MATH-UA 148 Honors Linear Algebra Adjoint of Linear Map Orthogonal Transformations

Deane Yang

Courant Institute of Mathematical Sciences New York University

November 16, 2022

START RECORDING LIVE TRANSCRIPT

Adjoint of a Linear Transformation

▶ If V is an inner product space and $L: V \to V$ is a linear map, then there is a linear map $L^*: V \to V$, called the adjoint of L, that satisfies

$$\langle L(v), w \rangle = \langle v, L^*(w) \rangle$$
 for any $v, w \in V$

▶ If $V = \mathbb{R}^n$, $\langle \cdot, \cdot \rangle$ is the standard dot product, and

$$L(v) = Mv,$$

where M is an n-by-n matrix, then

$$\langle w, L(v) \rangle = w \cdot Mv$$

$$= \langle e_i w^i, e_j M_k^j v^k \rangle$$

$$= \sum_{j=1}^n w^j M_k^j v^k = v^k (M_k^j w^j)$$

$$= v \cdot M^t w$$

Therefore,

$$L^*(w) = M^t w$$

Properties of Adjoint Map

▶ $(a^1L_1 + a^2L_2)^* = a^1L_1^* + a^2L_2^*$ ▶ $(L_1 \circ L_2)^* = L_2^* \circ L_1^*$, because for any $v, w \in V$, $\langle (L_1 \circ L_2)(v), w \rangle = \langle L_1(L_2(v)), w \rangle$ $= \langle L_2(v), L_1^*(w) \rangle$ $= \langle v, L_2^*(L_1^*(w)) \rangle$ $- \langle v, (L_2^* \circ L_1^*)(w) \rangle$

Adjoint Map With Respect to Basis (Part 1)

 \blacktriangleright Let (e_1, \ldots, e_n) be a basis of V and let

$$A_{jk} = \langle e_j, e_k \rangle$$

▶ Let $L: V \rightarrow V$ be a linear map such that

$$L(e_i) = e_k M_i^k$$

▶ If $v = e_i a^j$ and $w = e_k b^k$, then

$$\langle L(v), w \rangle = \langle L(a^{j}e_{j}), e_{k}b^{k} \rangle = \langle a^{j}L(e_{j}), e_{k}b^{k} \rangle$$

$$= \langle a^{j}M_{j}^{i}e_{i}, e_{k}b^{k} \rangle = (M_{j}^{i}a^{j})\langle e_{i}, e_{k}\rangle b^{k}$$

$$= (M_{j}^{i}a^{j})A_{ik}b^{k} = (Ma) \cdot Ab$$

$$= a \cdot M^{t}Ab = a \cdot A(A^{-1}M^{t}Ab)$$

$$= a \cdot A(M^{*}b) = \langle v, L^{*}(w) \rangle,$$

where $M^*=A^{-1}M^tA$ and $L^*(e_j)=e_k(M^*)^k_j$

Adjoint Map With Respect to Basis

▶ The adjoint map is therefore given by

$$L^*(e_ka^k)=e_j(M^*)^j_ka^k,$$

where

$$(M^*)_k^j = (A^{-1})^{jp} M_p^q A_{qk}$$

▶ If $(e_1, ..., e_n)$ is an orthonormal basis, then A = I and

$$(M^*)_k^j = M_j^k = (M^t)_j^k$$

Orthogonal Transformation

▶ A map $F: V \rightarrow V$ is **orthogonal** if for any $v, w \in V$,

$$\langle F(v), F(w) \rangle = \langle v, w \rangle$$

- ▶ In other words, F preserves the inner product
- Consequences:
 - F is linear
 - F is bijective, because if F is linear and F(v) = 0, then

$$0 = \langle F(v), F(v) \rangle = \langle v, v \rangle$$

Therefore,

$$\langle v, w \rangle = \langle F(v), F(w) \rangle = \langle v, F^*(F(w)) \rangle$$

It follows that F is orthogonal if and only if

$$F^* \circ F = I$$

An Orthogonal Map is Linear

- ightharpoonup Let (e_1, \ldots, e_n) be an orthonormal basis
- For each $1 \le k \le n$, let $f_k = F(e_k)$
- For any $1 \le j, k \le n$,

$$\langle f_j, f_k \rangle = \langle F(e_j), F(e_k) \rangle = \langle e_j, e_k \rangle = \delta_{jk}$$

- ▶ Therefore $(f_1, ..., f_n)$ is also an orthonormal basis
- For any $v = a^k e_k$ and $1 \le j \le n$,

$$\langle F(v), f_j \rangle = \langle F(a^k e_k), F(e_j) \rangle$$

 $= \langle a^k e_k, e_j \rangle$
 $= a^k \langle e_k, e_j \rangle$
 $= a^j,$

which implies that for all $1 \le k \le n$,

$$F(a^k e_k) = a^k f_k = a^k F(e_k)$$

► This implies that *F* is linear

Orthogonal Matrix

▶ If $V = \mathbb{R}^n$ and the inner product is the dot product, then a linear map L(v) = Mv is orthogonal if and only if the matrix M satisfies

$$M^tM=I$$

▶ Recall that if $C_1, ..., C_n$ are the columns of M, then they are the rows of M^t and

$$(M^tM)_{jk}=C_j\cdot C_k$$

- ► Therefore, a matrix is orthogonal if and only if its columns are an orthonormal basis of \mathbb{R}^n
- ▶ If M is orthogonal, then $M^{-1} = M^t$ and therefore

$$MM^t = MM^{-1} = I$$

It follows that M is orthogonal if and only if its rows are an orthonormal basis of \mathbb{R}^n

2-Dimensional Orthogonal Matrices

A matrix

$$M = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

is orthogonal if

$$a^2 + b^2 = c^2 + d^2 = 1$$
 and $ad + bc = 0$

This holds if and only if

$$(c,d)=\pm(-b,a)$$

▶ Therefore, an orthogonal matrix is of the form

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \text{ or } \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$$

Orthogonal Group

- Let O(n) be the set of all n-by-n orthogonal matrices
- It has the following properties:
 - ▶ If $A, B \in O(n)$, then $AB \in O(n)$
 - $I \in O(n)$
 - ▶ If $A \in O(n)$, then $A^{-1} = O(n)$
- ▶ More generally, a subset $G \subset \mathcal{M}_{n \times n}$ is called a **matrix group** if the following properties hold:
 - ▶ If $A, B \in G$, then $AB \in G$
 - I ∈ G
 - ▶ If $A \in G$, then $A^{-1} = G$
- \blacktriangleright We therefore call O(n) the **orthogonal group**

Special Orthogonal Group

▶ Observe that if $A \in O(n)$, then

$$1 = \det I = \det A^t A = (\det A^t)(\det A) = (\det A)^2$$

- ▶ Therefore, det $A = \pm 1$
- The special orthogonal group is defined to be

$$SO(n) = \{A \in O(n) : \det A = 1\}$$

Transformation Group

- Given a vector space V, let GL(V) be the set of all invertible linear transformations
- ▶ A subset $G \subset GL(v)$ is a **transformation group** if it satisfies the following properties
 - $ightharpoonup L_1, L_2 \in G \implies L_1 \circ L_2 \in G$
 - I ∈ G
 - $ightharpoonup L \in G \implies L^{-1} \in G$
- ► GL(V) itself is a transformation group

Group of Orthogonal Transformations

If V is an inner product space, then the set O(v) of all orthogonal transformations is a transformation group