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Subspace and its Dimension

Subspaces

» A subset T of a vector space X is a subspace of X if for any
p,geFand a,be T,

pat+qgbe T

» If a subspace has at least one nonzero vector, then it is itself a
vector space
» Define the dimension of a subspace S as follows:
> If S ={0} then dimS =0

> If S # {0}, then S is a vector space and dim S is its dimension
as a vector space
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Kernel, Image, Rank of a Linear Map

Subspaces

» Associated to any linear map P : Z — Y are the following
subspaces

» The kernel of P is defined to be
kerP={zeZ : P(z) =0}

» The image of P is defined to be
P(Z)={P(z) : zeZ}CY

» The rank of P is
rank(P) = dim P(2)
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Example 1

» Define Z : 2 — F3 to be
Subspaces Z(x,y) = (x,y,0), for all (x,y) € F?

» |n other words,

» ker Z = {0}
> Z(F?) = {(x,y,0) : x,y,e F} CF"

> A basis of Z(F?) is {Z(e1), Z(e2)} = {(1,0,0),(0,1,0)}
» Therefore,

dimkerZ =0
rank Z =2
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Subspaces

Example 2

» Define W : F2 — F3 to be

W(x,y) = (y,0,0), for all (x,y) € F?

v(L])-

> ker W ={(x,0) : x€F}

> A basis of ker W is {(1,0)}
> W(F?) ={(y,0,0) : y €F}

> A basis of W(F?) is {(1,0,0)}
» Therefore,

» In other words,

dimker W =1
rank W =1
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Example 3

» Define U : F?2 — F3 to be
Subspaces

U(x,y) = (0,0,0), for all (x,y) € F?

» In other words,

X 00 X
o(]) = 1o ol [
y 0 0 y
> ker U = F?
> U(F?) = {(0,0,0}
» Therefore,
dimker U =2

rank U =0
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Example 4

» Define U : F® — F? to be
Subspaces U(x,y,z) = (y,z), for all (x,y,z) € F*

» |n other words,

» kerU = {(x,0,0) : zeF}
> A basis is {(1,0,0)}

> U(F3) = F2

» Therefore,

dimkerU =1
rank U = 2

8/40



Subspaces

Example 5

» Define U : F® — F? to be
U(x,y,z) = (2,0), for all (x,y,z) € F>

» In other words,

» kerU ={(x,y,0) : x,y €F}
> A basis is {(1,0,0),(0,1,0)}
> U(F?) = {(z,0) : z€F}
> A basis is {(1,0)}
» Therefore,

dimker U =2
rank U =1
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Example 6

» Define U : F3 — F? to be
Subspaces T(x,y,z) = (0,0,0), for all (x,y,z) € F*

» In other words,

> ker U =TF3
> U(F?) = {(0,0,0)}
» Therefore,

dimker U = 3
rank U =0
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Subspaces

Normal Form of a Linear Map

Let L: V — W be a linear map

Lemma: There exists a basis (eq, ..., ey) of V and a basis
(f1,..., 1) of W such that for each 1 < k < m,

o) = fo O ifl<k<r
T Yow ifr+1<k<m’

where r = rank(L)

In particular,

ker(L) = span of {e,11,...,em} and L(V) = span of {f1,...

The matrix of L with respect to this basis is

M: II’XI’ ‘ Orxm—r

Onfr,r ‘Onfrﬂnfr

fr}
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Proof of Existence of Normal Form

» Let s =dimker(L) and r =dim V —dimker(L) = m—s

Subspaces » If s > 0, there exists a basis of ker(L), which will be denoted
(em75+17 ey em)

» This can be extended to a basis (eq,..., €, €41,...,€n) of V

» Foreach 1 <k <r, let f = L(ex)

» (fi,...,f) is linearly independent

» It can be extended to a basis (fi,...,f,) of W

» It follows that

dimker L + rank L = dim ker L 4 dim L(V)
=s+r=m
=dimV
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Corollary: Rank-Nullity Theorem

Subspaces

» Theorem: dimker(L) + rank(L) = dim V

» Proof: The normal form shows that if dim V = m and
rank(L) = r, then dimker(L) = m —r
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Injective and Surjective Maps

Subspaces

» Consider a linear map L: V — W
» dimker L =0 <= L is injective:

L(n) = L(vn) < L(wn)—Lwn)=0w
— L(vo—w) =0
< v — v, € kerlL = {Ov}
< W =Wwv;

» rank L =dim W <= L is surjective:

rank L =dim W <= dimL(V)=dimW <= L(V)=W
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Bijective Maps

Subspaces

» |t also follows that

L:V — W is bijective
<= dimker(L) =0 and rank(L) = dim W
<~ dimV =dimW and dimkerL =10
< dimV =dimW =rankL

15/40



Example (Part 1)

v

Consider the map L : F* — F? given by

V1 V1

el 2 22 3] e 2 [vi 2?43y
sl ] [0 0 4| 5| 4v3
v v

ker L = {(v1,v2,v3) : vl 4+2v2 =0}

A basis of ker L is {(—2,1,0)}

A basis of F? is {(0,1,0),(0,0,1),(-2,1,0)}
A basis of L(F%) is

{L(0,1,0),L(0,0,1)} = {(2,0),(3,4)}

Subspaces

vvyyy
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Example (Part 2)

