MATH-UA 123 Calculus 3: Critical Points, Optimization

Deane Yang

Courant Institute of Mathematical Sciences New York University

October 13, 2021

K ロ ▶ K 레 ▶ K 로 ▶ K 로 ▶ - 로 - Y Q Q @

START RECORDING

K ロ ▶ K @ ▶ K 콜 ▶ K 콜 ▶ │ 콜 │ ◆ 9 Q (*

Shape Versus Contours of a Graph

Peaks

Bottoms

Ridges and valleys between peaks or bottoms

 \blacktriangleright There are at least 4 points where the gradient is zero

 \blacktriangleright Two peaks

One bottom

 \triangleright One point in between the peaks and bottom, where the contour consists of two intersecting curves

K □ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ ミ │ K) Q Q Q

Some Possible Shapes of a Graph

K ロ ▶ K 御 ▶ K 重 ▶ K 重 ▶ │ 重 │ K 9 Q Q

Critical Point of Function

A point (x_0, y_0) is a critical point of a function f if \blacktriangleright It is in the domain of f **I** The gradient $\vec{\nabla} f(x_0, y_0, z_0)$ is either zero or undefined \triangleright Possible shapes of a surface near a critical point \triangleright Isolated local maximum: Top of a hill \triangleright Isolated local minimum: Bottom of a bowl \triangleright Curve of local minima: Bottom of a valley \triangleright Curve of local maxima: Top of a ridge \triangleright Saddle point **Other**

K □ ▶ K @ ▶ K ミ ▶ K ミ ▶ - 트 - K 9 Q Q

Same contour

Contours of Circular Paraboloids

$$
f(x, y) = x2 + y2
$$

$$
\vec{\nabla} f(x, y) = 2\langle x, y \rangle
$$

Local minimum

Local maximum

Kロメ K団 K K ミメ K ミメ / ミー YO Q C

Contour of Circular Cone

$$
f(x, y) = \sqrt{x^2 + y^2}
$$

$$
\vec{\nabla} f = \frac{\langle x, y \rangle}{\sqrt{x^2 + y^2}}
$$

 $\boldsymbol{\psi}$ surface $alvays$ n l has same slope

Local minimum

Another Example of Local Maximum

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @

Critical Point of Function

▶ A critical point of a function *f* is a point in the domain of *f* where $\vec{\nabla} f$ is either undefined or equal to the zero vector

 \blacktriangleright Examples

$$
f(x,y) = \sqrt{x^2 + y^2} : \vec{\nabla} f(x,y) = \left\langle \frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}} \right\rangle
$$
 is

undefined at (0*,* 0)

- ▶ $f(x,y) = e^{-x^2-y^2}$: $\vec{\nabla} f(x,y) = -2e^{-x^2-y^2}\langle x,y,\rangle$ is the zero vector at (0*,* 0)
- If $f(x, y) = x^2 y^2$: $\vec{\nabla} f(x, y) = 2\langle x, -y, \rangle$ is the zero vector at (0*,* 0)

If $\vec{\nabla} f(x_0, y_0) = \langle 0, 0 \rangle$, then the tangent plane

$$
z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) = f(x_0, y_0)
$$

K ロ ▶ K 御 ▶ K 重 ▶ K 重 ▶ │ 重 │ ◆ 9 Q ⊙

is horizontal

Examples of critical points $f(x,y) = \sqrt{x^2+y^2}$: graph is cone $f_x = L(x^2+y^2)^{-\frac{1}{2}}(2x)$ $\frac{x}{\sqrt{x^{2}+y^{2}}}$ un defined \Rightarrow (0,0) is critical point $\frac{1}{\sqrt{1-x^2}}\left(\frac{1}{x^2}-\frac{1}{x^2}\right)^2-\frac{1}{x^2}-\frac{1$ $f_x = 2(x-2)$ = 0 if $\frac{x-2}{and}$
 $f_y = 2(y+3)$ and out if \Rightarrow (2, 3) only critical point.

