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Course Requirements: Assignments

▶ All homework assignments and exams will be handled using
Gradescope

▶ Homework
▶ Every one or two weeks
▶ Provided as Overleaf project and Gradescope assignment
▶ Solutions must be typed up using LaTeX
▶ Submissions uploaded as PDF to Gradescope

▶ Midterm and Final
▶ In person
▶ 150 minutes
▶ Graded exams uploaded to Gradescope
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Course Requirements: Grading Policy

▶ Course grade
▶ Homework: 20%
▶ Midterm: 30%
▶ Final: 50%
▶ Tweaks

▶ Homework and Exams
▶ Partial credit for correct and relevant logical reasoning
▶ Full credit for correct and relevant logical reasoning and correct

answer
▶ No credit for correct answer but incorrect logical reasoning
▶ Incorrect logic and calculations wil be severely penalized
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Course Information

▶ Web Pages
▶ My homepage: https://math.nyu.edu/∼yangd
▶ Course Homepage
▶ Course Calendar

▶ Textbook
▶ Yisong Yang, A Concise Text on Advanced Linear Algebra,

Cambridge University Press
▶ PDF available in Ed Discussion Resources
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Prerequisites: Mathematical Grammar

▶ Always write in complete English or mathematical sentences

▶ A sentence must have a subject and verb

▶ A mathematical sentence usually contains an object

▶ Sample sentences
▶ (subject) equals (object)

▶ (subject) = (object)
▶ (subject) is less than (object)

▶ (subject) < (object)
▶ If (sentence), then (sentence)

▶ (assumption) =⇒ (consequence)
▶ There exists (object) such that (sentence)

▶ ∃ (object), (mathematical sentence about object)
▶ For any object, (sentence)

▶ ∀ (object), (mathematical sentence about object)
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Prerequisites: Basic Deductive Logic

▶ You are expected to know how to use deductive logic

▶ Suppose A and B are English or mathematical sentences

▶ You are expected to know the meaning of the following phrases:

A and B

A or B

A is false

A =⇒ B

A ⇐⇒ B
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Prerequisites: Converse and Contrapositive

▶ The converse of the sentence

A =⇒ B

is
B =⇒ A

These two are not equivalent

▶ The contrapositive of the sentence

A =⇒ B

is
(B is false) =⇒ ( is false)

These two sentences are equivalent
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Prerequisites: Quantifiers

▶ Sentence holds for all objects

For each (object), (sentence),

i.e.,

∀(object), (sentence)

▶ Sentence holds for at least one object

There exists (object), such that (sentence),

i.e.,

∃(object), (sentence)
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Prerequisites: Nested Quantifiers

▶ The sentence

∀ (object1), ∃(object2) such that(sentence),

is not equivalent to

∃ (object2), ∀(object1) such that(sentence),
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Prerequisites: Negations

▶ The negation of
▶ A is true and B is true

is
▶ A is false or B is false

▶ The negation of
▶ A is true or B is true

is
▶ A is false and B is false

▶ The negation of
▶ If A is true, then B is true

is
▶ A is true and B is false
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Prerequisites: Negations With Quantifiers

▶ The negation of

∀(object), (sentence)

is

∃(object), such that (negation of sentence)

▶ The negation of

∃(object) such that (sentence)

is

∀(object), (negation of sentence)
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Prerequisites: Modus Ponens

▶ All calculations and proofs must proceed as follows:
▶ Known to be true (by definition, assumption, theorem, or proof)

▶ A
▶ A =⇒ B

▶ True by deduction
▶ B
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Prerequisites: Definitions Versus Theorems

▶ VERY VERY IMPORTANT: When studying theorems or
doing problems, make sure you know the definitions of every
word and symbol

▶ Always try to solve problem (e.g., doing a proof) using ONLY
definitions

▶ Use a theorem ONLY if absolutely necessary
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Prerequisites: Functions and Maps

▶ We will use the following notation when defining a function or
map:

function : domain → codomain

input 7→ output

▶ When doing calculations and proofs, It is important to keep
track of the domain and codomain of a function

▶ If you make sure that each input to a function really is an
element of the domain and each output really is treated as an
element of the codomain, youu will catch 90% of your errors
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Abstract Vector Space

