
{Xn} is a Markov Chain on the integers i = 0, 1, . . . with transition probabilities

p(i, j) = e−i i
j

j!

This is an example of a branching process, where each member of the current generation
has a random number of offsprings distributed according to a Poisson distribution with
parameter 1, and the number of offsprings is independent for different members. Then the
population size at generation k + 1 is distributed according to a Poisson with parameter i

if the size of the population is i in the k-th generation.

1) Show that the population eventually dies out with probability 1. i.e

P [Xn = 0 for some n] = 1.

Of course if Xn = 0 then Xm = 0 for m ≥ n.

Let us start with a large population of size Nx. Consider the population size XNt at time
Nt and define xN (t) = XNt

N
.

2) Show that as N → ∞ there is a limiting process x(t) of the ”size” which is the diffusion
with generator

x

2

d2

dx2

starting from x(0) = x.

Consider the evolution of k such populations independently of each other with generator

1

2

k∑

i=1

xi

∂2

∂x2
i

3) Show that S(t) =
∑k

i=1 xi(t) is a Markov process and find its generator.

4) Show that y(t) = {yi(t) : 1 ≤ i ≤ k} where yi(t) = xi(t)
S(t) lives on the simplex

D = {y : yi ≥ 0,
∑

i

yi = 1}

is Markov and find its generator.

5) Show that the process y(t) = {yi(t)} moves successively through faces, one dimension
lower each time until it reaches some vertex Pi with yi = 1 and yj = 0 for j 6= i and then
stays there for ever.

6) Find the probability ui(y) that the process is absorbed at the vertex Pi, if it starts from
y = (y1, . . . , yk).

7) If τ is the time of absorption at a vertex calculate m(y) = Ey[τ ].
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Hint. The hardest part perhaps is to show that the process does not lose two dimensions
at the same time. i.e hits an ’edge’ rather than a face. This amounts to proving that with
k = 2 the process corresponding to

1

2

2∑

i=1

xi

∂2

∂x2
i

does not exit from x1 > 0, x2 > 0 at (0, 0). If τi is the exit time τi = inf{t : xi(t) = 0}
we have to show Px1,x2

{τ1 = τ2} = 0. Since τ1 and τ2 are independent this amounts to
showing that τ , the hitting time of 0 for the one dimensional process

x

2

d2

dx2

has a continuous distribution function. There is a trick for proving it. Let τa be the hitting
time of a and for b > a let

f(λ, b, a) = Eb[e
−λτa ]

Then for c > b > a by the strong Markov property f(λ, c, a) = f(λ, c, b)f(λ, b, a). More
over f(λ, x, a) is the solution of

x

2

d2f

dx2
= λf

with f(λ, a, a) = 1. Therefore f(λ, b, a) = f(1, λb, λa). In particular

f(λ, x, 0) = f(λ, x,
x

2
)f(

λ

2
, x, 0)

The distribution function Fx(t) of τ0 under Px satisfies

Fx(t) = F x

2
(t) ∗ Gx(t) = Fx(2t) ∗ Gx(t)

where Gx is the distribution function of τ x

2
under Px. This shows that the biggest jump

j(x) in the distribution function Fx(t) has to be 0. An alternate method is to construct a
barrier, i.e a function U(x1, x2) ≥ 0 satisfying

1

2

2∑

i=1

xi

∂2U

∂x2
i

= 0

which blows up near (0, 0). Then the process cannot approach (0, 0). Such a function will
not be smooth as x1 or x2 tend to 0. One can construct such a U by separation of variables
by trying

U(x1, x2) = (x1 + x2)
−αf(

x

x + y
)

and solving an ODE for f . This is a model for several non competing species, with no
advantage for any and they disappear due to chance, one species at a time, until only one
survives. x(t) describes the total sizes and y(t) the proportions.
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