> If

Subspaces 0

0
e & e]=]1/0| 1 | and [A 6]:[23}
1

» Then

[L(el) L(e) L(e3)}:[f1 f 0}:[;‘1 fz} Ll) (1) 8}

> And given any vector v = ejal + e2a* + e3a’,
L(v) = L(e)a' + L(e)a® + L(e3)a® = a* + ha® = FMa,

where
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Parallelogram in Vector Space

»
Oriented Area v d
and Volume

V2 V2
7+ bvy

0 Vi

> Let V be a 2-dimensional vector space

» Let P(v1, v») be the parallelogram with sides vy, v, € V.

P(vi,vo) ={avi+ bvy : 0<a,b<1}.
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Area of Parallelogram

Oriented Area
and Volume

0 € Vi

v

Let (e, €2) be a basis of V

» Assume that the area of the parallelogram P(eq, &) is
Ale, &) =1
> Let
vi = wep and v» = ae; + hey
» With respect to this basis,

> Height of P(v1,v2) is h
> Width of P(vq, ) is w
The area of P(vy,v2) is

A(vi, v2) = |hl|w]

The absolute values makes this formula hard.to use

v

v
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Oriented Area of Parallelogram

...........

Oriented Area
and Volume

1 A(vi,v) >0

V2

» Define oriented area of P(vi, v2) to be

hw if v» lies counterclockwise of v;

A(Vl7 V2) = {

—hw if w lies clockwise of vy

» Oriented area, as a function of v, v, € V has nice properties
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Oriented Area of Parallelograms with Parallel Bases

>
w
Oriented Al
and Volume V2 1)
vi+ v2 1+ w
.
>
w
Vi Vi
| -
.
w

» If v; and v, both point upward relative to w, then

A(Wa vi+ V2) = A(W7 Vl) + A(W7 V2)
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Oriented Area of Parallelograms with Parallel Bases

Oriented Area
and Volume 1 1

Y

vi+ w2 vi+ v

w

» If vy points upward and v» points downward relative to w, then
A(w, v») < 0 and

A(w,v1) = A(w, vi + v2) — A(w, vp)
and therefore

Aw,vi + v2) = A(w, v) + A(w, v)
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Area of rescaled parallelogram

Oriented Area
and Volume
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Area of reflected parallelogram

Oriented Area
and Volume

Y
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Area Versus Oriented Area

oo A » Definitions of area and oriented area require a basis (er, ),
riente rea
and Volume where we assume that

A((i‘l7 62) =1
» The oriented area of a parallelogram satisfies

A(v,w) = —A(w,v)
A(vi + va, w) = A(vi, w) + A(va, w)
A(cvl, V2) = CA(Vl7 V2)

» The area of the parallelogram P(v,w) is |A(v, w)]
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Oriented Area is Bilinear and Antisymmetric

> If w is held fixed, A(v,w) is a linear function of v

A(vi + va, w) = A(vi, w) + A(va, w)
Oriented Area A(CV, W) = CA(V7 W)

and Volume

» If v is held fixed, A(v, w) is a linear function of w
Alv,wy + wo) = A(v, wy) + A(v, wp)
A(v, cw) = cA(v, w)
» Such a function is called bilinear

» For any v € V, the parallelogram A(v, v) has height 0 and
therefore
A(v,v)=0 (1)
» Any bilinear function A: V x V — T that satisfies (1) is called
antisymmmetric
» If A is antisymmetric and bilinear, then for any v,w € V,

A(w,v) = —A(v,w)
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2-Dimensional Antisymmetric Bilinear Function

> Let [e;e] be a basis of V

. > Let
Oriented Area
and Volume A VxV-oTF

be an antisymmetric bilinear function such that
A(eh 62) =1
» If v =ae; + bey and w = ce; + dey, then

A(v,w) = A(ae; + bey, ce; + dey)
= A(aer, cer) + A(bey, cer) + A(aer, dex) + A(ber, dey)
= bcA(e2, e1) + adA(e &)
=ad — bc
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2-Dimensional Antisymmetric Bilinear Function

» This can be written as follows

Oriented Area

A w=A(le =l[2 2])

:A([ael + bey ce1+deg])
= A(ey, &)(ad — bc)
= ad — bc

» The determinant of a square 2-by-2 matrix is defined to be

det{ b] = ad — bc

a
c d
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Determinant of a 2-by-2 Matrix is Equal to
Oriented Area

> Let (e, e) be a basis where the oriented area of P(ey, e) is 1,

Oriented Area
and Volume

A(el, 6‘2) =1

» The oriented area of the parallelogram P(v, w), where

vowl=fa el|2 5.
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Parallelopiped spanned by 3 Vectors in 3-space

Oriented Area
and Volume

» Three linearly independent vectors 3, b, € span a parallelopiped
P(a,b,¢)

P(3,b,8) = {sd+th+uc : 0<s t,u<1}
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Volume of a Parallelopiped