▶ Let F be either the reals (denoted R) or the complex numbers
(denoted C)

▶ A vector space over F is a set V with the following:
▶ A special element called the zero vector, which we will write as

0⃗, 0V , or simply 0
▶ An operation called vector addition:

V × V → V

(v1, v2) 7→ v1 + v2

▶ An operation called scalar multiplication:

V × F → V

(v , r) 7→ rv = vr

▶ The zero vector, vector addition, and scalar multiplication must
satisfy fundamental properties that are listed below
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Properties of Vector Addition

▶ Associativity

(v1 + v2) + v3 = v1 + (v2 + v2)

▶ Commutativity

v1 + v2 = v2 + v1

▶ Identity element:

v + 0⃗ = v

▶ Inverse element: For each v ∈ V , there exists an element,
denoted −v , such that

v + (−v) = 0⃗
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Scalar Multiplication

▶ Properties
▶ Associativity

(f1f2)v = f1(f2v)

▶ Distributivity

(f1 + f2)v = f1v + f2v

f (v1 + v2) = fv1 + fv2

▶ Identity element

1v = v
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Consequences

▶

0⃗v = v

(−1)v = −v
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Valid and Invalid Expressions

▶ Valid expressions

(vector) + (vector)

(scalar) + (scalar)

(scalar)(vector)

(vector)(scalar)

(scalar)(scalar)

▶ Invalid expressions

(vector) + (scalar)

(scalar) + (vector)

(vector)(vector)
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Linear Combination of Vectors

▶ Given a finite set of vectors v1, . . . , vm ∈ V and scalars
f 1, . . . , f m, the vector

f 1v1 + · · ·+ f mvm

is called a linear combination of v1, . . . , vm
▶ Given a subset S ⊂ V , not necessarily finite, the span of S is

the set of all possible linear combinations of vectors in S

[S ] = {f 1v1 + · · ·+ f mvm :

∀ f 1, . . . , f m ∈ F and v1, . . . , vm ∈ S}

▶ A vector space V is called finite dimensional if there is a finite
set S of vectors such that

[S ] = V

Such a set S is called by some a spanning system, generating
system, or complete system
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Basis of a Vector Space

▶ A set {v1, . . . , vk} ⊂ V is linearly independent if

f 1v1 + · · · f mvm = 0⃗ =⇒ f 1 = · · · = f m = 0, (1)

▶ A finite set S = (v1, . . . , vm) ⊂ V is called a basis of V if it is
linearly independent and

[S ] = V

▶ For such a basis, if v ∈ V , then there exist a unique set of scalar
coefficients (a1, . . . , am) such that

v = akvk

▶ In other words, the map

Fm → V

⟨f 1, . . . , f m⟩ 7→ f 1v1 + · · ·+ f mvm

is bijective
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Examples of Bases

•0 v1

v2

w1

w2

w3

▶ {v1, v2} is a basis

▶ {w1,w2} is a basis

▶ {w1,w3} is a basis

▶ {w2,w3} is NOT a basis
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Every Finite Dimensional Vector Space Has a Basis

▶ Assume that T is a finite dimensional vector space

▶ There exists a finite set S = {s1, . . . , sp} that spans T

▶ If S is linearly independent, then S is a basis

▶ If not, then there exists f 1, . . . , f p ∈ F, not all zero, such that

f 1s1 + · · · f psp = 0⃗

▶ If f p ̸= 0, then

sp =
f 1

f p
s1 + · · ·+ f p−1

f p
sp−1

▶ It follows that S ′ = {s1, . . . , sp−1} spans T

▶ If S ′ is not a basis, then repeat previous steps

▶ After a finite number of steps, you get either a basis or S = {⃗0}
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Triangular Change of Basis

▶ Let E = (e1, . . . , em) be a basis of V
▶ A subset F = (f1, . . . , fm) is triangular with respect to E if

f1 = e1 + e2M
2
1 + · · ·+ emM

m
1

f2 = e2 + e3M
3
2 + · · ·+ emM

m
2

...
...

fk = ek + ek+1M
k+1
k + · · · emMm

k

...
...