Types of Critical Points

If Suppose (x_0, y_0) is a critical point of a function $f(x, y)$

ly

A point (x_0, y_0) is a **local maximum**, if

 $f(x, y) \le f(x_0, y_0)$ for all (x, y) near (x_0, y_0)

Example: (0,0) for $f(x, y) = -x^2 - y^2$ A point (x_0, y_0) is a **local minimum**, if

 $f(x, y) \ge f(x_0, y_0)$ for all (x, y) near (x_0, y_0)

I Example: (0,0) for $f(x, y) = x^2 + y^2$

A point (x_0, y_0) is a **saddle point**, if it meets the criteria in previous slide

Example: (0,0) for $f(x, y) = x^2 - y^2$

 \blacktriangleright There are other types of critical points that we will not study **I** Example: $(0,0)$ for $f(x,y) = xy(x^2 - y^2)$ $f(x,y) = xy(x^2 - y^2)$ $f(x,y) = xy(x^2 - y^2)$

Tests for Critical Point Type

 \blacktriangleright Analyze formula of function

 $f(xy) = (x-y)^2$

 $f(x,y)>0$

every when

 $f(x,y) \geqslant f(0,0), (xy) f(0,0)$

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐

 $f(2, -3) = 0$

 $y + 3$

else

- Draw graph
- Draw contours
- Second derivative test

 \overline{v} ooo is aglobalminimum ϵ global local point max alob MINIMUM value is 0 min point is $\left(\frac{1}{2}\right)$ m in value is C \cdot \cdot) Directly from formula ² Graph ³ Contours 4) 2nd derivative test

Second Derivative Test For Function of One Variable

Suppose x_0 is a critical point of a function $f(x)$, where $f'(x_0)=0$ and $f''(x_0)$ is defined

 \blacktriangleright $f''(x_0) > 0 \implies$ local minimum \triangleright $f''(x_0) < 0 \implies$ local maximum \blacktriangleright $f''(x_0)=0 \implies$ inconclusive

Hessian of Function of Two Variables

 \blacktriangleright The Hessian of a function $f(x, y)$ at (x_0, y_0) is the matrix

$$
H = \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix} = \begin{bmatrix} f_{xx}(x_0, y_0) & f_{xy}(x_0, y_0) \\ f_{yx}(x_0, y_0) & f_{yy}(x_0, y_0) \end{bmatrix}
$$

- ▶ *H* is a matrix of numbers. There should be no *x* or *y* in the formula for *H*
- \blacktriangleright The determinant of *H* is defined to be

$$
\det H = H_{11}H_{22} - H_{12}H_{21}
$$

K □ ▶ K @ ▶ K ミ ▶ K ミ ▶ → ミ → K Q Q Q

2nd derivative test for $f(xy)$ 2^{nd} derivatives form $2-by-2$
 $9^{n-1}n$ derivatives form $2-by-2$
 $9^{n-1}n$ $H = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yy} & f_{yy} \end{bmatrix}$

(xy)

(remember $(f_x)_y = (f_y)_x$ \int_{xy} Suppose (x_0, y_0) is a critical

Look at $H(X_o, Y_o)$ has no x's or y's
in it because you've
replaced x by x0
and y by yo Basic examples $\int f(x,y) dx$ \times 2+4², $f_{x} = 2x$, f_{y} only critical $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ $\overline{100}$ Critical point is \int $H(DD) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$

 $2) f(x, y) = 5 - x^{2} y^{2}$ $f_x = -2x$ $f_y = -2y$ $H_{\text{1}} = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}$ only $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
(0,0) Jocal max $3) f(x, y) = x^{2} - y^{2}$
 $f_{x} = dx$, $f_{y} = H = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$ saddle point

