
20 Analysis of Variance

Suppose we have a field trial in which various types of treatments have been
tried on different subjects and the effects recorded as an observation x for each
individual. There are ni individuals with treatment i and the observations
from them are xi,1, . . . , xi,ni

. We have k such sets of observatons of sizes
n1, . . . , nk respectively, for a total of N = n1 + · · · + nk observations. The
model assumes that each xi,ni

is normally distributed with mean µi due to
the effect of the i-th treatment and they all have a common variance σ2.
The null hypothesis is that there is no difference between the treatments or
equivalently µ1 = µ2 = · · · = µk. The loglikelihood under the null hypothesis
is
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Similarly under H1,
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The loglikelihood ratio criterion takes the form
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so that a test can be based on
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A computation yields
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The following quantities are to be computed.
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Then
A = c + (B − c) + (A − B)
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so that
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It can be seen that under the null hypothesis (B − c) and (A − B) are
independent σ2χ2 with (k − 1) and (N − k) degrees of freedom and

F = U
N − k

k − 1
=

B−c
k−1
A−B
N−k

is an Fk−1,N−k. A large values of F leads to the rejection of H0 that
µ1 = · · · = µk.

Some times the population on which the treatments are tried is not uni-
form. For example each treatment i could be tried on the j-th group once
leading to an observation xi,j . The number of treatments is k and the number
of groups is n, each group consisting of k observations. The total number of
observations is N = kn. The model is that the observation xi,j is normally
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distributed with mean µi+aj and variance σ2. Actually there is a redundancy
of parameters here, and it is better to write the mean as µ + µi + aj with∑

i µi =
∑

j aj = 0 with a total of n + k − 1 parameters. We are interested
in testing the null hypothesis µ1 = · · · = µk = 0 and we really do not care
about a1, . . . , an. With similar calculations we obtain
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If we define as before
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We see that

A = c + (B − c) + (C − c) + E = Q1 + Q2 + Q3 + Q4

where E = Nσ2
1 and Nσ2

0 − Nσ2
1 = B − c. The ratio

F =
B−c
k−1
E

(n−1)(k−1)

is an Fk−1,(n−1)(k−1). The proof that the various components of the sum of
squares are independent χ2 s depends on two observations. First each term
is of the form

Qr = ‖x̃‖2 − inf
y∈Xr

‖x̃ − y‖2

where x̃ is the N = nk dimensional vector {xi,j} and {Xr : r = 1, 2, 3, 4}
are orthogonal subspaces of RN . If we show that X1, X2, X3 are mutually
orthogonal then clearly X4 is the orthogonal complement of X1 ⊕ X2 ⊕ X3.
It is easily verified that

X1 = {x̃ : xi,j ≡ a for all i, j}

X2 = {x̃ : xi,j ≡ ai for all i, j with

k∑
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X3 = {x̃ : xi,j ≡ aj for all i, j with

n∑

j=1

aj = 0}

and that they are mutually orthogonal.

21 General Linear Models

General linear model is of the following form. There are unknown parameters
σ2, θ1, . . . , θk and observations x1, x2, . . . , xn. The xi are assumed to be
independent and normally distributed with mean

E[xi] =

k∑

j=1

ai,jθj

and variance σ2. The factors {ai,j} are assumed to be known constants. The
matrix A is assumed to be of rank k (otherwise we can reduce the number
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of real parameters). The null hypothesis is that θ ∈ Θ0, a linear subspace
(hyperplane) of Rk of dmension r < k, specified by k − r linear relations.
The analysis depends on the two quantities

Q1 = inf
θ∈Rk

‖x − Aθ‖2

Q0 = inf
θ∈Θ0

‖x − Aθ‖2

The ratio

F =
Q0−Q1

k−r
Q1

n−k

is an Fk−r,n−k. The actual minimization involves inverting the matrix A∗A
for the computation of Q1 and a similar one for the computation of Q0. In
the examples we discussed this is particularly easy.

Rather than discuss the general theory we will do some examples.
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