
A signed measure on (X,Σ) is a countably additive set function µ(A) that can take both
positive and negative values. We assume that supA∈Σ |µ(A)| < ∞.

Example. For A ∈ Σ, µ(A) = µ1(A)−µ2(A) where µ1 and µ2 are non negative measures
on Σ.

Theorem. Any signed measure µ can be expressed as the difference of two nonnegative
measures µ1, µ2 with µ1 ⊥ µ2 in the sense that there are sets X1, X2 ∈ Σ such that
X1 ∩X2 = ∅ and µ1(X

c
1) = 0 and µ2(X

c
2) = 0

Theorem. An equivalent version of the theorem is that there are two subsets X1, X2 ∈ Σ
with X1 ∩ X2 = ∅ and X1 ∪ X2 = X such that µ(A) ≥ 0 for all A ∈ Σ, A ⊂ X1 and
µ(A) ≤ 0 for all A ∈ Σ, A ⊂ X2.

Proof. A set A is totally positive if µ(B) ≥ 0 for all B ⊂ A,B ∈ Σ. If µ(A) > 0 but A is
not totally positive then there is a set B1 ⊂ A with µ(B1) < 0. Then µ(A\B1) = µ(A) −
µ(B1) > µ(A). We can choose B1 such that µ(B1) ≤

1
2 infB⊂A µ(B). Define A1 = A\B1

and proceed in a similar fashion. We either arrive at a totally positive set at a finite stage,
or we have a decreasing sequence Ak with µ(Ak) ≥ µ(A) −

∑k
j=1 infB⊂Aj−1

µ(B) This

forces
∑∞

j=1 infB⊂Aj−1
µ(B) to converge and consequently infB⊂Aj−1

µ(B) → 0. Therefore

If A+ = ∩jAj then infB⊂A+ µ(B) = 0 and A+ is totally positive. We have shown that if
µ(A) > 0, it has a subset A+ that is totally positive with µ(A+) ≥ µ(A).

Any finite or countable union of totally positive sets is totally positive. Any subset of the
union can be written as a disjoint union of subsets of the individual totally positive sets.

Let us choose the largest totally positive set, i.e. one with the largest measure. Its
complement must be totally negative. Proves the second version.

Uniqueness of sets to within sets of measure zero in the second version and uniqueness of
measures in the first.

Suppose µ1, µ2, µ3, µ4 are four measures µ1 ⊥ µ2, µ3 ⊥ µ4, µ1 − µ2 = µ3 − µ4 the we must
show that µ1 = µ3 and µ2 = µ4. We can re write it as µ1 + µ4 = µ2 + µ3. µ1, µ2 are
concentrated on disjoint sets E,Ec and µ3, µ4 on disjoint sets F, F c. On E ∩ F , µ2 and
µ4 are 0, so implying µ1 = µ3 on subsets of E ∩ F . On E ∩ F c, µ2 and µ3 are 0 making
µ1 = µ2 = µ3 = µ4 = 0. Similarly on Ec ∩ F they are all 0. Finally on Ec ∩ F c we have
µ1 = µ2 = 0 and µ3 = µ4. Makes E = F to with in a set of measure 0 under µ1 and µ2.

One way of generating new measures from old ones is to define for A ∈ Σ

λ(A) =

∫

A

f(x)dµ =

∫

χA(x)f(x)dµ

where f(x) is integrable with respect to µ. f = f+ − f− and λ = λ+ − λ− where
f+(x) = max{f(x), 0}, f−(x) = −min{f(x), 0} and λ±(A) =

∫

A
f±dµ. λ is countably

additive, by the dominated convergence theorem.

Given a nonnegative countably additive measure µ and a signed countably additive measure
λ on (X,Σ) when can we find a measurable function f such that for all A ∈ Σ

λ(A) =

∫

A

f(x)dµ

1



A signed measure λ is said to be absolutely continuous with respect to a nonnegative
measure µ (λ << µ) if for every set with µ(A) = 0, we have λ(A) = 0.

