x, Jx, X, /X,

True for indicator rectangles. True for indicators of sets in F. True for indicators of
sets in X. True for simple functions. True for bounded measurable functions. True for
nonnegative functions and finally integrable functions.

Warning. Measurability in X is important. (joint measurability). There are crazy
examples of sets in X such that for the indicator f

1= / [ [ fley,xo)dps]dus # [ [ fzy, 2)dua]dps =0
X1 Xo

Xo X1

For nonnegative jointly measurable functions if any of the repeated integrals is finite then
the double integral is finite as well.