Second Derivative Test for Function of Two Variables

- \blacktriangleright The second derivative test of a function $f(x, y)$ at a critical point (x_0, y_0) , where $\vec{\nabla} f(x_0, y_0) = \langle 0, 0 \rangle$ and the Hessian is defined
	- If det $H(x_0, y_0) = 0$, then the test is inconclusive
		- **If** The shape of the surface near (x_0, y_0) can be simple or complicated
		- \blacktriangleright Look at contours to learn more
	- If det $H(x_0, y_0) < 0$, then (x_0, y_0) is a saddle point
	- If det $H(x_0, y_0) > 0$, then there are two possibilities
		- **If** $H_{11}(x_0, y_0) > 0$ (or, equivalently, $H_{22}(x_0, y_0) > 0$), then (x_0, y_0) is a local minimum
		- **If** $H_{11}(x_0, y_0) < 0$ (or, equivalently, $H_{22}(x_0, y_0) < 0$), then (x_0, y_0) is a local maximum

KORKA REPAER DE VOOR

 $Jf\overline{\sqrt{f(x_0,y_0)}}=\overline{\sqrt{f_x}},\overline{f_y}$ $\left(\text{Same as } f_{x}(x_{0},y_{0}) = f_{y}(x_{0},y_{0}) = 0\right)$ and $H(x_0, y_0)$ be Hessian
11 $\begin{bmatrix} f_{xy} & f_{xy} \\ f_{y}x & f_{y}y \end{bmatrix}$ J Look at det H = fity fil 2) If det $H < 0$
then saddle goint

3) If det $H>0$, then either focal max or local min like a) It few de Min $CalCD$ $\begin{pmatrix} 2^{hd} & b \end{pmatrix}$ $\begin{pmatrix} -f & f_{xx} & 0 \end{pmatrix}$ then test let local max or do this usingtyy instead of fxx Suppose det $H = f_{xx}f_{yy} - f_{xy}2 D$ g $P^{OS}}_{\text{in}}$ \bigvee Fxx tyy same sign

Basic Examples

►
$$
f(x, y) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + c
$$
, where $a, b \ne 0$
\n► $\vec{\nabla}f = 2\langle a^{-2}x, b^{-2}y \rangle$
\nOnly one critical point: (0,0)
\n► $H = 2\begin{bmatrix} a^{-2} & 0 \\ 0 & b^{-2} \end{bmatrix}$
\n⇒ det $H(0, 0) = 4a^{-2}b^{-2} > 0$ and $H_{11} = 2a^{-2} > 0$
\n► (0,0) is a local minimum
\n► $f(x, y) = -\frac{x^2}{a^2} - \frac{y^2}{b^2} + c$, where $a, b \ne 0$
\n⇒ $\vec{\nabla}f = -2\langle a^{-2}x, b^{-2}y \rangle$
\nOnly one critical point: (0,0)
\n⇒ $H = -2\begin{bmatrix} a^{-2} & 0 \\ 0 & b^{-2} \end{bmatrix}$
\n⇒ det $H(0, 0) = 4a^{-2}b^{-2} > 0$ and $H_{11} = -2a^{-2} > 0$
\n► (0,0) is a local maximum

 $f(y\ y) = \frac{x^2}{a^2} + \frac{y^2}{12}$ $f_x = \frac{dx}{a^2}$, $f_y = \frac{dy}{dx} \implies (0,0)$ H_{11} H_{12} $U = \begin{bmatrix} 2 & 0 \\ a^2 & 2 \\ 0 & \frac{2}{v^2} \end{bmatrix}$ dut $H = \left(\frac{2}{a^2}\right)\left(\frac{2}{b^2}\right)$ $f_{xx} = |f_{11}| > 0 \implies \int_{0}^{1} \int_{0}^{1} dm^{1/n}$ $f(x,y) = -\frac{x^2}{a^2} - \frac{y^2}{b^2} + C$ $H(D,0) = \begin{bmatrix} -\frac{2}{a^{2}} & 0\\ 0 & 2 \end{bmatrix}$

