20 Analysis of Variance

Suppose we have a field trial in which various types of treatments have been
tried on different subjects and the effects recorded as an observation x for each
individual. There are n; individuals with treatment ¢ and the observations
from them are z;1,...,%;,,. We have k such sets of observatons of sizes
ni,...,n, respectively, for a total of N = n; + --- + n, observations. The
model assumes that each z;,, is normally distributed with mean p; due to
the effect of the i-th treatment and they all have a common variance o2.
The null hypothesis is that there is no difference between the treatments or
equivalently py = o = - - - = pg. The loglikelihood under the null hypothesis
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The loglikelihood ratio criterion takes the form
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so that a test can be based on
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The following quantities are to be computed.
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It can be seen that under the null hypothesis (B — ¢) and (A — B) are
independent o%y? with (k — 1) and (N — k) degrees of freedom and
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is an Fj_q ny_. A large values of F' leads to the rejection of H, that

Hy ="+ = H-

Some times the population on which the treatments are tried is not uni-
form. For example each treatment ¢ could be tried on the j-th group once
leading to an observation x; ;. The number of treatments is k£ and the number
of groups is n, each group consisting of k observations. The total number of
observations is NV = kn. The model is that the observation z;; is normally
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distributed with mean p1;-+a; and variance 0. Actually there is a redundancy
of parameters here, and it is better to write the mean as u + u; + a; with
>_iti = _;a; = 0 with a total of n + k — 1 parameters. We are interested
in testing the null hypothesis y; = --- = pr = 0 and we really do not care
about aq,...,a,. With similar calculations we obtain
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If we define as before
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We see that
A=c+B-0)+(C-c)+E=0Q1+ Q2+ Q3+ Q4
where £ = No? and Nof — Noi = B — c¢. The ratio

n—1)(h—1)

is an Fj_q (n—1)(k—1)- Lhe proof that the various components of the sum of
squares are independent y?s depends on two observations. First each term
is of the form
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where Z is the N = nk dimensional vector {z;;} and {X, : r = 1,2,3,4}
are orthogonal subspaces of RY. If we show that X, X5, X3 are mutually

orthogonal then clearly X, is the orthogonal complement of X; & X, & X3.
It is easily verified that
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k
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and that they are mutually orthogonal.

21 General Linear Models

General linear model is of the following form. There are unknown parameters
02,0,,...,0, and observations zy,%s,...,2,. The x; are assumed to be
independent and normally distributed with mean

k
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and variance 0. The factors {a; ;} are assumed to be known constants. The
matrix A is assumed to be of rank k (otherwise we can reduce the number

47



of real parameters). The null hypothesis is that § € ©, a linear subspace
(hyperplane) of R* of dmension r < k, specified by k — r linear relations.
The analysis depends on the two quantities
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The ratio
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is an Fj_,,—. The actual minimization involves inverting the matrix A*A
for the computation of (); and a similar one for the computation of ()y. In
the examples we discussed this is particularly easy.

Rather than discuss the general theory we will do some examples.

48



