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Parameterized Curve in Polar Form

» Lemma. If ¢ : [a, b] — C\{0} is a piecewise C' curve and
c(a) = rpe'®,
then there exists unique piecewise C! real functions
r:la,b] >R and 0 :[a,b] - R

such that

c(t) = r(t)eD | r(a) = ry, 6(a) = bo (1)
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Polar Form of Piecewise C! Curve (Part 1)

» Given r: [a,b] — (0,00) and 0 : [a, b] — R be piecewise C!
functions such that

r(a) = ro and 0(a) = o

> If )
c(t
o(t) = (£)e @’
then ¢(a) =1 and therefore (1) holds if and only if for each
t € [a, b,
r(t) = |¢(t)| and ¢(t) =0
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Polar Form of Piecewise C! Curve (Part 2)
» Therefore, ¢ = 1 if and only if r = |¢| and

0=¢/(t)
-5 (50)

» Since

this holds if and only if
/ /
r=|c| and i:r——i—iO’,
c r

which holds if and only if for each t € [a, b,

1

H(t) = |c(t)] and 6(t) = 0(a) + 1_/” CC AN

—=a



Polar Form of Piecewise C! Curve Centered at z

> Given zg € C, the polar form of a piecewise C! curve
c:[a,b] = C\{zp} centered at z, consists of functions

r:la,bp] >R and 0 :[a,b] = R
such that
c(t) = zo + r(t)e™®

» By the lemma, the curve &(t) = c(t) — zo has a polar form
centered at 0, .
&(t) = r(t)e®

» Therefore,

c(t) = zo + r(t)e™®®)
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Winding Number of a Closed Curve Around zy
» Let z0 € C and c : [a,b] — C\{z} be a closed piecewise C*
curve such that
c(t) = zo + r(t)e™®®)

» The winding number of ¢ around z is defined to be

1

W(c, z0) = 5 _(6(b) — 6(a))
i

» Since
oi0(b) _ i0(a)

)

it follows that 6(b) — 6(a) is an integer multiple of 27 and
therefore W(c, z)) € Z
» Contour integral formula:

1 d t=b (¢
R z :/ Ldt
t

27i J.z — 29 —, c(t)— 2
= 2m(6(b) — 6(a))
= W(C,Zo)
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Winding Number of Star-Shaped Curve is 1

» A closed piecewise C! curve c: [a, b] — C\{zo} with polar
form
c(t) = zo + r(t)e’®)

is star-shaped around z; if
Vt € [a, b], 0'(t) #0

and for each 6y € [0, 27] there exists a unique tg € [a, b] such
that .
C(t()) =2Zy+ r(to)e’eo

» This implies that @ is either an increasing function or a
decreasing function

» It follows that

W(c, o) = O(b) — 0(a) = £2r
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Residue Theorem For Laurent Series
» Theorem. If, for each z € D(z, R),

f(z) =) anlz— )"

k=ko

converges absolutely and ¢ : [a, b] — D(zo, R)\{zo} is a
closed piecewise C! curve, then

27r//f z)dz = W(c,zp)a—

> Proof.

Ckk

1
ani ), zﬂ,/zakz—zo d
a1

C2mi Joz— 2
=aW(c, z)
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Cauchy Integral Formula for Analytic Function

» Theorem. If, for each z € D(zp, R),

f(z) = au(z — 20)

k=0

converges absolutely and ¢ : [a, b] — C\{z} is a closed
piecewise C! curve, then

l/f(z)dZ: W(c, zp)f(z0)

27 J. z — 29
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