 $det H = \left(\frac{2}{a^2}\right)\left(\frac{2}{b^2}\right) > \mathcal{D}$ $f_{xx} = \frac{-2}{a} < 0$ Stock max $f(xy) = \frac{x^{2}}{x^{2}} - \frac{y^{2}}{h^{2}}$ $H(s_0) = \begin{vmatrix} \frac{a}{a^2} & 0 \\ 0 & \frac{b}{a^2} \end{vmatrix}$ det $H=(\frac{2}{a^2})(\frac{-2}{b^2})<0$

Basic Examples

►
$$
f(x, y) = -\frac{x^2}{a^2} + \frac{y^2}{b^2} + c
$$
, where $a, b \ne 0$
\n► $\vec{\nabla}f = -2\langle a^{-2}x, b^{-2}y \rangle$
\nOnly one critical point: (0,0)
\n► $H = 2\begin{bmatrix} -a^{-2} & 0 \\ 0 & b^{-2} \end{bmatrix}$
\n⇒ det $H(0, 0) = -4a^{-2}b^{-2} < 0$
\n► (0,0) is a saddle point
\n► $f(x, y) = axy + c$, where $a \ne 0$
\n⇒ $\vec{\nabla}f = a\langle y, x \rangle$
\nOnly one critical point: (0,0)
\n⇒ $H = 2\begin{bmatrix} 0 & a \\ a & 0 \end{bmatrix}$
\n⇒ det $H(0, 0) = -4a^2 < 0$
\n► (0,0) is a saddle point

E.

Kロト K部 K K ミト K ミト ニヨー の Q (V)

Examples Where Second Derivative Test Fails

►
$$
f(x, y) = x^4 + y^4
$$

\n► $\vec{V}f = 4\langle x^3, y^3 \rangle$

\nOnly one critical point: $(0, 0)$

\n► $H = 4 \begin{bmatrix} x^3 & 0 \\ 0 & y^3 \end{bmatrix}$

\n⇒ det $H(0, 0) = 0$

\n✓ Contours and formula show that $(0, 0)$ is a local minimum

\n▶ $f(x, y) = (ax + by)^2 + c$, where $ab \neq 0$

\n▶ $\vec{V}f = 2(ax + by)\langle a, b \rangle$

\n✓ All points (x, y) , where $ax + by = 0$ are critical points

\n▶ $H = 2 \begin{bmatrix} a^2 & ab \\ ab & b^2 \end{bmatrix}$

\n⇒ det $H(0, 0) = a^2b^2 - (ab)^2 = 0$

\n✓ Contours and formula show that surface is a parabolic cylinder and all points in the line $ax + by = 0$ are local minima

KID KA KE K KE K E VOQO

 $f(x, y) = x^2y - xy^2$
 $f_x = dxy - y^2 = y(\frac{dx-y}{dx})$ $J_y = x^{\prime}z - \frac{1}{2}xy = x(x-\frac{2y}{2})$ J_{χ} = or Yidx $y=0$ $f_y = 0$ $\left(\infty\right)$ \int_{γ} $\int \times (x$ $x^2=0$ H_y it $X \leq 1$ \Rightarrow y= λ = 0 (0,0) is only critical

 $|L| = \begin{bmatrix} 2y & 2x-2y \\ 2x-2y & -2x \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ $H(D,0) = \begin{pmatrix} 0 & D & D \\ 0 & D & D \end{pmatrix}$ / Forgotten passibility? det H=0 Kx ample: $f(x,y) = x^4+y^4$
 $f_x = 4x^3$ $f_y = 4y^3 \Rightarrow$ only $g = \int_0^x 12x^2$ o $\int_0^x 12x^2$ o $\int_0^x 12x^2$ $|H| = \begin{vmatrix} 12x^2 & 0 \\ 0 & 12y^2 \end{vmatrix}$