fm = em

▶ Observe that for each 1 ≤ k ≤ m, {f1, . . . , fk)} is linearly
independent and

[f1, . . . , fk ] = [e1, . . . , ek ]

▶ It follows that E is a basis of V if and only if F is a basis of V
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Existence of Triangular Change of Basis (Part 1)

▶ Let E (e1, . . . , em) be a basis of V

▶ Let F = (f1, . . . , fn) be a basis of V , where for each 1 ≤ k ≤ n,

fk = e1M
1
k + · · ·+ emM

m
k

▶ Rearranging and rescaling the basis vectors e1, . . . , em, we can
assume that M1

1 = 1, i.e.,

f1 = e1 +M2
1e2 + · · ·+Mm

1 em

▶ Suppose for each 1 ≤ j ≤ k ,

fj = ej + ej+1M
j+1
j + · · ·+ emM

m
j

and
fk+1 = e1M

1
k+1 + · · ·+ emM

m
k+1
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Existence of Triangular Change of Basis (Part 2)

▶ If fk+1 /∈ [e1, . . . , ek ], then

f̂k+1 = fk+1 − (e1M
1
k+1 + · · · ekMk

k+1)

= ek+1M
k+1
k+1 + · · ·+ emM

m
k+1 /∈ [e1, . . . , ek ]

▶ Rearranging and rescaling ek+1, . . . , em, we can assume

fk+1 = ek+1 + ej+2M
j+2
k+1 + · · ·+ emM

m
k+1

▶ Observe that for each 1 ≤ k ≤ m, {f1, . . . , fk} is linearly
independent and

[f1, . . . , fk ] = [e1, . . . , ek ]

▶ It follows that m = n
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Dimension of a Vector Space

▶ Every basis of a finite dimensional vector space V has the same
number of elements

▶ The dimension of a finite dimensional vector space V to be the
number of elements in a basis

▶ The dimension of V is denoted dimV
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Product of Row Matrix and Column Matrix

▶ A row matrix looks like this:

R = (r1, . . . , rm) =
[
r1 · · · rm

]
▶ A column matrix looks like this:

C = ⟨c1, . . . , cm⟩ =

c1

...
cm


▶ The matrix product of R and C is the 1-by-1 matrix

RC =
[
r1 · · · rm

] c1

...
cm

 = r1c
1 + · · ·+ rmc

m
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Generalized Matrix Products

▶ This notation id valid if
▶ ▶ Each ri is a scalar

▶ Each c j is a scalar
▶ And therefore RC is a scalar

▶ ▶ Each ri is a scalar
▶ Each c j is a vector
▶ And therefore RC is a vector

▶ ▶ Each ri is a vector
▶ Each c j is a scalar
▶ And therefore RC is a vector

▶ The notation is invalid if
▶ Each ri is a vector
▶ Each c j is a vector

▶ Order matters: CR ̸= RC !

▶ We will use only items 1 and 3 above
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Product of Column Matrix and Row Matrix

▶ Consider a column matrix

C =

c
1

...
cn


and ra ow matrix

R =
[
r1 · · · rm

]
▶ The matrix product of C and R looks like this

CR =

c
1

...
cn

 [
r1 · · · rm

]
=

c
1r1 · · · c1rm
...

...
cnr1 · · · cnrm
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Product of Two Matrices

▶ The matrix product of the matrices

M =

M1
1 · · · M1

k
...

...
Mm

1 · · · Mm
k

 =

R1

...
Rm


N =

N
1
1 · · · M1

n
...

...
Nk

1 · · · Nn
m

 =
[
C1 · · · Cn

]
is the m-by-n matrix

MN =

R1C1 · · · R1Cn

...
...