Radon-Nikodym-Theorem. λ has a representaion λ(A) =
∫

A
f(x)dµ with an integrable

f if and only if it is absolutely continuous with respect to µ.

Proof. If µ(A) = 0 clearly
∫

A
fdµ = 0 for any integrable f . To prove the converse let

us write λ = λ+ − λ− supported on disjoint sets X+ and X−. If A ⊂ X+ and µ(A) = 0
then λ(A) = λ+(A) = 0. So λ+ << µ Similarly λ− << µ. For proving the theorem we
can assume that λ is nonnegative. We will try to find nonnegative functions f such that
∫

A
fdµ ≤ λ(A) for all A ∈ Σ. Maximize

∫

X
fdµ among those. It is easy to see that there

is a function f that achieves the maximum. If
∫

A
fdµ = λ1(A) then λ2 = λ − λ1 ≥ 0

and λ2 << µ. There is now no nontrivial f with
∫

A
fdµ ≤ λ2(A). We can try with

(λ2 − ǫµ)+ = νǫ and νǫ is supported on X+
ǫ .

∫

A
ǫdµ ≤ λ2(A) for A ⊂ X+

ǫ , A ∈ Σ. This
has to be trivial or µ(X+

ǫ ) = 0. But λ2 << µ. Therefore λ2(X
+
ǫ ) = 0 and νǫ = 0. This

implies λ2(A) ≤ ǫµ(A) for all A and ǫ > 0. This means λ2 = 0. The function f such that
∫

A
fdµ = λ(A) for all A ∈ Σ is called the RN derivative and is denoted by f = dλ

dµ
.

Lemma. If λ << µ, f = dλ
dµ

, g is integrable with respect to λ if and only if gf is integrable
with respect to µ and

∫

gdλ =

∫

fgdµ

Proof. True if g is the indicator of a set. True if g is simple. True for bounded g. True
for nonnegative g by taking sup over bounded nonnegative functions below it. Finally deal
with g+ and g−.

Lemma. If λ << µ, µ << ν then λ << ν and dλ
dν

= dλ
dµ

· dµ
dν

Proof. Let dλ
dµ

= f and dµ
dν

= g. Then

∫

hdλ =

∫

hfdµ =

∫

hfgdν

This implies dλ
dν

= fg.

Remark. The RN derivative is unique.
∫

A
fdµ =

∫

A
gdµ for all A ∈ Σ and f, g are Σ

measurable then f = g a.e. To see this note that
∫

A
(f − g)dµ = 0 and we can take for A

the set {x : f(x) − g(x) > 0}. Then f − g ≤ 0 a.e. A similar argument shows f − g ≥ 0
a.e.. Implies f = g a.e. If λ << µ on Σ and S ⊂ Σ is a sub σ− field then λ << µ on S
and the RN derivative will exist as an S measurable function that works only for A ∈ S.
Usually different from the RN derivative on Σ which is Σ measurable and works for A ∈ Σ.

We can consider measures that are infinite for the whole space. We will restrict our selves
to σ-finite measures, which have the property that the whole space is a countable union
of sets with finite measure. We consider simple functions

∑k
j=1 cjχAJ

(x) where each Aj

is set of finite measure. The simple function is nonzero only on a set of finite measure.
Any bounded measurable function that is nonzero only on a set of finite measure can be
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integrated as before. If all the functions are zero outside a fixed set of finite measure,
bounded convergence theorem holds. For arbitrary nonnegative functions we define

∫

fdµ = sup
g:0≤g≤f

µ[x:|g(x)|>0]<∞

∫

gdµ

It is easy to check that Fatou’s lemma and the dominated convergence theorem hold good
for σ−finite measures without any change.

A continuous function F (x) on (−∞,∞) is said to be of bounded variation if

C = sup
k,a1<a2<···<ak

k−1
∑

i=1

|F (aj)− F (aj−1)| < ∞

Theorem. If F is of bounded variation then F can be written as F (x) = c + F1(x) −
F2(x) where F1 and F2 are bounded, nondecreasing, continuous functions with F1(−∞) =
F2(−∞) = 0.