Oriented Area
and Volume

» Fix a basis (e, &, €3) of V
> Assume the volume of P(er, e, ) is 1
> Assume 3, b lies in the subspace spanned by (e1, &)
» Therefore, ¢ = hes
» If h > 0, then volume of parallelopiped is height times the area
of the base:
vol(P(d, b, €)) = h|A(8, b)|

» Again, we want to avoid the absolute value
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Oriented Volume of a Parallelopiped

Oriented Area
and Volume

where

> vol(er, e2,63) =1
> |vol(&, b, )| is the volume of P(a, b, )
> vol is an antisymmetric multilinear function
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Oriented Volume is Determinant of Matrix

» Suppose vy, Vo, v3 € V, where, using Einstein notation,

[Vl Vo V3} = [ekAll‘ ekA’2‘ ekA§]

o Vetume
AL A A
= [61 €2 63] A% A% A%
A A A
=EA

» The determinant of A is defined by the equation
vol(vy, vo,v3) = Edet A

» In particular, since vol(ey, e, &) = 1,

det/ =1
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Permutations

v

A permutation is a bijective map o : {1,...,n} = {1,...,n}

v

Let S, be the set of all permutations of order n
» For any 01,02 € S,,
090071 € Sn

Permutations
» For any 01,07,03 € S,
(03002)001 =030 (02001)

» Let ¢ denote the identity map

» Forany o € S,
Loo=00L=0

» Since o is bijective, there exists a unique o~ € S, such that
coo t=0c "oo=1

» S, is a group, where group multiplication is composition
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Permutations

Transpositions

» A transposition is a permutation 7 that switches two elements
and leaves the others unchanged.

» Example: 7:{1,2,3,4} — {1,2,3,4}, where
T(1)=1, 7(2) =4, 7(3) =3, 7(4) =2

» Forany 1 < j, k < n, let 7j be the transposition where for any

1<i<s,,
k ifi=j
Ti()=4j ifi=k
i ifi#gk
» Observe that
TOT =1
and therefore
rl=r
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Permutations

Any permutation is a composition of transpositions

» Given 0 € S, denote 0g = o
» If 01 = 71 64(1) © 00, then 01(1) =1
> If o = T2,01(2) © 01, then

o2(1) =1, 02(2) =2
» Given 1 < k < n, assume that o satisfies
ox(1) =1, ok(2) =2,..., ok(k) =k
» If Oki11 = Tii1,040(k+1) © Tk, then
ok1(1) =1, 041(2) =2,..., o1k +1)=k+1
» By induction,
Tn,on—1(n) © Tn—1,0,_2(n—1) © """ O Tl 0(1) ©00 = ¢
and therefore
0 =Tioy(1)OT20 " OTno i(n)

36/40



Permutations

Parity or Sign of a Permutation

> If j # k, call 7« a nontrivial transposition
» Given any permutation o € S,,, its parity or sign, which we will
write as €(o), is defined to be

» 1 if o is the composition of an even number of transpositions

> —1if o is the composition of an odd number of transpositions
» Easy consequences

> e(l)=1

> If 1 <j# k <n,then e(1j4) = —1

> For any 0,7 € Sp, (0 o7) = €(0)e(T)

» For any o € S,

c(07) = e(0),
because
1=¢()=e(c ' oo)=e(c e(o)
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Permutations

Existence and Uniqueness of Sign Function

» This is the consequence of the following:

» A permutation is never both the composition of an even number
of transpositions and the composition of an odd number of
transpositions

» There are straightforward elementary proofs

» There are also many sophisticated proofs

38/40


https://kconrad.math.uconn.edu/blurbs/grouptheory/sign.pdf
https://mathoverflow.net/questions/417690/conceptual-reason-why-the-sign-of-a-permutation-is-well-defined

Endomorphisms of {1,..., n}

» Let End(n) denote the space of all maps

¢ {l,...,n} = {1,...,n}
> Let Aut(n) denote the space of bijective maps in End(n)
Observe that S, = Aut(n)

» The sign function € : S, — {—1,1} can be extended to the
function

v

Permutations

e : End(n) — {-1,0,1},
where, if ¢ € S,,, then €(¢) is defined as before and

€(¢)=0if ¢ ¢ S,

» The extended sign function satisfies the following properties:

(o1 0 02) = €(01)e(02)
e(v) =1
€(o0) = —1if o is a nontrivial tranposition
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Alternating Multilinear Functions

» Let V be an n-dimensional vector space

Let T:V x---x V — F be a function of n vectors

» T is multilinear if foreach 1 < k<n, vi,...,v,,w, € V,
a,bel,

v

Permutations

T(vay...,avk + bwg, ... vp)
=aT(vi,. ., Vkyoooy V) + BT (Vay ooty Wiy ooy Vi)

» T is alternating if for any vi,...,v, € Vand 0 € §,,,
T(Vo) s Vo(ny) = €(a) T(vi,...,va)
or, equivalently, for any vq,...,v, € V and ¢ € End(n),
T(Vo1) - Vo(ny) = (@) T(vi,...,Va)

» Let A"V* denote the set of all alternating multilinear functions
on V
» Each T € A"V*\{0} is also called an oriented volume

function of V
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