 $\implies H(\begin{matrix} 0 & 0 \end{matrix}) = \begin{matrix} 0 & 0 \ 0 & 0 \end{matrix}$ 2 rd derivative test fails $f(0,0)=0$ and $f(x,y)>0$
for all other (xy)
 $\implies (0,0)$ is a minimum point $-f(xy) = (2x + 3y + 4)^{2}$ $f_{x} = 2(2x+3y+4)2y$
power
power deriva power
 $f_y = \frac{2(x + 3y + 4)}{x^2}$ mside

Examples Where Second Derivative Test Fails

 \blacktriangleright Consider the function

$$
f(x, y) = xy(x2 - y2) = xy(x + y)(x - y)
$$

\blacktriangleright Its gradient is

$$
\vec{\nabla} f = \langle y(x^2 - y^2) + 2x^2y, x(x^2 - y^2) - 2xy^2 \rangle
$$

= $\langle y(3x^2 - y^2), x(x^2 - 3y^2) \rangle$
= $\langle (y(\sqrt{3}x - y)(\sqrt{3}x + y), x(x - \sqrt{3}y)(x + \sqrt{3}y) \rangle$

\n- Only critical point is
$$
(0, 0)
$$
\n- $H = \begin{bmatrix} 6xy & 3x^2 - 3y^2 \\ 3x^2 - 3y^2 & -6xy \end{bmatrix}$
\n- det $H(0, 0) = 0$
\n- The contour $f = 0$ is given by the equation
\n

$$
xy(x+y)(x-y)
$$

a[n](#page-35-0)[d](#page-0-0) consists of the lines $x = 0$ $x = 0$ $x = 0$, $y = 0$ $y = 0$, $y = x$ $y = x$ [, a](#page-34-0)nd $y = -x$

Complicated Example of Second Derivative Test

\n- $$
f(x, y) = x^4 + y^4 - 4xy + 1
$$
\n- $\vec{\nabla}f = \langle 4x^3 - 4y, 4y^3 - 4x \rangle$
\n- Solve for critical points: $x^3 = y$ and $y^3 = x$
\n- Substitute first inequation into second: $x^9 = x$
\n- Factor
\n

$$
0 = x9 - x = x(x8 - 1)
$$

= x(x⁴ - 1)(x⁴ + 1) = x(x² - 1)(x² + 1)(x⁴ + 1)
= x(x - 1)(x + 1)(x² + 1)(x⁴ + 1)

K ロ ▶ K 리 ▶ K 로 ▶ K 로 ▶ 기본 ▶ 기본 및 수 이익()

There are three possible values for $x: -1, 0, 1$ If Since $y = x^3$, the critical points are $(-1, -1)$, $(0, 0)$, $(1, 1)$

 $f(x,y) = x^4 + y^4 - 4xy + 1$ $f_x = 4x^3 - 4y^3$ $\frac{f_{xx}}{f_{xy}} = \frac{12x^3}{9}$
 $f_y = 4y^3 - 4x^3$ $\frac{f_{xy}}{f_{yy}} = \frac{12y^2}{12}$ Critical points $4x^3-4y=0$ and $4y^3-4x=0$ $\iff y = x^2$ and $x = y^3$ $\Rightarrow x=y^3=(x^3)^2=x$ $\Rightarrow x^9 - x =$ $x(x^2-1)=0$ $x(x^4-1)(x^4+1)=0$

 $X(X^{2}-1)(X^{2}+1)(X^{4}+1)=0$ $X(x-1)(x+1)(x^2+1)(x^4+1) = 0$ $x \sim y$ preside
 \Rightarrow only \forall critical points are
 α and γ >0
 α $x = |$ and $y = 1$ $(\csc^{2}x-c^{2})$ $(\csc^{2}x-c^{2})$ and $y = -1$ are only critical points $H = \begin{bmatrix} 12x^2 & -4 \\ -4 & 12y^2 \end{bmatrix}$

