MATH-UA 148 Honors Linear Algebra Adjoint of Linear Map Orthogonal Transformations

Deane Yang

Courant Institute of Mathematical Sciences
New York University

November 16, 2022

START RECORDING LIVE TRANSCRIPT

Adjoint of a Linear Transformation

- If V is an inner product space and $L: V \rightarrow V$ is a linear map, then there is a linear map $L^{*}: V \rightarrow V$, called the adjoint of L, that satisfies

$$
\langle L(v), w\rangle=\left\langle v, L^{*}(w)\right\rangle \text { for any } v, w \in V
$$

- If $V=\mathbb{R}^{n},\langle\cdot, \cdot\rangle$ is the standard dot product, and

$$
L(v)=M v
$$

where M is an n-by- n matrix, then

$$
\begin{aligned}
\langle w, L(v)\rangle & =w \cdot M v \\
& =\left\langle e_{i} w^{i}, e_{j} M_{k}^{j} v^{k}\right\rangle \\
& =\sum_{j=1}^{n} w^{j} M_{k}^{j} v^{k}=v^{k}\left(M_{k}^{j} w^{j}\right) \\
& =v \cdot M^{t} w
\end{aligned}
$$

- Therefore,

$$
L^{*}(w)=M^{t} w
$$

Properties of Adjoint Map

- $\left(a^{1} L_{1}+a^{2} L_{2}\right)^{*}=a^{1} L_{1}^{*}+a^{2} L_{2}^{*}$
- $\left(L_{1} \circ L_{2}\right)^{*}=L_{2}^{*} \circ L_{1}^{*}$, because for any $v, w \in V$,

$$
\begin{aligned}
\left\langle\left(L_{1} \circ L_{2}\right)(v), w\right\rangle & =\left\langle L_{1}\left(L_{2}(v)\right), w\right\rangle \\
& =\left\langle L_{2}(v), L_{1}^{*}(w)\right\rangle \\
& =\left\langle v, L_{2}^{*}\left(L_{1}^{*}(w)\right)\right\rangle \\
& -\left\langle v,\left(L_{2}^{*} \circ L_{1}^{*}\right)(w)\right\rangle
\end{aligned}
$$

Adjoint Map With Respect to Basis (Part 1)

- Let $\left(e_{1}, \ldots, e_{n}\right)$ be a basis of V and let

$$
A_{j k}=\left\langle e_{j}, e_{k}\right\rangle
$$

- Let $L: V \rightarrow V$ be a linear map such that

$$
L\left(e_{i}\right)=e_{k} M_{i}^{k}
$$

- If $v=e_{j} a^{j}$ and $w=e_{k} b^{k}$, then

$$
\begin{aligned}
\langle L(v), w\rangle & =\left\langle L\left(a^{j} e_{j}\right), e_{k} b^{k}\right\rangle=\left\langle a^{j} L\left(e_{j}\right), e_{k} b^{k}\right\rangle \\
& =\left\langle a^{j} M_{j}^{i} e_{j}, e_{k} b^{k}\right\rangle=\left(M_{j}^{i} a^{j}\right)\left\langle e_{i}, e_{k}\right\rangle b^{k} \\
& =\left(M_{j}^{i} a^{j}\right) A_{i k} b^{k}=(M a) \cdot A b \\
& =a \cdot M^{t} A b=a \cdot A\left(A^{-1} M^{t} A b\right) \\
& =a \cdot A\left(M^{*} b\right)=\left\langle v, L^{*}(w)\right\rangle,
\end{aligned}
$$

where $M^{*}=A^{-1} M^{t} A$ and $L^{*}\left(e_{j}\right)=e_{k}\left(M^{*}\right)_{j}^{k}$

Adjoint Map With Respect to Basis

- The adjoint map is therefore given by

$$
L^{*}\left(e_{k} a^{k}\right)=e_{j}\left(M^{*}\right)_{k}^{j} a^{k}
$$

where

$$
\left(M^{*}\right)_{k}^{j}=\left(A^{-1}\right)^{j p} M_{p}^{q} A_{q k}
$$

- If $\left(e_{1}, \ldots, e_{n}\right)$ is an orthonormal basis, then $A=I$ and

$$
\left(M^{*}\right)_{k}^{j}=M_{j}^{k}=\left(M^{t}\right)_{j}^{k}
$$

Orthogonal Transformation

- A map $F: V \rightarrow V$ is orthogonal if for any $v, w \in V$,

$$
\langle F(v), F(w)\rangle=\langle v, w\rangle
$$

- In other words, F preserves the inner product
- Consequences:
- F is linear
- F is bijective, because if F is linear and $F(v)=0$, then

$$
0=\langle F(v), F(v)\rangle=\langle v, v\rangle
$$

- Therefore,

$$
\langle v, w\rangle=\langle F(v), F(w)\rangle=\left\langle v, F^{*}(F(w))\right\rangle
$$