RmC1 · · · RmCn


▶ This formula can be used if

▶ Components of both M and N are scalars
▶ Components of M are scalars, components of N are vectors
▶ Components of M are vectors, components of N are scalars
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Abstract Matrix Notation for Vector With Respect
to Basis

▶ A basis (f1, . . . , fm) of a vector space V will always be written as
a row matrix of vectors,

F =
[
f1 · · · fm

]
▶ Any vector is a unique linear combination of the basis vectors

v = f1b
1 + · · ·+ fmb

m ∈ V

▶ This can be written as the matrix product of the basis written as
a row matrix and the coefficients written as a column matrix

v = f1b
1 + · · ·+ fmb

m =
[
f1 · · · fm

] b1

...
bm

 = Fb,
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Standard Basis of F3

▶ Denote the standard basis vectors of F3 by

e1 =

10
0

 , e2 =

01
0

 , e3 =

00
1


▶ The basis can be written as a row matrix of column vectors:

E =
[
e1 e2 e3

]
=

 1 0 0
0 1 0
0 0 1

 = I
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Change of Basis Example

▶ Consider a basis

F =
[
f1 f2 f3

]
=

 1 0 0
−1 1 0
1 1 1


▶ Given a vector v = (1, 2, 3), there are coefficients b1, b2, b3 such

that

(1, 2, 3) = b1(1,−1, 1) + b2(0, 1, 1) + b3(0, 0, 1)

= (b1,−b1 + b2, b1 + b3 + b3)

or, equivalently,

b1 = 1

−b1 + b2 = 2

b1 + b2 + b3 = 3

▶ Unique solution is (b1, b2, b3) = (1, 3,−1)
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Change of Basis

▶ Consider two different bases of an n-dimensional vector space V ,

E =
[
e1 · · · en

]
and F =

[
f1 · · · fn

]
▶ Since F is a basis, we can write each vector in F as a linear

combination of the vectors in E

F =
[
f1 · · · fn

]
=

[
e1M

1
1 + · · ·+ enM

n
1 · · · e1M

1
n + · · ·+ enM

n
n

]
=

[
e1 · · · en

] M
1
1 · · · M1

n
...

...
Mn

1 · · · Mn
n


= EM
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Change of Coefficients

▶ Any vector v can be written as either a linear combination of the
basis E ,

v = e1a
1 + · · ·+ ena

n =
[
e1 · · · en

] a
1

...
an

 = Ea

or as a linear combination of the basis F ,

v = f1b
1 + · · ·+ fnb

n =
[
f1 · · · fn

] b
1

...
bn

 = Fb

▶ If F = EM, then

v = Fb = E (Mb) = Ea

▶ Therefore,
a = Mb and b = M−1a
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Change of Basis Formula

▶ Let E and F be bases of V such that

F = EM,

▶ If v = Ea = Fb, then

a = Mb and b = M−1a

▶ The matrix that transforms old coefficients into new coefficients
is the inverse of the matrix that transforms the old basis into the
new basis

▶ WARNING: This works only if you write a basis as a row matrix
of vectors and the coefficients as a column matrix of scalars
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Linear Functions

▶ If V is a vector space, then a function

ℓ : V → F

is linear, if for any v1, v2 ∈ V

ℓ(v1 + v2) = ℓ(v1) + ℓ(v2)

and for any v ∈ V and s ∈ F,

ℓ(vs) = ℓ(v)s

▶ Consequences:

ℓ(0V ) = 0

ℓ(−v) = −ℓ(v)
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Linear Maps

▶ If V and W are vector spaces, then

L : V → W

is a linear map or linear transformation, if for any
v , v1, v2 ∈ V and s ∈ F,

L(v1 + v2) = L(v1) + L(v2)

L(sv) = sL(v)

▶ Consequences:

L(0V ) = 0W

L(−v) = −L(v)
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Properties of Linear Maps

▶ If K : U → V and L : V → W are linear maps, then so is

L ◦ K : U → W

▶ If L : V → W is bijective, it is called a linear isomorphism

▶ If L : V → W is a linear isomorphism, then so is

L−1 : W → V
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n-Dimensional Vector Spaces are Isomorphic

▶ Let dimV = dimW = m

▶ Let E = (e1, . . . , em) be a basis of V

▶ Let F = (f1, . . . , fm) be a basis of W

▶ The map

LE ,F : V → W

e1a
1 + · · ·+ ema

m 7→ f1a
1 + · · ·+ fma

m

is a linear isomorphism

▶ Given any basis (e1, . . . , em) of V , there is a linear isomorphism

LV : Fm → V

(a1, . . . , am) 7→ e1a
1 + · · ·+ ema

m
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Vector Space of Linear Maps