Proof. Given ǫ > 0 there is some k, a = a1 < a2 < · · ·ak = b such that

k−1
∑

j=1

|F (aj+1)− F (aj)| ≥ C − ǫ

This forces |F (x)− F (y)| < ǫ for x < y < a or b < x < y. In particular limx→−∞ F (x) =
F (−∞) exists. We can take that as c. We can now assume that F (−∞) = 0. Define

F1(x) = sup
k,a1<a2<···<ak

{aj}≤x

k−1
∑

j=1

(F (aj+1)− F (aj))
+

F2(x) = sup
k,a1<a2<···<ak

{aj}≤x

k−1
∑

j=1

(F (aj+1)− F (aj))
−

Since both x+ and x− are subadditive we can assume that the partitions are the same for
both and ak = x and a1 is close to −∞ that Fi(a1) ≤ ǫ. For i = 1, 2

Fi(x)−
k−1
∑

j=1

(F (aj+1)− F (aj))
± ≤ ǫ

Taking the difference

|F (x)− (F1(x)− F2(x))| ≤ F (a1) + F1(a1) + F2(a1)

is as small as we want.
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If f is integrable on (−∞,∞) and F (x) =
∫ x

−∞
f(y)dy is F ′(x) = f(x)? In Calculus it was

proved for f continuous is it true in some sense for integrable f?

To prove results that are special about measures on R we need to understand the special
relation between Borel sets and open sets.

Lemma. For any measure µ on a σ−field Σ generated by a field F , given any A ∈ Σ and
any ǫ > 0, there is a B ∈ F such that µ(A∆B) < ǫ. (A∆B = (A ∩Bc) ∪ (Ac ∪B)).

Proof.. The class of A′s for which this is true is a monotone class that contains the field.

Theorem. Given a set A ∈ B(R), a measure µ and ǫ > 0, there is an open set G ⊃ A and
a closed set C ⊂ A such that µ(G\A) < ǫ, µ(A\C) < ǫ.

Proof. Let us look at the collection of sets A for which we can do it. If A is closed
Gn = {x : |x− y| < 1

n
} decreases to A. n large will do it. The class of sets is closed under

finite unions. Take the unions of G′s and C′s. The errors just add up. Complement is
automatic because the definition is symmetric. Only need to show it is a monotone class.
Given Aj pick Gj and Cj so that µ(Gj\Aj) < ǫ2−j and µ(Aj\Cj) < ǫ2−(j+1). We can
take G ⊃ ∪jAj ⊃ C with G = ∪jGj and C = ∪jCj . But C is not closed. We can however
replace C by ∪N

j=1Cj with N large enough that µ(C\CN ) < ǫ
2 . G ⊃ ∪jAj ⊃ CN works.

Theorem. Given a bounded measurable function f , there is a sequence {fn} of continuous
functions such that fn → f in measure.

Proof. Approximate it first by simple functions. It is enough to show that for any A ∈ Σ,
χA(x) can be approximated by a continuous function such that µ[{x : f(x) 6= χA(x)}] < ǫ

Given ǫ find an open set G and a closed set C such thatG ⊃ A ⊃ C and µ(G\C) < ǫ. C and
Gc are disjoint closed sets and we can construct a continuous function g(x), 0 ≤ g(x) ≤ 1,
g(x) = 1 on C and 0 on Gc.

g(x) =
d(x,Gc)

d(x,Gc) + d(x, C)

where d(x,B) = infy∈B |x− y|

Theorem. Let f ≥ 0 be integrable with respect to Lebesgue measure on R. Let

F (x) =

∫ x

−∞

f(y)dy

Then F is nondecreasing, and with

fh(x) =
F (x+ h) − F (x)

h

fh(x) → f(x) as h → 0 for almost all x, and limh→0

∫∞

−∞
|fh(x)− f(x)|dx = 0.