 $A\notin (0,0)$ $H(p,0) = \begin{bmatrix} 0 & -4 \\ -4 & 0 \end{bmatrix}$ $det H = o(b) - (-4)^{2}$ $z-lb<0$ (0,0) is a saddle point $\overline{\mathcal{A}t}$ (l,l) $H = \begin{bmatrix} 12 & -4 \\ -4 & 12 \end{bmatrix}$ $dufH = 12(12) - (4)^2$ $=144-16>0$ f_{xx} = 12 > 0 = (!) $/$ per $/$ min

 $\begin{picture}(220,10) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line($ $H = \begin{bmatrix} 12 & -4 \\ -4 & 12 \end{bmatrix}$ \Rightarrow $(-1,-1)$ is local min

Local min, local max, are used to study
shape of the graph of f

Complicated Example of Second Derivative Test

►
$$
f(x, y) = x^4 + y^4 - 4xy + 1
$$

\n► $\nabla f = 4(x^3 - y, y^3 - x)$
\nCritical points are $(-1, -1), (0, 0), (1, 1)$
\n► $H = \begin{bmatrix} 12x^2 & -4 \\ -4 & 12y^2 \end{bmatrix}$
\n► At the critical points $(-1, 1)$ and $(1, 1)$
\n► det $H(-1 - 1) = \det H(1, 1) = \det \begin{bmatrix} 12 & -4 \\ -4 & 12 \end{bmatrix} = 144 - 16 > 0$
\n► $H_{11}(-1, -1) = H_{11}(1, 1) = 12 > 0$
\n► The critical points $(-1, -1)$ and $(1, 1)$ are local minima
\n► At the critical point $(0, 0)$
\n► det $H(0, 0) = \det \begin{bmatrix} 0 & -4 \\ -4 & 0 \end{bmatrix} = -16$
\n► The critical point $(0, 0)$ is a saddle point

Kロト K団 K K ミト K ミト 「ミ」 の Q Q <

Global Optimization

- **In Consider a function** $f(x, y)$ **on a domain D in 2-space**
- A point (x_0, y_0) is a global maximum point, if $f(x, y) \le f(x_0, y_0)$ for every $(x, y) \in D$. $f(x_0, y_0)$ is the global maximum value.
- \blacktriangleright There is at most one maximum value but there can be any number, including infinitely many, maximum points
- A point (x_0, y_0) is a global minimum point, if $f(x, y) \le f(x_0, y_0)$ for every $(x, y) \in D$. $f(x_0, y_0)$ is the global minimum value.
- \blacktriangleright There is at most one minimum value but there can be any number, including infinitely many, minimum points
- If D has no boundary, then global optimum points are all critical points
- If D has a boundary then global optimum points are either critical points or boundary points

Global Optimization on the Real Line

Suppose $f(x)$ is a smooth function on the entire real line Optimal values, if they exist, must occur at a critical point

\blacktriangleright To find optima:

- **If** Study what happens when $x \to \pm \infty$
- \blacktriangleright Find all critical points and calculate f at each of them

\blacktriangleright In picture:

- \triangleright $f(x) \rightarrow +\infty$ as $x \rightarrow \pm\infty$, which implies that *f* has no maximum value
- \blacktriangleright f is bounded from below, which means that it has a minimum value
- \blacktriangleright \blacktriangleright \blacktriangleright There is only one critical point, so tha[t h](#page-41-0)[as](#page-45-0) [t](#page-41-0)[o](#page-42-0) [be](#page-45-0) [th](#page-0-0)e [mi](#page-0-0)[ni](#page-57-0)[mu](#page-0-0)[m](#page-57-0)

 OQ

Global optimization of $f(x)$
Domain of is whole real line $\sqrt{\frac{1}{3}}$ MIV N_{o} glob min N og lobb

Strategy 1) Look'at what happens to f 2) Look for critical points 3) Calculate values of f at critical points g/b