▶ Given vector spaces V and W , let

L(V ,W ) = {L : V → W : L is linear}

▶ L(V ,W ) is itself a vector space, because
▶ If A,B ∈ L(V ,W ) and s ∈ F, then

A+ B, sA ∈ L(V ,W )

▶ Let gl(n,m,F) denote the vector space of n-by-m matrices with
components in F
▶ dim gl(n,m,F) = nm

▶ Let gl(n,F) = gl(n, n,F)
▶ Let gl(n) = gl(n,R)
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Matrix as Linear Map

▶ Let E = (e1, . . . , em) be a basis of V

▶ Let F = (f1, . . . , fn) be a basis of W

▶ For each M ∈ gl(n,m,F), let L : V → W be the linear map
where

∀ 1 ≤ k ≤ m, L(ek) = f1M
1
k + · · ·+ fnM

n
k

and therefore for any v = e1a
1 + · · · emam = Ea,

L(v) = L(e1a
1 + · · ·+ ema

m)

= L(e1)a
1 + · · ·+ L(em)a

m

= (f1M
1
1 + · · ·+ fnM

n
1 )a

1 + · · ·+ (f1M
1
m + · · ·+ fnM

n
m)a

m

= f1(M
1
1a

1 + · · ·+M1
ma

m) + · · · fn(Mn
1 a

1 + · · ·+Mn
ma

m)

= f1(Ma)1 + · · ·+ fn(Ma)n

▶ This defines a map IE ,F : gl(n,m,F) → L(V ,W )
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Linear Map as Matrix

▶ Let E = (e1, . . . , em) be a basis of V
▶ Let F = (f1, . . . , fn) be a basis of W
▶ Let L : V → W be a linear map
▶ For each ek , 1 ≤ k ≤ m, there exists (M1

k , . . . ,M
n
k ) ∈ Fn such

that
L(ek) = f1M

1
k + · · · fnMn

k

▶ Therefore, for any v = e1a
1 + · · ·+ ema

m ∈ V ,

L(v) = L(e1a
1 + · · ·+ ema

m)

= L(e1)a
1 + · · ·+ L(em)e

m

= (f1M
1
1 + · · · fnMn

1 )a
1 + · · ·+ (f1M

1
m + · · ·+ fnM

n
m)a

m

= f1(M
1
1a

1 + · · ·M1
ma

m) + · · ·+ fn(M
n
1 a

1 + · · ·+Mn
ma

m)

= f1(Ma)1 + · · ·+ fn(Ma)n

▶ This defines a map JE ,F : L(V ,W ) → gl(n,m,F)
▶ JE ,F = I−1

E ,F and IE ,F = J−1
E ,F

▶ Therefore, dimL(V ,W ) = dim gl(n,m,F) = nm
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Concrete to Abstract Notation

L(v) = L(e1a
1 + · · ·+ ema

m) = L

[
e1 · · · em

] a1

...
am




= L
([
e1 · · · em

]) a1

...
am

 =
[
L(e1) · · · L(em)

] a1

...
am


=

[
f1M

1
1 + · · ·+ fnM

n
1 · · · f1M

1
n + · · ·+ fnM

n
n

] a1

...
am


=

[
f1 · · · fn

] M
1
1 · · · M1

m
...

...
Mn

1 · · · Mn
m


a1

...
am

 = FMa
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Subspace and its Dimension

▶ A subset T of a vector space X is a subspace of X if for any
p, q ∈ F and a, b ∈ T ,

pa+ qb ∈ T

▶ If a subspace has at least one nonzero vector, then it is itself a
vector space

▶ Define the dimension of a subspace S as follows:
▶ If S = {0⃗} then dim S = 0
▶ If S ̸= {0⃗}, then S is a vector space and dim S is its dimension

as a vector space

47 / 63



Course
Requirements

Prerequisites

Abstract Linear
Algebra

Abstract Matrix
Notation

Linear Maps and
Functions

Kernel, Image, Rank of a Linear Map

▶ Consider any linear map P : Z → Y

▶ The kernel of P is defined to be

kerP = {z ∈ Z : P(z) = 0⃗}

▶ ker(P) is a subspace of Z

▶ The image of P is defined to be

P(Z ) = {P(z) : z ∈ Z} ⊂ Y

▶ P(Z) is a subspace of Y

▶ The rank of P is
rank(P) = dimP(Z )
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Example 0