Proof. Given ǫ > 0, there is a function g, continuous and 0 outside a bounded interval
[a, b] such that f(y) = g(y) + k(y) and

∫ ∞

−∞

|k(y)|dy < ǫ
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and

fh(x) = gh(x) + kh(x)

It is clear that gh(x) converges uniformly to g(x) and is 0 outside a fixed finite interval.
We can estimate for h > 0,

∫ ∞

−∞

|kh(x)|dx ≤
1

h

∫ ∞

−∞

[
∫ x+h

x

|k(y)|dy

]

dx

=
1

h

∫ ∞

−∞

[

∫ y

y−h

dx]|k(y)|dy

=

∫ ∞

−∞

|k(y)|dy

< ǫ

Finally to prove convergence a.e. we need a lemma.

Vitali Covering Lemma. A collection of intervals I is said be a Vitali cover for a
measurable set E, if given any x ∈ E, and ǫ > 0, there is an I ∈ I such that x ∈ I and
l(I) ≤ ǫ

Lemma. Given a Vitali covering I of a set E of finite measure, and ǫ > 0 there are
disjoint intervals I1, . . . , IN ∈ I such that µ[E ∩ (∪N

j=1Ij)
c] < ǫ.

Proof. Take an open set G that contains E and has finite measure. We can assume that
every I ∈ I is contained in G. We choose sequentially intervals I1, . . . , In, . . .. Unless
E ⊂ ∪n

j=1Ij , after In, In+1 is chosen so that its length is at least kn

2 where kn is the
supremum of the lengths of all the intervals in I that do not meet I1, . . . , In. Since {Ij} are
disjoint and contained in G,

∑

j l(Ij) < ∞ and we can find N such that
∑∞

j=N+1 l(Ij) <
ǫ
5 .

Let R = E∩(∪N
j=1Ij)

c. Let x ∈ R. There is an interval I with l(I) small enough containing

x and disjoint from ∪N
j=1Ij . If I ∩ In = ∅, then l(I) ≤ kn ≤ 2l(In+1). Since l(In+1) → 0.

I must meet one of the intervals {Ij} say In. The distance from x to the mid point of In
is l(I)+ 1

2 l(In) ≤
5
2 l(In). If we blow up In by a factor of 5 keeping the center and call the

interval Jn, R ⊂ ∪∞
n=N+1Jn and µ(R) ≤ ǫ.

We define for any nondecreasing bounded function f(x) on [a, b] the derivatives

(D+
+f)(x) = lim sup

h→0
h>0

f(x+ h)− f(x)

h

(D−
+f)(x) = lim inf

h→0
h>0

f(x+ h) − f(x)

h

(D+
−f)(x) = lim sup

h→0
h<0

f(x+ h)− f(x)

h
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(D−
−f)(x) = lim inf

h→0
h<0

f(x+ h) − f(x)

h

are defined on (a, b).

Theorem. For almost all x the four derivatives are finite and equal. The derivative g is
nonnegative, integrable and

f(b)− f(a) ≥

∫ b

a

g(x)dx

Proof. It is enough to show that for any two rationals u < v

µ[x : (D+
+f)(x) < u < v < (D+

−f)(x)] = 0

Let E = Eu,v be the set in question. Assume µ(E) = s > 0. Find an open set G ⊃ E with
µ[G\E] < ǫ. For each x ∈ E we can find h as small as we please such that the intervals
are contained in the open set G and f(x+ h) − f(x) < uh. By Vitali covering lemma we
can find disjoint intervals Ir = [xr, xr + hr] such that their union A covers E to within ǫ.
Each x ∈ A is the end point of [x− k, x] with f(x)− f(x− k) > vk and contained in some
Ir. We can find intervalsJi = [yi − ki, yi] with f(yi − ki−)f(yi) > vk their union covers A
to within measure ǫ. Each Ji is contained in some Ir. Since f is increasing the sum over
the Ji must be less than the sum over Ir.

