Answers.
1.1. Clearly

[ 3 if (n+ 1)-th toss uses coin 1

, Xn) = { % if (n 4 1)-th toss uses coin 2

fu(X71, Xo, ...

For the n + 1-th coin to be coin 1, even number changes are needed. n — .5,, should be
even. Therefore

3 . .
fn(Xl,Xg, . ..,Xn> — { if n Sn 1S even

g ifn—_5, is odd

1.2.
E[S2 ) — ShFa] = Elal 1 4 2Xn 150 |Fn] = 1

Hence S2 — n is a martingale. Let 7 be the stopping time. Then for any &k
E[S%,, —TNk] =22

or
E[S2,..] = E[T Nk] + 22

S, for n < 7 is bounded by N. Hence we can let kK — oo in the LHS, and by the monotone
convergence theorem it is OK to let £ — oo in the RHS. Therefore

E[S?] = N*P|[S,; = N] + 0°P[S, = 0] = NQ% = Nz = E[1] + 2

E[r] = Nz — 2* = 2(N — x)

2.1 Let P(x) be the probability that &, — oo given that {; = x. Then
P(z)=pP(x+1)+qP(x—1) for z>1;  P(0)=P(1)

This yields
(P(z +1) — P(z))p = q(P(z) — P(x — 1))

Since P(1) — P(0) = 0 it follows that P(z) = c. If we take

then this will solve
w(z) = pu(z + 1) + qu(z — 1)
if
)
p=pp~+4q
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or
_14+VT-dpg _1+(p—q)
p - 2 -
P 2p
If we look at the entire set of integers and define 7w( , ) as just a random walk then u(&,)

will be a martingale. If 7 is the time of hitting 0, there is no difference between the two.
Hence

—n. 4
—{1,p}

is the probability of hitting 0. Since a martingale that is bounded must have a limit, the
only other possibility is going to co.

1—(%) =P[{, 5 00,6, >0 Vn>0=2]—1

as « — 0o. Therefore ¢ =1 and P[r < ool = z| = (1)*.
2.2. If ¢ > p, then &, — —oo0 and so P[T < 00|y = z] = 1. Note that until it hits 0 it is
just a random walk. To calculate E[r] we note that
&n —n(p—q)
is a martingale. Yields

But &, = 0. Therefore
x

B q—p
Needs a little justification. Stop at N as well as 0. That is define

El7]

Ty = inf[t : 2(t) = 0 or N]

= FE[{y —n(p—q)] =0p(z) + (1 —pn(2))N = (p — @) Ex[7N]

Simplifies to
x— N1 —pn(z))
(¢—p)

Em [TN] —
Since py(z) = (%)N_m, Npn(z) — 0. This completes the proof.
3.2. Let 7 take values {s;}. Let A € F,. Need to show

E[f(x(ty + 1) — z(7)@(ts +7) — 2(7), ..., 2(tn + 7) — 2(7))1a(w)]
= P(A)E[f(z(tr), 2(t2), - ., x(tn))]

where P is the Brownian motion probability and E is expectation with respect to P.
Let E; = {w : 7 = s;}. Then E; € F,,. From the independence of increments for
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Brownian motion, the collection {z(s; + t;) — x(s;)} is independent of F;, and has the
same distribution as {x(¢;)} under P. Moreover A € F, means AN{7 =t;} € F;,. Hence

Elf(z(t1+71) —x(r),z(ta+7) —x(7),...,x(tn + 7) — (7)) 14 (w)]
—ZE ro(ty+7) — (1), 2(te +7) —2(7),..., 2(tp + 7) — 2(7))1anE; (W)]

—ZE p(ti+t;) —2(ty), x(ta + 1) — 2(t)), ., (o +15) — 2(t;)) Lang, (W)]
= ZP (ANE)E[f(x(tr), z(ta), ..., 2(tn))]

= P(A)E[f(z(t1), z(t2), ..., z(tn))]

3.2. Firstnotethatw:%if[n7]zj—10rj—1§n7‘<jor%§7‘<%. Hence

the setw : W = % is in F; and 7, is a stopping time. Because 7,, > 7, F, D F,. If

A€ F.,then Ae F. and
Elf(z(ti +71n) — x(mn),x(te + 7)) — x(T0)s - - -y x(tr + ) — (7)) 1 a(w)]
= P(A)E[f(x(t1), z(t2), - - ., x(tx))]
Assuming f to be continuous, we can let n — co. 7,, | 7 and obtain
Blf(x(ty+7) —2(r), 2(b +7) —2(7), ..., 2(te + 7) — 2(7))1a(w)]
= P(A)E[f(x(t1), z(t2), . - ., x(tx))]

4.1 By Ito’s formula, until time 7,

du(t,x) = [ue(t, z(t)) + %um (t,z(t))]dt + uy (t, x(t))dx(t)

where z(t) is Brownian Motion starting from any x with |z| < 1 at time s. In particular
u(s,z) = Exfu(r At),z(T At))]
On the set 7 <t, u(r,z(7)) = u(t,£1) = 0. Hence if u is bounded by C,
u(s,x) < CP[T > ]
And, by the reflection principle

Pl > t] < P, ;[ sup z(o) < 1]
s<o<t

<1—-2P, ,[z(t) > 1]

m/ Ts)]dy
m/ P57 —5)

27r(t —3)

— 0

<



as t — o0o. As for the second part, one can construct a solution of the form

fl@)e

provided
1
)‘f + ifmm = 0.

f(x) =cos Gxr and X = %2 will do it.

4.2. We show that
u(s,x) = P[t < oolz(s) =0] — 0

as s — 00. By symmetry

P o[T < 00] < 2P o[ supx(t) —t] > 0]
t>s

If (t) is Brownian motion starting from 0 at time s, the process
is a martingale. By Doob’s inequality

P o[ sup (=3 (t=9) >/ < et
t>s

Take ¢ = e2. Then, and

Py o[ suplz(t) — 1] > 0] = Py sup e®® = > 1] < P o[ sup =279 > ] < 73
t>s t>s t>s

which is sufficient.

5.1

Clearly I(f) is Gausian, has mean 0 and

T T T
BII(f)2] = TIF(T)? + / / F(8)f(s) min(s, t)dsdt — 2 / F(T) /() min(T, s)ds

/ "I
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This reduces to



if we integrate by parts. Now we approximate f € L2[0,7] by smooth f, and

lim E[[I(fu) = I(fm))?] = lim E[[I(fa) — I(fm)?]

m,n—0o0 m,n—oo

T
= lim | fn(t) _fm(t)|2dt:O
0

m,n— oo

I(f,) then has a limit in Lo(P) and the limit I(f) is clearly Gaussian with mean 0 and
. T 2
variance [, |f(t)]*dt.
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5.2 If Z is a Gaussian random variable with mean 0 and variance o<, we have

E[|Z]] = co, E[|Z|*] = o2, Var (|Z]) = (1 — ¢*)o?

Therefoer

Borel-Cantelli Lemma shows V,, — oo with probability 1.

1 > 22 1 > 22 1
c= —— ze_sz:2—/ ze 2dz=2——=4/—<1
\ 21 _oo| | V21 Jo \ 2T
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