MATH-UA 123 Calculus 3: Cross Product

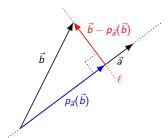
Deane Yang

Courant Institute of Mathematical Sciences New York University

September 15, 2021

START RECORDING LIVE TRANSCRIPT

Orthogonal Projection



▶ Given nonzero vectors \vec{a} and \vec{b} , the projection of \vec{b} in the direction of \vec{a} is equal to

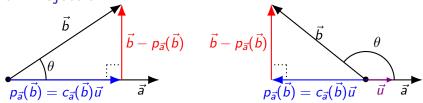
$$p_{\vec{a}}(\vec{b}) = (\vec{b} \cdot \vec{u})\vec{u} = \left((\vec{b} \cdot \left(\frac{\vec{a}}{|\vec{a}|}\right)\right)\frac{\vec{a}}{|\vec{a}|},$$

where \vec{u} is the unit vector with the same direction \vec{a} ,

$$\vec{u} = \frac{\vec{a}}{|\vec{a}|}$$

 $ightharpoonup \vec{b} - p_{\vec{a}}(\vec{b})$ is orthogonal to $p_{\vec{a}}(\vec{b})$

Scalar Projection



▶ Since $p_{\vec{a}}(\vec{b})$ is parallel to \vec{u} , there is a scalar $c_{\vec{a}}(\vec{b})$ such that

$$p_{\vec{u}}(\vec{b}) = (c_{\vec{u}}(\vec{b}))\vec{u},$$

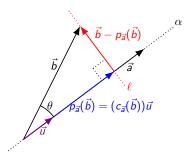
where \vec{u} is the direction of \vec{a} .

- $ightharpoonup c_{\vec{a}}(\vec{b})$ is called the **scalar projection** of \vec{b} onto \vec{a}
- ▶ If θ is the angle between \vec{a} and \vec{b} , then

$$c_{\vec{a}}(\vec{b}) = |\vec{b}| \cos \theta$$

- ▶ If $\theta < \frac{\pi}{2}$, then $c_{\vec{a}}(\vec{b}) > 0$
- lf $\theta > \frac{\pi}{2}$, then $c_{\vec{a}}(\vec{b}) < 0$

Scalar Projection Using the Dot Product



• Since \vec{u} is orthogonal to $\vec{b} - p_{\vec{a}}(\vec{b})$,

$$0 = \vec{u} \cdot (\vec{b} - p_{\vec{a}}(\vec{b}))$$

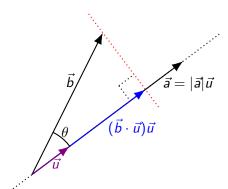
$$= \vec{u} \cdot \vec{b} - \vec{u} \cdot ((c_{\vec{a}}(\vec{b}))\vec{u})$$

$$= \vec{b} \cdot \vec{u} - c_{\vec{a}}(\vec{b})$$

Therefore,

$$c_{\vec{a}}(\vec{b}) = \vec{b} \cdot \vec{u}$$

Trigonometric Formula for the Dot Product



- $\blacktriangleright \text{ Since } \vec{a} = |\vec{a}|\vec{u},$

$$\vec{a} \cdot \vec{b} = (|\vec{a}|\vec{u}) \cdot \vec{b}$$

= $|\vec{a}||\vec{b}|\cos\theta$

Standard Unit Vectors

- The standard unit vectors point in the positive direction of each coordinate axis
- ► In 2-space

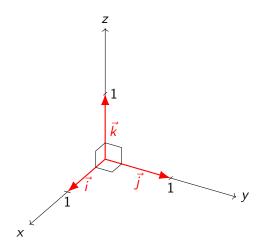
$$\vec{i} = \langle 1, 0 \rangle$$

$$\vec{j} = \langle 0, 1 \rangle$$

► In 3-space

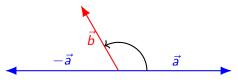
$$\vec{i} = \langle 1, 0, 0 \rangle$$
 $\vec{j} = \langle 0, 1, 0 \rangle$
 $\vec{k} = \langle 0, 0, 1 \rangle$

Standard Unit Vectors in 3-space

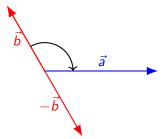


Orientation in 2-space

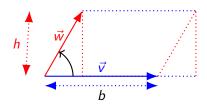
An ordered pair of vectors (\vec{a}, \vec{b}) in 2-space has **positive** orientation, if \vec{b} lies between \vec{a} and $-\vec{a}$ going counterclockwise (from the x-axis toward the y-axis)