▶ Define Z : F2 → F3 to be

Z (x , y) = (x , y , 0), for all (x , y) ∈ F2

▶ In other words,

Z

([
x
y

])
=

1 0
0 1
0 0

[
x
y

]
▶ kerZ = {0}
▶ Z (F2) = {(x , y , 0) : x , y ,∈ F} ⊂ Fn

▶ A basis of Z(F2) is {Z(e1),Z(e2)} = {(1, 0, 0), (0, 1, 0)}
▶ Therefore,

dim kerZ = 0

rankZ = 2
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Example 1

▶ Define W : F2 → F3 to be

W (x , y) = (y , 0, 0), for all (x , y) ∈ F2

▶ In other words,

W

([
x
y

])
=

0 1
0 0
0 0

[
x
y

]
▶ kerW = {(x , 0) : x ∈ F}

▶ A basis of kerW is {(1, 0)}
▶ W (F2) = {(y , 0, 0) : y ∈ F}

▶ A basis of W (F2) is {(1, 0, 0)}
▶ Therefore,

dim kerW = 1

rankW = 1
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Example 2

▶ Define U : F2 → F3 to be

U(x , y) = (0, 0, 0), for all (x , y) ∈ F2

▶ In other words,

U

([
x
y

])
=

0 0
0 0
0 0

[
x
y

]
▶ kerU = F2

▶ U(F2) = {(0, 0, 0}
▶ Therefore,

dim kerU = 2

rankU = 0
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Example 3

▶ Define U : F3 → F2 to be

U(x , y , z) = (y , z), for all (x , y , z) ∈ F3

▶ In other words,

U

xy
z

 =

[
0 1 0
0 0 1

]xy
z


▶ kerU = {(x , 0, 0) : z ∈ F}

▶ A basis is {(1, 0, 0)}
▶ U(F3) = F2

▶ Therefore,

dim kerU = 1

rankU = 2
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Example 4

▶ Define U : F3 → F2 to be

U(x , y , z) = (z , 0), for all (x , y , z) ∈ F3

▶ In other words,

U

xy
z

 =

[
0 0 1
0 0 0

]xy
z


▶ kerU = {(x , y , 0) : x , y ∈ F}

▶ A basis is {(1, 0, 0), (0, 1, 0)}
▶ U(F2) = {(z , 0) : z ∈ F}

▶ A basis is {(1, 0)}
▶ Therefore,

dim kerU = 2

rankU = 1
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Example 5

▶ Define U : F3 → F2 to be

T (x , y , z) = (0, 0, 0), for all (x , y , z) ∈ F3

▶ In other words,

T

xy
z

 =

[
0 0 0
0 0 0

]xy
z


▶ kerU = F3

▶ U(F3) = {(0, 0, 0)}
▶ Therefore,

dim kerU = 3

rankU = 0
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Bases of V and W Induce Basis of L(V ,W )

▶ If (e1, . . . , em) is a basis of V and (f1, . . . , fn) is a basis of W ,
then for each 1 ≤ k ≤ m and 1 ≤ p ≤ n, let

Lpk : V → W

be the linear map where

Lkp(ej) =

{
fp if j = k

0 otherwise

and let E p
k ∈ gl(n,m) be the matrix that has a 1 in the p-th row

and k-th column and 0 everywhere else

▶ The set {Lkp : 1 ≤ k ≤ m and 1 ≤ p ≤ n} is a basis of
L(V ,W ) such that

IV ,W (E p
k ) = Mp

k
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Normal Form of a Linear Map

▶ Let L : V → W be a linear map

▶ Lemma: There exists a basis (e1, . . . , em) of V and a basis
(f1, . . . , fn) of W such that for each 1 ≤ k ≤ m,

L(ek) =

{
fk if 1 ≤ k ≤ r

0W if r + 1 ≤ k ≤ m
,

where r = rank(L)