(s− 2ǫ)v ≤ (s+ ǫ)u

Contradicts u < v. Fatou’s lemma shows

∫ b

a

g(x)dx ≤ lim inf
n→∞

n

∫ b

a

[f(x+
1

n
)− f(x)]dx

= lim inf
n→∞

[

n

∫ b+ 1
n

b

f(x)dx− n

∫ a+ 1
n

a

f(x)dx

]

≤ f(b)− f(a)

Given F (x) that is continuous and nondecreasing on [0, 1] we know F ′(x) = f(x) exists

a.e and is integrable with
∫ 1

0
f(x)dx ≤ F (1)− F (0). When does equality hold?

Equivalently when does the measure λ corresponding to F absolutely continuous with
respect to Lebesgue measure.

A continuous and nondecreasing function F (x) is absolutely continuous if for any ǫ > 0
there is a δ > 0 such that when ever

∑n
i=1(bi − ai) < δ, where {(ai, bi)} are any finite

collection of disjoint intervals in [0, 1] we have
∑n

i=1(F (bi)− F (ai)) < ǫ.
What we need to show if for any ǫ > 0 there is a δ > 0 such that for any set A ∈ F

with µ(A) < δ we have λ(A) < ǫ, then λ << µ on Σ generated by F . We can choose An

from F approximating A under both λ and µ. Eventually µ(A) will get smaller than any
δ forcing λ(A) to be small and eventually 0.

Absolutely continuous functions are the indefinite integrals of Lebesgue integable func-
tions.
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Product Measures and Fubini’s Theorem.

Let (Xi,Σi, µi) for i = 1, 2 be two measure spaces and we define (X,Σ, µ), the product of
the two as follows.

X = X1 ×X2 is the cartesian product. Sets of the form A1 × A2 = {(x1, x2) : x1 ∈
A1, x2 ∈ A2 with Ai ∈ Σi are called rectangles and they form a semiring. Finite disjoint
unions form a field and the σ−field generated by it is Σ = Σ1×Σ2. We define the product
measure by µ(A1×A2) = µ1(A1) ·µ2(A2) and show that it extends uniquely as a countably
additive measure on Σ1 ×Σ2. We need to show that if Rj are disjoint rectangles A1

j ×A2
j

and their union is a rectangle A1 × A2 then

µ1(A
1) · µ2(A

2) =
∞
∑

j=1

µ1(A
1
j ) · µ2(A

2
j)

What we have is

χA1(x1)χA2(x2) =
∞
∑

j=1

χA1
j
(x1)χA2

j
(x2)

We can integrate x2 term by term with respect to µ2. Using the Bounded convergence
theorem we have for each x1

χA1(x1)µ2(A
2) =

∞
∑

j=1

χA1
j
(x1)µ2(A

2
j)

Now integrate x1 with respect to µ1 and we have what we need.
We denote by µ = µ1 × µ2 the product measure. Fubini’s Theorem asserts that if

f(x1, x2) is integrable with respect to µ then for almost all x1 with respect to µ1 it is
integrable in x2 with respect to µ2 and the integral g1(x1) is integrable with respect to µ1.
Moreover

∫

X

f(x1, x2)dµ =

∫

X1

[

∫

X2

f(x1, x2)dµ2

]

dµ1 =

∫

X2

[

∫

X1

f(x1, x2)dµ1

]

dµ2

True for indicator rectangles. True for indicators of sets in F . True for indicators of
sets in Σ. True for simple functions. True for bounded measurable functions. True for
nonnegative functions and finally integrable functions.

Warning. Measurability in X is important. (joint measurability). There are crazy
examples of sets in X such that for the indicator f

1 =

∫

X1

[

∫

X2

f(x1, x2)dµ2

]

dµ1 6=

∫

X2

[

∫

X1

f(x1, x2)dµ1

]

dµ2 = 0

For nonnegative jointly measurable functions if any of the repeated integrals is finite then
the double integral is finite as well.
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