 \triangleright (\vec{b}, \vec{a}) has negative orientation



Cross Product in 2-space



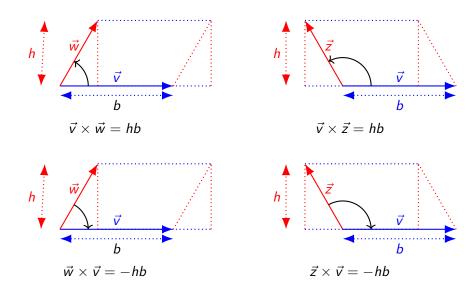
- ▶ The cross product $\vec{v} \times \vec{w}$ is defined to be the oriented area of the parallelogram spanned by \vec{v} and \vec{w} (i.e., with vertices as $\vec{0}$, \vec{v} , \vec{w} , and $\vec{v} + \vec{w}$)
- ► Since (\vec{v}, \vec{w}) has positive orientation,

$$\vec{v} \times \vec{w} = hb$$

▶ Since (\vec{w}, \vec{v}) has negative orientation,

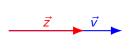
$$\vec{w} \times \vec{v} = -hb$$

Cross Product = Oriented Area of a Parallelogram



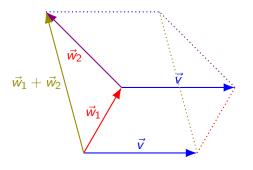
Special Cases

$$\vec{v} \cdot \vec{w} = 0$$
$$\vec{v} \times \vec{w} = |\vec{v}||\vec{w}|$$



$$\vec{v} \times \vec{z} = 0$$

The Cross Product is a Linear Function of Each Vector



$$ec{v} imes (ec{w}_1 + ec{w}_2) = ec{v} imes ec{w}_1 + ec{v} imes ec{w}_2$$

Key Properties of Dot and Cross Products in 2-space

- Dot product is symmetric, positive definite, and bilinear
 - $\vec{v} \cdot \vec{w}$ is a scalar
 - $\vec{v} \cdot \vec{w} = \vec{w} \cdot \vec{v}$
 - $\vec{v} \cdot \vec{v} = |\vec{v}|^2$
 - $\vec{v} \cdot (a\vec{w} + b\vec{z}) = a\vec{v} \cdot \vec{w} + b\vec{v} \cdot \vec{z}$
- Cross product is antisymmetric and bilinear
 - $\vec{v} \times \vec{w}$ is a scalar
 - $\vec{v} \times \vec{w} = -\vec{w} \times \vec{v}$
 - $\vec{v} \times \vec{v} = 0$

Calculating the Cross Product in 2-space

Memorize the cross product of the standard unit vectors

$$\vec{i} \times \vec{i} = \vec{j} \times \vec{j} = 0$$

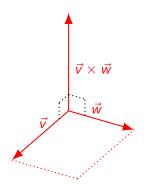
$$\vec{i} \times \vec{j} = 1, \ \vec{j} \times \vec{i} = -1$$

Use asymmetric and bilinear properties of the cross product

$$(7\vec{i} - 11\vec{j}) \times (5\vec{i} + 3\vec{j}) = 7(3)\vec{i} \times \vec{j} + (-11)5\vec{j} \times \vec{i}$$

= 21 + 55
= 76

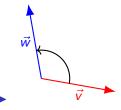
Cross Product in 3-space



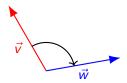
- ▶ If \vec{a} and \vec{b} are vectors in 3-space, then their cross product $\vec{a} \times \vec{b}$ is a **vector**
- $ightharpoonup \vec{a} imes \vec{b}$ is orthogonal to both \vec{a} and \vec{b}
- The magnitude is equal to the area of the parallelogram spanned by \vec{a} and \vec{b}
- The direction of $\vec{a} \times \vec{b}$ is given by the righthand rule

The Righthand Rule

Suppose \vec{v} and \vec{w} are nonzero vectors in 3=space



If \vec{w} lies less than 180 degrees counterclockwise of \vec{v} , then $\vec{v} \times \vec{w}$ points towards you



- ▶ If \vec{w} lies less than 180 degrees clockwise of \vec{v} , then $\vec{v} \times \vec{w}$ points towards you
- ► Also, see youtube video on the righthand rule