Global Optimization in 2-Space

- \blacktriangleright Find rectangular cardboard box without a top that encloses a given volume *V* but using the minimum amount of cardboard
- If dimensions of box are H by W by D , then

 $Volume V = HWD$ Area of card board $A = 2(HW + HD) + WD$

▶ *V* is constant, and we want to minimize A Elminiate one variable $H = \frac{V}{WD}$:

$$
A(W, D) = 2\frac{V}{WD}(W + D) + WD = 2V(\frac{1}{D} + \frac{1}{W}) + WD
$$

Optimal Cardboard Box

$$
\blacktriangleright A(W, D) = 2V(\frac{1}{D} + \frac{1}{W}) + WD
$$

▶ Solution must be at a critical point of A

 \blacktriangleright Find critical points:

$$
A_W = -\frac{2V}{W^2} + D = 0, \qquad A_D = -\frac{2V}{D^2} + W = 0
$$

$$
D = \frac{2V}{W^2}, \qquad W = \frac{2V}{D^2} = 2V\frac{W^4}{4V^2} = \frac{W^4}{2V}
$$

 \blacktriangleright Therefore,

$$
0=\frac{W^4}{2V}-W=W\left(\frac{W^3}{2V}-1\right)
$$

 \triangleright Since $W \neq 0$, $D = \frac{2V}{M'}$ $W = (2V)^{1/3}$ $\frac{2V}{W^2} = (2V)^{1/3}$ $H = \frac{V}{WD} = \frac{V}{(2V)^{2/3}} = 2(2V)^{1/3}$ 4 ロ ト 4 団 ト 4 ミ ト 4 ミ ト - 三 - 5 - 5 0 Q Q

Global Optimization on a Bounded Interval

- \blacktriangleright The global optima of a smooth function on a bounded closed interval are always at critical or end points
- \blacktriangleright Here, we have three functions:

$$
f(x)=2-\frac{1}{2}x^{2}
$$

$$
g(x)=x
$$

$$
h(x)=\frac{1}{2}(x^{2}-x-3)
$$

2) Domain of J is closed interval Strategy
1) Find all critical points 2) Calculate f at critical points
and boundary points
3) The point with least value of f
whe.

Interesting use: I linéer No critical points
Max, min at boundary

Finding Optimal Values and Points on an Interval

- \blacktriangleright Find all of the critical points that lie in the interval
- \triangleright Calculate the value of the function at each critical and each end point

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @

 \blacktriangleright Identify where the function is maximum and where it is minimum

Global Optima on a Bounded Domain in 2-Space

- ▶ Suppose $D = \{(x, y) : g(x, y) \le 1\}$
- \blacktriangleright Maximize or minimize $f(x, y)$ with (x, y) restricted to the domain *D*
- \triangleright An optimal point must be either a critical point or a point on the boundary

If optimal point is on bondary, then it must be at a point where the contour of *f* and the boundary are tangent

I Where $\vec{\nabla} f(x_0, y_0) = \lambda \vec{\nabla} g(x_0, y_0)$ for some scalar λ

 $87/320$ domain of is closed and basended. Suppose J, is linear Contains for events spaced values

Example

- ▶ Optimize $f(x, y) = y x$ over all (x, y) such that $\frac{x^2}{4} + y^2 \le 1$
- \triangleright Since $\vec{\nabla} f = \langle -1, 1 \rangle$, there are no critical points
- The boundary is the contour $g = 1$, where $g(x, y) = \frac{x^2}{4} + y^2$
- \blacktriangleright Solve for x, y, λ such that

$$
\vec{\nabla} f(x, y) = \lambda \vec{\nabla} g(x, y)
$$
 and $g(x, y) = 1$

Constrained Optimization Example

- ▶ Constraint: $g = 1$, where $g(x, y) = \frac{x^2}{4} + y^2$
- \blacktriangleright Objective function: $f(x, y) = y x$
- \blacktriangleright Solve for (x, y) and λ such that $\vec{\nabla} f = \lambda \vec{\nabla} g$

$$
\langle -1,1\rangle=\lambda\langle \frac{x}{2},2y\rangle
$$

- \triangleright $\lambda \neq 0$ because left side is nonzero
- \blacktriangleright Therefore,

$$
\langle -\lambda^{-1}, \lambda^{-1} \rangle = \langle \frac{x}{2}, 2y \rangle
$$