- It follows that F is orthogonal if and only if

$$
F^{*} \circ F=I
$$

An Orthogonal Map is Linear

- Let $\left(e_{1}, \ldots, e_{n}\right)$ be an orthonormal basis
- For each $1 \leq k \leq n$, let $f_{k}=F\left(e_{k}\right)$
- For any $1 \leq j, k \leq n$,

$$
\left\langle f_{j}, f_{k}\right\rangle=\left\langle F\left(e_{j}\right), F\left(e_{k}\right)\right\rangle=\left\langle e_{j}, e_{k}\right\rangle=\delta_{j k}
$$

- Therefore $\left(f_{1}, \ldots, f_{n}\right)$ is also an orthonormal basis
- For any $v=a^{k} e_{k}$ and $1 \leq j \leq n$,

$$
\begin{aligned}
\left\langle F(v), f_{j}\right\rangle & =\left\langle F\left(a^{k} e_{k}\right), F\left(e_{j}\right)\right\rangle \\
& =\left\langle a^{k} e_{k}, e_{j}\right\rangle \\
& =a^{k}\left\langle e_{k}, e_{j}\right\rangle \\
& =a^{j},
\end{aligned}
$$

which implies that for all $1 \leq k \leq n$,

$$
F\left(a^{k} e_{k}\right)=a^{k} f_{k}=a^{k} F\left(e_{k}\right)
$$

- This implies that F is linear

Orthogonal Matrix

- If $V=\mathbb{R}^{n}$ and the inner product is the dot product, then a linear map $L(v)=M v$ is orthogonal if and only if the matrix M satisfies

$$
M^{t} M=I
$$

- Recall that if C_{1}, \ldots, C_{n} are the columns of M, then they are the rows of M^{t} and

$$
\left(M^{t} M\right)_{j k}=C_{j} \cdot C_{k}
$$

- Therefore, a matrix is orthogonal if and only if its columns are an orthonormal basis of \mathbb{R}^{n}
- If M is orthogonal, then $M^{-1}=M^{t}$ and therefore

$$
M M^{t}=M M^{-1}=I
$$

- It follows that M is orthogonal if and only if its rows are an orthonormal basis of \mathbb{R}^{n}

2-Dimensional Orthogonal Matrices

- A matrix

$$
M=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]
$$

is orthogonal if

$$
a^{2}+b^{2}=c^{2}+d^{2}=1 \text { and } a d+b c=0
$$

- This holds if and only if

$$
(c, d)= \pm(-b, a)
$$

- Therefore, an orthogonal matrix is of the form

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \text { or }\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right]
$$

Orthogonal Group

- Let $O(n)$ be the set of all n-by- n orthogonal matrices
- It has the following properties:
- If $A, B \in O(n)$, then $A B \in O(n)$
- $I \in O(n)$
- If $A \in O(n)$, then $A^{-1}=O(n)$
- More generally, a subset $G \subset \mathcal{M}_{n \times n}$ is called a matrix group if the following properties hold:
- If $A, B \in G$, then $A B \in G$
- $I \in G$
- If $A \in G$, then $A^{-1}=G$
- We therefore call $O(n)$ the orthogonal group

Special Orthogonal Group

- Observe that if $A \in O(n)$, then

$$
1=\operatorname{det} I=\operatorname{det} A^{t} A=\left(\operatorname{det} A^{t}\right)(\operatorname{det} A)=(\operatorname{det} A)^{2}
$$

- Therefore, $\operatorname{det} A= \pm 1$
- The special orthogonal group is defined to be

$$
S O(n)=\{A \in O(n): \operatorname{det} A=1\}
$$

Transformation Group

- Given a vector space V, let $G L(V)$ be the set of all invertible linear transformations
- A subset $G \subset G L(v)$ is a transformation group if it satisfies the following properties
- $L_{1}, L_{2} \in G \Longrightarrow L_{1} \circ L_{2} \in G$
- $I \in G$
- $L \in G \Longrightarrow L^{-1} \in G$
- $G L(V)$ itself is a transformation group

Group of Orthogonal Transformations

- If V is an inner product space, then the set $O(v)$ of all orthogonal transformations is a transformation group