▶ In particular,

ker(L) = span of {er+1, . . . , em} and L(V ) = span of {f1, . . . , fr}

▶ The matrix of L with respect to this basis is

M =

[
Ir×r 0r×m−r

0n−r ,r 0n−r ,m−r

]
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Corollary: Rank-Nullity Theorem

▶ Theorem: dim ker(L) + rank(L) = dimV

▶ Proof: The normal form shows that if dimV = m and
rank(L) = r , then dim ker(L) = m − r
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Proof of Existence of Normal Form

▶ Let s = dim ker(L) and r = dimV − dim ker(L) = m − s

▶ If s > 0, there exists a basis of ker(L), which will be denoted

(em−s+1, . . . , em)

▶ This can be extended to a basis (e1, . . . , er , er+1, . . . , em) of V

▶ For each 1 ≤ k ≤ r , let fk = L(ek)

▶ (f1, . . . , fr ) is linearly independent

▶ It can be extended to a basis (f1, . . . , fn) of W

▶ It follows that

dim ker L+ rank L = dimker L+ dim L(V )

= s + r = m

= dimV
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Injective and Surjective Maps

▶ Consider a linear map L : V → W

▶ dim ker L = 0 ⇐⇒ L is injective:

L(v1) = L(v2) ⇐⇒ L(v2)− L(v1) = 0W

⇐⇒ L(v2 − v1) = 0W

⇐⇒ v2 − v2 ∈ ker L = {0V }
⇐⇒ v2 = v1

▶ rank L = dimW ⇐⇒ L is surjective:

rank L = dimW

⇐⇒ dim L(V ) = dimW

⇐⇒ L(V ) = W
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Bijective Maps

▶ A map L : V → W an isomorphism if it is bijective, i.e., both
injective and surjective

▶ Therefore,

L : V → W is bijective ⇐⇒ dim ker(L) = 0 and rank(L) = dimW

▶ By the rank-nullity theorem, this holds if and only if

rank(L) = dimW

▶ Equivalently, L is an isomorphism if and only if

dimV = dimW and dim ker L = 0

if and only if
dimV = dimW = rank L
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Example (Part 1)

▶ Consider the map L : F3 → F2 given by

L

v1

v2

v3

 =

[
1 2 3
0 0 4

]v1

v2

v3

 =

[
v1 + 2v2 + 3v3

4v3

]

▶ ker L = {(v1, v2, v3) : v1 + 2v2 = 0}
▶ A basis of ker L is {(−2, 1, 0)}
▶ A basis of F3 is {(0, 1, 0), (0, 0, 1), (−2, 1, 0)}
▶ A basis of L(F3) is

{L(0, 1, 0), L(0, 0, 1)} = {(2, 0), (3, 4)}
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Example (Part 2)

▶ If

[
e1 e2 e3

]
=

 0 0 −2
1 0 1
0 1 0

 and
[
f1 f2

]
=

[
2 3
0 4

]
▶ Then[

L(e1) L(e2) L(e3)
]
=

[
f1 f2 0

]
=

[
f1 f2

] [1 0 0
0 1 0

]
▶ And given any vector v = e1a

1 + e2a
2 + e3a

3,

L(v) = L(e1)a
1 + L(e2)a

2 + L(e3)a
3 = f1a

2 + f2a
3 = FMa,

where

M =

[
0 1 0
0 0 1

]
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Composition is Matrix Multiplication

▶ Consider vector spaces U,V ,W and linear maps

K : U → V , L : V → W

▶ Let (e1, . . . , ek) be a basis of U
▶ Let (f1, . . . , fm) be a basis of V
▶ Let (g1, . . . , gn) be a basis of W
▶ There is an m-by-k matrix M such that

K (ej) = fpM
p
j , 1 ≤ j ≤ k

▶ There is an n-by-m matrix N such that

L(fp) = gaN
a
p , 1 ≤ p ≤ m

▶ There is an n-by-k matrix P such that

(L ◦ K )(ej) = gaP
a
j , 1 ≤ j ≤ k

▶ On the other hand,

(L ◦ K )(ej) = L(K (ej)) = L(fpM
p
j ) = L(fp)M

p
j = gaN

a
pM

p
j

▶ Therefore, Pa
j = Na

pM
p
j . 63 / 63
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