\n
$$
2y = -\frac{x}{2}
$$

\n
$$
y = -\frac{x}{4}
$$

\n
$$
1 = \frac{x^2}{4} + \frac{x^2}{16} = \frac{5}{16}x^2
$$

\n
$$
x = \pm \frac{4}{\sqrt{5}}
$$

Constrained Optimization Example

Consider the Constraint:
$$
g = 1
$$
, where $g(x, y) = \frac{x^2}{4} + y^2$

- \triangleright Objective function: $f(x, y) = y x$
- \blacktriangleright Solve for (x, y) and λ such that $\vec{\nabla} f = \lambda \vec{\nabla} g$

$$
y = -\frac{x}{4}
$$
 and $x = \pm \frac{4}{\sqrt{5}}$

 \blacktriangleright Therefore,

$$
(x, y) = \left(\frac{4}{\sqrt{5}}, -\frac{1}{\sqrt{5}}\right)
$$
 or $\left(-\frac{4}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$

▶ Calculate values of *f*

$$
f(\frac{4}{\sqrt{5}}, -\frac{1}{\sqrt{5}}) = -\sqrt{5} \text{ and } f(-\frac{4}{\sqrt{5}}, \frac{1}{\sqrt{5}}) = \sqrt{5}
$$

I The constrained maximum value of f is $\sqrt{5}$ and occurs at $(x, y) = \left(-\frac{4}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$

The constrained minimum value of f is $-\sqrt{5}$ and occurs at $(x, y) = (\frac{-4}{\sqrt{5}}, -\frac{1}{\sqrt{5}})$ ।
ଏଠା ଏ∯ା ଏ≘ା ଏହା ଏକା

Optimization on a Bounded Domain

- \triangleright Suppose you want to find the maximum or minimum value of a function *f* on a closed bounded domain *D* in 2-space
- \triangleright Closed means *D* contains its boundary
- If The maximum and minimum points of f must either be critical points in *D* or lie on the boundary of *D*
- \triangleright To find the optimal points and corresponding values of f :
	- ▶ Find all critical points of *f* that lie in *D*
	- ▶ Find all maximum or minimum points on the boundary *D* by doing constrained optimization
	- \blacktriangleright Calculate the value of f on each point identified in previous steps

4 ロ > 4 団 > 4 ミ > 4 ミ > ニ ミ - 9 Q Q

Constrained Optimization on a Contour

- \triangleright Objective function $f(x, y)$
- **I** Constraint equation $g(x, y) = c$, where *c* is a constant

\blacktriangleright Assume

- \blacktriangleright The contour $g = c$ is bounded
- $\overrightarrow{\nabla}$ $\phi(x, y) \neq 0$ for any (x, y) in the contour $g = c$
- \blacktriangleright The constrained maxima and minima must occur at points in the contour that are either critical points of *f* or where $\vec{\nabla} f$ and ∇g point in the same or opposite directions, i.e.

$$
\vec{\nabla}f=\lambda\vec{\nabla}g
$$

- \triangleright Note that $\lambda = 0$ corresponds to a critical point of f
- Solution process:
	- Find all points (x, y) such that $g(x, y) = 0$ and there is a scalar λ such that $\vec{\nabla} f(x, y) = \lambda \vec{\nabla} g(x, y)$

K □ ▶ K @ ▶ K D ★ D ★ D ★ D ★ D → D D D D D D D Q Q Q

- \blacktriangleright Calculate *f* at all points found in previous step
- I dentify maximum or minimun points and values