Key Properties of Dot and Cross Products in 3-space

- Dot product is symmetric, positive definite, and bilinear
 - $\vec{v} \cdot \vec{w}$ is a scalar
 - $\vec{v} \cdot \vec{w} = \vec{w} \cdot \vec{v}$
 - $\vec{v} \cdot \vec{v} = |\vec{v}|^2$
 - $\vec{v} \cdot (a\vec{w} + b\vec{z}) = a\vec{v} \cdot \vec{w} + b\vec{v} \cdot \vec{z}$
- Cross product is antisymmetric and bilinear
 - $\vec{v} \times \vec{w}$ is a vector
 - \vec{v} , \vec{w} , $\vec{v} \times \vec{w}$ obey the righthand rule
 - $\vec{v} \times \vec{w} = -\vec{w} \times \vec{v}$
 - $\vec{v} \times \vec{v} = 0$

Calculating the Cross Product in 3-space

Memorize the cross products for pairs of standard unit vectors

$$\vec{i} \times \vec{i} = \vec{j} \times \vec{j} = \vec{k} \times \vec{k} = \vec{0}$$
$$\vec{i} = \vec{j} \times \vec{k}, \ -\vec{i} = \vec{k} \times \vec{j}$$
$$\vec{j} = \vec{k} \times \vec{i}, \ -\vec{j} = \vec{i} \times \vec{k}$$
$$\vec{k} = \vec{i} \times \vec{j}, \ -\vec{k} = \vec{j} \times \vec{k}$$

 Use the antisymmetric and bilinear properties of the cross product

$$(\vec{i} + 2\vec{j} + 3\vec{k}) \times (5\vec{i} + 7\vec{j} + 11\vec{k})$$

$$= 2(11)\vec{j} \times \vec{k} + 3(7)\vec{k} \times \vec{j}$$

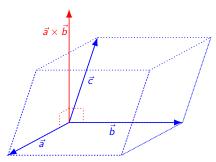
$$+ 3(5)\vec{k} \times \vec{i} + 1(11)\vec{i} \times \vec{k}$$

$$+ 1(7)\vec{i} \times \vec{j} + 2(5)\vec{j} \times \vec{i}$$

$$= (22 - 21)\vec{i} + (15 - 11)\vec{j} + (7 - 10)\vec{k}$$

$$= \vec{i} + 4\vec{j} - 3\vec{k}$$

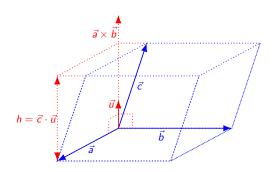
Parallelotope spanned by 3 Vectors in 3-space



- ► Three vectors \vec{a} , \vec{b} , \vec{c} are **linearly independent**, if \vec{c} does not lie in the plane containing \vec{a} and \vec{b}
- Three linearly independent vectors span a parallelotope
- An ordered triple of linearly independent vectors, $(\vec{a}, \vec{b}, \vec{c})$, has positive orientation, if it obeys the righthand rule.
- \blacktriangleright $(\vec{a}, \vec{b}, \vec{c})$ has positive orientation if and only if

$$\vec{c}\cdot(\vec{a}\times\vec{b})>0.$$

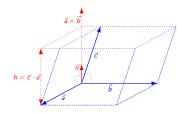
Volume of a Parallelotope



- Volume = (area of base)(height)
- ightharpoonup Area of base $= |\vec{a} \times \vec{b}|$
- ► Height = $|c_{\vec{u}}(\vec{c})| = |\vec{c} \cdot \vec{u}|$, where

$$\vec{u} = \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$$

Unoriented Volume of a Parallelotope



The unoriented volume V of the parallelotope is equal to

$$\begin{aligned} |V| &= (\text{area of base})(\text{height}) \\ &= |\vec{a} \times \vec{b}| |\vec{c} \cdot \vec{u}| \\ &= |\vec{a} \times \vec{b}| \left| \vec{c} \cdot \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} \right| \\ &= |(\vec{a} \times \vec{b}) \cdot \vec{c}| \end{aligned}$$

Oriented Volume of a Parallelotope

▶ Define the oriented volume of a parallelotope to be

$$V = (\vec{a} \times \vec{b}) \cdot \vec{c}.$$

- ▶ If $(\vec{a}, \vec{b}, \vec{c})$ has positive orientation, then V > 0
- ▶ If $(\vec{a}, \vec{b}, \vec{c})$ has negative orientation, then V < 0